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Abstract This paper deals with the computation of exact solutions of a classical

NP-hard problem in combinatorial optimization, the k-cluster problem. This problem

consists in finding a heaviest subgraph with k nodes in an edge weighted graph. We

present a branch-and-bound algorithm that applies a novel bounding procedure, based

on recent semidefinite programming techniques. We use new semidefinite bounds that

are less tight than the standard semidefinite bounds, but cheaper to get. The experi-

ments show that this approach is competitive with the best existing ones.

Keywords combinatorial optimization, k-cluster, exact resolution, semidefinite

programming, Lagrangian relaxation, branch-and-bound

1 Introduction, motivations

Given an edge weighted graph with n vertices, the k-cluster problem consists in finding

a subgraph with the heaviest weight and with exactly k nodes (1 < k < n − 1). This

problem is a classical problem of combinatorial optimization; it is also known under

the name of “heaviest k-subgraph problem”, “k-dispersion problem”, “k-defence-sum

problem” [KPP02], and “densest subgraph problem” when all the edge weights are

equal to 1. This problem can be seen as a generalization of the max-clique problem,

and also as a particular quadratic knapsack problem where all the costs are equal.

We recall briefly some complexity results about the k-cluster problem in order to

argument that it is a hard combinatorial problem. This problem does not admit a

polynomial time approximation scheme [Kho05], and it is known to be NP-hard even

in very special cases: in unweighted bipartite graphs of maximal degree 3 [FL01] and

planar graphs [KB91]. It can be solved in polynomial-time in trees [PS83], cographs
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and split graphs [CP84]. Strong negative results have been obtained about the approx-

imability of the clique problem, but there is no direct way to use them for the k-cluster

problem: it is open whether an approximation algorithm with a fixed ratio exists in

general. The best general approximation ratio is actually O(n
1
3 ) [FKP01], and several

approximation algorithms with a better ratio have been designed for special graphs

(see e.g. [LMZ08] for recent results and references).

These results give an idea of how tough the k-cluster problem is to be solved to

optimality. Even if the machinery of linear-optimization-based branch-and-bound algo-

rithms has reached a high degree of development (see for example the recent [TA05]),

only medium-size instances of the k-cluster problem can be solved in general with these

solvers (see [Erk90], [Bil05], [Pis06]). Linear relaxations seem to be not tight enough

for k-cluster in order to be used efficiently within an algorithm for exact resolution.

Therefore, the best exact and approximate resolution methods devoted to this problem

are based on nonlinear approaches, such as convex quadratic programming [BEP09] or

semidefinite programming [HYZ02], [Rou04], [JS05].

We present in this paper an approach for solving k-cluster problems to optimal-

ity by using standard branch-and-bound techniques together with new semidefinite

programming bounds. The bounding procedure trades computing time for a (small)

deterioration of the quality of the bound, so that it fits well within a branch-and-bound

algorithm. To get these semidefinite bounds, we follow the scheme sketched in [Mal07]

for general binary quadratic program: we simplify and specify it for the k-cluster prob-

lem – and we push the development to show numerically that this approach is efficient.

The main contribution of this paper is to prove numerically that these new semidefinite

bounds are interesting in view of solving hard combinatorial optimization problems to

optimality. For large-scale k-cluster problems indeed, our approach is competitive with

the best known approach [BE06], [BEP09] that uses CPLEX.

The paper is organized as follows. We formulate the k-cluster problem in Section 2

in a way to introduce the new semidefinite bounds in Section 3. We compare these

bounds with the usual semidefinite bound in Section 4 to argue that they have nice

features in view of exact resolution. Finally we embed them within a simple branch-

and-bound algorithm in Section 5 and compare the overall efficiency of this approach

with the best known solver for exact resolution of k-cluster problems.

2 Equivalent formulations

This section introduces the notation used in the sequel, and presents a sequence of

equivalent formulations of the k-cluster problem: namely, the initial formulation (1),

simplified (2), augmented with additional constraints (3), the formulation as a binary

quadratic programming problem (4) and the formulation as semidefinite programming

problems (6), (8). All these formulations are standard, except the last one. We empha-

size: all of them are exact reformulations; we start relaxing in the next section.

Initial modeling as a {0, 1}-quadratic programming problem. Consider an undirected

weighted graph G = (V, E) with n vertices {v1, . . . , vn} and with nonnegative weights

wij on edges (vi, vj). For an integer k in {2, . . . , n−2}, the so-called k-cluster problem

consists in determining a subset S of k vertices such that the total edge weight of the

subgraph induced by S is maximized. To select subgraphs, assign a decision variable

zi ∈ {0, 1} for each node (zi = 1 if the node is taken, and zi = 0 if the node is not). The
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weight of the subgraph given by z is
P

(i,j)∈E wij zi zj . Thus the k-cluster problem can

be phrased as the 0-1 quadratic problem



max 1
2

Pn
i=1

Pn
j=1 wij zi zj

Pn
i=1 zi = k, z ∈ {0, 1}n.

(1)

We rewrite this problem synthetically as

(

max 1
2 z⊤W z

e⊤z = k, z ∈ {0, 1}n.
(2)

with the vector of all ones e = (1, . . . , 1) ∈ R
n and the weight-matrix W = (wij)ij of

the graph G (which is a symmetric n × n matrix).

Reformulation 1: Enforcement of redundant constraints. In view of relaxing, we add

redundant constraints to have a better duality gap. We introduce the standard product-

constraints as follows. Observe that a feasible z (that is, such that e⊤z = k and

z ∈ {0, 1}n) also satisfies for all j ∈ {1, . . . , n}

n
X

i=1

zizj = kzj .

The left-hand side of this equality is quadratic in z; so we introduce the symmetric

n× n-matrix Cj such that
Pn

i=1 zizj = 1
2z⊤Cjz. Adding these n product constraints,

we come up with the following equivalent formulation of k-cluster

8

>

<

>

:

max 1
2z⊤W z

e⊤z = k, z ∈ {0, 1}n

z⊤Cj z = 2k zj , j ∈ {1, . . . , n}.

