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ALGEBRA PROPERTIES FOR SOBOLEV SPACES- APPLICATIONS TO
SEMILINEAR PDE’S ON MANIFOLDS

NADINE BADR, FREDERIC BERNICOT, AND EMMANUEL RUSS

ABSTRACT. In this work, we aim to prove algebra properties for generalized Sobolev spaces
W*PNL> on a Riemannian manifold, where W*? is of Bessel-type W*? := (1+L)~*/™(L?) with
an operator L generating a heat semigroup satisfying off-diagonal decays. We don’t require any
assumption on the gradient of the semigroup. To do that, we propose two different approaches
(one by a new kind of paraproducts and another one using functionals). We also give a chain
rule and study the action of nonlinearities on these spaces and give applications to semi-linear
PDEs. These results are new on Riemannian manifolds (with a non bounded geometry) and
even in the Euclidean space for Sobolev spaces associated to second order uniformly elliptic
operators in divergence form.
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1. INTRODUCTION
1.1. The Euclidean setting. It is known that in R?, the Bessel potential space
Wit ={fe 1 a2re v},

is an algebra under the pointwise product for all 1 < p < oo and « > 0 such that ap > d. This
result is due to Strichartz [41].
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Twenty years after Strichartz work, Kato and Ponce [30] gave a stronger result. They proved
that for all 1 < p < oo and a > 0, Wi* N L™ is an algebra under the pointwise product.
Nowadays, these properties and more general Leibniz rules can be “easily” obtained in the
Euclidean setting using paraproducts and boundedness of these bilinear operators. This powerful
tool allows us to split the pointwise product in three terms, the regularity of which can be easily
computed with the ones of the two functions.

There is also a work of Gulisashvili and Kon [26] where it is shown that the algebra property
remains true considering the homogeneous Sobolev spaces. That is for all 1 < p < oo and a > 0,
Wg’p N L is an algebra under the pointwise product.

The main motivation of such inequalities (Leibniz rules and algebra properties) comes from
the study of nonlinear PDEs. In particular, to obtain well-posedness results in Sobolev spaces
for some semi-linear PDEs, we have to understand how the nonlinearity acts on Sobolev spaces.
This topic, the action of a nonlinearity on Sobolev spaces (and more generally on Besov spaces),
has given rise to numerous works in the Euclidean setting where the authors try to obtain the
minimal regularity on a nonlinearity F' such that the following property holds

fe B — F(f) € BSP

where B*P can be (mainly) Sobolev spaces or more generally Besov spaces (see for example the
works of Sickel [40] with Runst [36] and the work of Bourdaud [14] ... we refer the reader to [15]
for a recent survey on this topic).

1.2. On Riemannian manifolds. Analogous problems in a non Euclidean context do not seem
to have been considered very much. In [18], Coulhon, Russ and Tardivel extended these results
of algebra property to the case of Lie groups and also for Riemannian manifolds with Ricci
curvature bounded from below and positive injective radius. In this setting, the heat kernel and
its gradient satisfy pointwise Gaussian upper bounds, which play a crucial role in the proof.

The goal of this paper is to study the algebra property of Sobolev spaces on more general
Riemannian manifolds. More precisely, we want to extend the above result to the case of
a Riemannian manifold with weaker geometric hypotheses and also to more general Sobolev
spaces. Namely, we will consider a general semigroup on a Riemannian manifold with off-
diagonal decays and obtain results under L” boundedness of the Riesz transform, which allows
us to weaken the assumptions in [18].

In particular, we never use pointwise estimates for the kernel of the semigroup or its gradient.
Recall that a pointwise Gaussian upper bound for the gradient of the heat kernel on a complete
Riemannian manifold M is known for instance when M has non-negative Ricci curvature, which
is a rather strong assumption. More generally, this poinwise Gaussian upper bound can be
characterized in terms of Faber-Krahn inequalities for the Laplace Beltrami operator under
Dirichlet boundary condition (see [24]). Instead of that, all our proofs only rely on off-diagonal
decays for the semigroup (see Assumption 2.6 below), which are satisfied, for instance, by the
heat semigroup under weaker assumptions (see Example 2.8 below).

Recall that there are several situations in which one encounters operators which satisfy off-
diagonal decays even though their kernels do not satisfy pointwise estimates. In spite of this
lack of pointwise estimates, it is still possible to develop a lot of analysis on these operators
(see for instance [28, 29] in the Euclidean case, [7] in the case of Riemannian manifolds). The
present work shows that these off-diagonal decays in conjunction with the LP boundedness of
Riesz transforms for p close to 2 are enough to yield the Leibniz rule for Sobolev spaces associated
with the operators under consideration.

Aiming that, we will propose two different approaches. On the one hand, we will extend the
method introduced in [18] using characterization of Sobolev spaces with square functionals. On
the other hand, we will extend the “paraproducts point of view” to this framework. Classical
paraproducts are defined via Fourier transforms, however in [11] the first author has introduced
analogues of such bilinear operators relatively to a semigroup (see [22] for another independent



ALGEBRA PROPERTIES FOR SOBOLEV SPACES 3

work of Frey). We will also describe how to use them to prove Leibniz rules and algebra
properties for Sobolev spaces in a general context.

1.3. Results. By general Sobolev spaces, we mean the following:

Definition 1.1. Let L be a linear operator of type w € [0,7/2) satisfying assumption (2.6)
below (see Section 2), which can be thought of as an operator of order m > 0. For 1 < p < o0
and s > 0, we define the homogeneous Sobolev spaces WZ’p as

WP = {f e Ll | LM(f) e Lp}

loc?
with the semi-norm
[ fllyiew = L™ (f)| -

And we define the non-homogeneous Sobolev spaces W, as
wiri={ferr, rin() e 17}

with the norm

1F s == 11 Fllze + L™ ()] 2o

Concerning the algebra property of these Sobolev spaces, we first obtain the following gener-
alized Leibniz rule:

Theorem 1.2. Let M be a complete Riemannian manifold satisfying the doubling property (D)
and a local Poincaré inequality (Ps o) for some 1 < s < 2. Let L be a linear operator of type
w € [0,7/2) satisfying Assumption (2.6) below (see section 2). Let a € [0,1) and r > 1 with
s <1 <oo. Let p1, q2 € [r,00), q1,p2 € (r,00] verifying

1 1 1

=4+

TP 4
and r,p1,q2 € (s—,84), q1,p2 € (s—, 00| (see Assumption (2.6) below for the definition of s_, s ).
Then for all f € W"P* N LP2 and g € W N LY, we have fg € W[ with

Ifgllwer S Wfllwerllglliza + [[fllzez gl o

Moreover, if we assume a global Poincaré inequality (Ps), we have

L= (Fller SUE™ fllzolighia + 1 fllea | L gl| e

As a consequence (with g1 = ps = oo and r = p = p; = ¢2), we get the algebra property for
WP’ N L, more precisely:

Theorem 1.3. Let M be a complete Riemannian manifold satisfying the doubling property
(D) and a local Poincaré inequality (Ps o) for some 1 < s < 2. Let L a linear operator of type
w € [0,7/2) satisfying Assumption (2.6). Let o € [0,1) and p € (max(s,s_),s4). Then the space
WP N L is an algebra under the pointwise product. More precisely, for all f,g € WP NL>,
one has fg € WP 0 L with

Ifgllwer S I fllwerllglze + 11F ]l e lgllwer

Moreover, if we assume a global Poincaré inequality (Ps), the homogeneous Sobolev space Wg’pﬂ
L is an algebra under the pointwise product. More precisely, for all f, g € WP N L, then
fg € WP N L*>® with

1227 (7)o S IE/ Fluollgloe + 11 £ oo 12 o

Consequently, we will deduce the following algebra property for Sobolev spaces:



4 NADINE BADR, FREDERIC BERNICOT, AND EMMANUEL RUSS

Theorem 1.4. Let M be a complete Riemannian manifold satisfying the doubling property (D)
and a local Poincaré inequality (Ps o) for some 1 < s < 2. Let L be a linear operator of type
w € [0,7/2) satisfying Assumption (2.6). Moreover, we assume that M satisfies the following
lower bound of the volume of small balls

(MVg) u(B(z, 1)) 2 1Y,
for all0 < r < 1. Let a € [0,1) and p € (max(s,s_),sy) such that ap > d where d is the

homogeneous dimension. Then the space W' is included in L* and is an algebra under the
pointwise product. More precisely, for all f, g € WP, one has fg € WP with

1 glwes < I llweslglhyes-

These two theorems are a particular case of Theorem 1.2. Nevertheless, we will prove them
using another method than that of the proof of Theorem 1.2. Note also that the proof of the
three Theorems is trivial when o = 0. So we will prove them for o > 0.

