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	 C’est un très grand plaisir pour nous d’accueillir à Rennes cette conférence internationale 
de Géométrie Algébrique Réelle qui est le quatrième opus d’une belle série commencée il y a 30 
ans. 
	 La toute première conférence internationale de la discipline fut organisée à Rennes en 
1981 par Jean-Louis Colliot-Thélène, Michel Coste, Louis Mahé et Marie-Françoise Roy. Depuis, 
la discipline a pris un essor considérable : de très nombreuses conférences sur la thématique 
se sont déroulées dans le monde entier, un réseau européen a tissé des liens au cœur duquel 
Rennes 1 a toujours joué un rôle privilégié.
	 Le laboratoire de géométrie algébrique réelle rennais a acquis au fil des années une 
notoriété internationale et a poursuivi son travail de fond en organisant deux nouvelles conférences 
internationales de synthèse en 1991 puis en 2001.
	 Nous sommes donc particulièrement heureux de perpétuer cette tradition décennale 
d’excellence en ce mois de Juin 2011. 

	 Nous voyons aussi en cette conférence l’occasion de rendre un hommage chaleureux 
aux professeurs Michel Coste, Louis Mahé et Marie-Françoise Roy pour la mise sur pieds et 
l’animation de l’équipe rennaise de recherche en Géométrie Algébrique Réelle ainsi que pour leur 
contribution scientifique marquante au renouveau de la thématique éponyme.
	 A l’avant veille — ou au lendemain matin pour l’un d’entre eux qui a pris un peu  
d’avance ! — de prendre un peu de distance avec leur fonction de mathématicien en exercice à 
Rennes 1, qu’ils reçoivent tout trois notre plus profonde considération.

	 Nous remercions les 150 chercheurs en mathématiques venus du monde entier pour 
assister à la conférence et notamment les participants qui vont y donner un exposé — grand merci 
au passage au comité scientifique. Notre gratitude va tout particulièrement aux conférenciers 
qui ont accepté le travail ingrat — mais ô combien utile pour la communauté — de rédiger pour 
la conférence un survol de leur discipline de prédilection : Saugata Basu, Johannes Huisman, 
Krzyztof Kurdyka, Victoria Powers et Jean-Philippe Rolin.
 
	 Nous souhaitons aussi remercier les nombreux sponsors qui nous ont permis d’accueillir 
autant de participants à des conditions avantageuses et notamment un aussi grand nombre de 
doctorants et post-doctorants appelés à constituer le vivier de la Géométrie Algébrique Réelle de 
demain. Merci donc à  :
	 L’IRMAR, l’Université de Rennes 1, le CNRS, Rennes Métropole, le Conseil Régional, le 
Ministère de l’enseignement supérieur et de la recherche,
	 Et aussi tout particulièrement à : 
	 La fondation Métivier, le GDR CNRS 2945 «Singularités et Applications», les deux supports 
IUF de Dominique Cerveau et d’Antoine Chambert-Loir, les ANR SIRE et ANR SIROPA.

	 Enfin, nous sommes fortement redevables envers Chantal Halet et Emmanuelle Guiot 
pour le travail considérable qu’elles ont déployé pour la bonne tenue de cette conférence.

Karim Bekka, Goulwen Fichou, Jean-Philippe Monnier, Ronan Quarez
Organisateurs de la conférence RAG2011,

Le 20 Juin 2011
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	 It is a very big pleasure for us to welcome in Rennes this international conference in Real 
Algebraic Geometry which is the fourth opus of a beautiful series begun 30 years ago. 
	 The very first international conference of the discipline was organized in Rennes in 1981 
by Jean-Louis Colliot-Thélène, Michel Coste, Louis Mahé and Marie-Françoise Roy. Since then, 
the discipline took a considerable development: very numerous conferences on the theme took 
place all over the world, a European network forged ties the heart of which Rennes 1 always 
played a privileged role.

	 Over the years, the Rennes’s real algebraic geometry laboratory acquired an international 
reputation and continued its thorough work by organizing two new international conferences of 
synthesis in 1991 then in 2001.
	 We are thus particularly happy to immortalize this ten-year tradition of excellence in this 
June 2011. 