(3)

These product constraints are the only one we add, because they are tight in a

certain way; this follows indeed from the general results that we recall briefly here. For

a {0, 1}-quadratic problem, it is well-known (see e.g. [LO99]) that the best bound by

Lagrangian duality is obtained when dualizing only the {0, 1}-constraints (and not the

linear constraints). Though this bound does not lead directly to a SDP problem, the

semidefinite relaxation of the general problem reinforced by the product constraints

(e.g. (3) for k-cluster) is equivalent to this best bound [FR07]. Adding other redundant

quadratic equality constraints would lead to the same bound, so we stick with (3).

We also recall that adding to (2) the single constraint (e⊤z−k)2 = 0 instead of the

n product constraints is an equivalent approach: the two formulations lead to two SDP

relaxations which give the same bound - but on which solvers behave differently. The

numerical comparison between the two SDP formulations is made in [MR10a] showing

that (3) is preferable for our developments. We will come back to this in Section 4.2.

Reformulation 2: Change of variables. Dealing with quadratic problems with {−1, 1}

constraints and purely quadratic problems will ease the next developments. So we

introduce the new variable x = (x0, . . . , xn) ∈ R
n+1 performing two operations:

1. The change of binary variable xi = 2zi − 1 ∈ {−1, 1} for i ∈ {1, . . . , n}.
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2. The “homogenization” of the quadratic forms with the extra-variable x0 ∈ {−1, 1}.

See more precisely the role of this homogenization in Lemma 3 in appendix. A graph

interpretation is as follows: we add an isolated vertex x0 to the graph, and we want

to compute a (k + 1)-cluster containing this vertex; in other words, x0 is like a

”flag” that indicates which vertices are in the k-cluster.

The change of variable z → x gives the following equivalent formulation of k-cluster
8

>

<

>

:

max x⊤Q x

x⊤Qj x = 4k − 2n, j ∈ {0, . . . , n}

x ∈ {−1, 1}n+1
(4)

where the n + 2 symmetric matrices Q and Qj (for j ∈ {0, . . . , n}) are defined by

Q :=
1

4

»

e⊤We e⊤W

We W

–

, Q0 :=

»

0 e⊤

e 0

–

and Qj :=

»

0 ẽ⊤j
ẽj Cj

–

(5)

with ẽj = e + (n − 2k)ej the vector of R
n made up from e and ej the j-th element of

the canonical basis of R
n. The change of variable and the reformulation are detailed

in Lemma 3 in appendix.

Reformulation 3: Lifting in matrix space. We now lift the problem (4) up to the matrix

space Sn+1 in order to transform the quadratic forms with respect to x ∈ R
n to linear

forms with respect to a matrix variable X. We follow the classical pattern (e.g. [Lov79],

[GW95]) and we use classical notation, recalled below. The natural inner product in

matrix space Sn+1 is defined for any X, Y ∈ Sn+1 by

〈X, Y 〉 =

n+1
X

i,j=1

XijYij = trace(XY ).

This inner product is very convenient for our purposes through the relation:

∀x ∈ R
n+1, ∀A ∈ Sn+1, x⊤A x = 〈A, xx⊤〉.

We denote ‖ · ‖ the associated norm; it is the same notation as the norm in R
n, but no

confusion should be possible since the matrices are represented by capital letters.

The idea of the standard lifting is to introduce the symmetric matrix of rank one

X = xx⊤. With the help of X, we express the binary constraints xi ∈ {−1, 1} (that is

xi
2 = 1) as Xii = 1, and the quadratic constraint x⊤A x = c as 〈A, X〉 = c. So we get

the following equivalent formulation of (4)
8

>

>

<

>

>

:

max 〈Q, X〉

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

Xii = 1, i ∈ {0, . . . , n}

X = xx⊤.

Notice then that X = xx⊤ is a rank-one symmetric semidefinite matrix, and that

conversely any rank-one symmetric semidefinite matrix can be written this way. So we

can cast the above problem as an SDP linear problem with rank-one constraint
8

>

>

<

>

>

:

max 〈Q, X〉

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

〈Ei, X〉 = 1, i ∈ {0, . . . , n}

rank(X) = 1, X � 0.

(6)

where Ei is the matrix with zeros entries except in position (i, i) where there is a one.
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Reformulation 4: Introducing the spherical constraint. The hard constraint in (6) is the

rank-one constraint, which is moreover difficult to handle. So we go one step further

to the standard SDP lifting by rewriting this rank-one constraint as a norm, along

the lines of [Mal07]. The (curious and) useful property is the following (see [Mal07,

Theorem 1]): for all X � 0 satisfying Xii = 1, we have ‖X‖ ≤ n + 1 and moreover

‖X‖ = n + 1 ⇐⇒ rank X = 1. (7)

Therefore the idea is to replace the rank-one constraint in the SDP formulation of the

k-cluster by the constraint ‖X‖2 = (n+1)2, called the “spherical constraint”. Thus we

have the following formulation of k-cluster that we formalize in the next proposition;

this is the formulation we will use in this paper.

Lemma 1 With the notation of this section, the optimal value of the k-cluster problem

is equal to the optimal value of

8

>

>

>

>

<

>

>

>

>

:

max 〈Q, X〉

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

〈Ei, X〉 = 1, i ∈ {0, . . . , n}

‖X‖2 = (n + 1)2

X � 0.

(8)

Proof The proof is obvious in view of the previous developments: by Lemma 3, the

optimal value of (1) is equal to the one of (4) which is in turn equivalent to (6), and

then to (8) by (7). ⊓⊔

We have transformed a quadratic problem with quadratic constraint in R
n+1 to

a linear SDP problem with one single quadratic constraint (the spherical constraint

‖X‖2 = (n + 1)2). This quadratic constraint carries the nonconvexity and the com-

binatorial difficulty of the initial problem. The idea is now to treat it by Lagrangian

dualization, as explained in the Section 3.2.