To finish, we also consider the case when o = 1:

Theorem 1.5. Let M be a complete Riemannian manifold satisfying the doubling property (D).
Assume that the Riesz transform VL='/™ is bounded on LP for p € (s—,s+) and that we have
the reverse Riesz inequalities
Y™ e S IV o
for allp € (g—,q4+). Let 1 < q_ <r < qy. Let py € (s—,s4) with py > r, 1 € (r,00] and
g2 € (s—,s4) with g3 > 1, pa € (r,00] verifying
1 1 1

r bi 4
Then for all f € W)™ N LMY, g e WH2 N LP2, fge W, with
1fallyrr S Ao llglloa + (1 flr2 1]l e -
L L L

Consequenly, for p € (max(q—,s_), min(qy,sy)), WLl’p N L is an algebra under the pointwise

product. If moreover, p > d and M satisfies (MVy), then the Sobolev space WLl’p s also an
algebra under the pointwise product.

These results are new comparing with [18] for Riemannian manifolds with bounded geometry
(see Example 2.8) and even in the Euclidean case when L is for example an elliptic operator,
appearing in Kato conjecture and whose functional spaces were introduced in [29] (see Example
2.9).

Remark 1.6. 1. Assuming only the boundedness of the local Riesz tranform and its reverse
inequalities, the non-homogeneous result of Theorem 1.5 still holds.

2. Taking the usual Sobolev space defined by the gradient, when o« = 1, Theorem 1.5 holds
without any restriction on the exponents. It suffices to use the Leibniz rule and Holder inequality.
The assumptions on the Riesz transform and the reverse inequalities reduce the proof of Theorem
1.5 to the usual Leibniz rules.

Proof of Theorem 1.5. We have
1LY (fo)ller < IV (F9)ler
<IVFgller + 11 Vllor
< IV fllzellglia + [1flze2 IV gll zez
<L fllzo llglpo + [1f 2o | LY gl pas

where in the first inequality, we used the L" reverse Riesz inequality and in the last inequality
we used the boundedness of the Riesz transform on LP for p = p; and p = ¢o. O
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Unfortunately, we are not able to have such a positive result when « > 1. In this case, we
need the boundedness of the iterated Riesz transforms which has not been studied until now on
a general Riemannian manifold, even when L is the Laplace-Beltrami operator. We also describe
results for such higher order Sobolev spaces in the context of sub-Riemannian structure (where
a chain rule holds).

The plan of the paper is a follows. In section 2, we recall the definitions of the hypotheses that
we assume on our manifold and the linear operator L. We prove Sobolev embeddings for the
generalized Sobolev spaces in section 3. Using a new point of view: the paraproducts, we prove
Theorem 1.2 in section 4. Section 5 is devoted to the proof of Theorems 1.3 and 1.4 characterizing
the Sobolev spaces using a representation formula in terms of first order differences. In Section
6, we will briefly describe extension to higher order Sobolev spaces under a sub-Riemannian
structure and we will study how nonlinearities act on the Sobolev spaces. Finally, in section
7, we give applications of our result in PDE. We obtain well posedness result for Schrodinger
equations and also for heat equations associated to the operator L.

2. PRELIMINARIES

For a ball B in a metric space, AB denotes the ball co-centered with B and with radius A
times that of B. Finally, C' will be a constant that may change from an inequality to another
and we will use u < v to say that there exists a constant C' such that v < Cv and u ~ v to say
that v < v and v < w.

In all this paper, M denotes a complete Riemannian manifold. We write p for the Riemannian
measure on M, V for the Riemannian gradient, |-| for the length on the tangent space (forgetting
the subscript  for simplicity) and || - ||z» for the norm on LP := LP(M,u), 1 < p < 4o00. We
denote by B(x,r) the open ball of center € M and radius r > 0. We deal with the Sobolev
spaces of order 1, WP := W1P(M), where the norm is defined by:

I llwrr ey = 1 fllze + [TV e

We write S(M) for the Schwartz space on the manifold M and S'(M) for its dual, corresponding
to the set of distributions. Moreover in all this work, 1 = 1,; will be used for the constant
function, equals to one on the whole manifold.

2.1. The doubling property.

Definition 2.1 (Doubling property). Let M be a Riemannian manifold. One says that M
satisfies the doubling property (D) if there exists a constant Cy > 0, such that for all z €
M, r > 0 we have

(D) w(B(z,2r)) < Cop(B(z,r)).

Lemma 2.2. Let M be a Riemannian manifold satisfying (D) and let d := logoCy. Then for
allx,y € M and 0 > 1

(1) u(B(x,0R)) < CO%(B(x, R)).
There also exists ¢ and N > 0, so that for all x,y € M and r > 0

N
(@) W(By.r)) < o (1 ; M) (B, ).

r

For example, if M is the Euclidean space M = R? then N =0 and ¢ = 1.
Observe that if M satisfies (D) then

diam(M) < oo & p(M) < oo (see [1]).

Therefore if M is a non-compact complete Riemannian manifold satisfying (D) then pu(M) = oo.
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Theorem 2.3 (Maximal theorem). ([16]) Let M be a Riemannian manifold satisfying (D).
Denote by M the uncentered Hardy-Littlewood mazimal function over open balls of M defined

by
Mf(x) = sup %/B]f]d,u.

B ball [
r€EB

Then for every p € (1,00], M is LP-bounded and moreover of weak type (1,1)*.
Consequently for s € (0,00), the operator M defined by

M.f(x) = M) @)
is of weak type (s,s) and LP bounded for all p € (s,00].
2.2. Poincaré inequality.

Definition 2.4 (Poincaré inequality on M). We say that a complete Riemannian manifold M
admits a local Poincaré inequality (P;) for some g € [1, 00) if there exists a constant C' > 0 such

that, for every function f € Wllg’cq(M ) (the set of compactly supported Lipschitz functions on
M) and every ball B of M of radius 0 < r < 1, we have

q 1/q 1/q
(Paoc) (J[B 14 san du) <cr (J[B !Vf!"du> |

And we say that M admits a global Poincaré inequality (P,) if this inequality holds for all balls
B of M.

Let us recall some known facts about Poincaré inequalities with varying q.
It is known that (F,) implies (P,) when p > ¢ (see [27]). Thus, if the set of ¢ such that (F,)
holds is not empty, then it is an interval unbounded on the right. A recent result of S. Keith
and X. Zhong (see [31]) asserts that this interval is open in [1, +o0] :

Theorem 2.5. Let (M,d,p) be a doubling and complete Riemannian manifold, admitting a
Poincaré inequality (Py), for some 1 < g < oo. Then there exists € > 0 such that (M,d, )
admits (Py,) for every p > q —e.

