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Simulation of the A -X and B -X transition emission spectra of the InBr molecule for diagnostics in low pressure plasmas

Keywords: numbers: 52.70.Kz, 33.20.Lg, 33.20.Vq, 33.70.Ca, 33.70.Fd

Inductively coupled low pressure discharges containing InBr have been investigated spectroscopically. In order to obtain plasma parameters such as the vibrational and rotational temperature of the InBr molecule, the emission spectra of the A 3 Π 0 + → X 1 Σ + 0 and the B 3 Π 1 → X 1 Σ + 0 transitions have been simulated. The program is based on the molecular constants and takes into account vibrational states up to v = 24. The required Franck-Condon factors and vibrationally resolved transition probabilities have been computed solving the Schrödinger equation using the Born-Oppenheimer approximation. The ground state density of the InBr molecule in the plasma has been determined from absorption spectra using effective transition probabilities for the A -X and B -X transition according to the vibrational population. The obtained densities agree well with densities derived from an Arrhenius type vapour pressure equation.

Introduction

Metal halides such as InBr are discussed to be an efficient molecular radiator in low pressure plasmas. Up to now, rare gas discharges containing mercury in the high and low pressure range are commonly used for lighting purposes. Several properties of mercury are hereby utilized such as a high vapour pressure and the strong and efficient radiation in the visible and especially the ultraviolet spectral range. Recent research both in low and high pressure lamps ( [1,2,3] and [4,5]) focuses on finding efficient substitutes for mercury due to its toxicity. Molecular radiation -especially from metal halides -is under discussion to be a good alternative to mercury [6]. Some of the suggested molecules are already used as additives in common high pressure lamps to achieve a higher colour rendering index [START_REF] Waymouth | Electric Discharge Lamps[END_REF]. The performance of low pressure discharges containing indium halides (InCl, InBr and InI) has been investigated recently [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF][START_REF] Hayashi | [END_REF]. The most intense emission bands of their molecular spectrum are in the near UV range (330 -420 nm) which makes the conversion into visible light by a phosphor more efficient compared to mercury in fluorescent lamps due to the lower Stokes shift. These emission bands consist of transitions from the first two excited states to the ground state: A 3 Π 0 + -X 1 Σ + 0 and B 3 Π 1 -X 1 Σ + 0 . The minima of the potential curves of the InBr molecule are at 3.30 eV for the A state and at 3.39 eV for the B state [10]. The resulting band spectrum is in the wavelength range between 350 and 400 nm. It is still under discussion if the third electronic state, the C 1 Π 1 state, is bound or repulsive [11]. The C -X band emission is discussed to be around 285 nm [12]. A plasma which contains InBr (ionization energy E Ion (InBr) = 9.41 eV [13]) also emits intense radiation from indium in the blue spectral range at 410.18 nm and 451.13 nm due to the dissociation of the molecule (dissociation energy of InBr D e = 3.99 eV [10]).

InBr has a very low vapour pressure at ambient temperature [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF]. To obtain a significant partial pressure of InBr in a plasma, the discharge vessel has to be heated up to several hundred degrees centigrade. The amount of InBr in the plasma which strongly influences the intensity of the molecular emission is determined by the temperature of the coldest spot of the vessel wall.

For lighting purposes, the aim is to maximize the molecular near UV radiation of a rare gas plasma containing InBr at a fixed discharge power. Therefore it is important to investigate the population mechanisms of the involved electronic states in the molecule. The vibrational and rotational population of the electronic states determine the shape of the molecular band spectrum and, as the single vibrational levels have different radiative lifetimes, also the intensity of the emission. A well-known example of these characteristics are nitrogen bands [14]. Spectroscopic diagnostics are common techniques to determine the influence of external parameters such as pressure, power and heating temperature on the population densities and on the emission respectively. For InBr, however, the vibrational and rotational population cannot be obtained from an analysis of individual lines from the measured spectrum because of the manifold of overlapping ro-vibrational lines of the two electronic transitions.