	 We also see in this conference the opportunity to pay a warm tribute to professors Michel 
Coste, Louis Mahé and Marie-Françoise Roy for the setting up and the animation of the Rennes’s 
team of research in Real Algebraic Geometry as well as for their striking scientific contribution to 
the revival of the eponymic theme.
	 On the eve  — or the following day morning for one of them who set a little beforehand ! — 
of setting a little outstrips with their position of mathematician in Rennes 1, may all three receive  
our deepest consideration.

	 We thank the 150 researchers in mathematics coming from all over world for attending 
the conference, in particular the participants who are going to give  a talk —  big thanks  to the 
scientific committee. Our   gratitude goes quite particularly to the speakers who accepted the 
thankless work - but  how so useful for the community - to write for the conference a survey of 
their prefered discipline: Saugata Basu, Johannes Huisman, Krzyztof Kurdyka, Victoria Powers 
and Jean-Philippe Rolin.

	 We also wish to thank the numerous sponsors who allowed us to welcome so many 
participants under proper conditions, in particular a large number of PhD students and post-PhD 
students called to constitute the pool of  the Real Algebraic Geometry of tomorrow. Thank you 
thus to:
	 The IRMAR, the university of Rennes 1, the CNRS, the Rennes Métropole, the Regional 
Council, the Ministry for Higher Education and Research, 
and  particularly to: 
	 The foundation Métivier, the GDR CNRS 2945 «Singularités et Applications», the two 
supports of the IUF of Dominique Cerveau and of Antoine Chambert-Loir, the ANR SIRE and 
ANR SIROPA.

	 Finally, we are deeply indebted to Chantal Halet and Emmanuelle Guiot for the considerable 
work they have done for the good running of this conference.

Karim Bekka, Goulwen Fichou, Jean-Philippe Monnier, Ronan Quarez
Organizers of the conference RAG2011,

June 20th, 2011
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ALGORITHMS IN REAL ALGEBRAIC GEOMETRY: A SURVEY

SAUGATA BASU

Abstract. We survey both old and new developments in the theory of al-
gorithms in real algebraic geometry – starting from effective quantifier elim-
ination in the first order theory of reals due to Tarski and Seidenberg, to
more recent algorithms for computing topological invariants of semi-algebraic
sets. We emphasize throughout the complexity aspects of these algorithms and
also discuss the computational hardness of the underlying problems. We also
describe some recent results linking the computational hardness of decision
problems in the first order theory of the reals, with that of computing certain
topological invariants of semi-algebraic sets. Even though we mostly concen-
trate on exact algorithms, we also discuss some numerical approaches involving
semi-definite programming that have gained popularity in recent times.

1. Introduction

We survey developments in the theory of algorithms in real algebraic geometry
– starting from the first effective quantifier elimination procedure due to Tarski
and Seidenberg, to more recent work on efficient algorithms for quantifier elimina-
tion, as well as algorithms for computing topological invariants of semi-algebraic
sets – such as the number semi-algebraically connected components, Euler-Poincaré
characteristic, Betti numbers etc. Throughout the survey, the emphasis is on the
worst-case complexity bounds of these algorithms, and the continuing effort to de-
sign algorithms with better complexity. Our goal in this survey is to describe these
algorithmic results (including stating precise complexity bounds in most cases), and
also give some indications of the techniques involved in designing these algorithms.
We also describe some hardness results which show the intrinsic difficulty of some
of these problems.

1.1. Notation. We first fix some notation. Throughout, R will denote a real
closed field (for example, the field R of real numbers or Ralg of real algebraic
numbers), and we will denote by C the algebraic closure of R.

A semi-algebraic subset of Rk is a set defined by a finite system of polynomial
equalities and inequalities, or more generally by a Boolean formula whose atoms
are polynomial equalities and inequalities. Given a finite set P of polynomials in
R[X1, . . . , Xk], a subset S of Rk is P-semi-algebraic if S is the realization of a
Boolean formula with atoms P = 0, P > 0 or P < 0 with P ∈ P (we will call such
a formula a quantifier-free P-formula).

Key words and phrases. Algorithms, Complexity, Semi-algebraic Sets, Betti Numbers .
2000 MATHEMATICS SUBJECT CLASSIFICATION PRIMARY 14P10, 14P25; SEC-

ONDARY 68W30

1
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It is clear that for every semi-algebraic subset S of Rk there exists a finite set P
of polynomials in R[X1, . . . , Xk] such that S is P-semi-algebraic. We call a semi-
algebraic set a P-closed semi-algebraic set if it is defined by a Boolean formula
with no negations with atoms P = 0, P ≥ 0, or P ≤ 0 with P ∈ P.