3 Semidefinite relaxations

3.1 Standard semidefinite bounds

The previous section explains the formulation of the k-cluster problem as SDP problems

(6) and (8). All the combinatorial difficulty of the original problem is now located in

the rank-one constraint in (6), or in the spherical constraint in (8). The standard

SDP relaxation then consists in enlarging the feasible set in (6) by dropping the rank

constraint, to derive a convex problem. In our situation, the standard SDP relaxation

of the k-cluster problem (6) is indeed

8

>

>

<

>

>

:

max 〈Q, X〉

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

〈Ei, X〉 = 1, i ∈ {0, . . . , n}

X � 0.

(9)

We note that this SDP problem is equivalent to the one obtained from the {0, 1}-

formulation (3) (used by [BEP09] in particular). As mentioned in the discussion fol-

lowing (3), it is also equivalent to the SDP problem coming from (2) augmented by
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the squared constraint (e⊤x − k)2 = 0. More precisely, by following the same lines to

go from (3) to (9), we get the equivalent SDP problem

8

>

>

<

>

>

:

max 〈Q, X〉

〈QS , X〉 = −(2k − n)2

〈Ei, X〉 = 1, i ∈ {0, . . . , n}

X � 0

(10)

with a particular QS ∈ Sn+1. In practice, this bound is known to be tight and several

approximation algorithms have been proposed using it (see e.g. [HYZ02]).

Those SDP problems (9) and (10) have linear objective functions and as well as

linear constraints together with the conic constraint. Over the last decade, several

algorithms and associated solvers have been developed to solve problems of this type.

We refer for instance to the introduction of the recent [MPRW09] for references and

for some explanations about the different approaches; here we just point out:

– Interior points. The most known and used methods for SDP; they have nice com-

plexity theory (see e.g. the review [Tod01]), and reliable numerical performances.

For the forthcoming numerical experiments of Section 4.2, we use the software

CSDP [HRVW96], [Bor99].

– Spectral bundle. The bundle methods of convex optimization [HUL93] have been

specialized successfully to semidefinite programming, and especially to applications

of semidefinite programming in combinatorial optimization [HR00]. For the numer-

ical experiments, we use the software SB [Hel04].

– Regularization. Recently other approaches based on regularization (augmented

Lagrangian and proximal method) have been developed for solving large-scale SDP

problems, as for example the relaxation of max-stable problem [MPRW09]. Let us

also mention the penalized augmented Lagrangian method of PENNON [KS07].

– First-order methods. To tackle ever larger SDP problems, several first-order

methods have been developed: we mention for example low-rank methods (see

[BM03] and references therein) that have recently drawn renewed interest.

Though there exist several types of methods and several efficient solvers, computing

the SDP bound (9) or (10) is still expensive, and this may prevent its direct use as

bounding procedure within a branch-and-bound for solving k-cluster to optimality.

Note in particular that the method of [BEP09] uses the SDP bound only once at the

beginning of the search tree (as an initial calibration of the quadratic convex relaxation

used later for bounding, see more in Section 5). We are not aware of research for k-

cluster in the line of [RRW10] for max-cut. Here, we consider different bounds that

have an SDP-quality but that are less tight that (9) and (10). In the next sections,

we argue that those new bounds are easier to compute and then well-adapted to be

embedded within a branch-and-bound.

3.2 New family of semidefinite bounds

We investigate now a way to keep a SDP-like quality of bound without paying the full

computational price to get it. The idea is to keep the rank-one constraint, to write it

with the help of the spherical constraint as in (8) and then to dualize it. This approach

is sketched in [Mal07] in a general setting; here, we specialize the study for the k-cluster

to push to the end and to get tools for exact resolution.
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For the real parameter α ∈ R, we consider the Lagrangian function

L(X; α) := 〈Q, X〉 −
α

2
(‖X‖2 − (n + 1)2)

and the associated dual function

Θ(α) :=

8

>

>

<

>

>

:

max L(X; α)

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

〈Ei, X〉 = 1, i ∈ {0, . . . , n}

X � 0.

(11)

By weak duality, each value Θ(α) is an upper bound for the optimal value of k-cluster,

since we can write: for all feasible X for (8) (and then in (11)),

〈Q, X〉 = L(X, α) ≤ Θ(α) (12)

so that Θ(α) is upper bound for (8) indeed.

Hence we have a new family of SDP bounds Θ(α) (parameterized by α ∈ R). In

a way, these bounds generalize the standard SDP bound (9): observe indeed that for

α = 0, (11) is exactly (9). They have moreover interesting properties: the important

theoretical properties are gathered in the following proposition; we discuss the numer-

ical properties in the next section. In what follows, val(∗) denotes the optimal value of

an optimization problem numbered by (∗).

Proposition 1 Function Θ : R → R defined by (11) satisfies the following properties:

– For any α ∈ R, we have a bound for k-cluster

Θ(α) ≥ val (8) = val (1).

– If α > 0, this bound is weaker than the SDP bound

Θ(α) ≥ val (9) ≥ val (8) = val (1),

but we get arbitrarily close to the SDP bound when α tends to 0

lim
α→0,α>0

Θ(α) = val (9).

– If α > 0, we may compute Θ(α) by solving a semidefinite least-squares problem:

Θ(α) =
“α

2
(n+1)2 +

1

2α
‖Q‖2

”

−α

8

>

>

<

>

>

:

min 1
2‖X − Q/α‖2

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

〈Ei, X〉 = 1, i ∈ {0, . . . , n}

X � 0

(13)

Proof The first property comes from (12). The second property about the comparison

between Θ(α) and Θ(0) = val(9) follows from Theorem 3 of [Mal07]: the function

Θ : R → R is convex (so continuous at 0) and nondecreasing (so Θ(α) ≥ Θ(0) if α > 0).

