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ABSTRACT

Investigating ecological segregation among orgasisha given community is challenging,
especially when these organisms share similar rpattef distribution, and similar size and
morphology. Around the island of Mayotte, a diviesi community of at least four sympatric
delphinids is present year round within a very rietd range: the Indo-Pacific bottlenose
dolphin (Tursiops aduncys the spinner dolphinStenella longirostrig the pantropical spotted
dolphin Stenella attenuaj)aand the melon-headed whaleponocephala electyaln addition,

the Fraser’s dolphinL&dgenodelphis hosemakes temporary incursions into peri-insular nsate
as well. This study aims to assess niche segregatimng this tropical dolphin community. We
hypothesized that each species occupies its owimatisiche, defined by the following axes:
habitat, resources and time. We analysed habitaiation to physiography, behavioural budgets
and C and N stable isotope values from skin andld@u samples for each species. The results
highlighted that habitat and behavioural budgetsewelatively distinct among species, with few
exceptions. However, in those species living onalieer reef slope where habitat and behaviour
were not well discriminated, stable isotope anaysmfirmed that species have different trophic
levels (mostly reflected throught®N values) and/or foraging habitat (mostly reflecthtbugh
83C values). This study confirms that the use of ipleitmethodologies (habitat, behaviour and
feeding ecology studies) help in discerning ecaalginiche segregation, especially when

examining closely related species within a comnestricted range.

KEYWORDS: tropical dolphins, ecological niche, haks, stable isotopes, carbon, nitrogen,

south-west Indian Ocean, Mayotte.
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INTRODUCTION

Understanding niche segregation processes isatriticecology, particularly when investigating
the ecology of species communities. A community lcardefined as a collection of species that
occur together in a common environment, or habitet, organisms making up the community
being somehow integrated or interacting as a sp¢&tapman & Reiss 1999). Each species has
its own unique niche (Grinnell 1924). The ecolobio&che is a complex set of variables
structured along three main axes: habitat (infleet environmental variables), diet (diet
composition, trophic level and prey quality) anuhei (use of habitat and resources according to
time, such as seasons and time of day). Sympatecies with similar ecological requirements
would compete for resources and their coexisteaqaires some degree of habitat and resource
segregation (Pianka 1974). Similar species thabamon are thought to compete for resources
unless they occupy different physical locations/anteed on different prey. A shared resource
in limited supply will bring about competition beten members of the same species (intra-
specific competition) or between individuals of fdient species (inter-specific competition)
(Roughgarden 1976). Intra-specific competition niagy expressed by sex or age related
difference in habitat and resource use and haseqoesices on social structures. Inter-species
competition can take various forms, including direderference (aggressive behaviour) and
exploitation-competition, in which individuals indctly compete for resources (Begon et al.
1986).

Investigating segregation processes within comrasiof organisms having similar size and
morphology has been particularly challenging. Irchsilcommunities, niche partitioning is
difficult to assess as it can occur over smalligpand temporal scales. For example, in species

with similar morphology (e.g. body size, jaw/bediage, etc.), feeding niches are distinct even
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when feeding occurs in both species within the sarea (MacArthur 1958). Niche segregation
has been investigated in a number of top marindgtoe communities, including large teleost
fish (Potier et al. 2004, Ménard et al. 2007), kbafEstrada et al. 2003, Domi et al. 2005,
Papastamatiou et al., 2006), seabirds (Ridoux 1@%#rel et al. 2008, Jaeger 2009), marine
mammals (Das et al. 2003, Whitehead et al. 2008;aP& Gannier 2008) including delphinids
(Pusineri et al. 2008, Gross et al. 2009; Kiszkale2010). Methods used to discriminate niches
were variable, including stomach content, stabitojge and heavy metal analyses and habitat
assessment (including habitat modelling). For exampuiche partitioning has been assessed in
polar communities using stable isotope analyse€ @nd N, such as in Antarctic pinnipeds,
showing clear ecological segregation between spéZieao et al. 2004). Conversely, in tropical
sympatric seabirds, important overlap of feedinghes has been found, which may be
interpreted by the low productivity of tropical gditrophic waters, leading these predators to
share same feeding resources that are not quayatimited (Cherel et al. 2008). In the
tropical cetacean community of the Bahamas, itliesn shown using a habitat analysis that the
ecological niches of four cetacean species (Attargpotted dolphinStenella frontalis
Blainville’s beaked whaléMesoplodon densirostrigCuvier’'s beaked whalZiphius cavirostris
and dwarf sperm whal€ogia simu} do not overlap. Other cetacean species are aix$énvthe
area only during the season when prey abundanseffisiently high to support their presence,
while they are competitively excluded for the refsthe year (MacLeod et al. 2004).

Around the tropical island of Mayotte (Comoros, SWdian Ocean), a great diversity of
cetaceans has been found within a limited geogcaplnange, i.e. at least 19 species within an
area of 2,500 km? (Kiszka et al. 2007). In thisaalggh cetacean diversity may be associated by
the presence of a wide range of marine habitatsinvitlose proximity to one another: turbid

mangrove fronts, fringing reef systems, clear lag@weas, barrier and double barrier reef-
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associated habitats, a steep insular slope and aesgmic waters. In some locations around
Mayotte lagoon, water depth extends beyond 1,008ssthan 3 km away from the barrier reef.
The permanent presence of odontocetes within aiatest range suggests that fine-scale
mechanisms allow for the partitioning of habitated/ar resources. The four most common
dolphin species there have a size ranging fronmispinner dolphin§tenella longirostristhe
smallest) to the 2.8 m melon-headed wh&leponocephala electrahe largest). Other species
include Indo-Pacific bottlenose dolphifiursiops aduncys pantropical spotted dolphisienella
attenuatd and Fraser’'s dolphinLégenodelphis hosgi(Kiszka et al. 2007). The Indo-Pacific
bottlenose dolphin is typically a coastal speciesding on inshore prey (Amir et al. 2005) and
lives inside the lagoon around Mayotte (Gross eP@09). Conversely, the other species of the
community are oceanic and primarily occur outsile tagoon and feed on epipelagic to
mesopelagic oceanic prey (Dolar et al. 2003, Brdowateal. 2009). A preliminary study of the
tropical delphinid community around the island c&yétte indicated that their ecological niches
at least partially, overlapped (Gross et al. 200@%ing sighting data related to environmental
variables and stable isotope analyses from biopsygpkes, it was shown that Indo-Pacific
bottlenose dolphin had a coastal/lagonal distrdsytvhile spinner dolphin, melon-headed whale
and pantropical spotted dolphin had similar habdtadracteristics along the outer reef slope.
Stable isotope analyses from a small amount of dyiopamples allowed species of the
community to be discriminated isotopically, exctp two congeneric and “sibling” dolphins of
the genusStenella having similar morphological characteristics drefjuently forming inter-
species aggregations. Methodological constrainddianited sample size are likely to explain the
absence of measurable differences between spetiesefore, the present work aims to
characterize habitat and resource partitioning amadelphinids living in sympatry around the