The aim of this paper is to determine the rotational and vibrational population of the molecule from emission spectra by comparing the measured relative intensity of the band with simulated spectra. With the knowledge of these populations the ground state density of InBr can be obtained from absorption spectroscopy measurements. First, the simulation procedure will be described. The required Franck-Condon factors and vibrational resolved transition probabilities of InBr have not been available in literature and were determined numerically. Examples of simulated spectra with different spectral resolution of the optical system and with varying vibrational and rotational temperatures are given in section 2.4. Section 3 describes the application to low pressure plasmas and presents the results together with a discussion on the accuracy of the determination of the vibrational and rotational temperature. In addition, the ground state density of InBr obtained from absorption measurements is compared with the density calculated from an Arrhenius type vapour pressure equation.

Simulation of InBr emission spectra

The band spectrum of InBr between 350 and 400 nm arises from overlapping emission of the electronic A -X and B -X transition and can be seen easily in the measurements presented in section 3. The C -X band spectrum could not be observed. However, it does not contribute to the near UV radiation and, therefore, the focus is put on the A -X and B -X transition. Due to the large mass of InBr (atomic weight 194.722 u) the molecular constants and hence the energy differences between vibrational and rotational states characterized by their quantum numbers v and J are very small (∆E v ≈ 0.03 eV, ∆E J ≈ 3 • 10 -5 eV). States with high quantum numbers v and J can be populated with rather small amounts of energy and many emission lines occur in a narrow wavelength range. Due to the Doppler broadening of emission lines it is only possible to resolve the structure of the sequences (transitions with fixed ∆v = v ′ -v ′′ ) of the band spectrum even with a high resolution spectrometer (∆λ FWHM ≈ 25 pm). This is demonstrated in Figure 1 which already shows simulated spectra with a FWHM of the apparatus profile of 25 pm. The simulation was performed using the procedure described in the following section.

Computing method

As the energy difference between the individual states is very low, it is necessary to take into account states with high vibrational and rotational quantum numbers for the X, A and B state. First investigations showed that it is sufficient for a good match of simulated and measured spectra to limit the calculation to the energetically lowest 25 vibrational states and 300 rotational states in each electronic state. Significant deviations have been observed by reducing the vibrational quantum number below v = 20. The energy of the rovibrational states of the X, A and B state is calculated using the molecular constants taken from [10]. The wavelength of a transition from the upper electronic state i (A or B) with vibrational and rotational quantum numbers v ′ and J ′ to the lower state k (the ground state X) with v ′′ and J ′′ is derived from the energy difference of the states.

The relative vibrational population of the ground state is calculated assuming a Boltzmann distribution with the vibrational temperature T Vib . This assumption is reasonable due to the small energy difference between the vibrational states (about 0.03 eV). For the excited states, the relative vibrational population n v ′ i is derived from the population of the ground state applying the Franck-Condon principle [15]. To obtain the relative population n J ′ i,v ′ of the rotational states with the vibrational quantum number v ′ of the excited electronic states, again a Boltzmann distribution characterized by the rotational temperature T Rot is used. The relative population of a single state with v ′ 0.0 0.5 and J ′ , n v ′ ,J ′ i , is then given by

1.0 v = -2 v = -1 v = 0 v = +2 v = +1 v = -3 v = -2 v = -1 v = 0 v = +1 v = +2
n v ′ ,J ′ i ∝ n v ′ i (T Vib ) • n J ′ i,v ′ (T Rot ). (1) 
The relative populations are normalized that the population of the whole electronic state is equal to unity:

v ′ n v ′ i = 1 and J ′ n J ′ i,v ′ = n v ′ i . (2) 
According to [START_REF] Herzberg | Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules[END_REF] the relative intensity