For an element a ∈ R we let

sign(a) =




0 if a = 0,

1 if a > 0,

−1 if a < 0.

A sign condition on P is an element of {0, 1,−1}P . For any semi-algebraic
set Z ⊂ Rk the realization of the sign condition σ over Z, R(σ, Z), is the
semi-algebraic set

{x ∈ Z |
∧

P∈P
sign(P (x)) = σ(P )},

and in case Z = Rk we will denote R(σ, Z) by just R(σ).
If P is a finite subset of R[X1, . . . , Xk], we write the set of zeros of P in Rk as

Z(P,Rk) = {x ∈ Rk |
∧

P∈P
P (x) = 0}.

Given a semi-algebraic set S ⊂ Rk, we will denote by bi(S) the i-th Betti num-
ber of S, that is the rank of the i-th homology group of S (see [17] for precise
definitions of homology groups for semi-algebraic sets defined over arbitrary real
closed fields). Note that b0(S) is the number of semi-algebraically connected com-
ponents of S. We will denote by b(S) the sum

∑
i≥0 bi(S).

For x ∈ Rk and r > 0, we will denote by Bk(x, r) (resp. Sk−1(x, r)) the open
ball (resp. the sphere) with center x and radius r in Rk. When x = 0, we will write
Bk(r) (resp. Sk−1(r)) instead of Bk(0, r) (resp. Sk−1(0, r)). We will also denote
the unit ball (resp. sphere) in Rk centered at 0 by Bk (resp. Sk−1).

1.2. Main algorithmic problems. Algorithmic problems in semi-algebraic ge-
ometry typically consist of the following. We are given as input a finite family,
P ⊂ D[X1, . . . , Xk], where D is an ordered domain contained in the real closed field
R. The main algorithmic problems can be roughly divided into two classes (though
we will see later in Section 3.4 how they are related from the point of computational
complexity).

The first class of problems has a logical flavor. It includes the following.
Given a quantified P-formula Φ (with or without free variables), the task is to:
(1) (The Quantifier Elimination Problem) Compute a quantifier-free for-

mula equivalent to Φ.
(2) (The General Decision Problem) This is a special case of the previous

problem when Φ has no free variables, and the problem is to decide the
truth or falsity of Φ.

(3) (The Existential Problem) This is a special case of the last problem
when there is exactly one block of existential quantifiers; equivalently, the
problem can be stated as deciding whether a given P-semi-algebraic set is
empty or not.

The second class of problems has a more geometric and/or topological flavor.
Given a description of a P-semi-algebraic set S ⊂ Rk the task is to decide whether
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certain geometric and topological properties hold for S, and in some cases also
computing certain topological invariants of S. Some of the most basic problems
include the following.

(1) (Deciding Emptiness) Decide whether S is empty or not (this is the same
as the Existential Problem described above).

(2) (Deciding Connectivity) Given two points x, y ∈ S, decide if they are in
the same semi-algebraically connected component of S and if so output a
semi-algebraic path in S connecting them.

(3) (Describing Connected Components) Compute semi-algebraic descrip-
tions of the semi-algebraically connected components of S.

At a slightly deeper level we have problems of a more topological flavor, such as:
(4) (Computing Betti Numbers) Compute the cohomology groups of S, its

Betti numbers, its Euler-Poincaré characteristic etc..
(5) (Computing Triangulations) Compute a semi-algebraic triangulation of

S as well as,
(6) (Computing Regular Stratifications) compute a decomposition of S

into semi-algebraic smooth pieces of various dimensions satisfying certain
extra regularity conditions ( for example, Whitney conditions (a) and(b)).

Definition 1.1 (Complexity). A typical input to the algorithms considered in this
survey will be a set of polynomials with coefficients in an ordered ring D (which can
be taken to be the ring generated by the coefficients of the input polynomials). By
complexity of an algorithm we will mean the number of arithmetic operations
(including comparisons) performed by the algorithm in the ring D. In case the
input polynomials have integer coefficients with bounded bit-size, then we will
often give the bit-complexity, which is the number of bit operations performed by
the algorithm. We refer the reader to [17, Chapter 8] for a full discussion about
the various measures of complexity.