To prove the third point, we write for α > 0

L(X, α) =
α

2
(n + 1)2 −

α

2
(‖X‖2 − 2〈X, Q/α〉)

=
α

2
(n + 1)2 −

α

2

“

w

w

w

w

X −
Q

α

w

w

w

w

2

−
‖Q‖2

α2

”

=
“α

2
(n + 1)2 +

1

2α
‖Q‖2

”

−
α

2

w

w

w

w

X −
Q

α

w

w

w

w

2

,

which yields that (11) corresponds to (13). ⊓⊔
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The point is thus the following: for α > 0, the new SDP bound Θ(α) is always less

tight than the usual SDP bound Θ(0), but it can be reduced arbitrary close to it by

decreasing α. The key question is now how easier is Θ(α) to compute; this is addressed

in the next section.

4 Relaxed resolution: computation of bounds

The new SDP bound Θ(α) looks more complicated than the usual SDP bound Θ(0).

It turns out that nice geometrical properties make it cheaper to compute. Section 4.1

explains the computation, and then Section 4.2 presents a numerical comparison.

4.1 Computing the bound by projection

By (13), computing the new SDP bound Θ(α) when α > 0 comes down to solving

8

<

:

min 1
2‖X − Q/α‖2

〈Qj , X〉 = 4k − 2n, j ∈ {0, . . . , n}

〈Ei, X〉 = 1, i ∈ {0, . . . , n}, X � 0.

(14)

This quadratic SDP problem has a simple geometric interpretation: Consider indeed

the affine subspace Aff in Sn+1 defined by the affine constraints of this problem

Aff :=
n

X ∈ Sn+1 : 〈Qj , X〉 = 4k − 2n, 〈Ei, X〉 = 1, for i, j ∈ {0, . . . , n}
o

.

Then the problem (14) is


min ‖X − Q/α‖2

X ∈ Aff ∩S+
n+1

and thus consists in projecting the matrix Q/α onto the intersection Aff ∩S+
n+1 of the

affine subspace Aff and the cone S+
n+1. This problem is an instance of the so-called

semidefinite least-squares [Mal04]. Efficient algorithms have been recently developed

to solve these problems, based on three paradigms: (1) alternating projection methods

[Hig02], (2) interior-point methods [TTT06], (3) duality [Mal04] (see also [QS06] and

[BH08] for developments on an important special case).

We have developed our own semidefinite least-squares solver to solve (14). This

solver follows the general method of [Mal04] while being specific to be more efficient in

exploiting the particular features of (14). Interesting properties are summarized in the

next proposition. theorem. Consider the linear operator A : Sn+1 → R
2n+2 defined by

A(X) :=
`

〈Q0, X〉, . . . , 〈Qn, X〉, 〈E0, X〉, . . . , 〈En, X〉
´

,

and the vector b ∈ R
2n+2 defined by

b := (4k − 2n, . . . , 4k − 2n, 1, . . . , 1),

such that the affine subspace Aff admits AX = b as an equation. Notice that the

adjoint of A, denoted by A∗ : R
2n+2 → Sn+1, and defined by 〈A∗(y), X〉 = y⊤A(X)

for all y ∈ R
2n+2 and X ∈ Sn+1, is

A∗(y) =
n

X

i=0

yiQi +
n

X

i=0

yi+n+1Ei.
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For a given y ∈ R
2n+2, we also define the matrix

X(y) := PS+

n+1

`

Q/α + A∗(y)
´

where PS+

n+1

is the projection onto S+
n+1. Note that the dependence with respect to α

is dropped for simplicity.

Proposition 2 The function f : R
2n+2 → R defined by

f(y) :=
1

2
‖X(y)‖2 − y⊤b

is convex and differentiable with gradient ∇f(y) = AX(y) − b. Besides, we have

val (14) ≥
‖Q‖2

2α2
− f(y) (15)

for all y ∈ R
2n+2. Assume furthermore that there exists a vector y⋆ ∈ R

2n+2 that

attains the minimum f⋆ of f ; then equality holds in (15) and X⋆ = X(y⋆) is the

unique solution of (14).

Proof Up to a change of sign and to the constant
‖Q‖2

2α2 , the function f corresponds

to the function θ in [Mal04]. We just apply results of this paper: the convexity and

differentiability of f comes from Theorems 3.1 and 3.2; (15) is equation (4.2); and the

rest comes from Theorem 4.1. ⊓⊔

The differentiability of f allows us to use standard algorithms for unconstrained

differentiable optimization for solving (14) thus to compute the bound Θ(α). We can

cite, among others: gradient, quasi-Newton, Newton-like methods as truncated gener-

alized Newton (see [NW99], [BGLS03]). For its simplicity and robustness, we choose

the limited memory quasi-Newton algorithm [GL89], which has proved to be efficient

in many (academic and industrial) applications.

4.2 Numerical comparisons of semidefinite bounds

This section gives numerical comparisons of the new SDP bound Θ(α) and the usual

SDP bound Θ(0) in terms of tightness, computation time and balance between both.

Solvers and settings. To compute the SDP bound Θ(0), that is solving (9), we use:

– SB [Hel04], a SDP solver based on the spectral bundle method [HR00]. This soft-

ware can handle large-scale problems and is known to be efficient in the context of

combinatorial optimization (see e.g. the recent [RRW10]). We use it with default

settings, except that we add an initial scaling of the constraints and we set the

stopping criterion to 1e-4 (instead of 1e-5).

– CSDP [Bor99], a robust and efficient interior point solver. We use it with default

settings, except that we activate “Fastmode” and we set the stopping criterion

“objtol” to 1e-5 (instead of 1e-8).

To compute the SDP bound Θ(α), that is essentially solving (14), we use:
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– SDLS, a home-made solver implementing a version of the algorithm of [Mal04]

adapted for solving (14). We use the quasi-Newton algorithm [GL89] to minimize

the function f of Proposition 2. We set the stopping criterion to 1e-7, and, as for

SB, the constraints of (14) are scaled so that the constraints matrices are of norm

1. For sake of simplicity, we also decide to keep α constant. In view of preliminary

experiments, we then fix α to 1e-4: our strategy is indeed to have a SDP-like bound,

and Θ(10−4) is almost as tight as Θ(0), while its computing time is reasonable. We

illustrate this with Figure 1 which plots (for an instance with n = 300) the decrease

of Θ(α) to Θ(0) when α → 0 and the increase of the corresponding computing time.