I ik,v ′ v ′′ ,J ′ J ′′ of the transition (i, v ′ , J ′ ) → (k, v ′′ , J ′′ ) is determined by I ik,v ′ v ′′ ,J ′ J ′′ ∝ ν d i n v ′ ,J ′ i A v ′ v ′′ ik S P,Q,R (J ′ ), (3) 
where ν denotes the frequency of the emitted photon, d i the degeneracy, n v ′ ,J ′ i the population density in the state i and A v ′ v ′′ ik the vibrationally resolved transition probability. S P,Q,R (J ′ ) is the Hönl-London factor for the P,Q or R branch, which describes the intensity of the emission line depending on the rotational quantum numbers of the states involved [START_REF] Herzberg | Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules[END_REF]. The Hönl-London factors depend on the Hund's coupling cases of the electronic states which are involved in the transition. As InBr is a very heavy molecule Hund's case (c) is valid for both the A -X and the B -X transition [10]. Furthermore, both transitions are singlettriplet transitions which means spinorbit interactions may lead to perturbations in the intensity distribution of rotational lines [START_REF] Kovács | Rotational Structure in the Spectra of Diatomic Molecules[END_REF]. The exact formulae for the Hönl-London factor for the A -X and B -X transition can be found in [START_REF] Kovács | Rotational Structure in the Spectra of Diatomic Molecules[END_REF]. They contain constants which describe the magnitude of perturbation due to the spin-orbit interaction. In the case of InBr, these constants are not available in literature. Therefore the Hönl-London factors of Hund's case (a) are used in the simulation as an approximation since the resultant angular momentum from the coupling of the single electronic and rotational angular momenta for the electronic state is the same as in case (c) [START_REF] Herzberg | Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules[END_REF]. Thus, the spin-orbit interactions are neglected. The comparison of simulated spectra to measurements has to demonstrate the validity of this approximation.

For each transition line a Gaussian line profile is calculated with the peak of the profile at the wavelength of the transition and folded with the relative intensity of the line emission. The FWHM of the line profile is an input parameter of the simulation. As only low pressure plasmas are investigated the dominating line broadening mechanism is the Doppler broadening. Due to the large mass of the InBr molecule the FWHM of the Doppler profile is still much smaller than the apparatus profile of the optical system. Therefore the FWHM used for the simulation is given by the experimental setup. It is determined by utilizing the nearby indium lines. To obtain a spectrum, the intensities of all computed lines are added up. The relative intensities of the two electronic transitions can be adjusted separately to consider the possibility of a different electronic population of the A and the B state.

The InBr molecule basically consists of two relevant isotopic species, 115 In 79 Br with natural abundance of 48.51% and 115 In 81 Br with 47,19%. Therefore the emission is simulated separately for both species and then added, taking into account the natural abundances to obtain the final spectrum. The isotopes 113 In 79 Br (2,18%) and 113 In 81 Br (2,12%) are neglected due to their low abundance.

Franck-Condon factors and transition probabilities

The simulation requires vibrationally resolved Franck-Condon factors (F CF ) and transition probabilities A v ′ v ′′ ik as input parameters. F CF of the InBr molecule can be found in literature only for vibrational quantum numbers up to v = 13 [START_REF] Singh | [END_REF] and radiative lifetimes can be found only for selected vibrational levels of the A or B state [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF]. Therefore F CF and A v ′ v ′′ ik were calculated using the program TraDiMo [19]. This program derives the eigenvalues and vibrational wave functions via numerically solving the Schrödinger equation. The calculations are based on the Born-Oppenheimer potential curves, the electronic dipole transition moments and the reduced mass of the molecule as input parameters. The overlap integral of two vibrational wave functions in different electronic states yields the F CF . The A v ′ v ′′ ik are calculated from the overlap of the vibrational wave functions with the electronic dipole transition moments. A more detailed description of TraDiMo can be found in [19].

There are three complete sets of potential curves for the X, A and B state of InBr available in literature: RKR potential curves [START_REF] Singh | [END_REF], Hulburt-Hirschfelder potential curves [20] and potential curves from MRDCI calculations [11]. The RKR potential curves are only given for vibrational quantum numbers up to v = 12. As already mentioned, for a good match of the simulated spectrum and the measurement vibrational states up to v = 24 have to be taken into account. Hence, Morse potential curves were calculated using the molecular constants of InBr [10] which reproduced the RKR potential curves quite well. Morse potential curves are a very good approximation close to the minimum of the potential curve and therefore for low vibrational energies. The energy of the state with vibrational quantum number v = 24 of InBr is still rather low due to the large mass of the molecule. TraDiMo calculations were carried out with all three sets of potential curves: with the Morse potential curves as extended fit to the RKR curves, with the Hulburt-Hirschfelder curves and with those from the MRDCI calculations. The electronic dipole transition moments D AX (r) and D BX (r) for the A -X and B -X transition are taken from [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF]. They are empirically determined and given as:

D AX (r) = D AX (r eX ) 1 + 4 • r r eX -1 D BX (r) = D BX (r eX ) (4) 
where r eX is the equilibrium nuclear distance of the ground state and with D AX (r eX ) = 0.0705 a.u. and D BX (r eX ) = 0.053 a.u.. As the different potential curves deviate from each other the obtained sets of F CF and A v ′ v ′′ ik also show deviations. Simulations were carried out with all sets of data and compared to measured emission spectra. The best results by far regarding the match of the relative intensity of simulated and measured spectra were achieved with the data derived from the Morse potential curves.

Uncertainties of the F CF or transition probabilities are determined by the accuracy of the input parameters (potential curves and electronic dipole transition moments). If the potential curves vary slightly, different absolute values of the vibrational eigenvalues are computed [19]. Small changes of the eigenvalues lead to deviations in the wave functions and hence to differences in the F CF . The deviation depends on the absolute value of the F CF and transition probabilities (the smaller the absolute value, the larger the deviation) which means the precision is rather determined by the digit than a percentaged value [19].

Since the Morse potential curves depend on molecular constants, slightly different curves are obtained for the isotopic species. Calculations of the F CF and A v ′ v ′′ ik have been carried out on the one hand with the mass of both relevant isotopes ( 115 In 79 Br and 115 In 81 Br) and on the other hand with the averaged mass. The simulation of the band spectrum using either the data gained considering the isotopic species or the averaged mass only differ in the range of a few percent. So, for simplicity Franck-Condon factors and transition probabilities derived with the average mass are used for the simulation of the relative intensity. These F CF and A v ′ v ′′ ik can be found in the tables A1 to A8 in the Appendix. Considering the uncertainty discussion above, all calculated Franck-Condon factors that are smaller than 1 • 10 -5 and all transition probabilities smaller than 1 s -1 are replaced by zero.

In [START_REF] Singh | [END_REF] F CF up to v = 13 of the A -X and B -X transition of InBr are calculated using the RKR potential curves published in the same paper. Table 1 compares the F CF calculated via TraDiMo to the data taken from [START_REF] Singh | [END_REF], which is denoted in brackets, up to a vibrational quantum number of v ′′ = v ′ = 3 for the A -X transition. Even though the Morse potential curves used for the TraDiMo calculations reproduce the RKR curves well the potential curves diverge slightly. As discussed above, this leads to differences in the calculated F CF . However, it can be seen that for the relevant Franck-Condon factors (high absolute values) the difference is only a few percent. The same consideration is valid for the F CF of the B -X transition.

Table 1. Comparison of the derived F CF to the data taken from [START_REF] Singh | [END_REF] (in brackets) for the first four vibrational states in the A -X transition. 

v ′ → v ′′ v ′′ = 0 v ′′ = 1 v ′′ = 2 v ′′ = 3 v ′ = 0 0.
i v ′ = v ′′ A v ′ v ′′ ik -1
with those available in literature [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF]. The lifetimes differ slightly, but unfortunately in [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF] no specification of the input data of the calculation and no details about the calculation itself is given.

Table 2. Calculated radiative lifetimes τ i v ′ of selected vibrational levels for two electronic states. For comparison, the values taken from [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF] are denoted in brackets.

State

A B v ′ = 0 6.81 µs (6.4 µs) 9.24 µs (8.7 µs) v ′ = 10 4.55 µs (4.5 µs) 9.20 µs (9.3 µs)

Effective transition probabilities

The determination of the population density of the electronic states of InBr with spectroscopic measurements requires the knowledge of the effective transition probability A eff ik , where i denotes the A or B state and k the X state. It can be obtained by weighting the inverse lifetimes of the single vibrational levels (

τ i v ′ ) -1 = v ′′ A v ′ v ′′ ik
with a vibrational population according to Boltzmann:

A eff ik (T Vib ) = v ′ v ′′ A v ′ v ′′ ik • n v ′ i (T Vib ) with v ′ n v ′ i (T Vib ) = 1. (5) 
The vibrational temperature is taken from the fit of the simulated spectrum to the measurement. Table 3 shows effective transition probabilities calculated with different T Vib . It can be seen that the A eff ik for the A -X transition (which has a electronic dipole transition moment varying over the internuclear distance [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF]) changes with increasing vibrational temperature whereas for the B -X transition (which has a constant electronic dipole transition moment [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF]) the A eff ik is almost constant. 