island of Mayotte from multiple lines of eviden@ong the following axes: habitat, diet (more
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particularly trophic level and foraging habitat)datime (seasons and time of day, Table 1). In
this study, we hypothesize that each delphinidsispeccupies its own ecological niche, defined
by at least one of the indicator used. Indeedafor given pair of species, statistical difference
should be found for at least one of the varialdsted (habitat, stable isotope values and temporal
variations). We will investigate habitat of delpiois in relation to physiographical variables,
activity budgets and their variability among spec@nd according to time, and stable isotope
analyses{-*C ands™N) from biopsy samples**C ands**N isotopes help elucidate habitat use
(e.g.8"C values typically vary from’C depleted in offshore, or pelagic-derived-® enriched
from inshore or benthic-derived C) and the positiointhe consumer in the food chain,
respectively (Hobson 1999). They can also reflectall baseline differences in coastal waters
(Mallena & Harrod 2008). The use of these isotopas provided alternative information from
which to better understand top predator ecologgluging marine mammals (Das et al., 2003).
Activity budgets have been investigated for the¢hmost common species (spinner, spotted and
Indo-Pacific bottlenose dolphins) in order to comepdaily variation in behaviour and habitat
utilization. It allows investigating, at a shortmeg scale (time of day), one of the temporal
dimension of the niche. We also assessed seasanations of habitat preferences, behavioural
budgets and stable isotope signatures, as sedgomaly be a major factor segregating species

among them.

MATERIALS AND METHODS
Study area
Mayotte (4510°E, 1250'S) is located in the north-eastern Mozambiquar@iel, and is part of

the Comoros archipelago (Figure 1). The islandiisosinded by a 197 km long barrier reef, with
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a second double-barrier in the southwest and tineeirged reef complex of Iris in the northwest.
The lagoon and surrounding reef complexes are 1k&80with an average depth of 20 m and a
maximum depth of 80 m found in the western, oldegjon of the lagoon (Quod et al. 2000). The
insular slope on the exterior of the barrier reefvery steep and contains many submarine
canyons and volcanoes (Audru et al. 2006). Thendslaf Mayotte is characterized by the
presence of high cetacean diversity (19 specidadmy 12 delphinids; Kiszka et al. 2007). The
most common species are the spinner dolpBiter(ella longirostris the pantropical spotted
dolphin Stenella attenua)a the Indo-Pacific bottlenose dolphifursiops aduncysand the
melon-headed whald®€ponocephala electyathese occur on a year-round basis (Kiszka et al.

2007).

Data and sample collection

From July 2004 to April 2009, small boat based sysvwere undertaken around Mayotte.

Several types of boats were used to collect dafamacatamaran equipped with two, four-stroke,
60-hp outboard engines; a 7-m boat equipped with two-stroke, 40-hp outboard engines; a
6.4-m cabin cruiser equipped with one, four-strdks)-hp outboard engine; and a 10.8-m cabin
cruiser equipped with two, four-stroke, 115-hp @attd engines. Surveys were conducted
throughout the study period during daylight houesaAeen 07:00 h and 18:00 h in sea conditions
not exceeding Beaufort 3. Survey vessels did ntdviopre-defined transects but every attempt
was made to sample the whole daylight period abagetach habitat type within the surrounding
waters of Mayottei.e. coastal areas, lagonal waters, barrier reef assacareas (inner and outer

slopes) and oceanic or slope waters (>500 m). Wiedphinids were encountered, standard
sighting data were recorded: species, group siz&i(mum, minimum, best estimate), geographic

position and behavioural activity. The predominaciivity was defined as the behavioural state
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in which most animals (> 50%) of the group wereoimed at each instantaneous sampling.
Typically, more than 90% of the animals in a grevgre engaged in the same activity.

In order to measure behaviour of the focal dolpsecies and determine their behavioural
budgets, focal group follows were used (Mann 19%hile one of the preferred option in
behaviour sampling is to follow a focal individy@ann 1999), this method was not suitable for
large aggregations of oceanic dolphins. In addjtiohowing groups, rather than individuals, is
more suitable for behavioural studies as apprapaanditions for individual sampling are rare in
diving cetaceans (Whitehead 2004). Individual feowere generally possible in the easily
identifiable Indo-Pacific bottlenose dolphins, Imat on each occasion, as some individuals were
not identifiable, but for comparative purposes, wsed a focal group protocol, which has been
used in other studies on similar models (Neuman@r&ms 2006). The encountered group was
approached slowly (typically at 2-3 knots), frone thide and rear, with the vessel moving in the
same direction as the animals. Groups were scamadding all individuals, to negate attention
being drawn to only specific individuals or behaw® (Mann 1999). During focal follows,
dolphin behaviour was recorded every 5 minutese Kiategories of behavioural states were
defined: milling, resting, travelling, feeding/fgiag (hereafter foraging), and socializing as
defined in previous studies (e.g. Norris & Dohl @9Bearzi 2005, Neumann & Orams 2006,
Degrati et al. 2008). Feeding was characterisedobge to disperse group formations and
dolphins were observed swimming in circles, andsping fishes (prey observed at the surface).
Preys were frequently seen at the surface durirggiog activity. In bottlenose dolphins, large
preys were frequently exhibited by the animalshat gurface. Travelling consisted of persistent
and directional movements of all the individualsaofroup. Milling was characterised by non-
directional movements of the dolphin, with frequeh&nges in heading. Socialising consisted in

frequent interactions between individuals in thenfoof body contacts, with high-speed
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movements, frequent changes in direction and adisalays. Resting was characterised by low
level of activity, with groups in tight formationsyith little evidence of forward propulsion.
Surfacings are slow and relatively predictable.