The complexity of an algorithm (see Definition 1.1 above) for solving any of the
above problems is measured in terms of the following three parameters:

• the number of polynomials, s = card P,
• the maximum degree, d = maxP∈P deg(P ), and
• the number of variables, k (and in case of quantifier elimination problems,

the block decomposition of the k variables).
The rest of the paper is organized as follows. In Section 2, we describe known al-

gorithms for quantifier elimination in the theory of the reals, starting from Tarski’s
algorithm, algorithms via cylindrical algebraic decomposition, and finally more
modern algorithms using the critical points method. We also discuss some vari-
ants of quantifier elimination problem that arise in applications, as well as certain
approaches using complex geometry of polar varieties that give efficient probabilistic
algorithms. We also discuss the known lower bounds for real quantifier elimination.

In Section 3, we concentrate on algorithms for computing topological proper-
ties of semi-algebraic sets – including connectivity property via construction of
roadmaps, computing the generalized Euler-Poincaré characteristic of semi-algebraic
sets, as well as computing the Betti numbers of semi-algebraic sets. Throughout this
section the emphasis is on algorithms with singly exponential complexity bounds.
We also discuss certain results that are special to semi-algebraic sets defined by qua-
dratic inequalities, or more generally where the defining polynomials have at most
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quadratic dependence on most of the variables. We also point out the significance
of some of the results from the point of view of computational complexity theory.
Finally, we discuss a recent reduction result linking the complexity of the problem
of computing the Betti numbers of semi-algebraic sets, with that of the decision
problem in the first order theory of the real with a fixed number of quantifier block.

In Section 4, we discuss numerical algorithms for polynomial optimization using
the “sums-of-square” approach. The main algorithmic tool here is “interior-point
algorithms for semi-definite programming” and we discuss the known results on the
computational complexity of the semi-definite programming problem.

We end with a list of open problems (Section 5).

Warning. There are several interesting topics which come under the purview of
algorithms in real algebraic geometry that have been left out of this survey (because
of lack of space as well as the author’s lack of expertise in some of these topics).
For example, we do not make any attempt to survey the extremely broad area of
research concerning efficient implementation of theoretically efficient algorithms,
specific low dimensional applications such as computing the topology of curves and
surfaces, computing certificates of positivity of polynomials (for archimedean as
well as non-archimedean real closed fields), homotopy continuation algorithms for
solving real systems etc. There are multiple excellent sources available for most
of these topics. Finally, algorithmic real algebraic geometry has a great variety of
applications, due to the ubiquity of semi-algebraic sets arising in different areas
of science and engineering – including robotics, molecular chemistry, theoretical
computer science, database theory etc. We do not make any attempt to survey
these applications.

2. Quantifier elimination and related problems

We begin appropriately with the first algorithm (in the modern sense) in real
algebraic geometry which is a starting point of the subject.

2.1. The Tarski-Seidenberg Theorem and effective quantifier elimination.
Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk, Y1, . . . , Y�], and Φ(Y ) a first-order formula
given by

(QωX [ω]) . . . (Q1X
[1])F (P1, . . . , Ps),

where Qi ∈ {∀,∃}, Qi �= Qi+1, Y = (Y1, . . . , Y�) is a block of � free variables, X [i]

is a block of ki variables with
∑

1≤i≤ω ki = k, and F (P1, . . . , Ps) is a quantifier-free
Boolean formula with atomic predicates of the form sign(Pi(Y, X [ω], . . . , X [1])) = σ
where σ ∈ {0, 1,−1}. (Letting Π denote the partition of the blocks of variables
X1, . . . , Xk into the ω blocks of sizes k1, . . . , kω, we call a formula such as Φ, having
the block structure specified by Π to be a (P, Π)-formula.)

The Tarski-Seidenberg theorem states that

Theorem 2.1. [74] There exists a quantifier-free formula, Ψ(Y ), such that for any
y ∈ R�, Φ(y) is true if and only if Ψ(y) is true.

The quantifier elimination problem is to algorithmically construct such a formula.
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2.1.1. Algorithm arising from Tarski’s proof. Tarski’s proof [74] of the existence
of quantifier elimination in the theory of the reals was effective and was based
on Sturm’s theorem for counting real roots of polynomials in one variable with
real coefficients used in a parametric way. A modern treatment of this proof can
be found in [17, Chapter 2]. The complexity of this procedure was not formally
analysed in Tarski’s paper. However, the algorithm eliminates one variable at a
time using a parametrized version of Euclidean remainder sequence, and as a result
the number and degrees of the polynomials in the remaining variables grow rather
fast, and it is not possible to bound the complexity of the algorithm by any function
which is a tower of exponents (in the input parameters) of a fixed height, which
implies that the complexity of Tarski’s algorithm is not elementary recursive. An
elementary recursive algorithm for the General Decision Problem was found later
by Monk [56].