Influence of input parameters on simulated spectra

With the simulation program it is now possible to determine the influence of the vibrational and rotational temperature on the structure of the emission band. Furthermore, spectra simulated with a rather wide FWHM of the line profile (1 nm, low resolution, typical for a broad band spectrometer) can be compared to those calculated with the same parameters but a narrow FWHM of 0.025 nm (high resolution spectrometer). Figure 2 shows simulated spectra with fixed T Vib and two different T Rot for low and high spectral resolution. Rotational temperatures of 500 K and 1000 K are used as this temperature range is typical for low pressure plasmas. In case of the low resolution spectra the rotational temperature hardly changes the structure of the band.

Even for low T Rot the sequences are overlapping strongly. In the case of high resolution the spectrum simulated with higher rotational temperature shows a distinct broadening of the single sequences which overlap only slightly.

Varying the vibrational temperature with low spectral resolution leads to a strong change of the relative intensity of the sequences and to a slight broadening of the sequences. This can be seen in figure 3. The change in the relative intensity can also be seen with high resolution. However, the broadening can now be identified to be caused by the population of states with higher vibrational quantum number in the case of increased vibrational temperature. Transitions from higher vibrational quantum number are located in the shoulder of the single sequences. This leads to a broadening of the whole sequence in spectra calculated with low resolution as these transitions cannot be resolved. With high resolution, these transitions occurring with high vibrational temperature can be seen at 360 and 370 nm, for example.

Thus, a measurement with a high resolution is advantageous for the determination of the vibrational and the rotational temperature of the InBr molecule.

All measurements presented in this paper are carried out with a high resolution spectrometer with a FWHM of the apparatus profile of 25 pm. 

Applications to low pressure plasmas

Experimental setup

Rare gas discharges containing InBr have been generated via inductively RF-coupling at a frequency of 13.56 MHz and a generator power of 100 W in sealed cylindrical quartz cells. These cells are filled with a few mg InBr salt and Helium or Argon at a pressure of a few mbar. As InBr has a very low vapour pressure at ambient temperature, the whole cell was heated up to several hundred degrees centigrade using hot air flowing through a heat container. The amount of InBr in gas phase and in the plasma is determined by the coldest spot of the wall of the cell which is not welldefined. The temperature of the hot air inside the heat container is measured with three thermocouples which are placed on the left, in the middle and on the right part of the heat container. The heating temperature T H of the vessel is defined as the averaged measured temperatures of the three thermocouples. Figure 4 shows a schematic view of the experimental setup. The line-of-sight (LOS) for optical emission and absorption spectroscopy is axial (radial centered). A high resolution spectrometer with a focal length of 750 mm, a 1800 lines/mm grating and a CCD detector resulting in a FWHM for the apparatus profile of 25 pm is used. For white light absorption measurements a stabilized high-pressure Xe-lamp (450 W) is applied.

Comparison of measurements with simulation

Measurements have been carried out with Argon and Helium as background gas. The emission spectrum of these plasmas in the actively heated case is dominated by the InBr band (A -X and B -X transition) and by atomic indium lines arising from the dissociation of InBr whereas the emission from the background gas only plays a minor role. Figure 5 shows exemplary two measured spectra of InBr with different external parameters (different heating temperature, type and pressure of background gas) and the simulation which gives the best fit to the measurement. It can be seen that the structure of the band spectrum, and therefore T Vib and T Rot , varies strongly. The simulation Figure 6 shows the ∆v = 0 sequence of the A -X transition of the measurement in Argon and the appendant simulation in detail. The double peak structure of the sequence is well reproduced. In literature [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF], however, it was discussed if this "asymmetric shape" is caused by population transfer out of metastable states into certain vibrational levels. Since the simulation presented in this paper is only based on molecular constants, such transfer mechanism seems not to be the cause for the double peak structure.