For example, Θ(α) for α = 10−4 (the leftmost point) is much more tight than for

α = 0.002 with less than twice the computing price.

Different formulations of the same bound. Computing times depend obviously on the

solvers, and in turn the performances of the solvers depend on the formulation of the

bounds. In our case, the SDP bound can be computed by solving (9) or (10), and each

of both turns out to advantage one solver.

To have a fair comparison between the three solvers, we have done preliminary

tests (reported in [MR10a]) to choose the best semidefinite formulation for each solver.

As expected, (10) is better suited for CSDP (when n = 100 about five times faster

than using (9)), since here the computing time directly depends on the number of

variables and constraints. On the other hand, the formulation (9) provides the best

results for SB and SDLS (when n = 100 about four times faster than using (10)). In

the numerical experiments below, we thus have: SB solves (9), CSDP solves (10), and

SDLS solves (14).
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Fig. 1 Illustration of the features of Θ(α) on a graph with n = 300, k = 75 and d = 25%:
when α→ 0, we get more tightness (Θ(α)→ Θ(0)) but for an increasing computing cost. The
leftmost point corresponds to α = 10−4.

.
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Test problems. We consider instances of k-cluster, randomly generated as follows.

Given a density d ∈ [0, 1], a random number ρ ∈ [0, 1] is generated for any pair of

indexes i < j; if ρ > d, then wij is set to 0, otherwise it is set to 1.

The parameters of these instances are: the size of the graph n, the graph density d

and the value of k. In this section, we take

n = 80, 100, 300, d = 25%, 50%, 75% and k = n/4, n/2, 3n/4.

We have 5 instances of k-cluster problems for each set of parameters. Each forthcoming

numerical result is thus an averaged of 5 results.

The instances with 80 and 100 vertices have already been used in several others

papers, as [Bil05] and especially [BEP09] which is the reference method for the com-

parison of Section 5.2. Note that these problems have unweighted graphs, which are at

least as hard as the ones with weighted graphs.

Numerical results. The numerical experiments have been carried out on a Pentium IV

2.2 GHz with 1 Go of RAM under Linux. Table 1 reports the computation times (in

seconds) of the three solvers to compute the SDP bounds. Figure 2 illustrates the run

on two characteristic instances. The results show that Θ(α) provides a SDP-quality

bound which is easier to get than the usual SDP bound Θ(0).

Since the solvers do not compute the same bounds (remember that SB and CSDP

compute Θ(0) and SDLS computes Θ(α)), we report:

– gap SDP – the relative difference between Θ(α) and Θ(0), i.e., (Θ(α)−Θ(0))/Θ(0),

– time SDLS – the computing time for SB and CSDP to achieve the value Θ(α).

Some comments are in order. Although less tight, the new bounds Θ(α) are very

close to Θ(0): the relative gap always lower than 0.25%. Remember moreover that the

gap will be further reduced within the branch-and-bound by rounding down the bound

to the integer value. We notice also that the gap is almost constant in absolute value so

that its relative value decreases mechanically, when k or d increase (since the optimal

value of the instance increases in this case).

The crucial point is that our solver provides bounds faster than SB and CSDP. As

expected, CSDP is very robust and efficient for the medium-size instances (n = 80); but

compared to SB, its performance deteriorates when the size of the problem gets bigger.

In this case, the interest of SDLS becomes clear: the gap between the bounds does not

increase, whereas the running times increase slower than those of SB and CSDP.

Furthermore, our solver provides these bounds faster whenever the solving process is

interrupted. This is illustrated in Figure 2 for example: the convergence curve is always

below the one of CSDP and also the one of SB (excepted at the very beginning). Note

also that none of SB and CSDP dominates the other.

We insist finally on the three following points.

1. Robustness. As expected, the running times CSDP are almost constant for the

instances of the same size (see for example the two examples of Figure 2). Our

solver has also a similar behavior, which is a desirable property in the context

of branch-and-bound. Note that SB does not have this behavior (it was faster

than CSDP on some instances, but slower on others). For example, let us give the

standard computing time deviations for n = 100. More precisely, the mean standard

deviations for the five instances at given triplet (n, k, d) are 0.02 for SDLS, 0.11

for CSDP, and 2.32 for SB.
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Θ(α) Θ(0) by SB Θ(0) by CSDP
n k d(%) time gap(%) time time time time

(sec.) SDP (sec.) SDLS (sec.) SDLS
80 20 25 0.18 0.21% 0.55 0.23 0.29 0.19

50 0.18 0.14% 0.87 0.41 0.45 0.35
75 0.16 0.12% 1.37 0.61 0.31 0.24

40 25 0.17 0.06% 0.54 0.37 0.35 0.28
50 0.10 0.04% 0.98 0.80 0.33 0.28
75 0.07 0.03% 1.39 0.81 0.40 0.32

60 25 0.15 0.02% 1.17 0.85 0.35 0.29
50 0.14 0.01% 1.34 1.30 0.35 0.29
75 0.15 0.01% 1.64 1.41 0.33 0.29

mean 0.15 0.07% 1.09 0.76 0.34 0.28

100 25 25 0.19 0.23% 1.27 0.51 0.64 0.50
50 0.23 0.15% 2.40 0.86 0.53 0.42
75 0.29 0.13% 2.54 1.14 0.56 0.45

50 25 0.23 0.07% 1.15 0.67 0.52 0.43
50 0.12 0.05% 2.77 1.01 0.57 0.47
75 0.12 0.05% 2.02 1.10 0.59 0.48

75 25 0.17 0.02% 3.12 1.75 0.57 0.47
50 0.17 0.01% 1.86 1.37 0.65 0.55
75 0.16 0.01% 8.99 6.25 0.54 0.47

mean 0.19 0.08% 2.9 1.63 0.58 0.47

300 75 25 3.51 0.15% 19.48 6.70 15.26 12.40
50 3.56 0.09% 41.78 8.21 7.04 5.38
75 3.79 0.08% 25.15 10.80 6.89 5.60

150 25 1.66 0.05% 11.45 8.33 16.25 12.64
50 0.92 0.02% 13.78 11.93 12.04 9.92
75 0.74 0.04% 66.12 26.30 7.30 6.01

225 25 2.68 0.02% 58.09 50.18 8.43 6.74
50 4.01 0.01% 82.77 79.92 7.84 6.53
75 4.45 0.01% 38.14 38.07 10.06 7.19

mean 2.81 0.05% 39.64 25.15 10.12 8.05

Table 1 Upper bounds: Average results for randomly generated instances of k-cluster. Five
problems are tested for each (n, k, d). All computing times are in seconds.