2.1.2. Cylindrical Algebraic Decomposition. One fundamental technique for com-
puting topological invariants of semi-algebraic sets is through Cylindrical Algebraic
Decomposition. Even though the mathematical ideas behind cylindrical algebraic
decomposition were known before (see for example [54]), Collins [35, 36] was the
first to apply cylindrical algebraic decomposition in the setting of algorithmic semi-
algebraic geometry. Schwartz and Sharir [72] realized its importance in trying to
solve the motion planning problem in robotics, as well as computing topological
properties of semi-algebraic sets. Similar ideas leading to doubly exponential algo-
rithms was also developed by Wüthrich [77].

Definition 2.2 (Cylindrical Algebraic Decomposition). A cylindrical algebraic

decomposition of Rk is a sequence S1, . . . ,Sk where, for each 1 ≤ i ≤ k, Si is a
finite partition of Ri into semi-algebraic subsets, called the cells of level i, which
satisfy the following properties:

• Each cell S ∈ S1 is either a point or an open interval.
• For every 1 ≤ i < k and every S ∈ Si, there are finitely many continuous

semi-algebraic functions

ξS,1 < . . . < ξS,�S
: S −→ R

such that the cylinder S × R ⊂ Ri+1 is the disjoint union of cells of Si+1

which are:
– either the graph of one of the functions ξS,j , for j = 1, . . . , �S :

{(x′, xj+1) ∈ S × R | xj+1 = ξS,j(x′)} ,

– or a band of the cylinder bounded from below and from above by the
graphs of the functions ξS,j and ξS,j+1, for j = 0, . . . , �S , where we
take ξS,0 = −∞ and ξi,�S+1 = +∞:

{(x′, xj+1) ∈ S × R | ξS,j(x′) < xj+1 < ξS,j+1(x′)} .

Definition 2.3. Given a finite set P ⊂ R[X1, . . . , Xk], a subset S of Rk is is P-
invariant if every polynomial P ∈ P has a constant sign (> 0, < 0, or = 0) on
S. A cylindrical algebraic decomposition of Rk adapted to P is a cylindrical
algebraic decomposition for which each cell C ∈ Sk is P-invariant. It is clear that
if S is P-semi-algebraic, a cylindrical algebraic decomposition adapted to P is a
cylindrical algebraic decomposition adapted to S.
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One important result which underlies most algorithmic applications of cylindrical
algebraic decomposition is the following (see [17, Chapter 11] for an easily accessible
exposition).

Theorem 2.4. [36, 77] For every finite set P of polynomials in R[X1, . . . , Xk], there
is a cylindrical decomposition of Rk adapted to P. Moreover, such a decomposition
can be computed in time (sd)2

O(k)
, where s = card P and d = maxP∈P deg(P ).

Cylindrical algebraic decomposition provides an alternative (and more efficient
compared to Tarski’s) algorithm for quantifier elimination, since (using the same
notation as in the previous section) the semi-algebraic subset of R� defined by Φ(Y ),
is a union of cells (of various dimensions) in a cylindrical algebraic decomposition
of Rk+� adapted to P (cf. Definition 2.3), where Y1, . . . , Y� are the last � variables.
This last fact is a consequence of the “cylindrical” structure of the decomposition.
The complexity of such an algorithm is bounded by the complexity of computing the
cylindrical decomposition and is doubly exponential. More precisely, the complexity
is bounded by (sd)2

O(k+�)
.

Remark 2.5. The technique of cylindrical algebraic decomposition is also used in
algorithms for computing topological properties of semi-algebraic sets. After mak-
ing a generic linear change of co-ordinates, the cylindrical algebraic decomposition
algorithm yields a finite cell complex from which topological invariants of the un-
derlying semi-algebraic sets can be extracted. It should be noted that a change of
co-ordinates is needed to obtain a cell complex. However, in certain applications
a change of co-ordinates is not allowed (see [22] for one such application). It is an
interesting open question if there always exists a semi-algebraic cell decomposition
adapted to a given finite family of polynomials, having a cylindrical structure with
respect to the given co-ordinates.