For stable isotope analyses, biopsy attempts wadernwhen groups and individuals were easily
approachable and when conditions were optimal (Betag 2, dolphins closely approaching the
boat). Optimal weather conditions allowed stabitifythe research boat and better chances to
sample the animals successfully and safely. Bispswere collected by using a crossbow
(BARNETT Veloci-Speed® Class, 68-kg draw weight) thwi Finn Larsen (Ceta-Dart,
Copenhagen, Denmark) bolts and tips (dart 25-mng,l@mm diameter). A conical plastic
stopper caused the bolt to rebound after the imp#btthe dolphin. The dolphins were hit below
the dorsal fin when sufficiently close (3-10 m) tiee research boat. Approaches of focal
groups/individuals were made under power at speéds4 knots. Blubber and skin biopsy
samples were preserved individually in 90% ethdedbre shipping and subsequent analysis.
The preservative used (ethanol) was the most deitddat could be used due to logistical
constraints. It does not affect stable isotope aigres in freshwater zooplankton and benthic
macroinvertebrates (Syvaranta et al. 2008), bigseblood and muscle (Hobson et al. 1997,
Gloutney & Hobson, 1998). The increase3tfiC values is generally considered to be due to the
extraction of some lipids but because lipids angleted in**C, they are typically extracted (or
corrected arithmetically, e.g. Kiljunen et al 20@6)avoid a bias in estimates &fC values (De
Niro & Epstein 1978, Tieszen et al. 1983), thatljkcancels any potential effect of storage in
ethanol (Kiszka et al. 2010). Biopsy sampling wasdtcted under French scientific permit
#78/DAF/2004 (September 10, 2004) and permit #0BEMSEF/2008 (May 16, 2008) after

examination of the project iyonseil National de Protection de la Nature



215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Muscle samples from several fish species were atdtected for stable isotope analyses,
especially to investigate trophic interactions kestw delphinids and potential dolphin preys as
well as fish species with clear ecological profijsse below). Fish specimens were collected in a
local fish market. Fish muscle samples were sampledipril 2009 and preserved in ethanol
before subsequent analyses. The fish species egle€tre pelagic, demersal and benthic species
from reef associated habitats, i.e. from variousirenments in the lagoon and surrounding
waters, and different trophic levels (herbivoroyslanctonophageous and piscivorous):
Hemiramphus farepipelagic, inhabiting waters near reef systems f@eding on the pelagic
zooplankton;Mulloidichthys vanicolensjsdemersal on seaward reefs, feeding on small worms
and crustaceansSiganus argenteusdemersal, inhabiting coastal and inner reef soaad
feeding on alga€Scarus russeliidemersal, inhabiting shallow coastal reef andifegeon algae

by grazing on coral bubble ar@aranx melampygusiemersal and pelagic predator feeding on
small schooling fishes (Froese & Pauly 2010). Twecses were sampled because they regularly
enter the diet of the Indo-Pacific bottlenose doipklemiramphus faand Caranx melampygus

(J. Kiszka & C. Pusineri, personal observations).

Habitat analyses
We constituted a database in which every dolphougrobservation was associated with the
physiographic characteristics (distance from thastadistance from the nearest reefs, depth and
slope of seafloor) corresponding to the GPS (Gl#tmsitioning System) fixes of the observation.
Bathymetric data were obtained from Service Hydrpbique et Océanographique de la Marine
(SHOM). Interpolation of bathymetry data, needed to geeredmpth and slope data for each
sighting, was undertaken with the extension Spa&i@dlyst by kriging transformation of the

raster file into an interpolated data file. Thetaigke data were obtained using GIS (Geographic

10



239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

Information System) software ArcView (ArcGIS 8.3) BSRI (Environmental Systems Research
Institute). We represented the distribution of ther dolphin species investigated in relation to
the environmental predictors using kernel denslbtspto view the distribution of species. In
order to differentiate species niches, we performvdtidimensional Scaling (MDS), using
Euclidian distances between individual habitat abgaristics. Metric Multidimensional scaling
(MDS) takes a set of dissimilarities and returrsegof points such that the distances between the
points are approximately equal to the dissimilasitilt displays the structure of distance-like data
as a geometrical picture (Gower, 1966). In otherdspthe purpose of MDS is to provide a
visual representation of the pattern of proximitfes. similarities or distances) among a set of
objects. This multivariate analysis was used ineprtb discriminate species in their habitat
preferences. Presence-absence models were notluseéd heterogeneous sampling of the study
area (for further details, see Clarke & Warwick 200

In order to complement this multivariate approagtiyariate non-parametric pairwise Wilcoxon
tests were used to compare species distributioneémh environmental variables. Seasonal
differences of habitat preferences were investiagng Mann-Whitney U-tests for each species
in relation to the four environmental co-variateattwere used. Two seasons were considered:
rainy/summer (November — April) and dry/winter swas (May — October). Analyses were

performed using Rv2.10.0 (R Development Core Te&09).

Behavioural budget analyses
To analyse diel patterns of behaviour, we defifedd time-blocks: morning (before 10:00 h),
noon (between 10:01 h and 14:00 h) and eveningr(a#:01 h). The seasons considered were
identical to those used for the habitat analysegr@ny season). Diurnal and seasonal patterns

were investigated by assigning a behavioural sespiama time block or a season. Contingency

11
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table analyses were used in order to compare balvaibudgets among species. Nonparametric
tests were selected because assumptions regaminglity and homogeneity of variance were

not met.

Stable isotope analyses
Blubber and skin were separated for each dolplopgy sample. Fish muscle tissues were used
for stable isotope analyses. The ethanol was eatgubat 45°C over 48 h and the samples were
ground and freeze-dried (Hobson et al. 1997). lspictre removed from both blubber and skin
samples by 2 successive extractions (1 h shakingyalohexane at room temperature and
subsequent centrifugation) prior to analysis. Atteying, small sub-samples (0.35 to 0.45 mg +
0.001 mg) were prepared for analysis. Stable istogasurements were performed with a
continuous-flow isotope-ratio mass spectrometer|téD&/ Advantage, Thermo Scientific,
Germany) coupled to an elemental analyser (FlashlE2Z Thermo Scientific, Italy). Reference
gas were calibrated against International Referéaterials (IAEA-N1, IAEA-N2 and IAEA-
N3 for nitrogen; NBS-21, USGS-24 and IAEA-C6 forrlman). Results are expressed in the
notation relative to PeeDee Belemnite and atmospHes for 5'°C and §™N, respectively,

according to the equation:

X = [M —1} x1000
Rstandard

Where X is**C or ®N and R is the isotope rati6C/*?C or **N/*N, respectively. Replicate
measurements of a laboratory standard (acetanihd@&ated that analytical errors were <0.1%o
for 3'°C and®™N. Percent C and N elemental composition of tissuese obtained using the
elemental analyzer and used to calculate the sa@eratio, indicating good lipid removal

efficiency when C:N <4. Differences of stable is@spralues 06*°N and5'*C among species

12
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were tested using non-parametric Kruskal-Wallis Btashn Whitney U-tests. Seasonal variations
were investigated using Mann-Whitney U tests. Lilg@ seasonal variations of habitat
preferences, the two seasons considered were ({idowember — April) and dry seasons (May —

October).