2.3. Framework for semigroup of operators. Let us recall the framework of [20, 21].
Let w € [0,7/2). We define the closed sector in the complex plane C by

S, :={z €C, |arg(z)| <w}U{0}

and denote the interior of S, by SJ. We set Hy(SY) for the set of bounded holomorphic
functions b on SY, equipped with the norm

160l 1 59 == bl oo (50)-

Then consider a linear operator L. It is said of type w if its spectrum o(L) C S, and for each
v > w, there exists a constant ¢, such that

(L —A < e A

-1

) HL2~>L2
for all A ¢ S,,.

We refer the reader to [20] and [33] for more details concerning holomorphic calculus of such

operators. In particular, it is well-known that L generates a holomorphic semigroup (A, :=
e *k) 2€8, -, Let us detail now some assumptions, we make on the semigroup.

Assumption 2.6. Assume the following conditions: there exist a positive real m > 1, exponents
§_ <2< s4 and d > 1 with

L An operator T is of weak type (p, p) if there is C' > 0 such that for any a > 0, u({z; |Tf(z)| > a}) < S| f|I2.

= ar
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e For every z € S;/5_, the linear operator A, := e~*I satisfies L~ — L™ off-diagonal

decay: for all z and ball B of radius |z|"/™

1/s—
3) Ay S X2 (f, 1)

k>0

The operator L has a bounded Huo-calculus on L?. That is, there exists ¢, such that for
b€ Hyo(SY), we can define b(L) as a L?-bounded linear operator and

(4) 16(L) 212 < cvbllee.

The Riesz transform R := VL~Y™ is bounded on LP for every p € (s_, 5 ).
For every t > 0, e7**(1) = 1 or equivalently L(1) = 0.

Remark 2.7. The assumed bounded H..-calculus on L? allows us to deduce some extra prop-
erties (see [21] and [33]) :
e Due to the Cauchy formula for complex differentiation, pointwise estimate (3) still holds
for the differentiated semigroup (tL)Fe " for every k € N,
e For any holomorphic function ¢ € H.(S9) such that for some s > 0 and for all z € S9,
[(2)] < 1+|||25’ the quadratic functional

(5) o (/OOO| BEL) ST dt)m

is L2-bounded.
e In addition, the Riesz transform is supposed to be bounded in L? so the following
quadratic functionals

(0 £ ([ [pmoun| %)1/2

are L?-bounded for any holomorphic function ¢ € Hy(SY) such that for some s > 0,
6(2)] S L+ 1]2)7*

Example 2.8. In the case of a doubling Riemannian manifold satisfying Poincaré inequality
(P2) and with L = —A the non-negative Laplacian, then it is well-known ([24, 37]) that heat
kernel satisfies pointwise estimates and Assumption (2.6) also holds with s = 1 ([17]) and
5 > 2 ([4)).

Example 2.9. Consider a homogeneous elliptic operator L of order m = 2k in R? defined by

L(f)=(=DF Y 0(aapd’f),
| =18=k

with bounded complex coefficients a,g.

e If the coefficients are real-valued then Gaussian estimates for the heat semigroup hold
and Assumption (2.6) is also satisfied (see Theorem 4 in [2]).

e If the coefficients are complex and d < 2k = m then the heat kernel satisfies pointwise
estimates and so assumption (2.6) is satisfied for some exponents s_,s;. We refer
the reader to Section 7.2 in [3] for more details. We just point out that, using the
interpolation of domains of powers of L, the LP boundedness of VLY for p € (s—,s+)
is implied by the LP boundedness of VFL~1/2 for p € (q_,q,) with s_ = ¢_/m and
s = (1 —1/m)+qs/m.

e Moreover, if the matrix-valued map A is Holder continuous, then the heat kernel and its
gradient admit Gaussian pointwise estimates and so Assumption (2.6) is satisfied with

s— =1 (see [5, 6]).
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Proposition 2.10. Under the above assumptions, and since the Riesz transform R := VL~1/™

is LP bounded for p € (s_,sy), then the square functionals in (5) and (6) are also bounded in LP
for allp € (s—,s4). Moreover the functionals in (5) are bounded in LP for every p € (s—,00).

Proof. Let T be one of the square functions in (5). We already know that it is L? bounded, by
holomorphic functional calculus. Then consider the “oscillation operator” at the scale t:

¢
Bii=1—-A,=1—¢t= —/ Le*Lds.
0

Then, by using differentiation of the semigroup, it is classical that T By satisfies L? — L? off-
diagonal decay at the scale /™, since the semigroup e '~ is bounded by Hardy Littlewood
maximal function M;_. So we can apply interpolation theory (see [9] for a very general exposi-
tion of such arguments) and prove that 7" is bounded on LP for every p € (s_,2] (and then for
p € [2,00) by applying a similar reasoning with the dual operators).

Then consider a square function U of type (6). Then by using the Riesz transform, it yields

U(f) = ( | et dt) -

with ¢(z) = 2//™¢(z). Since R is supposed to be LP-bounded, it verifies £2-valued inequalities
and so the LP-boundedness of U is reduced to the one of a square functional of type (5), which
was before proved. O

3. GENERALIZED SOBOLEV SPACES
For the definition, we refer the reader to the introduction.
Proposition 3.1. For all p € (s—,00) and s € (0,1), we have the following equivalence
£ llze + 12 () e = (L )™ £ o
Proof. Set o = s/m. We decompose (1 + L) with the semigroup as following

(1+L)°f = / L+ L)(f)E ait
e e dt [, oo dt
[ e tL<f>t—a+/0 ete () (LT

Since e~ is uniformly bounded on L? (due to the off-diagonal decay), the LP-norm of the first
term is easily bounded by || f||zr. The second term is bounded by duality : indeed

([eteten @ n ) = [ et e s . e e T g

< T o-tL2 g Lof 2dt\'? etz tL*) 5" (g 2 dt 1/2d,u.
/(] ey wenf ) ([T reny o )

t t
Since (1 —a)/2 > 0, then the two square functionals are bounded in L? and L*" (by Proposition
2.10) and that concludes the proof of

I+ L)* fllee S W fllze + IL5 () lze-

Let us now check the reverse inequality. As previously, for v = 0 or u = o we write

dt
LUf / t(1+L) 1 —|—L)Lut1+a (1 +L) f
By producing similar arguments as above, we conclude

IL* (e SN+ L) Fize,
which ends the proof. O
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Remark 3.2. The previous result legitimates the designation “non-homogeneous Sobolev spaces”
for WP, since its norm is equivalent to

I g = (114 L)Y ||
which gives W, = (1 + L)=3/™(LP).
3.1. Sobolev embeddings. Here, we aim to prove Sobolev embeddings, with these new and

general Sobolev spaces. To do that, we require an extra assumption : there exists a constant
¢ > 0 such that for all z € M

(7) w(B(z,1)) > c.

Due to the homogeneous type of the manifold M, this is equivalent to a below control of the
volume (M Vy)

(MVq) w(B(w,r)) 2 r
forall 0 <r <1.