2. Fast initial decrease. Our solver SDLS (as well as SB) has a very fast initial con-

vergence, as illustrated on Figure 2. This is also a highly desirable property in

the context of branch-and-bound. In particular, the improvement of the bound

computed by SDLS is big in the first iterations.

3. Low-memory. We also mention that our solver uses little memory: for instance, it

requires about 4 MB to solve (14) when n = 100.

The conclusion of these first experiments is that the new SDP bounds have an

advantageous trade-off between tightness and speed of computation, together with

interesting features in view of exact resolution.

5 Exact resolution: solving k-cluster to optimality

We use the solver to compute Θ(α) as the bounding procedure of a branch-and-bound

for solving k-cluster problems to optimality. As presented in Section 5.1, our branch-

and-bound algorithm is very basic; the novelty is essentially the use of Θ(α). In Sec-

tion 5.2, we compare it with [BEP09] the best known method to solve k-cluster (that

mixes nicely CPLEX and quadratic relaxations parameterized with SDP).
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Fig. 2 Comparison of the CPU time of the three solvers for two instances of the k-cluster
problem with n = 300, d = 0.5, and k = 150 (left side) k = 225 (right side)

5.1 Branch-and-bound for k-cluster

We summarize in this section the main ingredients of our branch-and-bound algorithm.

Heuristics for initial feasible point. Good feasible points give good lower bounds at the

beginning of the branch-and-bound, and this yields better pruning. Following [Pis06],

we apply the following two-step heuristic that gives very good feasible points:

1. Apply the natural greedy algorithm (see e.g. [AITT00]) consisting in removing n−k

vertices from G by choosing successively the vertex with the minimum degree in

the reduced graph.

2. Enhance the feasible point by a local search which consists in swapping two nodes

(one in the k-cluster and not the other) until no improvement is possible.

Branching strategy. For simplicity, the branching scheme is based on a basic depth-

first search. Moreover, we have to choose, at each node of the search tree, a vertex

to add to the cluster or to exclude from it (in other words, we want to fix one of the

{−1, 1}-variables). Again for simplicity, we use a branching order fixed in advance, as

follows. As in [Pis06], we estimate of the expected contribution of each node, by solving

for each i

Di = max

8

<

:

X

j∈V \{i}

wijz
i
j :

X

j∈V \{i}

zi
j = p − 1, zi

j ∈ {0, 1}, j ∈ V \{i}

9

=

;

.

This problem asks to choose p−1 largest values among the edges connected to i – which

can be done efficiently by a median search algorithm. Then we order the variables with

decreasing Di. Numerical testing has showed us that this choice is competitive with

other approaches (such as branching on the most fractional variable).

Branching step. Branching on the index i0 consists in decomposing (14) into two

smaller instances, as follows. To obtain the new objective function, we remove the

i0th line from Q, and add it (or subtract if the vertex is excluded) to the first one.

We do the same for the i0th column. We also remove two constraints: 〈Ei0, X〉 = 1
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and 〈Qi0, X〉 = 4k − 2n. Finally we use the previous optimal y to make a warm-start

for the two reduced problems: we keep the current values associated to the remaining

constraints. We observed that this speeds up the solving process of a mean factor of 3.

Early termination. Within branch-and-bound algorithms, the early termination of the

bounding procedure often provides a substantial overall speed-up (see e.g. [FR05] and

[RRW10]). In our case, the next observation is important, so we formalize it as a lemma.

Lemma 2 For any variable y ∈ R
2n+2 and any α > 0, the value α((n + 1)2/2+f(y))

is a bound for the k-cluster problem.

Proof Just combine (13) and (15) to get that

val (1) ≤ Θ(α) ≤ α
“ (n + 1)2

2
+ f(y)

”

.

Thus we get a bound of the optimal value of (1). ⊓⊔

As any differentiable optimization algorithm, the algorithm to minimize f is stopped

when an approximate solution is computed; more precisely when

‖∇f(yk)‖ = ‖AX(yk) − b‖ ≤ ε

with the fixed tolerance ε. Though the computed X(yk) does not satisfies perfectly the

constraints, the lemma guarantees that we still get a bound for our problem with yk. In

fact, we can stop the algorithm anytime before convergence, and we still get a bound.

This is very useful within the branch-and-bound: we can stop the bounding procedure

when the bound gets lower than the previous threshold. More precisely, we use the

following early termination rule. Let β be the current best lower bound given by a

k-subgraph; then we stop the run of the algorithm when

(n + 1)2/2 + f(y) < (β + 1)/α.

Fixing α and ε. For simplicity, we keep the level-parameter α and the stopping crite-

rion ε constant. We chose these parameters empirically: we did numerical tests on some

instances (as those of Section 4, see also Figure 1), we observed that ε = 10−7 and

α = 10−4 seem to be good values, and we take those values for all the tests. Dynamic

adjustement of those parameters might provide additional speed-ups, but we postpone

this technical point for further research.