2.1.3. Lower bound. Given the doubly exponential upper bound on the complexity
of quantifier elimination algorithm that follows from cylindrical algebraic decompo-
sition, it is interesting to ask whether it is at all possible to do better. This question
was investigated by Davenport and Heintz [40] who proved a doubly exponential
lower bound on the complexity of real quantifier elimination, by constructing a se-
quence of quantified formula having the property that any equivalent sequence of
quantifier-free formulas would necessarily have doubly exponential growth in size.
However, the quantified formulas in the sequence they constructed had a large num-
ber of quantifier alternations (linear in the number of variables). Thus, while it is
impossible to hope for better than doubly exponential dependence in the number,
ω, of quantifier alternations, it might still be possible to obtain algorithms with
much better complexity (i.e. singly exponential in the number of variables) if we
fix the number of quantifier alternations. This is what we describe next.

2.2. The critical points method and singly exponential algorithms. As
mentioned earlier, all algorithms using cylindrical algebraic decomposition have
doubly exponential complexity. Algorithms with singly exponential complexity for
solving problems in semi-algebraic geometry are mostly based on the critical points
method. This method was pioneered by several researchers including Grigoriev
and Vorobjov [46, 45], Renegar [67], Canny [33], Heintz, Roy and Solernò [48],
Basu, Pollack and Roy [12] amongst others. In simple terms, the critical points
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method is nothing but a method for finding at least one point in every semi-
algebraically connected component of an algebraic set. It can be shown that for a
bounded nonsingular algebraic hyper-surface, it is possible to change coordinates
so that its projection to the X1-axis has a finite number of non-degenerate critical
points. These points provide at least one point in every semi-algebraically connected
component of the bounded nonsingular algebraic hyper-surface. Unfortunately this
is not very useful in algorithms since it provides no method for performing this linear
change of variables. Moreover when we deal with the case of a general algebraic
set, which may be unbounded or singular, this method no longer works.

In order to reduce the general case to the case of bounded nonsingular alge-
braic sets, we use an important technique in algorithmic semi-algebraic geometry –
namely, perturbation of a given real algebraic set in Rk using one or more infinites-
imals. The perturbed variety is then defined over a non-archimedean real closed
extension of the ground field – namely the field of algebraic Puiseux series in the
infinitesimal elements with coefficients in R.

Since the theory behind such extensions might be unfamiliar to some readers,
we introduce here the necessary algebraic background referring the reader to [17,
Section 2.6] for full detail and proofs.

2.2.1. Infinitesimals and the field of algebraic Puiseux series.

Definition 2.6 (Puiseux series). A Puiseux series in ε with coefficients in R is
a series of the form

(2.1) a =
∑
i≥k

aiε
i/q,

with k ∈ Z, i ∈ Z, ai ∈ R, q a positive integer.

It is a straightforward exercise to verify that the field of all Puiseux series in ε
with coefficients in R is an ordered field. The order extends the order of R, and ε is
an infinitesimally small and positive, i.e. is positive and smaller than any positive
r ∈ R.

Notation 1. The field of Puiseux series in ε with coefficients in R contains as a
subfield, the field of Puiseux series which are algebraic over R[ε]. We denote by
R〈ε〉 the field of algebraic Puiseux series in ε with coefficients in R. We will
also use the notation R〈ε1, . . . , εm〉 to denote the field R〈ε1〉 · · · 〈εm〉. Notice that
in the field R〈ε1, . . . , εm〉 we have the ordering 0 < εm � εm−1 � · · · � ε1 � 1
where the symbol a � b means that a is infinitesimally small with respect to b.

The following theorem is classical (see for example [17, Section 2.6] for a proof).

Theorem 2.7. The field R〈ε〉 is real closed.

Definition 2.8 (The limε map). When a ∈ R〈ε〉 is bounded by an element of R,
limε(a) is the constant term of a, obtained by substituting 0 for ε in a.

Example 2.9. A typical example of the application of the lim map can be seen in
Figures 1 and 2 below. The first picture depicts the algebraic set Z(Q,R3), while
the second depicts the algebraic set Z(Def(Q, ζ, 4), R〈ζ〉3) (where we substituted a
very small positive number for ζ in order to able display this set), where Q and
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Def(Q, ζ, 4) are defined by Eqn. (2.4) and Eqn. (2.3) respectively The algebraic
sets Z(Q,R3) and Z(Def(Q, ζ, 4), R〈ζ〉3) are related by

Z(Q,R3) = lim
ζ

Z(Def(Q, ζ, 4), R〈ζ〉3).