RESULTS

Field effort and data collected
From July 2004 to April 2009, data were collectediiny 224 boat-based surveys. A total of 355
sightings of the targeted species were collect@do(®f cetacean encounters around Mayotte),
l.e. 195 forStenella longirostris95 forTursiops aduncu$3 for Stenella attenuatand 12 forP.
electra.The spatial distribution of observation effort antiial encounters is presented in Figures
2a and bOverall, spatial coverage of effort was heterogesebut covered all available habitats
around the island, both inside and outside thedago
We collected biopsy samples from the four focalcggse from December 2004 to April 2009
(Stenella longirostris n=28; Stenella attenuata n=22; Tursiops aduncys n=28 and
Peponocephala electran=20) and from another delphinid species, theséfta dolphin
(Lagenodelphis hosen=7), during a single and unique encounter (soaisition with a group of
melon-headed whales) in January 2005. Seasonabdigin of sighting data and biopsy samples
was balanced, allowing analyses of seasonal pattrivariation of habitat and stable isotope
signatures (Table 2). For fish and stable isotapeyaes in muscle samples, sample size was
distributed al follows:Hemiramphus far(n=5); Mulloidichthys vanicolensign=5); Siganus

argenteugn=>5); Scarus russeli{n=5) andCaranx melampygu=2).

13
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Focal follows were performed on 33 groups of spird@phins (total time spent=37.1 h: n=466
behavioural sequences), 28 groups of Indo-Pacdttidmose dolphins (total time spent=25.5 h;
n=413 behavioural sequences) and 12 groups of qmoéit spotted dolphins (total time
spent=16.3 h; n=193 behavioural sequences). Themiedaded whale was not included in the
behavioural budget analysis as sample size wasrt@dl (4 focal follows). Focal follows were

undertaken all around the island.

Habitat differentiation
Table 3 presents distribution of the four speciegestigated in relation to environmental
predictors. Table 4 presents correlations betweeiables. Only two variables were significantly
correlated: distance from the coast and dePth 0.019). Density plots show that habitat of the
four species were not well differentiated, apaongl two habitat axes: depth and distance from
the coast (Figure 3). For these variables, the-Paldfic bottlenose dolphin occurs significantly
closer to the shore and in shallower waters, wisetba three other species are not well
discriminated. For the MDS, axes 1 and 2 explaii®@#% and 21.2% of the variance,
respectively (Figure 4). The plot slightly discrimted the Indo-Pacific bottlenose dolphin, but
segregation among the other three species appeaetively weak. The pairwise comparison
(Wilcoxon tests) of species distribution for eadriable provided more significant results. For
depth, the three species occurring essentiallyidritie lagoon§. longirostris S. attenuatand
P. electrg could not be discriminated? & 0.05), while thél'. aduncusignificantly differed from
the three others (al < 0.001). Slope did not segregate any speciesvahable “distance from
the coast” significantly segregatéd aduncudrom the three other species (Blk 0.0001). The
variable “distance from the nearest reef” was s$iggmtly discriminant among the oceanic

speciesS. longirostriswith S. attenuatgP = 0.002),S. longirostriswith P. electra(P = 0.03).
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For all variablesP. electraandS. attenuatavere nevediscriminated P > 0.05). In all delphinid

species, no seasonal variation of habitat prefeen@s observed, for any variable Ra# 0.05).

Behavioural budgets
As we used four types of vessel for collecting veharal data, we tested for a potential boat
effect on the data but failed to find a significatitference §? = 3.238,df = 4; P = 0.569);
therefore, subsequent analyses reflect a pooleds#dt In Indo-Pacific bottlenose dolphins, the
most frequent activities recorded were milling (32%avelling (22%) and foraging (16%)
(Figure 5). A quite similar pattern was also obsdnin the pantropical spotted dolphin, with
travelling being the prevalent activity (32%), tmlled by milling (22%) and foraging (18%). In
the spinner dolphin, socialising was the most comgncecorded behaviour (28%), followed by
travelling (26%) and milling (22%) (Figure 5). Fgrag behaviour was not observed in the
spinner dolphin. Among the three species, sigmtichfferences in activity budgets were found
(02 = 177.33df = 12;P < 0.0001). These differences were confirmed whenfiopming pairwise
comparisonsT. aduncusss. S. longirostris(y? = 137.50;df = 6; P < 0.0001),T. aduncusys. S.
attenuata(y? = 53.42,df = 6; P < 0.001) ands. longirostrisvs. S. attenuatdy? = 109.184df = 6; P

< 0.0001).

Temporal variation of activity budgets
For all species, no significant variations of aityiypatterns were observed among seasars (
3.816;df = 3; P = 0.439). Contrastingly, behaviour patterns vasgphificantly according to time
of day for Indo-Pacific bottlenose dolphiy € 48;df = 5; P < 0.001), spinner dolphini = 13;df
= 5;P = 0.002) and pantropical spotted dolphip£ 11;df = 5;P = 0.009) (Figure 6, a to c). In

Indo-Pacific bottlenose dolphins, foraging actestiwere prevalent during the morning and
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decreased throughout the day, whereas socializasggmore frequent in the afternoon. In spinner
dolphins, travelling activities increased along tfay and social activities were more observed in
the morning and the afternoon, whereas restingwetnawas more predominant around noon
time. Finally, in pantropical spotted dolphins, dew behaviour prevailed during the afternoon,
along with travelling.