Proposition 3.3. Let s > 0 be fixed and take p < q such that

1 1 s
->—-—— and p>s_.
g p d

Then under (7), we have the continuous embedding
WP — LA
Proof. The desired embedding is equivalent to the following inequality
1fllze S I+ L) £l o,
which is equivalent to
(8) 1L+ L)~/ Fllza S (1 f oo

Let us prove this one. We first decompose the resolvent with the semigroup as follows

(1 _i_L)fs/mf :/ ts/meft(lJrL)f%.
0

Since we know that e~*% satisfies some LP — L9 off-diagonal estimates (since p > s_), it follows
that it satisfies global estimates

o™ lzr-sze < min(1, ¢ =5™),
Indeed, from the off-diagonal decays, we know that for all balls B of radius ¢*/™,
tL 1 is r
e s S (st o2 (f(svan)
>0 ¥

So using the doubling property and Minkowski inequality, we have

1/q
et Lo = ][ et ()
(B(a.t1/m)) .
q

1/p
<Y 270 ]Z rd
Z < i) £l u)

> La
1/p
<Y 27 [ ) P(B(y, 27t ™) dp(y)
j; (/ y)Pu(Bly My>

< min(1, %G 2)™)| £ v,
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where we used (7) with ¢ > p at the last equation. Hence,

1 11y, dt o0 _
042l ([ emetetGim s [T S 7
< Il

since s + d(% - 1—1)) > 0. Finally, we have proved (8) which is equivalent to the desired result. [J

In particular, we deduce :

Corollary 3.4. Under the previous assumption, Wz’p — L™ as soon as
d
s>—and p>s_.
p

3.2. Limit Sobolev embedding into L°°. We are interested to control the growth of the
previous estimate with respect to the Sobolev norm, especially when s tends to d/p. We refer
the reader to [32] where a logarithmic Sobolev inequality by means of the BMO norm is proved.
The goal is to reduce the behavior of the Sobolev norm in the previous Sobolev embeddings and
to replace it by a BMO norm. As described in [32], this is crucial and very important to get a
sharp estimate of the existence-time for solutions of Euler equations.

Moreover, such inequalities are interesting by themselves since they describe the rate of reg-
ularity to impose at a BMO function to prove its uniform boundedness.

We propose a simpler proof than in [32] and extend it to our current framework.

Theorem 3.5. Let p € (s—,00) and s > d/p. We have the following Sobolev embedding :
[fllzee S 1+ [ fllBaro (1 +1log(2 + || fllws»))
as soon as s > d/p.

Proof. Let us choose a small parameter € < 1 and a large one R > 1. We also have the following
decomposition :

R
dt
) f=ole)f+ [ wtL)r T + (RS
Where for a large enough integer N >> s/m, we define 1(z) := 2VNe™?, ¢(z) = fol Q,Z)(uz)d—i and
fl (uz) d“ . Then, let us examine the three terms.
We ﬁrst claim that
(10) (L) fllpoe S =PI fllwes.

Indeed, we have
o(el)f = /weuL /¢uLf—
= / us/%(uL)Ls/’”ﬂfZ

0

with ¢)(z) = 2N =%/™e=%. Then using the LP — L°° estimates of ¢)(uL) (implied by the off-diagonal
decays), we conclude to (10) :

ot flo 5 [ wm |Snyzms], S

< / © 5/~ d/ (mp) ‘
0

S DI e,

L°°u
du
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where we used s > d/p. Then, Concerning the second term in (9), we claim

(1) [ o] < vou mIs oo
We introduce the averages (since L(1) = ) as follows and then use the off-diagonal decays :
dt dt
|[ sens®| <] [ venns- Tk
Lo € B(x,t1/m) t oo
R
dt
< [ |eenis- d
€ B(x,t1/m) oo t
S— 1/s— i
S s o )
k>0 € thl/m) B(a:,tl/m) t

It is well-known that
S
R T
B(z,2k¢1/m) B(x,t1/m)

Therefore

S— 1/s—
du) + k| fllBaro

— 1/s—
du) < (f -4 /
B(z,2k¢1/m) B(z,2k¢1/m)

S L+ k)| fllBmo-

R
| vens?

dt
<Z/ 291+ )| par0

k>0
S log(R/e)| fllBro

oo

which yields (11).
For the third term in (9), we claim that

(12) IC(RL) fll e S R™YP|| fllBto-

We use similar arguments as we did for the first term :

& d
ICRL i < [ Wil 5

o0 d
< / /)| ),

R u
SRV fl| e < BTV llwsn.

~

Finally, we obtain the following estimate

1 llzee S (eCmm - Rt | £l + Tog(R/€) | | mrro-
We conclude as in [32] choosing € and R such that
es=d/p)im — gp=d/(mp) — min(1, Hf”x}/ls,p)-

We can slighty improve this result using the BMO space related with the semigroup e~ ** as

follows. Let us recall its definition :

Definition 3.6. A function f € Lf;c belongs to the space BM Oy, if for some exponent p €

(5-,00)
1/p
HfHBMOL = sup <][ ‘f _ e_th‘de> .
t>0, zeM B($7tl/m)
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We refer the reader to [10] (paragraph 3.4 for the special case given by a semigroup) for precise
study of John-Nirenberg inequalities, showing that the norm in BM O}, does not depend on the
considered exponent p as soon as p € (s_,00). More generally, recent works of Jimenez del
Toro, Martell and the two first authors [8, 12] are devoted to the study of such self-improving
inequalities. Then it is well known that such BM Oy, spaces are bigger than the classical BMO
space (see Proposition 6.7 [20] and Remark 7.6 of [9] for a more general study of this question).

Corollary 3.7. Let consider p € (s—,00) and s > 0. We have the following Sobolev embedding :
[l S 1+ 1f a0, (1 410g(2 + [|fllws»))
as soon as s > d/p.

Proof. We only mention the modifications and let the details to the reader. We keep the nota-
tions of the previous proof. Arguing as in the previous proof, we show that the first and third
terms in (9) are still bounded. Concerning the second term, we claim that (instead of (11)), we

have
R
| wens

This is based on the following identity

|

S1og( " B)|fllparo, + (77 + R | .

LOO

R R € 2R
(1-27V) / wanyr™ = [ wenya - ey o [ peny oy [T pary L,
€ t €/2 t /2 t R t

this comes from 1 (tL)e " = 27N¢)(2tL). Then the second term can be bounded as for the first
one in (9) and the third term as for the third one in (9). We also deduce that

‘ / pny

t
Then it remains us to study the main term which is based (as previously) on

1/p
(][ |f - e—tLﬂP d:“) S fllBmoy,
B(z,2kt1/m)

since B(x,2¥t'/™) admits a bounded covering of balls with radius /™. O

2R t

<l wena - e

~

n (6<sfd/p>/m + R,d/(mp)> £ llwsup-
Lo

€

oo

4. PROOF OF THEOREM 1.2 USING PARAPRODUCTS POINT OF VIEW

In this section, we will prove Theorem 1.2 using a new tool in this topic which consists in
paraproducts, associated to a semigroup (see [11] where they were recently introduced and in

[22]).
Definition 4.1. For N a large enough integer, we set ¥(z) = 2VNe ™@(1 — e7%), ¢(x) =
— [ ¥(y)dy/y and
Go(L) = 9(tL) = (LN (1 — ) and  ¢i(L) == G(tL).
We also consider the two following kind of “paraproducts” :

dt

(7.9 = [ oD oU)S o(tL)a] G

and

() = [~ on) DS oitL)s) T
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We get a “spectral decomposition” of the pointwise product as follows : up to some numerical
constant ¢, we have
f=c [ aenrt
So for two functions, we have

fg=¢ [ sLof(sL) [sL(uL)f sLO'(uL)g] dsdudy,

Suv

Since ¢'(x) = 9 (z)/x, one obtains (by splitting the integral into three parts according to ¢ :=
min{s, u,v})

fgi=c / (L) [6(tL) f B(tL)g] / SL) WALL) S (1))

+c/ S(L)]| (tL)fzp(tL)]dt

(14) = A [I(f,g) + Hy(f) + s ()] -

So the study of fg is reduced to the study of the three paraproducts, appearing in this
decomposition.

Proposition 4.2. Let 3 > 0. Forp € [r',00) and q € (s_, 00] with p,v’" € (s_,s4) and % = -+
LT ()l o S IEP () o llgl o

By symmetry, for q € [r',00) and p € (s_, 00| with ¢,7" € (s_,s4) and % = % %, we have
IL°TL (9)[ o S I F e 127 (9) o

Combining this result with Holder inequality and using Proposition 3.1, we can also prove
the following non-homogeneous version.