Since we will often consider the semi-algebraic sets defined by the same formula,
but over different real closed extensions of the ground field, the following notation
is useful.

Notation 2. Let R′ be a real closed field containing R. Given a semi-algebraic
set S in Rk, the extension of S to R′, denoted Ext(S, R′), is the semi-algebraic
subset of R′k defined by the same quantifier free formula that defines S.

The set Ext(S, R′) is well defined (i.e. it only depends on the set S and not on
the quantifier free formula chosen to describe it). This is an easy consequence of
the transfer principle.

We now return to the discussion of the critical points method. In order for the
critical points method to work for all algebraic sets, we associate to a possibly
unbounded algebraic set Z ⊂ Rk a bounded algebraic set Zb ⊂ R〈ε〉k+1

, whose
semi-algebraically connected components are closely related to those of Z.

Let Z = Z(Q,Rk) and consider

Zb = Z(Q2 + (ε2(X2
1 + . . . + X2

k+1) − 1)2, R〈ε〉k+1).

The variety Zb is the intersection of the sphere Sk(0, 1/ε) of center 0 and radius
1
ε

with a cylinder based Ext(Z,R〈ε〉) (and is hence bounded over R〈ε〉). The
intersection of Zb with the hyper-plane Xk+1 = 0 is the intersection of Z with the

sphere Sk−1(0, 1/ε) of center 0 and radius
1
ε
. Denote by π the projection from

R〈ε〉k+1 to R〈ε〉k.
The following proposition which appears in [17] then relates the semi-algebraically

connected component of Z with those of Zb and this allows us to reduce the prob-
lem of finding points on every semi-algebraically connected component of a possibly
unbounded algebraic set to the same problem on bounded algebraic sets.

Proposition 2.10. Let N be a finite number of points meeting every semi-algebraic-
ally connected component of Zb. Then π(N) meets every semi-algebraically con-
nected component of the extension Ext(Z,R〈ε〉).

We obtain immediately using Proposition 2.10 a method for finding a point in
every semi-algebraically connected component of an algebraic set. Note that these
points have coordinates in the extension R〈ε〉 rather than in the real closed field R
we started with. However, the extension from R to R〈ε〉 preserves semi-algebraically
connected components.

2.2.2. Representation of points. One important aspect in any algorithm in real
algebraic geometry is how to represent points whose co-ordinates belong to some
real algebraic extension of the ordered ring D generated by the coefficients of the
input polynomials. There are as usual several options, such as representing an
arbitrary real algebraic number using isolating intervals, or by Thom encodings
etc. In the singly-exponential algorithms described in the book [17], points in Rk

are represented by univariate representations and an associated Thom encoding.
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Even though we will not need any further detail about these representations in
this survey, given their importance in most of the algorithms that we refer to, we
include their precise definitions below.

Definition 2.11 (Thom encoding). Let P ∈ R[X] and σ ∈ {0, 1,−1}Der(P ), a sign
condition on the set Der(P ) of derivatives of P . The sign condition σ is a Thom
encoding of x ∈ R if σ(P ) = 0 and σ is the sign condition taken by the set Der(P )
at x. Given a Thom encoding σ, we denote by x(σ) the root of P in R specified by
σ.

(Note that the use of Thom encoding to represent algebraic numbers was intro-
duced in algorithmic real algebraic geometry by Coste and Roy in [37].)

Definition 2.12 (Univariate representations and real univariate representations).
A k-univariate representation is a k + 2-tuple of polynomials of R[T ],

(f(T ), g0(T ), g1(T ), . . . , gk(T )),

such that f and g0 are coprime.
The points associated to a univariate representation are the points(

g1(t)
g0(t)

, . . . ,
gk(t)
g0(t)

)
∈ Ck

where t ∈ C is a root of f(T ).
A real k-univariate representation is a pair u, σ where u is a k-univariate

representation and σ is the Thom encoding of a root of f , tσ ∈ R. The point
associated to the real univariate representation is the point(

g1(tσ)
g0(tσ)

, . . . ,
gk(tσ)
g0(tσ)

)
∈ Rk.