Activity budgets did not vary with water depth imdb-Pacific bottlenose dolphir & 2.060;df =

4; P = 0.725), spinner dolphim(= 5.621;df = 4; P = 0.229) and pantropical spotted dolphin<
8.049;df = 4; P = 0.09). However, activity budget varied with diste from the coast for Indo-
Pacific bottlenose dolphirH(= 9.542;df = 4; P = 0.04; especially increasing foraging activity
closer to shore), although not for either spinner=(3.251;df = 4; P = 0.517) or pantropical
spotted dolphinsH = 4.201;df = 4; P = 0.379). Feeding activities of the Indo-Pacifattkenose

dolphin increased with decreasing distance fronsicoa

Stable isotope analyses
Stable isotope values of delphinids and fish wegaificantly different, as shown in figure 7.
The most apparent pattern was the higher trophiel lef delphinids, reflected by high&t°N
values. In addition**C values in delphinids were lower than in fish.
In delphinids, stable isotope values were loweblitbber than in skin. However, the pattern of
differences observed between species was similbotin tissues (Figure 8 and 9). The Fraser’'s
dolphin shows a high marginality in comparison e tther species, with significantly higher
8N values in the blubber (Figure 8). However, foinskalues, overlap was observed with the
melon-headed (Table 5). Overall, among speciesjfgignt differences in the skin existed for
8N (H = 33.6;df = 2; P < 0.0001) and™*C (H = 53.6;df = 1; P < 0.0001). For blubber,

significant differences were also found 8PN (H = 49.7;df = 1; P < 0.0001) and**C (H = 63;
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df = 1; P < 0.0001). A similar statistical difference amaspecies for blubber tissue was found,
even when excluding the Fraser’s dolphin, veryedédht to the four other species£ 34;df = 2;

P < 0.0001 fos™*N andH = 60;df = 2; P < 0.0001 fos**C). The Indo-Pacific bottlenose dolphin
had the greatest®C values, while the lowest values were observeterFraser’s dolphin and in
the two species of the gen8genella The melon-headed whale had intermediate valué5’6f
both for skin and blubber (Figures 8 and 9). Wheoking at pairwise comparisons &N and
8°C values in blubber and skin tissues, however, sdegrees of overlap can be observed
(Table 5). From skin sampled™N values were significantly different between spscpairs,
except betweels. attenuataand T. aduncusand betweerL. hoseiand P. electra(U-tests;P >
0.05). Fors**C values, overlap was evident betwderhoseiand the two species of the genus
Stenella.Finally, for blubber tissue3*N values were significantly different between spsci
pairs, except betwee. attenuatandP. electraand betweerS. attenuatandT. aduncus™*C
values showed the highest degrees of overlap,cpétly betweenS. longirostrisand S.
attenuata betweersS. attenuatandL. hosej as well as betwedn hoseiandP. electra(U-tests;

P > 0.05; Table 5). Stable isotope values from fiamgles were useful in order to provide a
context to interpret values in delphinids. Amonghfisignificant differences were observed for
8C (H = 11.2;df = 4; P = 0.02) and™N (H = 11.6;df = 4; P = 0.01).Siganus argenteuand
Scarus russeli{herbivores) had the lowest trophic positi@™\), while Caranx melampygus
the most predatory species, had the highest trdetét ¢*°N). Their foraging habitats were also
well discriminated, wittMulloidichthys vanicolensibaving the highesi'*C values andCaranx
melampyguswith Hemiramphus fathe lowest (Figure 7). These latter were about1055%o
8°C and 3-4 %N lower thanT. aduncus

Seasonal variations of stable isotope signatures wleserved in all species for skin and blubber

tissues (Table 6). In the two species of the geBtenellaand the melon-headed what’C
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values were more negative during the rain seasaBvérse situation was observediinaduncus
during the rain seaso&™N values were decreasing fStenelladolphins andP. electra while
increased inT. aduncus However, while (sometimes) statistically sigrdgfit in some cases,

seasonal variations appear to be relatively limited

DISCUSSION

General

This work represents a detailed study on habitat sesource segregation among tropical
dolphins around Mayotte, in the southwest Indianedc It integrates several methods
implemented over four years, with varying tempoeglolutions: from instantaneous sighting data
and behavioural observations collected during daylhours to stable isotope analyses in skin
that represents the foraging niche over days ahénblubber which integrates stable isotope
signatures over months (Abend & Smith 1995). Thicators were selected for their ability to

document the main dimensions of the ecological enialong which segregation might occur:

physiographic characteristics describe the spatialension of the ecological niche, carbon

isotopic signature focuses on the coastal-offsoadient of the foraging niche, nitrogen isotopic
signature expresses the resource dimension ofithe,rand the daily activity budget deals with

temporal dimension.

Overall, the main finding of this work is that noakthe indicators of trophic niche dimensions,

examined solely, reveals complete ecological segi@y amongst the four species studied, but
the combination of all indicators do (Table 7). denphysiographic characteristics of habitats

used by the dolphins during daylight, when visul$eyvations were possible, only allow the
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Indo-pacific bottlenose dolphin to be differentéitom the others. Carbon isotope signatures
allow the melon-headed whale to be separated ftoenStenelladolphins. Finally nitrogen
isotopic signature and activity budget identify feliEnces between spinner and pantropical
spotted dolphins.

Identifying the limitations of the study is necasstor delineating its validity range. Most daily
field trips were undertaken from Mayotte main hanblocated on the east coast of the island and
were limited to daylight hours. Hence, effort wasmecentrated in the lagoon and the vicinity of
outer slope of barrier reef, within the 1000 m &b and nocturnal distribution and activity
could not be documented. The resource dimensioth@fniche was documented in a very
integrated way, as C and N isotopic contents ofealgtor express foraging habitat and trophic
level but not dietper se which is only documented by sporadic direct obsgons when no
biological material is available. Also, in stabd®topes analyses, as in most studies relying on the
use of ecological tracers transmitted via food.(&atly acids, contaminants, heavy metals), only
differences in stable isotope contents are reaftyrmative, whereas similarities may result from
a variety of prey combinations. Finally, behaviduradget data is limited by our capacity to
infer dolphin underwater activity from surface etgerin particular, foraging, which is the key
activity to consider when investigating segregatimechanisms, can either be associated to no or
barely visible surface events or to explicit antenfhighly dynamic ones. Nonetheless, in a
multifaceted approach as the one followed here,lith#ations of each indicator tend to be
compensated by the others. For instance, stabtepiscanalyses reveal foraging habitat and
trophic level of prey eaten day and night over plast few days or months, which is extremely
useful to disentangle the inherent ambiguities bBeovations limited to daylight hours.
Conversely, behavioural data can help identifyeddhces in foraging strategies that cannot be

found in stable isotope analyses.
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The ecological significance of these indicatorsl wdw be interpreted sequentially from those

related to the spatial, the resource and finakytdmporal dimensions of the ecological niche.