1.1
P q

Corollary 4.3. Let o > 0 and set B = a/m > 0. Forp € [r',;00) and q € (s_,00] with

1 1 1
pr' € (s—s4) and 7 =5+

ML (N)lyyar S W llwgerllglize:
By symmetry, for q € [r',;00) and p € (s_,00] with q,r" € (s_,s4) and % = % + %, then
ML (@)l yorr S N F 1o llgllga-

Proof of Proposition 4.2. We only show the homogeneous result (Proposition 4.2) and let the
reader to check that the same argument still holds for the inhomogeneous framework.
Indeed, applying L? to II,(f) yields

() = [ LR e f olenal T
= [ dten [rPuens i)
- [T den [Genrssang] 7.
0

where we set ¢(z) = 2%¢(z) and (z) = 2 Py(z). So if the integer N in ¢ and v is taken
sufficiently large, then ¢ and 1 are still holomorphic functions with vanishing properties at 0
and at infinity. As a consequence, we get

LPIL,(f) = 1y (Lf)
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with the new paraproduct II built with 5 and {/; Let us estimate this paraproduct. By duality,
for any smooth function h € L" we have
dt

@ = [ [T aermien s st

< [ ([T 10eme )" ([ 1wen@ne)” sp s
0 13 0 t ¢

From the off-diagonal decay on the semigroup (3), we know that

sup|0(tL)g(x)| < M._(g)(x)
and so by Holder inequality

([ oerme )" ‘ ([ wenwrned)”

Since 1; and 5 are holomorphic functions vanishing at 0 and having fast decays at infinity, we
know from Proposition 2.10 that the two square functions are bounded on Lebesgue spaces. We
also conclude the proof by duality, since it follows

(L2T1,(f), )] <

dp

(LPT, (£), )|

HMngHLq'

Lr L

B
7y, gl

O

It remains to estimate the symmetric term II(f, g). For this term, the previous argument does
not hold and we have to apply different arguments.

Proposition 4.4. Let a € (0,1), f = a/m € (0,1/m) and assume Poincaré inequality (Ps)
for some s < 2 and § > 1+ S% (appearing in Assumption 2.6). For r' € (1,00), p1 € [r,00),
q1 S (TI7OO] and q2 S [T/,OO), P2 S (T/,OO] with s S TI7 7”77"/71717(]2 S (S—7S+)7 q1, P2 S (8—700]

and
1 1 1
— =4 =
Di qi

we have
L2, ) e S UL (Pllo gl + 1L Fllwe |1 L7 (9) oo
Proof. First due to the self-improving property of Poincaré inequality (Theorem 2.5), we know
that without loss of generality, we can assume s < r’. Let us first recall the main quantity
o dt
DML = [ D) o) ot 7
Using the cancellation property Lﬁ(l) =0, it follows that for all x
dt
(B(1)] 9(tL)g) | ()

0 B(x,t1/m)

LPTI(f, g)(x) = /Oo Loy(tL) [¢(tL)f ¢(tL)g —][

Fix t > 0 and consider h; := ¢(tL)f ¢(tL)g. Using the off-diagonal decay of (tL)5w)(tL), we
deduce

A — X
LA(L) [ht Lo m]( )

Stiﬁ 2*15 ][
Z ( B(J:,thl/m)

Jj=0

s— 1/s—
du(:u)) :

he(y) —][ hy
B(z,tt/m)
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And, using Poincaré inequality (P;), which implies (Ps) with § = max(s, s_), it follows that

s 1/s— 5 1/5
][ ht—][ b du s][ ht—][ bl d
B(z,29t1/m) B(z,t1/m) B(z,29t1/m) B(z,29t1/m)
3 1/5
+<][ ht—][ ht d,u)
B(x,tt/m) B(x,2dt1/m)
3 1/5
S ][ ht_][ ht d,u
B(z,27t/m) B(z,27t/m)

1/5
< D p/m ][ Vhef® dp(y)
B(z,29t1/m)

d
< ST m Ag 1R ().

Finally due to the doubling property and § > 1 + Si_, it comes

6 — X
LPp(tL) [ht JZB(WUM) ht] ()] S
< tm B M[Vhe(2).

Hence, for all smooth function h € L, we have (with ¢(z) = z5/2¢(2)1/2)

g < [ / [BeL) [1om] S| Lan

< [([renfrnd P9 ([ senm L) a
() fts rron] %)/ Il

where we use boundedness of the square function (Proposition 2.10). Using Fefferman-Stein
inequality for M3 (with § = max(s,s_) < 2,7") and duality, we obtain

o0 1/2
(sl 5) )

Since Vhy = Vo(tL)f ¢(tL)g + ¢(tL) f Vo(tL)g, we get two terms. The operator ¢(tL) is still
bounded by the maximal function and consequently, we deduce

(/OOO ‘tl/m—ﬁv¢(tL)f‘2 %)1/2 M,_(g)

( /O b (ﬂ/m—ﬁw(m)g ’ %)W M,_(f)

<

~

|wnirg)| s

I ) S

/

LT

_|_
L
Using Holder inequality, we finally get
S 2 g\ /2
gl s |( [ |Eovsend S ol
0 LP1
S 5 dt\ /2
+ (/ [t I(LL)g| 7) 1f o2
0 1,2
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Since the Riesz transform R := VL™Y/™ is bounded on LP for p € (s_, s, ), hence it satisfies

(?-valued inequality and
a5 | ([ [e-eremoen;s| §)

t ol
LP1
o0 2 dt\
+ (/ (t#ﬁnLl/%(tL)g( 7) | £1l 2
0 1,2
o0 2 dt\ 1/
| ([T rnimoens S) | ol
0 r1
o 2t/
H|([Clerrrmaend )| 1l
0 1,2
With 1(z) = ¢(2)2/™ | we obtain
8 R AN
il < |( [ [enr s F) T ol
0 LP1
PN 24\ '?
S AT i B VP
0 a2

<L flleellglza + 1L gl e | fl| o2

We used that the square functions are bounded on Lebesgue spaces, since 5 < 1/m, and 1; is
holomorphic and vanishes at 0 and at infinity, see Proposition 2.10. U

We can obtain a non-homogeneous version that we do not detail. Since we consider non-
homogeneous regularity, the previous argument is necessary only for low scale (¢ < 1) so only a
local Poincaré inequality is required.

Corollary 4.5. Let o € (0,1), f = a/m and assume local Poincaré inequality (Ps o) and
0>1+ S%. Forr" € (1,00), p1 € [r',00), ¢1 € (7', 00] and g2 € [r',00), p2 € (v, 00] with s <1/,
r, Tlap17q2 S (3—73+)7 q1,P2 S (8—700] and

we have
IICE Do S I llwerllgliza + 1 fzrallgliygsen

Combining the decomposition (14) and Propositions (4.2) and 4.4, we get the following result.

Theorem 4.6. Assume (2.6) with § > 1+ si_ and Poincaré inequality (Ps). Let o € (0,1) and
' > 1 with s <1’ < oo. For p; € [r',00), ¢1 € (7',00] and g2 € [1',00), p2 € (r', 00| verifying
1 1 1
prilieals S
r bi 4
and T, T/aplaq2 € (57554*)7 q1,p2 S (57500]7 we have

L (F ) o S WL ()l llgllzon + 1f o2 [ L2/ ()] 2.

Proof of Theorem 1.2. The proof follows now immediately from Theorem 4.6. O

This point of view related to paraproducts is very suitable for studying the pointwise product
of two functions. For more general nonlinearities, we would have to require a kind of “para-
linearization results” (as in the Euclidean case). This seems difficult and not really possible in
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such an abstract setting. However, we move the reader to a forthcoming work of Bernicot and
Sire in this direction [13].

In order to get around this technical problem, we want to compare this approach with the
one of [18], where the authors obtained characterizations of Sobolev norms involving square
functionals (which are convenient to study the action of a nonlinearity). This is the aim of the
following section.