Determination of the InBr density

An important parameter of InBr discharges which strongly influences the intensity of the band emission is the ground state density of the molecule. It is determined by the coldest spot of the wall of the quartz cell which is not well-defined in this experimental setup. However, the ground state density of InBr can be derived from absorption spectroscopy measurements using the effective transition probabilities A eff ik of the A -X or the B -X transition. As shown in section 2.3 the calculation of the A eff ik needs the vibrational temperature of InBr as input parameter which is gained from adjusting the simulation to the measured band spectrum. If the amount of InBr is very high, reabsorption of the intense sequences in the emission spectrum occurs. This can distort the shape of the spectrum drastically as shown in figure 7 and make a determination of the vibrational and rotational temperature with the simulation program impossible. In this case, however, the ground state density of InBr can still be obtained via absorption spectroscopy by using only the B -X transition since the effective transition probability A eff BX is almost constant for all vibrational temperatures. For low densities of InBr, which means negligible reabsorption effects, the A and the B state can both be analyzed using the individual effective transition probabilities. The resulting densities differ only by a few percent. Therefore it is reasonable to use only the B -X transition for the determination of the ground state density of InBr via absorption spectroscopy. To compare the population density of the ground state determined via absorption spectroscopy to the density calculated from an Arrhenius type vapour pressure equation [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF], the lowest temperature measured by the three thermocouples T low was used as an approximation for the coldest spot temperature (see table 4). Figure 8 shows measured densities in a discharge with Argon as background gas as a function of the heating temperature. A very good agreement is observed at high T H . For low heating temperatures the difference between the values obtained by the two methods increases. At T H = 300 • C the deviation is about a factor 4 which indicates that the approximation of using the heating temperature as coldest spot temperature is only valid for high heating temperature values. The distance between the thermocouple and the discharge cell is a few centimeter. Therefore the measured heating temperature can underestimate the cold spot temperature due to temperature gradients occurring especially for low heating temperatures. Figure 8. Ground state density of InBr with increasing heating temperature T H of the cell determined on the one hand with absorption spectroscopy (using only the B -X transition) and on the other hand with the vapour pressure equation [START_REF] Körber | XXVIII Int. Conf. on Phenomena in Ionized Gases[END_REF] using the lowest temperature measured by the three thermocouples T low as approximation for the coldest spot of the cell wall.

Conclusion

Recent research in lighting technology focuses on finding efficient substitutes for mercury in low and high pressure lamps due to the toxicity of Hg. Metal halides such as InBr are discussed as an efficient molecular radiator in low pressure plasmas. Thus, low pressure rare gas discharges containing InBr have been investigated spectroscopically with focus on the near UV band emission arising from the A 3 Π 0 + → X 1 Σ + 0 and the B 3 Π 1 → X 1 Σ + 0 transitions. The absolute intensity of this emission strongly depends on the amount of InBr in the plasma whereas the relative intensity is determined by the vibrational and rotational population of the electronic states. To determine these populations, the relative band emission has been simulated using Boltzmann distributions for the vibrational and rotational states. The simulation requires a complete set of Franck-Condon factors and vibrationally resolved transition probabilities which was not available in literature so far. Therefore this data has been derived by applying the Schrödinger equation to Born-Oppenheimer potential curves of the X, A and B states of InBr. The simulation matches the measured spectra very well; the vibrational and rotational temperature of the molecule are used as fitting parameters. The dependencies of the spectra on vibrational and rotational temperature have been demonstrated. Using high resolution measurements, these temperatures can be determined with high accuracy. It has been pointed out that the simulation is not applicable if reabsorption of the emission distorts the shape of the band spectrum. Knowing the vibrational temperature, an effective transition probability for the electronic A -X or B -X transition can be calculated. For the A state, the transition probability changes with varying T Vib whereas the transition probability of the B state is nearly independent of the vibrational temperature. Using these transition probabilities together with white light absorption spectroscopy measurements the ground state density of InBr in the plasma has been determined. Even if the emission spectra are influenced by reabsorption effects, the B -X transition can still be used to determine the InBr ground state density. The results are in good agreement with the densities calculated from an Arrhenius type vapour pressure equation and are independent on the knowledge of any experimental parameters such as the temperature of the coldest spot of the discharge cell wall. In summary, it has been demonstrated that the simulation of the relative intensity of the emission spectrum of InBr allows the determination of the vibrational and rotational temperature of the molecule in optically thin low pressure plasmas and the ground state density of InBr via absorption spectroscopy with high sensitivity. 

