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Abstract

We propose a new first-order algorithm for solving jointly the primal and

dual formulations of large-scale convex minimization problems involving the

sum of a smooth function with Lipschitzian gradient, nonsmooth proximable

functions and linear composite functions. The gradient and the linear opera-

tors present in the formulation are called explicitly, while the other functions

are processed individually via their proximity operators. This work brings to-

gether and notably extends several classical splitting schemes like the forward-

backward [1] and Douglas-Rachford [2] methods, as well as recent primal-dual

methods designed for linear composite terms [3–5].

1 Introduction – Problem Formulation

Let X and Y be two real Hilbert spaces with inner products and norms denoted

respectively by 〈·, ·〉 and ‖·‖ = 〈·, ·〉1/2. We denote by Γ0(H ) the class of proper, lower

semi-continuous, convex functions from a Hilbert space H to R∪ {+∞} and by J∗

the Fenchel-Rockafellar conjugate of J ∈ Γ0(H ), defined by J∗(s) = sups ′∈H 〈s, s′〉−

J (s′). We define Moreau’s proximity operator of J ∈ Γ0(H ) by proxJ (s) = argmins ′∈H

J (s)+ 1
2
‖s − s′‖2. We also define the subdifferential of J ∈ Γ0(H ) as the set-valued

operator ∂J : s 7→ {s′ ∈ H : ∀s′′ ∈ H ,〈s′′ − s, s′〉+ J (s) ≤ J (s′′)}. If J is differentiable

at s, then ∂J (s) = {∇J (s)}. For background in convex analysis, we refer the readers to

textbooks, e.g. [6].

A wide range of problems in areas such as partial differential equations, mechan-

ics, economics, signal and image processing, or operations research, can be reduced

to solving minimization problems. In this article, we consider the generic convex

optimization problem

Find x̂ ∈ argmin
x∈X

F (x)+G(x)+H(Lx), (1)

where

∗L. Condat is with the Image Team of the GREYC laboratory, a joint CNRS-UCBN-ENSICAEN research

unit in Caen, France. Contact: see http://www.greyc.ensicaen.fr/∼lcondat/.

1



• F : X → R is convex, Fréchet-differentiable on X and its gradient ∇F is β-

Lipschitz continuous for some β ∈ [0,+∞[; that is,

‖∇F (x)−∇F (x′)‖ ≤β‖x − x′
‖ for every (x, x′) ∈X

2. (2)

• G ∈Γ0(X ) and H ∈Γ0(Y ) are “simple", in the sense that their proximity oper-

ators have a closed-form representation, or at least can be solved efficiently

with high precision. We recall that proxσH∗ can be easily computed from

proxH/σ if necessary, thanks to Moreau’s identity proxσH∗ (y)= y−σproxH/σ(y/σ).

• L : X → Y is a bounded linear operator with adjoint denoted by L∗ and in-

duced norm

‖L‖ = sup {‖Lx‖ : x ∈X ,‖x‖ ≤ 1} <+∞. (3)

• The set of minimizers of (1) is assumed to be nonempty.

Under suitable qualification conditions, the corresponding dual formulation of

the primal problem (1) is [6]

Find ŷ ∈ argmin
y∈Y

(F +G)∗(−L∗y)+H∗(y) (4)

⇔ Find ŷ ∈ argmin
y∈Y

inf
x′∈X

F∗(−L∗y − x′)+G∗(x′)+H∗(y). (5)

The primal and dual variables x̂ and ŷ are solutions to the primal-dual formulation

of (1), which is the saddle-point problem [7]

Find (x̂, ŷ) ∈ argmin
x∈X

max
y∈Y

F (x)+G(x)−H∗(y)+〈Lx, y〉. (6)

Moreover, the classical Kuhn-Tucker theory [8] asserts that if x̂ ∈ X and ŷ ∈ Y are

solutions to the variational inclusions

(
0

0

)

∈

(
∂G(x̂)+L∗ ŷ +∇F (x̂)

−Lx̂ +∂H∗(ŷ)

)

, (7)

then x̂ and ŷ are solutions to (1) and (4), respectively, as well as (6); see [9, eqns

(4.10)–(4.18)] for a proof. In the following, we assume that the solution set of the

inclusions (7) is nonempty. This is the case if the solution set of (1) is nonempty and

0 ∈ sri
{

Lx − y : x ∈dom(G), y ∈ dom(H)
}

, (8)

where dom(J ) = {s ∈ H : J (s) <+∞} and sri(Ω) is the strong relative interior of the

convex subset Ω of Y ; i.e., the set of points y ∈ Y such that the cone generated by

−y +Ω is a closed vector subspace of Y ; see [9, Remark 4.3] for a proof.