5. CHARACTERIZATION OF SOBOLEV SPACES VIA FUNCTIONALS

As usual, we can expect to obtain a characterization of Sobolev norms by integrating the
variations of the function. This will be the key tool for an alternative approach of Theorem 1.3
and 1.4.

Definition 5.1. Let p > 0 be an exponent. For a measurable function f defined on M, o > 0
and x € M, we define

1
2 2

1/p
> 1 1 dr
Shf(z) = /0 s <m /B(m) |f(y) — f($)|pdﬂ(?/)> -

and

) 1/p]? .
siesor= | (it o~ scamn) |

When p = 2, these functionals are natural generalizations of those introduced by Strichartz
in [41].
We will prove the following:

Theorem 5.2. Under Assumption (2.6) with § sufficently large : § > o+ d/s— and a local
Poincaré inequality (P joc) for some s < 2, let « € (0,1), 8 = a/m. Then for all p € (s—,s4)
with s— < p and max(p, s) < min(2,p), there exist constants cy,ca such that for all f € Wg’p

ex (12 Flle + 11w ) < 1S5 Fllo + 1f1l o < ea (1L Fllo + 11£l12s ) -
Moreover, if M admits a global Poincaré inequality (Ps), then for all f € Wg’p
allLf fllioe < 1S le < el L7 £l
Corollary 5.3. As a consequence, under the above global assumptions, we obtain that
- e = 15200
for all p € (max(s,s_),s).
In particular, the Sobolev space W depends neither on L nor on p € (max(s,s_),s4).

Remark 5.4 (Self-improving property of the square functionals S}, ). This theorem shows that
for 5 € (0,1/m), p € (s—, s+) and Poincaré inequality (Ps) with s < min(2,p), we have

1L fllze = [1S),5.f I
as soon as
s— < p < min(2,p).
Since the map p — Sf; 3 f(x) is non-decreasing, we deduce the following self-improving property :

Property : Under the above assumptions, if Sﬁf;ﬁ € LP then Sfﬂﬁ € LP for every s_ < p <
min(2, p).

The proof of Theorem 5.2 follows the ideas of [18]. We give the proof under global Poincaré
inequality (P,). We refer to [18] for the local case, involving the local functional S5,
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5.1. Proof of ||SAf|l» < || LP f||e. Assume that M admits the global Poincaré inequality (P;).
This paragraph is devoted to the proof of
1S5 £l S L7 fllze
requiring the assumption max(p, s) < min(2,p).

Proof. We first decompose the identity with the semigroup as

f=- [ %(e‘”f)dt
- / (tL)e " f

2n+1
-3 [ e
=
n=—oo

We set

2n+1

fn = / (tL)efth%

n

the piece at the scale 2. Then, let us define

on 1/2
mi= ([ emetppg)
on—1

on 1/2
2

n—1

and

Observe that for all x € M and all integer n

(15) | fa(2)| < 272011 ().
We claim that
(16) IV fo] < 2n/2=Umip

Indeed, we have
2n+1

d
val< [ vene T

and then Cauchy Schwarz inequality with ¢ ~ 2" concludes also the proof of (16). Using these
elements, we will now estimate S, f:

1/p] 2
ol o dr
serer = 7= (M(B(M) [ 1) f<y>|ﬂdu<y>> -
2

20 +1 e r
- ! <ﬁ A )\f(x)—f(y)\”du(y)> =

f—foo

400 1 1 1/p
S Z 2 (m /B(mm) |f(2) —f(y)l”du(y)>

j=—o0

And the decomposition of f by means of f, yields

Ve 1/p
(]{B(mﬂl) |f(x) — f(y)\pdu(y)> < Z <][ . | fulz) — fn(y)!pdu(y)> _

n=—0oo
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Then for a fixed integer n, we split

1/p
<][ | fa(@) = fa(y)l” du(y)> SUfa(@) = [, Bla,21)]
B(x,27+1)

1/p
+ <][ U faly) - fn,B(x,21+1)’de(y))
B(z,20+1)
=1+ 1I1.

Using doubling and Poincaré inequality (P;), we easily estimate I1:

1/p
(17) IT = <]i( 29 +1) ‘fn(y) - fn,B(x,2j+1)’pdu(y)> § 2j+1Mmax(p,s)(‘vfn’)(x)

(18) < UM N o e ().

It remains to estimate I. Take By = B(wx,2/"1). We construct for i > 1, the balls B; C By

containing z such that B; C B;_; and r(B;) = 3r(Bi—1). Since fp, — f(z) u — a.e., using
11— 00

Poincaré inequality (Ps), we get u — a.e.

I = |fn(x) - fn,Bo| < Z |fn,B¢ - fn,B¢71|

i=1

00 1 ) 1/s
S (m /B Vhol du)
£ rBIMT ) @)

I
=)

S M(IV £al)( ZW Z

(19) < 97gn(1/2=1/m) Mshn+1(ac).
Finally, using (15) for j +1 > (n —1)/m and (18) with (19) for j + 1 < (n — 1)/m, we obtain

m(j+1)

1/p
<]€3( i) If(fﬂ)—f(y)l”du(y)> S D 2P My(gnia) (@)

+oo
+ Z 2j2n(1/271/m)Mmax(p,s)hn—l—l(x)'
n=m(j+1)+1

Let ¢ := cn(2) 1= Mp(gn)(2) + Muax(p,s)(hn) (). Therefore
= 1 1/p 2 +oo A m(j+1) 2
> {QN <][B( y )\f(w)—f(y)\pdu(y)> ] < D 2Ee [ 3o +1}
]'2700 T, J+1

Jj=—00 n=-—oo

2
“+oo [ee)

J=—00 n=m(j+1)+1
Let

+o0 m(j+1) 2
=Y 2%"*{2 2/0_,_1] :

j=—00 n=-—00
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Choosing € € (0, 8) and using Cauchy-Schwartz inequality yield

[m(j+1)

+o0
Z 9—2ja Z 2nscn+12n/22—ne
j=—00 _n:foo
+00 m(j+1) m(j+1)

< Z 9—2ja Z 92ne Z C 2n(1 2¢)
j=—00 n—foo n=-—oo
+00 m(j+1)

< Z 22j(me—a) Z Ci+12n(1—26)
j=—00 n=-—oo
+o0 +oo '

S Z C%+12n(172e) Z 22](mefa)
n=-—00 j=n/m—1
+oo

S Z Ci+12n(1—25)22n(5—ﬁ)
n=-—00

< Z 2n(1 2[3
n=-—00

Let
2
—+00 . 0 . —+00 . e’}
_ Z 272]04 Z 2]211(1/271/1%)6”_‘_1 _ Z 22](1701) Z 2n(1/271/m)cn+1
Jj=—00 n=m(j+1)+1 Jj=—00 n=m(j+1)+1

Then, like we did for A, considering e € (0,1 — «), we obtain

+oo o8]
B = Z 22]'(1704) Z an/m(lfafe)Cn+12n(1/271/m)2n/m(17afe)
Jj=—00 n=m(j+1)+1
+o00 00
Z 92j€ Z Ci_’_l22n(1—a—5)/m+n(1—2/m)
J=—00 n=m(j+1)+1
400 (n—1)/m—1 .
S Z 2n(172a/m72e/m) C%Jrl Z 92je
n=-—oo Jj=—00
< § aun
n=—oo

We deduce that

1/2
Spf ( Z 271(1 Zﬁ) (gn-l—l)+Mmax(p,s)(hn+1)]2> .

n=—oo
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Then for all p > s, using Fefferman-Stein inequality for My and M, which are bounded on L?
due to s,p < p and s, p < 2, we finally obtain

oo 1/2
”ngf”LP S ( Z 2n(1—26) [Mpgn +Mmax(p,s)hn] 2)
n——oo Lp
< Ootl—Zﬁ tL —tL th e Ootl—Qﬁ tl/mV tL —tL th 12
N |(tL)e™ " f)] ) + | (tL)e ™ f)] )
0 L 0 L
> 1= —tL 78 gy 200 12 > 1/m 1= —tL 78 g2 1/2
S |(tL) " Pe L )7 — + (LM (L) PeT LY f)F =
0 t Lp 0 2 L

Since the two quadratic functionals are bounded (see Proposition 2.10), we also conclude the
proof of

IS8 f e S ILP(f) e

5.2. Proof of |LPf||r» < ||Saf|lzr for p € (s_,s;). This paragraph is devoted to the proof of
1L fllee S IS8 FIlLe

requiring the assumption s_ < p.