Spatial segregation inferred from direct observations and 8*3C signatures
This study confirms thak. aduncuss associated with coastal, shallow water andmabitats. Its
ecological niche clearly differs spatially from tlgher species of the community. Coastal
foraging habitats are confirmed by high°C value indicating a benthic carbon source that is
primarily available in coastal environments (Frad@95, Hobson 1999). Preference for coastal
habitat is reported throughout species range, fenemece shared with the Indo-pacific humpback
dolphin,Sousa chinensisvhich is present in very low numbers around Ms&g;dtut could not be
considered in this work.
S. longirostrisandS. attenuatao-occur in waters along the outer slope of theidrareef around
Mayotte. They overlap extensively, but the laterds to occur in deeper waters, located further
offshore. Lows™*C values found in both species, with extensive laperre in line with foraging
habitats located outside the lagoon at epipelagptits; this interpretation is reinforced by the
overlap also found between the tv@ienellaand the Fraser’s dolphin, a typically oceanic
dolphin. The pattern observed around Mayotte has &leen reported from other insular
populations, such as off La Réunion where spottelgphihs occur in deeper, more offshore
waters than spinners do (Dulau-Drouot et al. 200Bgse two species are not restricted to peri-
insular waters; instead populations of the two mgealso dwell in the open ocean (Wade &
Gerrodette 1992, Ballance & Pitman 1998). In thisiation, extensive overlap in preferred
habitat is also observed, as reported from the asesbouth Atlantic and the eastern tropical

Pacific (Polachek 1987, Moreno et al. 2005).
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For melon-headed whale, a fairly limited numbersihtings were collected, allowing only a
partial description of its habitat preferences. &#wless, habitat physiographic characteristics
of P. electraas documented in this work were significantly eliéint fromS. longirostris but
could not be differentiated fror®. attenuata The melon-headed whale has a more oceanic
distribution than the other species (Brownell et28l09) and it is unknown whether the groups
seen around Mayotte are mostly oceanic dwellertsateasionally visit peri-insular waters or if
they display some group-specific preference forghe-insular slope, a habitat that they could
exploit around all islands, reefs and seamountm fadf the northern end of Madagascar to
Grande Comore (western Comoros archipelago). Quiteestingly,5'°C values measured in the
melon-headed whale are intermediate between thetepnesopelagiStenellaand Fraser’s
dolphins and the coastal dwelling Indo-pacific lestbse dolphin, rather than being identical to
the Stenella carbon isotopic content as could be expected fitbe similarity found in
physiographic characteristics. This would suggpstial segregation along a vertical axis, with
melon-headed whales foraging deeper and hencer dlmsketritic carbon sources th&tenella

spp. do.

Resour ce partitioning inferred from "N signatures
Nitrogen isotopic signatures are the main sourcanfdrmation on resource utilization by
dolphins in Mayotte. Direct evidences of resourse are limited to some anecdotal observations
of prey hunting or capture by. aduncusand S. attenuata(Kiszka & Pusineri, unpublished
observations). Carbon isotopic signatures of fisliected in the lagoon also convey some
contextual information on plausible prey for therenooastal dolphins. Finally, when comparing

trophic levels inferred frond™N signatures one should only consider in the coispardolphin
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species with overlapping*C signatures, i.e. living in the same habitat, beeaeference levels
of 8N in oceanic vs. lagoon habitats are unknown.

Indo-pacific bottlenose dolphins isotopic contean de compared to the isotopic values of
putative prey fish collected in the lagoon. Thebinarous fishSiganus argenteusnd Scarus
russelii have 8'*C values 2-4 %o higher thaf. aduncus and would therefore unlikely be
important components of its diet. In contrast, biwwally Caranx melampyguand blackbarred
halfbeakHemiramphus fadisplay carbon and nitrogen signatures about (b3 and 3-4 %o
lower respectively thait. aduncussuch differences fit well with an enrichment afeotrophic
level. Therefore, these two predatory fish would glausible major prey foil. aduncus
Anecdotal direct observations in Mayotte are ire hwmith this interpretation even if other fishes,
like the mulletMulloidichthys vanicolensjswere also observed being preyed upon (Kiszka &
Pusineri, unpublished observations). Our reswdtss consistent with existing information on the
diet of the Indo-Pacific bottlenose dolphin in tlegion (Zanzibar, Tanzania), suggesting this
species forages on a large number of prey speemscially reef fish (Amir et al. 2005).
Elsewhere,T. aduncuds known to feed on fish species that do not aggeeq large schools
(Mann et al. 2000).

The two Stenellahave largely overlapping ranges of both physiogi@pabitats and carbon
isotopic contents, even 8. attenuatas seen slightly further offshore and is nonetselglightly
carbon-enriched (highe**C ratios). According t&™N values, pantropicab. attenuataare on
average 1.5%o higher than spinner dolphires,half a trophic level, which would express some
degree of niche segregation between the two spdaiesidition to thisS. attenuateseems to
have a wider niche breadth th&h longirostris. Pantropical spotted dolphins have been
frequently observed feeding close to the barrief wehere their prey aggregate (fishes of the

genus Exocoetidae; Kiszka & Pusineri, unpublishédeovations), in agreement with their
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slightly higher8™C signature. Fine-scale processes allowing nicKerentiation between the
two Stenellaspecies have also been found in other regions, asiin the eastern tropical Pacific
(Perrin et al. 1973). Spinner dolphins there apored to feed at night upon scattering—layer
organismsj.e. on vertically migrating mesopelagic fishes, ceppatls and crustaceans, caught
in the upper 200 m and occasionally as deep asmi@Perrin et al. 1973, Norris et al. 1994,
Dolar et al. 2003). Conversely, pantropical spottedphins would feed day and night on
epipelagic fishes and cephalopods (Perrin et &3)L9