The advantage in solving (7) instead of the inclusion 0 ∈∇F (x̂)+∂G(x̂)+L∗∂H(Lx̂)

associated to (1) is twofold: 1) the composite function H ◦L has been split; 2) we ob-

tain not only the primal solution x̂ but also the dual solution ŷ , and the proposed

algorithm actually uses their intertwined properties to update the primal and dual

variables alternatively and efficiently.
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In this article, we propose a new algorithm to solve (7). Compared to the method

presented in [9], which can handle this inclusion problem, our approach relies on a

different splitting of (7). In brief, we show that the algorithm we propose has the

same structure as the classical forward-backward splitting method [1], when ex-

pressed in terms of nonexpansive operators in X ×Y equipped with an inner prod-

uct which is not the one of the direct sum X ⊕Y .

We may observe that there is “room" in the dual inclusion of (7) for an addi-

tional term ∇K ∗(yn), which yields a more symmetric treatment of the primal and

dual problems. The obtained variational inclusions characterize the following pri-

mal problem, which includes an infimal convolution [9]:

Find x̂ ∈ argmin
x∈X

inf
y ′∈Y

F (x)+G(x)+H(Lx − y ′)+K (y ′) (9)

with the same hypotheses as earlier and an additional function K ∈ Γ0(Y ) such that

K ∗ is Fréchet-differentiable on Y with β′-Lipschitz gradient for some β′ > 0; this is

equivalent for K to be 1/β′-strongly convex; that is, K (y)− 1
2β′ ‖y‖2 is convex. We

leave the study of this more general framework for future work.

The article is organized as follows. In Sect. 2, we present a new algorithm to solve

(7) and we show in Sect. 3 that it converges under reasonable assumptions. Then,

in Sect. 4, we present parallel variants of the algorithm adapted to minimization

problems with more than two proximable terms.

2 Proposed Algorithm

The proposed algorithm is as follows:

Algorithm 1.

Choose the parameters τ > 0, σ > 0, ρn ∈ ]0,1] and the initial estimate (x0, y0) ∈

X ×Y , then iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣

1. x̃n+1 = proxτG

(

xn −τ(∇F (xn)+eF,n )−τL∗yn

)

+eG ,n

2. ỹn+1 = proxσH∗

(

yn +σL(2x̃n+1 − xn )
)

+eH ,n

3. (xn+1, yn+1) = ρn (x̃n+1, ỹn+1)+ (1−ρn )(xn , yn)

(10)

where the error terms eF,n , eG ,n , eH ,n model the inexact computation of the opera-

tors ∇F , proxτG , proxσH∗ , respectively.

2.1 Relationship to Existing Optimization Methods

The proposed algorithm is able to solve the general problem (1) iteratively with-

out inner loops and by activating separately proxτG , proxσH∗ , L and L∗ without

any other implicit (inverse) operator. In particular, no inverse operator of the form

(I +αL∗L)−1 is required, where I denotes the identity operator. To our knowledge,

the only existing method of the literature having this feature is the very recent pro-

posal of Combettes and Pesquet [9]. Their algorithm requires two calls to ∇F , L, L∗
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per iteration, against only one with our algorithm. Whether this is a sign of faster

convergence of our algorithm remains to be shown in practical applications.

Some authors have studied the use of nested algorithms to solve (1) (in the case

L = I ) for practical imaging problems [10–12]. This approach consists in embed-

ding an iterative algorithm as an inner loop inside each iteration of another iterative

method. However, the method is applicable if the number of inner iterations is kept

small, a scenario where convergence is not proven. Note that Algorithm 1 bears

similarities with a nested algorithm in which only one subiteration of the forward-

backward method, to approximate proxF+G , would be embedded in the primal-dual

algorithm of [3], or the Douglas-Rachford method if L = I . This method has been

found to give good results for an imaging application in [11], where it was used em-

pirically without convergence proof.

We also note that the proposed algorithm may turn out to be a particular case of

the general framework proposed in [13], although this is not clear at first glance and

remains to be studied.