5.2 Experiments on solving k-cluster to optimality: comparison

The best approach for k-cluster. As far as we are aware, the currently strongest results

are obtained by the convex quadratic relaxation procedure of [BEP09] (see also [BE06],

and [Pla06]), that we briefly recall here. Start with the initial formulation (2), and

observe that for any u, γ, the problem is equivalent to

8

>

<

>

:

max z⊤Q(u, γ)z

e⊤z = k

z ∈ {0, 1}n

(16)
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with the quadratic form

z⊤Q(u, γ)z :=
1

2
z⊤W z +

n
X

i=1

ui(z
2
i − zi) + (e⊤z − k)

n
X

i=1

γizi.

Relaxing the integrality constraints gives the upper bound

R(u, γ) =

8

>

<

>

:

max z⊤Q(u, γ)z

e⊤z = k

z ∈ [0, 1]n.

If u and γ are chosen such that Q(u, γ) is negative semidefinite, the bound R(u, γ) is

obtained by solving a convex quadratic problem. In practice, the variables (u∗, γ∗) are

chosen such that they minimize the upper bound



min R(u, γ)

Q(u, γ) � 0

which turns out to be a linear SDP problem, more precisely, the dual of (9). Thus a

solution of the problem (16) with (u∗, γ∗) is computed by a standard solver for convex

quadratic 0-1 problem, more precisely a branch-and-bound algorithm using R(u∗, γ∗)

as bounding procedure. The interest is then that they can advantageously use CPLEX

implementing the state-of-the-art for mixed-integer quadratic solver.

Numerical results. We solve to optimality, on the same computer, the same test-

problems as in [BEP09] (see also [Pla06]). Table 2 presents the numerical results: we

can solve all the instances with comparable times; since we have implemented a very

basic branch-and-bound (simple branching strategy and depth-first search), whereas

the results of [BEP09] are obtained with the mixed-integer programming solver of

CPLEX, this shows the interest of our approach.

Table 2 reports for each method the computing time and the number of nodes.

Recall that each entry of the table is the mean over the 5 instances with the same

parameters settings. To go beyond average numbers, the table also shows the number

of problems (out of 5) solved faster by our method (in the column “# pbs faster”).

Let us comment more precisely the comparison of Table 2. We observe that QCR

is faster in average than our approach for graphs with n = 80 vertices but it is slower

when n = 100. As in [BEP09], the computation is stopped after one hour: we indicate

’n.a.’ if the corresponding problems were not solved within the time limit, and we

indicate ’(x)’ next to the computing time when we were able to solve only ’x’ instances

(out of 5) in less within the time limit.

We did not include the results for small graphs (n = 40) that are in [BEP09]: for

those graphs, QCR clearly outperforms our method (by a factor between 5 and 10), but

both methods converge very quickly (less than few seconds). In that case, the tightness

of the bound is actually not crucial, and it seems like there is no need to spend time

in computing semidefinite bounds.

Though the two methods are comparable with respect to computing times, they

have opposite strategies. QCR does many (cheap) bound evaluations, whereas our

algorithm computes more expensive bounds and prunes better: we enumerate 15-20

times fewer nodes on average. The bound of [BEP09] is of SDP-quality at the root

of the branch-and-bound tree only, but deteriorates down in the tree, while Θ(α) is
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of SDP-quality everywhere, without paying the whole price in computing time. Thus

our method is particularly well-adapted for the instances with small d and k; these are

the most difficult instances, where good pruning is essential. Moreover, the increase of

number of nodes with increase of dimension is less dramatic for our method than for

QCR (passing from n = 80 to n = 100, the number is multiplied by 2 instead of 3).

Finally, we point out that the computing time of our method is not strongly cor-

related to the number of the evaluated nodes in the search tree. This is a consequence

of our solver ability to be interrupted during the solving process.

n k d(%) B&B using Θ(α) B&B of [BEP09]
time # nodes # pbs gap(%) time # nodes
(sec.) faster (root) (sec.)

80 20 25 186.6 14869 1/5 9.43 72.4 207562
50 674.2 43702 0/5 8.19 325.6 527300
75 1809.4 132455 0/5 6.60 1322.6 2170499

40 25 28.5 1426 1/5 2.76 19.6 31442
50 53.6 6774 0/5 1.86 24.8 36544
75 413.4 19784 0/5 1.39 176.9 276198

60 25 3.69 200 0/5 0.90 0.92 1699
50 6.91 330 0/5 0.62 2.09 4358
75 20.44 1098 0/5 0.43 3.60 7592

mean 355.2 24515 216.5 362577

100 25 25 1443 (3) 155658 2/3 9.45 1483 (3) 2499727
50 1802 (2) 172912 2/2 8.10 1978 (1) 3510428
75 n.a. n.a. n.a. 5.75 n.a. n.a.

50 25 314.2 13532 4/5 2.63 473.6 504644
50 349 (1) 12020 1/1 2.23 392 (1) 396780
75 704.2 29503 2/5 1.09 548.4 580512

80 25 16.08 565 0/5 0.86 9.00 12996
50 72.09 2547 0/5 0.68 50.81 74196
75 40.49 2662 0/5 0.36 14.32 21045

mean 592.6 48675 668.6 950041

Table 2 Computing times (in seconds) for exact resolution: comparison on the test-problems
of [BEP09] and [Pla06].

5.3 Experiments on solving k-cluster to optimality: larger problems

We have conducted numerical experiments on problems beyond the actual state of

the art. Table 3 reports the results for instances with n = 120.

For those large graphs, we change the experimental protocol, as follows. We do not

compare with QCR (the largest tests of [BEP09] and [Pla06] are with n = 100). So we

do need anymore to use the same computer as their: we run this third experiment on

a Dell precision T7500 Intel Xeon 2.80GHz with 4GB RAM under linux, using single-

thread (single core). We fix a computing time limit of 60000 seconds, and we report

the number of instances solved for each setting (in the column “# pbs solved”).