Proof. We begin by noting that from Proposition 2.10 with duality, we have for all p € (s — 00),

([ anreemrge)”
0

1% llze < Cpy t

Lp

So it suffices to prove that pointwise

(3] 1/2
( / tl—zﬂ\Le-th@)r?dt) < S0f(x).
0

The L? analyticity of the semigroup (see subsection 2.3), the first point of assumption 1.8 and
et (1) = 1, yield with B = B(z, t'/™)

Le f @) = D) A — F@)(a)]
1/s_
SO (1) - @ duty)

k>0

= L(k).

k>0
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Using this estimate and Minkowski inequality, one obtains

1/2
/ 1= 25‘ Z I ‘th
0 k>0
— ks [ [ t—1-28 2/s_ \ /2
o / / z) = fy)I*~d dt
lcz:l o w(B(x,th/m))2s- B(z,2k+1¢1/m) |f (@) = F)P~dp(y)
2/s_ 1/2
< i 9—kd /00 92ka r—1-2a / ‘f(x) - f(y)‘s_dlu(y) / "
N k=0 0 p(B(z, 2_k_17ﬂ)2/87 B(z,r)
1/2

o 2/s—
—kdokaokd/s_ wi B s_
< okoghag /0 B </B(m) [f (@) = f(y)] d#(ﬂ)) dr

k=0

o0
S (Z 2—k62ka2kd/s> ngf(x)
k=1
S So f(@) S S6F(x)
where in the last inequality, we use that the sum is finite since 06 > a+d/s_ and then s_ < p. O

Now we are able to give an alternative proof of Theorem 1.3:

5.3. Second proof of Theorem 1.3.

Remark 5.5. As remarqued in the introduction, Theorem 1.3 is a direct consequence of Theo-
rem 1.2, which was already proved in Section 4, using the ‘paraproducts” point of view. Here,
we obtain another proof via the previous characterization, involving the functionals S%.

We will give the proof in the homogeneous case. The proof of the non-homogeneous case is
analogous using S2'°° instead of S%. Let f, g € WP, Let x € M. We take p = s_ here. Then

oo 1/p7? :
settoe) = | [ % (M » )!f(y)g(y)—f(w)g(w)!”du(y)> i
[ vty :
<\ [ = (M (M)!(f(y)—f(w))g(y)\”du(y)> z
°° 1 Ve er :
+ s £ (@)(g(y) — g(2))|Pdp(y) —
M (J:r) r

< HgHLooS” (=) +HfHLooS”( )(@)-

Now using the second assertion of Theorem 5.2, we deduce that

L™ (fg)ller < 1S5(f9)lLe
S gl lISEH) e + 1 f |z 158 ()] e

S (llzelighzee + 124 (g) e |L.f 1| o

which ends the proof of Theorem 1.3.
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Proof of Theorem 1.4. The proof of this theorem follows immediatly from Theorem 1.3 and the
Sobolev embedding

WP c L™
when ap > d (see Corollary 3.4). O

6. HIGHER ORDER SOBOLEV SPACES AND NONLINEARITIES PRESERVING SOBOLEV SPACES

6.1. Chain rule and Higher-order Sobolev spaces with a sub-Riemannian structure.
Since previous results cannot be extended (in such a general context) for higher order Sobolev
spaces, we present how it is possible to do it in the context of a sub-Riemannian structure.
Indeed such properties allow us to get a “chain rule”.

6.1.1. Sub-Riemannian structure. We assume that there exists X := {Xj},—1 ., a finite family
of real-valued vector fields (so X} is defined on M and Xy (z) € T'M,) such that

(20) L=-) X}
k=1

We identify the Xj’s with the first order differential operators acting on Lipschitz functions
defined on M by the formula

X f(z) = Xp(2) - Vf(2),
and we set X f = (X1 f, Xof, -, X, f) and

. 1/2
X [f(z)| = <Z Ika(a:)|2> , z€M.
=1

We define also the higher-order differential operators as follows : for I C {1,...,x}*, we set
X =[] X
el
We assume the following and extra hypothesis:
Assumption 6.1. For every subset I, the Ith-local Riesz transform R; := X;(1+ L)~11/2 and
its adjoint R} := (1 4+ L)~"1/2X; are bounded on LP for every p € (s_,s;) (which is the range
of boundedness for the Riesz transform VL™1/2).

6.1.2. Chain rule. We refer the reader to [18] and to [13] for precise proofs of these results.

Lemma 6.2. For every integer k > 1 and p € (s—, s4),
Il = > IX1(F)llze-
Ic{1,...,k}k
As a consequence of Theorem 5.2
Proposition 6.3 (Proposition 19 [18]). Let a := k +t > 1 (with k an integer and t € (0,1))
and p € (s_,s4), then
(21) feW = feLP and VI C {1,...k}*, X;(f) € WhP

Moreover, under Assumption (2.6) with § sufficently large : § >t + d/s_ and a local Poincaré
inequality (Psjoc) for some s < 2. Then for all p € (s—,s4) with s— < p and max(p,s) <
min(2,p),

(22) fFEWY e feLP and VI C {1,....k}", SP(X[(f)) € LP.

Remark 6.4. Note that the formulation of (21) is slightly different from the one of Proposition
19 in [18].

We finish this section by describing some situations where this sub-Riemannian structure
appears.
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Example 6.5. e Laplacian operators on Carnot-Caratheodory spaces. Let €2 be an open
connected subset of R? and Y = {Yi}7_, a family of real-valued, infinitely differentiable
vector fields satisfying the usual Hérmander condition (which means that the Lie algebra
generated by the X;’s is R%). Then we can define a Riemannian structure associated
with these vector fields.

e Lie groups. Let M = G be a unimodular connected Lie group endowed with its Haar

measure dy = dx and assume that it has polynomial volume growth. Recall that “uni-
modular” means that dz is both left-invariant and right-invariant. Denote by £ the Lie
algebra of G. Consider a family X = {X ..., X} of left-invariant vector fields on G
satisfying the Hormander condition, which means that the Lie algebra generated by the
X;’s is L. We can build the Carnot-Caratheodory metric which brings a Riemannian
structure on the group. In this situation, we know from [34] that the group satisfies a
local doubling property : (D) is satisfied for » < 1. Then, the “local” results involving
the non-homogeneous Sobolev spaces can be applied. Concerning the doubling property
for large balls, two cases may occur: either the manifold is doubling or the volume of the
balls admit an exponential growth [25]. For example, nilpotents Lie groups satisfies the
doubling property ([19]). Particular case of nilpotent groups are Carnot groups, where
the vector fields are given by a Jacobian basis of its Lie algebra and satisfy Hérmander
condition.
Considering the sub-Laplacian L = — > X2, this frawework was already treated in [35,
Thm5.14] and [18, Section 3, Appendix 1], in particular the heat semigroup e~*% satis-
fies Gaussian upper-bounds and Assumption 6.1 on the higher-order Riesz transforms is
satisfied too.

e Particular cases of nilpotents Lie groups are the Carnot groups (if it admits a stratifi-
cation), as for example the different Heisenberg groups. We refer the reader to [23] for
an introduction of pseudodifferential operators in this context using a kind of Fourier
transforms involving irreducible representations.