We now show that in some particular cases, our algorithm reverts to classical

splitting methods of the literature.

2.1.1 Case F = 0

If the smooth term F is absent of the problem, the proposed algorithm exactly re-

verts to the primal-dual algorithm presented in [3] in the finite-dimensional setting

and ρn = 1, and also proposed in another form in [4, 5]. The convergence of this al-

gorithm has been proved in [14] for the exact computation case (no error terms) with

τσ‖L‖2 < 1 and constant parameter ρn = ρ ∈ ]0,2[ (note the smaller range ]0,1] ac-

cessible if F 6= 0). Accelerations of the convergence in the sense of the partial primal-

dual gap, based on variable parameters τn , σn , are discussed in [3].

When F = 0, the primal-dual method of [15] and the method in [16] can be used

as well. They yield algorithms different than ours.

Note that these methods cannot be used to solve the problem (1) if F 6= 0, be-

cause they involve the proximity operator of F+G, which is usually intractable. Even

in the simple case where G is the quadratic function λ
2 ‖M x − b‖2 for a bounded

linear operator M , the proximity operator of G requires to apply the operator (I +

λM∗M)−1, which may be feasible (e.g. using FFTs for some inverse problems in

imaging) but complicated to implement (especially if particular care is paid to the

treatment at the boundaries for multi-dimensional problems) and slow. By con-

trast, considering λ
2 ‖M x −b‖2 as the function F with Lipschitz continuous gradient

in our framework yields an algorithm with simple calls to M and M∗. An alternative

consists in incorporating λ
2
‖M x − b‖2 into the term H(Lx) using a product space

technique, see [3, eq. (74)]. Such parallel strategies are discussed in Sect. 4.

If F = 0 and L = I , our algorithm reverts to the classical Douglas-Rachford split-

ting method [2], as discussed in [3]. However, this equivalence requires to set σ =

1/τ, which goes beyond the application conditions of our Theorem 1. If σ = 1/τ,

weak convergence of both the primal and dual variables is not guaranteed.
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2.1.2 Case H(Lx) = 0

The degenerate case H(Lx) = 0 is not so interesting, because the primal and dual

problems are then uncoupled. However, if we set L = 0 or H = 0 and we focus on the

computations of the primal variable x only, we obtain the iteration

xn+1 = ρnproxτnG

(

xn −τn(∇F (xn)+eF,n)
)

+eG ,n + (1−ρn )xn , (11)

which is exactly the classical forward-backward splitting method [1]. It is known to

converge if the error terms are absolutely summable and for every n ∈N, ρn ∈ [ǫ,1]

for some ǫ> 0 and τn ∈ [δ, 2
β
−δ] for some δ> 0.

We note that if we set G = 0 and L = I in our framework, we obtain another algo-

rithm to minimize the sum of a function F with Lipschitz continuous gradient and a

proximable function H , along with the dual problem.

3 Convergence Proof

We now state the main result of this article:

Theorem 1. Let us assume that, in Algorithm 1, ρn ∈ [ǫ,1] for every n ∈ N and some

ǫ ∈ ]0,1], and that the parameters τ> 0 and σ> 0 are such that

1

τ
−σ‖L‖2

>
β

2
, (12)

where the Lipschitz constant β is defined in (2). We also assume that the errors are ab-

solutely summable:
∑

n∈N ‖eF,n‖ <+∞,
∑

n∈N ‖eG ,n‖<+∞,
∑

n∈N ‖eH ,n‖<+∞. Then,

the sequence (xn , yn ) computed by Algorithm 1 converges weakly to a pair (x̂, ŷ ) solu-

tion to (7).

The sequel of this section is devoted to the proof of this result.

We first define the vector space Z =X ×Y and the bounded linear operator on

Z

P :

(
x

y

)

7→

( 1
τ

I −L∗

−L 1
σ

I

)(
x

y

)

(13)

We now define the inner product 〈·, ·〉I and norm ‖ ·‖I = 〈·, ·〉1/2
I

in Z as

〈z, z ′
〉I = 〈x, x′

〉+〈y, y ′
〉, for every z = (x, y), z ′

= (x′, y ′) ∈Z . (14)

We denote by Z I the Hilbert space defined by Z equipped with this inner product.