As far as we know, this is the first time that k-cluster problems with unrestricted

graphs of size larger than 100 are solved to optimality. On the other hand, we see that

our solver runs into some trouble, especially for the most difficult problems (those with

low density). Two reasons could explain those difficuties, and open ways to improve

the approach. First, recall that, except for the bounding procedure, our branch-and-

bound is very basic. Including more sophisticated strategies on each point of Section 5.1

would probably bring much performance improvement. Second, the bound Θ(α) is not



17

tight enough to avoid losing oneself in the branch-and bound tree (see the gap at the

root). Considering stronger bounds of the same kind (adding cuts for example) would

therefore be interesting. Those two points are subject to current investigations.

n k d(%) B&B using Θ(α)
time # nodes in # pbs gap (%)
(sec.) search tree solved (root)

120 30 25 57156 964968 1/5 10.00
50 n.a. n.a. 0/5 n.a.
75 n.a. n.a. 0/5 n.a.

60 25 16230 223187 3/5 3.26
50 3716 56101 3/5 2.61
75 9020 176355 5/5 1.47

90 25 124 2952 4/5 1.07
50 12818 179349 5/5 1.19
75 1845 24549 5/5 1.03

Table 3 Computing times (in seconds) for exact resolution of large-scale instances.

5.4 Conclusions, perspectives

This paper develops a branch-and-bound algorithm using a novel bounding procedure

to solve k-cluster problems to optimality. The key is to use new semidefinite bounds for

k-cluster that trade some quality of bound for a speed-up of computation time. This

is the first successful attempt to solve this NP-hard optimization to optimality with a

semidefinite programming approach competitive with state-of-the-art methods.

The numerical experiments of Sections 4.2 and 5.2 show that the new semidefi-

nite bounds θ(α) have a practical interest. They have indeed good balance between

tightness and computing time; they provide SDP-quality bounds while being faster

to compute. The dedicated solver for computing θ(α) also combines advantages of the

SDP solvers SB and CSDP: like SB, it gives guaranteed upper bounds, has a fast initial

convergence, and allows to be interrupted; and like CSDP it is reliable, in the sense that

we observe only small variations in computational times. The branch-and-bound using

θ(α) takes advantage of SDP-like bounds (all way long) to prune well. Its performance

is comparable with the best method for this problem. In practice, our method works

particularly fine on the most difficult instances of k-cluster (with a large number of

vertices, small density and small k).

The exact resolution scheme presented here could be adapted to other combinato-

rial problems: the semidefinite bounds upon which the approach is based are indeed

introduced in [Mal07] for general binary quadratic problems. The first step toward a

generalization would be to extend the numerical study of Section 4.2 (and [MR10a]);

this is what proposes our recent work [MR10b] (which also presents a different deriva-

tion of the SDP bounds).
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Appendix: Formulation of the k-cluster as a quadratic {−1, 1}-problem

The spherical constraints appears more easily on purely quadratic {−1, 1}-optimization

problems (see [Mal07]). The second reformulation in Section 2 considers the transforma-

tion of the k-cluster problem, from the natural modeling as a quadratic {0, 1}-problem

(with linear and quadratic constraints), to a purely quadratic {−1, 1}-problem. We

specify here this transformation, that uses standard techniques.
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Lemma 3 With the notation of this section, the k-cluster problem (1) is equivalent to

the quadratic problem in dimension n + 1

8

>

<

>

:

max x⊤Q x

x⊤Qj x = 4k − 2n, j ∈ {0, . . . , n}

x ∈ {−1, 1}n+1
(17)

where the symmetric (n + 1) × (n + 1)-matrices Q and Qj (j ∈ {0, . . . , n}) are defined

by (5). More precisely, this equivalence means that the optimal values of (1) and (17)

are the same and that the optimal solutions coincide as follows:

– if z̄ is a solution of (1) then x̄ = (1, 2z̄ − e) is a solution of (17);

– if x̄ is a solution of (17), then z̄ = ((x̄0x̄1, . . . , x̄0x̄n) + e)/2 is a solution of (1).

Proof Operate first the change of variable x = 2z − e, and express the objective and

the constraints with respect to x = (x1, . . . , xn) ∈ R
n. Just develop the objective

z⊤Wz =
(x + e)⊤

2
W

(x + e)

2
=

1

4
(x⊤Wx + 2x⊤We + e⊤We),

and similarly transform e⊤z = k as e⊤x = 2k − n, and for all j = 1, . . . , n

z⊤Cjz = 2kzj ⇐⇒ x⊤Cjx+2x⊤(Cje−2kej) = 4k−e⊤Cje ⇐⇒ x⊤Cjx+2x⊤ẽj = 4k−2n

the last equivalence coming from e⊤Cje = 2n and ẽj = Cje−2kej . So we get quadratic

problem in x ∈ {−1, 1}n

8

>

>

<

>

>

:

max 1
4 (x⊤Wx + 2x⊤We + e⊤We)

e⊤x = 2k − n

x⊤Cjx + 2x⊤ẽj = 4k − 2n, j ∈ {1, . . . , n}

xi ∈ {−1, 1} i ∈ {1, . . . , n}.

(18)

The formulation of (3) is equivalent to (18) in the sense that the optimal values are

the same and the solutions are in one-to-one correspondance with x = 2z − e.

We consider now that the following purely quadratic problem with the additional vari-

able x0 ∈ {−1, 1}

8

>

>

<

>

>

:

max 1
4 (x⊤Wx + 2x⊤We x0 + e⊤We x0

2)

e⊤x x0 = 2k − n

x⊤Cjx + 2x⊤ẽj x0 = 4k − 2n, j ∈ {1, . . . , n}

xi ∈ {−1, 1} i ∈ {0, . . . , n}.

(19)

We observe that this problem is equivalent to (17) in view of the definitions of the

matrices in (5). So we just have to establish that (18) is equivalent to (19); we do

so in two steps. If (x1, . . . , xn) is feasible in (18), then obviously (1, x) and (−1,−x)

are both feasible in (19), with same objective value. It follows that val (19) ≤ val (18).

Conversely if (x0, . . . , xn) is feasible in (19), then x0 = ±1 and (x0x1, . . . , x0xn) is

feasible in (18) with the same objective value. It follows that val (18) ≤ (19), so that

we have the equality in fact. The relation between the argmins then becomes clear. ⊓⊔