Table A5. Transition probabilities
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Figure 1 .

 1 Figure 1. Simulated emission spectra of InBr. Upper part: only A -X transition; center: only B -X; bottom part: both transitions. The most intense vibrational sequences of each transition are annotated.

Figure 2 .

 2 Figure 2. Simulated emission spectra with varying T Rot for low (upper part) and for high spectral resolution (bottom part). T Vib is fixed at 1000 K.

Figure 3 .

 3 Figure 3. Simulated emission spectra with varying T Vib for low (upper part) and for high spectral resolution (bottom part). T Rot is fixed at 500 K.

Figure 4 .Figure 5 .

 45 Figure 4. Sketch of the experimental setup.

Figure 6 .

 6 Figure 6. Simulation and measurement of the ∆v = +1 sequence of the A -X transition.

Figure 7 .

 7 Figure 7. Examples of the emission band structure of InBr without (upper part) and with reabsorption caused by high InBr ground state densities at high heating temperatures (bottom part).
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 1 for the B -X transition, part 1 (from v ′′ = 0 to v ′′ = 12).v ′ v ′′ = 0 v ′′ = 1 v ′′ = 2 v ′′ = 3 v ′′ = 4 v ′′ = 5 v ′′ = 6 v ′′ = 7 v ′′ = 8 v ′′ = 9 v ′′ = 10 v ′′ = 11 v ′′ = 12 0 679
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 2 

shows a comparison of the calculated radiative lifetimes of a vibrational level τ

Table 3 .

 3 Effective transition probabilities A eff ik calculated for different vibrational temperatures.

	T Vib (K) A eff AX (10 5 s -1 ) A eff BX (10 5 s -1 )
	400	1.560	1.084
	600	1.603	1.084
	800	1.647	1.085
	1000	1.692	1.085
	1200	1.736	1.084
	1400	1.776	1.083

Table 4 .

 4 Heating temperature and the lowest measured temperature inside the heat container which is used as an approximation for the coldest spot temperature.

	T H (K) T low (K)
	299	269
	324	288
	346	298
	362	319
	377	337
	390	356

Table A7 .

 A7 Transition probabilities A v ′ v ′′

	8	2980	922	218	36	4	0	0	0	0	0	0	0
	9	6992	3227	1053	264	44	5	0	0	0	0	0	0
	10	8518	6941	3389	1170	303	53	7	0	0	0	0	0
	11	3563	7675	6807	3487	1258	337	61	8	0	0	0	0
	12	2410	3118	6893	6624	3524	1318	366	66	9	0	0	0
	13	2277	3309	2932	6157	6440	3492	1364	378	73	8	0	0
	14	678 57	766	4409	2991	5465	6257	3419	1378	387	75	8	0
	15 1387 30	801 62	23	5823	3324	4786	6108	3299	1371	388	75	8
	16	3264 1324 10	939 84	429	7699	4001	4093	6017	3136	1346	381	71
	17	122 42	345 1208 00 1083 50	2368	102 30	5152	3357	6021	2917	1318	359
	18	484	158 22	638 1037 50 1217 80	6147	136 23	6962	2571	6146	2651	1280
	19	796	78	184 48	5308	820 18 1323 60	118 71	180 93	9706	1745	6447	2325
	20	3	1153	78	192 40	148 82	575 04 1378 40	192 94	237 82	137 23	941	6993
	21	43	7	1427	916	175 22	287 94	332 87 1361 30	277 02	306 78	194 10	285
	22	1	57	77	1458	2940	132 68	450 68	133 20 1258 50	358 16	384 61	271 37
	23	1	5	57	263	1162	6178	7445	603 65	1687 1069 40	419 43	464 04
	24	0	1	16	39	583	597	101 11	2114	704 84	1364	812 57	443 05
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Table A1. Franck-Condon factors for the A -X transition, part 1 (from v ′′ = 0 to v ′′ = 12).