Then, P is self-adjoint and, from (12), positive-definite in Z I . Hence, we can define

another inner product 〈·, ·〉P and norm ‖ ·‖P = 〈·, ·〉1/2
P

in Z as

〈z, z ′
〉P = 〈z,P z ′

〉I , for every (z, z ′) ∈Z
2. (15)

We denote by ZP the Hilbert space defined by Z equipped with this inner product.

The crux of the proof of Theorem 1 will be to prove the weak convergence in ZP and
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not in Z I ; that is, 〈zn − ẑ ,P z ′〉I → 0 as n →+∞, for every z ′ ∈Z , where zn = (xn , yn )

is generated by Algorithm 1 and ẑ = (x̂, ŷ). Obviously, weak convergence in ZP is

equivalent to weak convergence in Z I .

We now recall some classical definitions and properties of monotone operator

theory and convex optimization. Let H be a real Hilbert space and T : H → 2H be

a set-valued operator. We denote by ran(T ) = {v ∈ H : ∃u ∈ H , v ∈ Tu} the range

of T , by gra(T ) = {(u, v) ∈ H
2 : v ∈ Tu} its graph, and by T −1 its inverse; that is,

the set-valued operator with graph {(v,u) ∈ H
2 : v ∈ Tu}. T is said monotone if

∀(u,u′) ∈H
2,∀(v, v ′) ∈Tu×Tu′, 〈u−u′, v − v ′〉 ≥ 0 and maximal monotone if there

exists no monotone operator T ′ such that gra(T ) ⊂ gra(T ′) 6= gra(T ). T : H → H

is nonexpansive if it is 1-Lipschitz continuous, see (2), and firmly nonexpansive if

2T − I is nonexpansive. The resolvent (I +T )−1 of a maximal monotone operator is

single-valued on H and firmly nonexpansive. The subdifferential ∂J of J ∈Γ0(H ) is

maximal monotone and (I +∂J )−1 = proxJ .

Lemma 1. (Convergence of the forward-backward iterative scheme) [17, Corollary

6.5]. Let T1 : H → 2H and T2 : H → H be maximal monotone operators such that

αT2 is firmly nonexpansive for some α > 1
2

and 0 ∈ ran(T1 +T2). We consider the

forward-backward algorithm: Fix s0 ∈H and, for every n ∈N, set

sn+1 = ρn

(

(I +T1)−1(sn −T2(sn)−e2,n)+e1,n

)

+ (1−ρn )sn , (16)

where ρn ∈ [ǫ,1] for some ǫ ∈ ]0,1] and (e1,n ,e2,n) ∈ H
2 are such that

∑

n∈N ‖e1,n‖ <

+∞ and
∑

n∈N ‖e2,n‖ < +∞. Then sn converges weakly to ŝ ∈ H such that 0 ∈ (T1 +

T2)(ŝ).

Lemma 2. (Baillon-Haddad theorem) [18, Corollaire 10]. Let J : H → R be convex,

Fréchet-differentiable on H and such that α∇J is nonexpansive for some α > 0.

Then, α∇J is firmly nonexpansive.

We are now equipped to prove Theorem 1. Let us first consider the error-free

case eF,n = eG ,n = eH ,n = 0. We introduce the notation z = (x, y). Then, for every n,

the following inclusion is satisfied:

−

(
∇F (xn)

0

)

︸ ︷︷ ︸

B (zn )

∈

(
∂G(x̃n+1)+L∗ ỹn+1

−Lx̃n+1 +∂H∗(ỹn+1)

)

︸ ︷︷ ︸

A(z̃n+1)

+

( 1
τ

I −L∗

−L 1
σ I

)

︸ ︷︷ ︸

P

(
x̃n+1 − xn

ỹn+1 − yn

)

︸ ︷︷ ︸

(z̃n+1−zn )

, (17)

or equivalently

z̃n+1 = (I +P−1
◦ A)−1

◦ (I −P−1
◦B)(zn ). (18)

Considering now the over-relaxation step and the error terms, we obtain

zn+1 = ρn

(

(I +P−1
◦ A)−1

(

zn −P−1
◦B (zn)−e2,n

)

+e1,n

)

+ (1−ρn )zn . (19)

with e1,n = (eG ,n ,eH ,n) and e2,n = P−1(eF,n ,−2LeG ,n ). (20)
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It is now obvious that the proposed algorithm has the structure of the classical forward-

backward splitting scheme. The idea of expressing an iteration of Algorithm 1 under

the form (17) was inspired by the work [14], where the primal-dual method of [3]

(the case F = 0 in our setting) was reformulated as a proximal point algorithm.