Melon-headed whales were observed in much the &ai¢ats as pantropical spotted dolphins,
but comparatively highet'*C values suggested vertical segregation could odsitrogen
isotopic content further suggests a slightly higtnephic level (about 1/3 trophic level). Earlier
works report mesopelagic fishes and cephalopodspycsedly preyed upon in the upper 700
meters, as the main component of its diet (Young81®Brownell et al. 2009). An element of
comparison is provided by the Fraser’'s dolphin,avhivas added to the study in an attempt to
provide isotopic reference for a true oceanic pi@gian addition to this, the species is frequently
observed forming mixed group with melon-headed wlidéfferson & Barros 1997, Kiszka et al.
2007, Dulau-Drouot et al. 2008). Not surprisindfyaser’s dolphins displayed the second lowest
813C values, in agreement with their oceanic lifestgled the highest™N values, that fit well
with the higher trophic level, likely associatediwits preference for larger prey already reported
elsewhere (Dolar et al. 2003). Studies of stomamftents from the Pacific suggest this species
feeds on relatively large mesopelagic fish and akpgods from near the surface to probably as
deep as 600 meters (Robison & Craddock 1983, [@blal. 2003). In Mayotte, Fraser’s dolphins
and melon-headed whales, although generally sesotiated, do not overlap in their isotopic
niches, the latter being mos&’C enriched than the former, which could be interates feeding

a deeper food source, possibly associated to psuiar slopes, whereas the Fraser’s dolphin
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would rely on large epi- to-mesopelagic truly odeaney. These two species might associate for

other reasons than foraging, such as social adyamtavigilance against predators.

Temporal segregation inferred from seasonal patternsand activity budgets
Our study did not reveal seasonal variations ofioenice or habitat preferences as based on the
analyses of visual observations; this could beelthko the absence of seasonal variability in
tropical environments. On the other hand, stald®e values displayed significant differences
between dry and rain seasons in all species. Qregacies, i.e. spinner, pantropical spotted
dolphins and melon-headed whales, showed similaldeof variation. Conversely, the Indo-
Pacific bottlenose dolphin differed. This speciaf/doraged in the lagoon, and, during the rainy
seasonp™*C values were enriched, which could be linked tréasing hydrodynamic activity
and remobilisation of benthic sources of carborhim lagoon. It is therefore suggested that all
species have the same habitat use year-roundsdiopic content can vary seasonally as a result
of hydro-climatic processes.
At a finer time scale, segregation mechanisms coeilgl on differential daily activity budgets
between species; this aspect was investigatectibdttlenose and the twitenelladolphins, but
not in the melon-headed whale. Foraging activiteds Tursiops aduncuswere observed
throughout the day, but more frequently in the nmagncloser to shore. A similar pattern was
observed in common bottlenose dolphinBurgiops truncatus in Florida (Shane 1990).
Pantropical spotted dolphins feed during daylighith an increase in feeding activity along the
day. Nocturnal feeding is not excluded for these species but could not be accessed directly.
Spinner dolphins would only feed at night as fonggivas never observed during daylight hours.
Behavioural ecology of spinner and pantropical tgabtiolphins around Mayotte is similar than

in other areas, including around Hawaii and in dbeanic eastern tropical Pacific (Perrin et al.
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1973, Norris et al. 1994). Our results underlirdear pattern of niche segregation along the time

dimension, at least during the day.

Final comments
Three main dimensions define the ecological nidne species: habitat, diet and time. Our study
integrated these three axes to investigate ecabgiche segregation among the delphinid
community found around Mayotte. Habitat has beesessed through the investigation of the
relationships between delphinid distribution andviemmental variables (particularly
physiography). Trophic level and foraging habitavé been assessed indirectly, through the use
of stable isotopes of N and C respectively (De Nir&pstein 1978, Kelly 2000). Finally, the
temporal component of the ecological niche has ligegrated through the study of behavioural
budgets, especially their diurnal variations thaynpotentially segregate species’ ecological
niche. The use of multiple approaches (habitatabelnr and feeding ecology studies) was most
useful to investigate ecological niche segregatespecially when looking at closely related
species within a common restricted range. We hygsitle a conceptual scheme of resource
partitioning inferred from these measurements:
1 — The Indo-pacific bottlenose dolphin is mosthynfined to the inner lagoon or at least in
shallow reef-associated habitats. They feed dilyrfpbssibly nocturnally as well, although this
could not be documented), with daily routines tiauld follow variation in prey catchability
during the day, e.g. mullet being often caught €lts the coast in the morning, afranx
melampygusindHemiramphus fathe rest of the day across the lagoon;
2 — The spinner dolphin lives in outer reef habitand forage only nocturnally on small

mesopelagic prey;
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3 — The pantropical spotted dolphins also livesuter reef habitats, that largely overlap with the
spinner dolphins but feed at least partly diurnalhd at dawn on epipelagic prey, that include
flying fish caught closer to the barrier reef;

4 — The melon-headed whale is seen in the saméahas pantropical spotted dolphins, but
forages deeper over the peri-insular slope.

This ecological segregation is more significantntha other communities, such as in some
epipelagic seabirds (Ridoux 1994, Cherel et al.820Conversely, in diving predators such as
large pelagic fish and dolphins, ecological nickgregation is clearly distinguishable (Potier et
al. 2004, Ménard et al. 2007, Praca & Gannier 2008)s could be related to the low spatial

structure of marine ecosystems in tropical andotdaphic areas. Conversely, clear isotopic and
resource-related gradients can be found in subgoldrpolar environments over large spatial
scale (Jaeger 2009) as well as vertically (inclgdmthe tropics), at a small spatial scale in the
water column (this study). This vertical gradiestaiccessible to fish and dolphins, and not in
epipelagic seabirds.

Improvement in our understanding of resource pamiitg mechanisms among Mayotte

delphinids may be obtained in several directionavestigating acoustically dolphins’ nocturnal

distribution and activity; - documenting the regabisoscape by analyzing carbon and nitrogen
isotopic composition in phytoplankton collected rejoa coastal-offshore gradient and along a
vertical gradient as well; - investigating residgnuatterns of dolphin groups living around

Mayotte by using photo-identification or individutdlemetry approaches, in order to establish
whether they are genuinely associated to theseirgrdar structures, or have a more oceanic

lifestyle, occasionally approaching islands.
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805 Tables

806 Table 1: Methodology used to explore the three nd&imensions of the ecological niche in the
807 present study.

808
Niche dimensions
Variables tested Habitats Resources Time
Distribution and Habitat defined on
associated habitat physiographic aspects
characteristics (and seasonal variation)
Activity budget Daily activity rhythm (and
seasonal variation)
N isotopic signature Trophic Ieve! (a_md
seasonal variation)
Habitat along a coastal-
C isotopic signature oceanic gradient (and
seasonal variation)
809

810 Table 2: Seasonal distribution (winter/dry seastay to October; summer/rain season:
811 November to April) of sighting data and biopsy s&sollected from December 2004 to April
812 2009.