6.2. Nonlinearities preserving Sobolev spaces.

Proposition 6.6. Assume a local Poincaré inequality (Ps o) for some s < 2. Let F be a
Lipschitz function on R then it continuously acts on some Sobolev spaces. More precisely, let
a € (0,1), p € (s—,s4) with p > s and assume that 6 (in Assumption 3) is sufficently large :
d>a+d/s_. Then

e if F' is Lipschitz, we have
IE(Hllwer S 1 llwe-

o if F' is locally Lipschitz then for every R there exists a constant cr such that for every
fewrP L with || f|r~ < R we have

IE D wer < crllfllwgr-

Proof. The first claim is a direct consequence of Theorem 5.2 with p = s_. The second claim,
comes from the following observation: since F' is locally Lipschitz, then the restricted function

F := Fip(o,r) is Lipschitz on B(0, R). As for every function f € W;"¥ N L> with | f|z~ < R,
we have .

B(f) = F(f),
the first claim applied to F' ends the proof. O

Using the results of the previous subsection, it is possible to extend such results for higher-
order Sobolev spaces in the context of a sub-Riemannian structure:

Proposition 6.7. Assume a local Poincaré inequality (Ps o) for some s < 2. Assume that we
are in the more-constraining context of a sub-Riemannian structure (as described in Subsection

6.1) and consider F' a function on R. Assume that F' € leo\fc,oo for some integer N > 1 then
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it continuously acts on some Sobolev spaces. More precisely, let o € (0,N), p € (s—,s4) with
p > s. Then there exists 59 > 0 such that, fpr all 6 > dy, (0 occurs in Assumption 3),

o if [ € WM we have
IE(Hllwer S f llwee-

o if F € Wlfc’oo then for every R there exists a constant cr such that for every f €

WP L with || f|| e < R we have

VE(P)llwer < crllfllwes.

The proof can be made by iterative arguments on N as for Theorem 22 in [18]. Else in [13] a
direct proof is detailed, the key observation relying on (22) is the fact that computing X;(F(f)),
we deduce that to bound X;(F(f)) in W is reduced to estimate quantities as

l
he= | T % | (DFO()
A=1
where ig C I, n <k and ) |ig| = || < k.

7. WELL-POSEDNESS RESULTS FOR SEMILINEAR PDES WITH REGULAR DATA

This section is devoted to some applications of algebra properties for Sobolev spaces, con-
cerning well-posedness results for quasi-linear dispersive equations (Schrodinger equations) and
quasi-linear heat equations associated to the operator L.

More precisely, we are interested in the two following problems.

Schrodinger equation :
Let ug € L?(M,C) and F : C — C a smooth function, we are interested in the equation

i0yu + Lu = F(u)
(23) { w(0,.) = uo.

Heat equation :
Let ug € LP and F': R — R a smooth function, we are interested in the equation

u(O, ) = UugQ-
Here F'(u) is the nonlinearity. We refer the reader to [42] for precise study of (23) in the
Fuclidean setting with particular nonlinearities. In this section, we give applications of the
previous results (concerning Sobolev spaces), proving well-posedness results for these equations
in a general setting.

7.1. Schrédinger equations on a Riemannian manifold. Assume that L satisfying the
assumptions of Subsection (2.3) is a self-adjoint operator and that Poincaré inequality (Ps)
holds for some s < 2.

Then, spectral theory allows us to build the unitary semigroup (e®*);, bounded in L2
Duhamel’s formula formally yields

(25) u(t) = efug — i /0 L P (u(r))dr.

We assume that F is smooth in the following sense: identifying C = R?, F is smooth as a
function from R? to R2. Under this assumption, we have the following result :
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Lemma 7.1. The map F acts continuously on the Sobolev spaces. More precisely, for a € (0,1)
< R), we

and every R (and uniformly with respect to u,v € WS’Q with [[ul] .2 [lv
L

nL>> ng’Qme

have

1) = F)llyyeznpe Sk llu=vllyern e
The assumption a € (0,1) can be weakened to o > 0 in the context of a sub-Riemannian structure
(as described in Subsection 6.1).

Proof. Since F is locally Lipschitz, the L*-bound on F(u) — F(v) is easily obtained. Let us
focus now on the Sobolev norm. Since F' is assumed to be smooth, we can write for z,y € C

Fly) = F(z) = (y = 2)G(2,y) + (y — ) H(z,y)
with
1 1
G(z,y) == /0 0. F(x +t(y —x))dt H(z,y):= /0 OzF(x + t(y — x))dt.

Then, applying the algebra property of Sobolev spaces WE’Q N L (see Theorem 1.2), it comes

1F ()~ F@)lyoe < = vlhyonpee (160 0)lgoange + 1H @ 0)lyozog)

In addition, the two functions G and H are smooth too and so locally Lipschitz. Using Propo-
sition 6.6, we deduce that

HG(U’U)HWE’%Loo Sk HUHW?%L@ + HUHW?%L@

with an implicit constant, depending on the L°°-norm of u,v. The same holds for H and the
proof is therefore complete. In a sub-Riemannian context, we conclude using Proposition 6.7
instead of Proposition 6.6. O

Theorem 7.2. Let ug € WE’Q with some o > d/2 and o € (0,1). Then Wf’z is continuously
embedded in L™ and

e there exists a unique solution u € C})WE’Q of (23) on some small enough time-interval I
e the solution u depends continuously on the data.
The assumption o € (0,1) can be weakened to o > 0 in the context of a sub-Riemannian structure
(as described in Subsection 6.1).

Proof. Let the time-interval I be fixed and consider the map D on CYW}' 2 defined by

D(f)=—i /Ot =L f(s)ds.

We follow the reasoning of Section 3.3 in [42] and adapt it to our current framework. So we first
check that D is bounded on CYW;' 2. indeed for all ¢ € I

DOy = 10+ L D12
< /0 I+ L)L f ()| 2dr

< tsup 1L+ )™ £(7)]| 2
TE

< 1T gy

In addition, it is easy to check that the unitary semigroup preserves the Sobolev norms : for all
teR

||6225LU0HW£%2 = ||U0HW§’2-
Then, following Proposition 3.8 in [42], it remains to check that F' is locally Lipschitz, which
was done in Lemma 7.1. As a consequence, we can apply the Duhamel’s iteration argument (see
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Proposition 1.38 in [42] and [39] for introduction of such arguments): for all ug € Wg’Q, there

exists a unique solution u € C?WE{ 2 of
u = eluy + DF(u)
on [ as soon as |I| is small enough. O

7.2. Heat equations on a Riemannian manifold. Assume that L verifies assumptions in
Subsection 2.3 and F' is a smooth real function.

Theorem 7.3. Let p € (s—,00) with p > s, ug € WP N L™ with a < 1 and set S7* :=
WP n L.
e there exists a unique solution u € CYSTP of (24) on some small enough time-interval I
e the solution u depends continuously on the data.

The assumption a € (0,1) can be weakened to o > 0 in the context of a sub-Riemannian structure
(as described in Subsection 6.1).

Proof. We leave the details to the reader, since the proof exactly follows the previous one.
Indeed, Duhamel’s formula gives for u a solution of (24)

u(t) = e Hug — te*(t*T)L w(7))dr.
(1) -/ Flu(r))d

The same argument still holds considering the heat semigroup (e~*);~¢ instead of the unitary
semigroup. We have to check that the map

D(f) == [ I (s)as

is bounded on C%S?’p . The control of the Sobolev norm still holds and the L*-norm is bounded
since the off-diagonal decay (3) implies the L>°-boundedness of the semigroup. Arguing similarly,
we prove that F' is locally Lipschitz on S7"”. We also conclude as for the previous PDEs, by
invoking Duhamel’s iteration argument. O
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