Thus, to apply Lemma 1 with H = ZP , T1 = P−1 ◦ A and T2 = P−1 ◦B , it remains

to show that

(i ) T1 and T2 are maximal monotone in ZP . This is an immediate consequence of

the maximal monotony of A and B in Z I .

(ii ) 0 ∈ ran(T1+T2). This is an immediate consequence of the hypothesis 0 ∈ ran(A+

B).

(iii ) The error sequences e1,n and e2,n in (20) are absolutely summable for the ‖·‖P -

norm. This is immediate, because eF,n , eG ,n , eH ,n are absolutely summable and P ,

P−1, L are bounded.

(iv) αT2 is firmly nonexpansive in ZP for some α>
1
2

. Let us prove this property. For

every z = (x, y), z ′ = (x′, y ′) ∈Z , we have

‖T2(z)−T2(z ′)‖2
P =

〈

P−1
◦B(z)−P−1

◦B(z ′),B(z)−B(z ′)
〉

I (21)

=

〈
1
σ

(
1
στ I −L∗L

)−1 (

∇F (x)−∇F (x′)
)

,∇F (x)−∇F (x′)
〉

(22)

≤ 1
σ

(
1
στ

−‖L‖2
)−1

‖∇F (x)−∇F (x′)‖2 (23)

≤
β2

σ

(
1
στ

−‖L‖2
)−1

‖x − x′‖2 =
β
α
‖x − x′‖2 (24)

where we define α=
1

β

(
1

τ
−σ‖L‖2

)

and the linear operator Q =

(
I 0

0 0

)

of Z .

P −βαQ is positive semi-definite, so that

βα‖x − x′
‖

2
=βα〈(z − z ′),Q(z − z ′)〉I ≤ 〈(z − z ′),P (z − z ′)〉I = ‖z − z ′

‖
2
P . (25)

Putting together (24) and (25), we get

α‖T2(z)−T2(z ′)‖P ≤ ‖z − z ′
‖P , (26)

so that αT2 is nonexpansive in ZP , with α >
1
2 by hypothesis (12). Finally, let us

define on Z the function J : (x, y) 7→ F (x). Then, in ZP , ∇J = T2. Therefore, from

Lemma 2, αT2 is firmly nonexpansive in ZP . �

4 Variants

We first remark that Algorithm 1 is not symmetric with respect to x and y , since

the computation of ỹn+1 uses the over-relaxed version 2x̃n+1 − xn of xn+1, while the

computation of x̃n+1 uses yn . There is no reason a priori to privilege Algorithm 1

over the following Algorithm 2, where the roles of x and y are switched. The conver-

gence conditions are identical for the two algorithms.
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Algorithm 2.

Choose the parameters σ > 0, τ > 0, ρn ∈ ]0,1] and the initial estimate (x0, y0) ∈

X ×Y , then iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣

1. ỹn+1 = proxσH∗

(

yn +σLxn

)

+eH ,n

2. x̃n+1 = proxτG

(

xn −τ(∇F (xn )+eF,n)−τL∗(2ỹn+1 − yn )
)

+eG ,n

3. (xn+1, yn+1) = ρn (x̃n+1, ỹn+1)+ (1−ρn )(xn , yn )

(27)

We now investigate the problem with m ≥ 2 composite functions

Find x̂ ∈ argmin
x∈X

F (x)+G(x)+
m∑

i=1

Hi (Li x). (28)

with the same assumptions on F and G as in the problem (1), m functions Hi ∈

Γ0(Yi ) defined on real Hilbert spaces Yi and m bounded linear functions Li : X →

Yi . The set of minimizers of (28) is assumed nonempty. At the same time, we con-

sider the dual problem

Find (ŷ1, . . . , ŷm ) ∈ arg min
y1∈Y1 ,...,ym∈Ym

(F +G)∗(−
∑m

i=1
L∗

i
yi )+

m∑

i=1

H∗
i (yi ) (29)

⇔ Find (ŷ1, . . . , ŷm ) ∈ arg min
y1∈Y1 ,...,ym∈Ym

inf
x′∈X

F∗(−
∑m

i=1
L∗

i
yi − x′)+G∗(x′)+

m∑

i=1

H∗
i (yi ).