813
SIGHTINGS BIOPSIES
Species Winter | Summer | Winter | Summer
Tursiops aduncus 48 43 12 16
Stenella longirostris 101 67 12 13
Stenella attenuata 13 23 12 10
Peponocephala electra 5 6 10 10
Lagenodelphis hosei 0 1 0 7
814
815
816
817
818
819
820
821
822
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823 Table 3: Distribution of the delphinids in relatitmphysiographic variables.

824

825
826
827
828
829

830
831
832
833
834
835
836
837
838

Depth (meters)
Tursiops aduncus
Stenella longirostris
Stenella attenuata
Peponocephala electra

Slope (degree)
Tursiops aduncus
Stenella longirostris
Stenella attenuata
Peponocephala electra

Distance coast
(meters)

Tursiops aduncus
Stenella longirostris
Stenella attenuata
Peponocephala electra

Distance reef (meters)
Tursiops aduncus
Stenella longirostris
Stenella attenuata
Peponocephala electra

Table 4: Correlation between variables (Pearsooigsetation values above

Mean

47.9
220.7
301.4
486.5

2.1

9.5

9.7
13.6

2001.8
5258.8
6295.3
6665.6

1363
1059.7
2011.8
2452.1

Median

32
230.5
276.4
462.2

O O oo

996.2
5068.3
5771.8
7086.4

509.2
700.4

1210
1363.3

associated values below the diagonal).

SD

70.2
175.9
277.2
244.1

6.7
17.9
19.7
20.4

2169.8
2763.5
3331.2
2130.7

2071.8
1144.8
1999.5
3014.8

Q1-Q3

19.7-45.1
71.7 - 285.7
44.9 - 370.4
274.9 — 666.2

0-0.8

0-7.9

0-2.9
0-39.8

487.6 — 2778.5
3216.6 — 7191.7
3921.7 — 8602.8
5369.9 — 8520.4

268.7 — 1474.1
478 — 1320.6
722 - 2701.9

927.6 — 2563.8

the diagonal and

Distance coast Distance reef Slope Depth
Distance coast - 0.27 -0.13 0.01
Distance reef <0.001 - 0.13 0.34
Slope 0.020 0.028 - 0.24
Depth <0.001 0.731 <0.001 -
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839 Table 5: Pairwise Mann-Whitney U test p valuesdach pairs of delphinid species in carbon and
840 nitrogen in skin and blubber.

841
SKIN
Nitrogen Lagenodelphis hosei Peponocephala electra  Stenella attenuata  Stenella longirostris
Tursiops aduncus 0.01 0.001 0.125 <0.001
Stenella longirostris <0.001 <0.001 <0.001
Stenella attenuata 0.01 0.009
Peponocephala electra 0.232
Carbon
Tursiops aduncus <0.001 <0.001 <0.001 <0.001
Stenella longirostris 0.339 <0.001 0.02
Stenella attenuata 0.157 0.008
Peponocephala electra 0.008
BLUBBER
Nitrogen
Tursiops aduncus <0.001 0.022 0.08 <0.001
Stenella longirostris <0.001 <0.001 <0.001
Stenella attenuata <0.001 0.485
Peponocephala electra <0.001
Carbon
Tursiops aduncus <0.001 <0.001 0.001 0.001
Stenella longirostris 0.02 <0.001 0.182
Stenella attenuata 0.242 <0.001
Peponocephala electra 0.112
842

843 Table 6: Pairwise Mann-Whitney U test P valuesskasonal differences of stable isotope
844  signatures for each species and type of tissue.

845
SPECIES/SEASON BLUBBER SKIN
Tursiops aduncus
Dry season P <0.001 P <0.001
Rainy season P> 0.05 P >0.05
Peponocephala electra
Dry season P >0.05 P >0.05
Rainy season P> 0.05 P <0.01
Stenella attenuata
Dry season P >0.05 P >0.05
Rainy season P <0.05 P <0.001
Stenella longirostris
Dry season P >0.05 P <0.05
Rainy season P > 0.05 P > 0.05
846
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847 Table 7: Summary of results obtained for the fawdigators of ecological niche dimensions
848 among the Mayotte delphinid community. Differerttdes denote species that segregate for the
849 indicator being considered.

850
Indicators of niche Tursiops Stenella Stenella Peponocephala
dimensions aduncus attenuata longirostris electra
Physiographic A B
characteristics
Carbon isotopic A B C
values
Nitrogen isotopic A B C
values
Daily activity rhythm A | B C Not investigated

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868
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Figure captions

Fig. 1: Location of the study area.

Fig. 2: Spatial distribution of effort (per 1 kmlgeand distribution of dolphin sightings around
Mayotte from July 2004 to April 2009.Fig. 3: Derysplots of sightings of dolphins around
Mayotte in relation to physiographical variablespth (meters), slope (degree), distance from the
coast (meters) and distance from the nearest (eaf$ers). PePeponocephala electrara:
Tursiops aduncysSl: Stenella longirostrisSa:Stenella attenuata.

Fig. 4: Metric Multi-Dimensional Scaling plot of ginid habitat in relation to physiographical
variables. Pe:Peponocephala electraTa: Tursiops aduncysSl: Stenella longirostris Sa:
Stenella attenuata.

Fig. 5: Overall activity budgets for Indo-Pacifiotlenose dolphins, pantropical spotted dolphins
and spinner dolphins around Mayotte from 2004 1920

Fig. 6: Within day variations of behavioural budget spinner dolphin (a), Indo-Pacific
bottlenose dolphin (b) and pantropical spotted kiolggc) around Mayotte from 2004 to 2009.

Fig. 7: Mean (with Standard Errors in bold line aBthndard Deviation in thin line) stable
isotope values in dolphin skin and fish musefé¢ ands™N in %o).

Fig. 8: Mean (with Standard Errors in bold line aBthndard Deviation in thin line) stable
isotope values in lipid-treated dolphin blubber.

Fig. 9: Mean (with Standard Errors in bold line &tdndard Deviation in thin line) stable

isotope values in lipid-treated dolphin skin.
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