v ′′ = 10 v ′′ = 11 v ′′ = 12 0 0.581 82 0.293 43 0.094 45 0.024 06 0.005 09 0.000 98 0.000 16 0.000 02 0 0 0 0 0 1 0.343 17 0.136 01 0.279 79 0.161 50 0.058 67 0.016 24 0.003 75 0.000 73 0.000 13 0.000 02 0 0 0 2 0.069 79 0.407 45 0.011 62 0.193 27 0.185 00 0.090 80 0.031 16 0.008 56 0.001 90 0.000 37 0.000 06 0.000 01 0 3 0.005 10 0.148 56 0.371 48 0.003 81 0.112 48 0.178 04 0.113 60 0.047 24 0.014 91 0.003 80 0.000 81 0.000 14 

Franck-Condon factors for the A -X transition, part 2 (from v ′′ = 13 to v ′′ = 24).

0.000 04 0 0 0 0 0 0 0 0 0 0 0 5 0.000 49 0.000 08 0.000 01 0 0 0 0 0 0 0 0 0 6 0.003 47 0.000 76 0.000 14 0.000 02 0 0 0 0 0 0 0 0 7 0.015 95 0.004 71 0.001 09 0.000 21 0.000 03 0 0 0 0 0 0 0 8 0.049 01 0.019 25 0.005 98 0.001 46 0.000 29 0.000 04 0 0 0 0 0 0 9 0.093 80 0.053 38 0.022 20 0.007 28 0.001 86 0.000 38 0.000 05 0 0 0 0 0 10 0.095 37 0.093 69 0.056 61 0.024 84 0.008 49 0.002 26 0.000 48 0.000 07 0 0 0 0 11 0.029 95 0.087 29 0.092 56 0.058 88 0.027 03 0.009 60 0.002 64 0.000 58 0.000 08 0 0 0 12 0.013 51 0.025 30 0.080 08 0.090 79 0.060 27 0.028 72 0.010 56 0.002 98 0.000 67 0.000 10 0 0 13 0.039 62 0.017 03 0.022 57 0.073 71 0.088 83 0.060 80 0.030 03 0.011 27 0.003 30 0.000 73 0.000 11 0 14 0.203 12 0.028 14 0.020 54 0.021 48 0.068 16 0.086 76 0.060 71 0.030 83 0.011 82 0.003 52 0.000 79 0.000 12 15 

0.000 02 0 0 0 0 0 0 0 0 0 0 0 5 0.000 26 0.000 04 0 0 0 0 0 0 0 0 0 0 6 0.002 05 0.000 40 0.000 06 0.000 01 0 0 0 0 0 0 0 0 7 0.010 20 0.002 69 0.000 56 0.000 09 0.000 01 0 0 0 0 0 0 0 8 0.034 74 0.012 09 0.003 37 0.000 72 0.000 13 0.000 01 0 0 0 0 0 0 9 0.077 80 0.037 65 0.013 80 0.003 98 0.000 89 0.000 16 0.000 02 0 0 0 0 0 10 0.100 97 0.078 70 0.039 78 0.015 17 0.004 55 0.001 03 0.000 19 0.000 02 0 0 0 0 11 0.068 45 0.094 87 0.078 80 0.041 05 0.016 26 0.004 99 0.001 17 0.000 21 0.000 02 0 0 0 12 0.000 91 0.066 61 0.088 68 0.078 37 0.041 56 0.017 00 0.005 31 0.001 26 0.000 23 0.000 02 0 0 13 0.001 67 0.002 63 0.067 75 0.082 33 0.077 72 0.041 34 0.017 41 0.005 49 0.001 33 0.000 23 0.000 02 0 14 0.446 64 0.000 04 0.005 28 0.072 09 0.075 64 0.077 12 0.040 42 0.017 54 0.005 52 0.001 35 0.000 23 0.000 02 15 0.171 19 0.472 99 0.003 37 0.009 05 0. (s -1 ) for the B -X transition, part 2 (from v ′′ = 13 to v ′′ = 24).