(30)

Although these primal and dual problems are more general than (1) and (4), respec-

tively, they can be recast as particular cases of them using product spaces. The re-

mainder of this section is devoted to the study of the parallel variants of Algorithms

1 and 2 that we obtain along this line.

We introduce the bold notation y = (y1, . . . , ym ) for an element of the Hilbert

space YYY = Y1 ⊕ ·· ·⊕Ym . We define the function H ∈ Γ0(YYY ) by H (y) =
∑m

i=1
Hi (yi )

and the linear function L : X →YYY by Lx = (L1x, . . . ,Lm x).

We have the following properties:

H∗(y) =
m∑

i=1

H∗
i (yi ), (31)

L∗y =

m∑

i=1

L∗
i yi , (32)

proxσH∗(y) =
(

proxσH1
(y1), . . . ,proxσHm

(ym)
)

. (33)

Thus, we can rewrite (28) and (29) as

Find x̂ ∈ argmin
x∈X

F (x)+G(x)+H(Lx), (34)

Find ŷ ∈ argmin
y∈YYY

(F +G)∗(−L∗y)+H∗(y), (35)

which exactly take the form of (1) and (4). Hence, we can rewrite Algorithms 1 and 2

by doing the appropriate substitutions and we obtain the two following algorithms,
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respectively:

Algorithm 3.

Choose the parameters τ > 0, σ> 0, ρn ∈ ]0,1] and the initial estimate (x0 , y1,0, . . . , ym,0) ∈

X ×Y1 ×·· ·×Ym , then iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. x̃n+1 = proxτG

(

xn −τ(∇F (xn)+eF,n )−τ
∑m

i=1
L∗

i
yi ,n

)

+eG ,n

2. xn+1 = ρn x̃n+1 + (1−ρn )xn

3. ∀i = 1, . . . ,m, ỹi ,n+1 = proxσH∗
i

(

yi ,n +σLi (2x̃n+1 − xn )
)

+eHi ,n

4. ∀i = 1, . . . ,m, yi ,n+1 = ρn ỹi ,n+1 + (1−ρn )yi ,n

(36)

Algorithm 4.

Choose the parametersσ > 0, τ> 0, ρn ∈ ]0,1] and the initial estimate (x0 , y1,0, . . . , ym,0) ∈

X ×Y1 ×·· ·×Ym , then iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. ∀i = 1, . . . ,m, ỹi ,n+1 = proxσH∗
i

(

yi ,n +σLi xn

)

+eHi ,n

2. ∀i = 1, . . . ,m, yi ,n+1 = ρn ỹi ,n+1 + (1−ρn )yi ,n

3. x̃n+1 = proxτG

(

xn −τ(∇F (xn)+eF,n)−τ
∑m

i=1 L∗
i

(2ỹn+1 − yn )
)

+eG ,n

4. xn+1 = ρn x̃n+1 + (1−ρn )xn

(37)

Similarly, using the fact that ‖L‖2 =
∑m

i=1
‖Li ‖

2, we obtain the following spin-off

of Theorem 1 as follows:

Theorem 2. Let us assume that, in Algorithm 3 or 4, ρn ∈ [ǫ,1] for every n ∈ N and

some ǫ ∈ ]0,1], and that the parameters τ> 0 and σ> 0 are such that

1

τ
−σ

m∑

i=1

‖Li ‖
2
>

β

2
, (38)

where the Lipschitz constant β is defined in (2). We also assume that the errors are ab-

solutely summable:
∑

n∈N ‖eF,n‖ < +∞,
∑

n∈N ‖eG ,n‖ < +∞,
∑

n∈N ‖eHi ,n‖ < +∞ and

that the following qualification condition is met:

(0, . . . ,0) ∈ sri
{

Li x − yi : x ∈dom(G),∀i = 1, . . . ,m, yi ∈dom(Hi )
}

. (39)

Then, the sequence (xn , yn) computed by Algorithm 3 or 4 converges weakly to a pair

(x̂, ŷ) solution to (28) and (29).

We note that if one of the function in (28) is λ
2 ‖M x −b‖2 for some linear opera-

tor M , assigning this term to F or to one of the Hi (Li x) yields different algorithms.

Which one is the most efficient depends on the problem at hand and on the way the

algorithms are implemented.
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