Remark 2.13. By parametrizing the definition of a real k-univariate representation
(lets say by a co-ordinate function such as X1) one obtains descriptions of semi-
algebraic curves. These curve segment representations play an important role
in algorithms for computing roadmaps of semi-algebraic sets (see Section 3.1 below).

2.2.3. Deformation techniques to deal with singular varieties. For dealing with pos-
sibly singular algebraic sets we define X1-pseudo-critical points of Z(Q,Rk)
when Z(Q,Rk) is a bounded algebraic set. These pseudo-critical points are a finite
set of points meeting every semi-algebraically connected component of Z(Q,Rk).
They are the limits of the critical points of the projection to the X1 coordinate of
a bounded nonsingular algebraic hyper-surface defined by a particular infinitesimal
perturbation, Def(Q, ζ, d), of the polynomial Q (where d = deg(Q)). Moreover,
the equations defining the critical points of the projection on the X1 coordinate
on the perturbed algebraic set have a very special algebraic structure (they form
a Gröbner basis [17, Section 12.1]), which makes possible efficient computation of
these pseudo-critical values and points. We refer the reader to [17, Chapter 12] for
a full exposition including the definition and basic properties of Gröbner basis.

The deformation Def(Q, ζ, d) of Q is defined as follows. Suppose that Z(Q,Rk)
is contained in the ball of center 0 and radius 1/c. Let d̄ be an even integer bigger
than the degree d of Q and let

(2.2) Gk(d̄, c) = cd̄(X d̄
1 + · · · + X d̄

k + X2
2 + · · · + X2

k) − (2k − 1),
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(2.3) Def(Q, ζ, d) = ζGk(d̄, c) + (1 − ζ)Q.

The algebraic set Z(Def(Q, ζ, d), R〈ζ〉k) is a bounded and non-singular hyper-
surface lying infinitesimally close to Z(Q,Rk) and the critical points of the projec-
tion map onto the X1 co-ordinate restricted to Z(Def(Q, ζ, d), R〈ζ〉k) form a finite
set of points. We take the images of these points under limζ (cf. Definition 2.8)
and we call the points obtained in this manner the X1-pseudo-critical points of
Z(Q,Rk). Their projections on the X1-axis are called pseudo-critical values.

Example 2.14. We illustrate the perturbation mentioned above by a concrete
example. Let k = 3 and Q ∈ R[X1, X2, X3] be defined by

(2.4) Q = X2
2 − X2

1 + X4
1 + X4

2 + X4
3 .

Then, Z(Q,R3) is a bounded algebraic subset of R3 shown below in Figure 1. No-
tice that Z(Q, R3) has a singularity at the origin. The surface Z(Def(Q, ζ, 4), R〈ζ〉3)
with a small positive real number substituted for ζ is shown in Figure 2. No-
tice that this surface is non-singular, but has a different semi-algebraic homotopy
type than Z(Q,R〈ζ〉3) (it has three semi-algebraically connected components com-
pared to only one of Z(Q, R〈ζ〉3)). However, the semi-algebraic set bounded by
Z(Def(Q, ζ, 4),R〈ζ〉3) (i.e. the part inside the larger component but outside the
smaller ones) is semi-algebraically homotopy equivalent to Z(Q,R〈ζ〉3).

Figure 1. The algebraic set Z(Q,R3).

Figure 2. The algebraic set Z(Def(Q, ζ, 4), R3).
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By computing algebraic representations (see [17, Section 12.4] for the precise
definition of such a representation) of the pseudo-critical points one obtains for any
given algebraic set a finite set of points guaranteed to meet every semi-algebraically
connected component of this algebraic set. Using some more arguments from real
algebraic geometry one can also reduce the problem of computing a finite set of
points guaranteed to meet every semi-algebraically connected component of the
realization of every realizable sign condition on a given family of polynomials to
finding points on certain algebraic sets defined by the input polynomials (or infin-
itesimal perturbations of these polynomials). The details of this argument can be
found in [17, Proposition 13.2].

The following theorem which is the best result of this kind appears in [13].

Theorem 2.15. Let Z(Q,Rk) be an algebraic set of real dimension k′, where Q is
a polynomial in R[X1, . . . , Xk] of degree at most d, and let P ⊂ R[X1, . . . , Xk] be a
set of s polynomials with each P ∈ P also of degree at most d. Let D be the ring
generated by the coefficients of Q and the polynomials in P. There is an algorithm
which computes a set of points meeting every semi-algebraically connected compo-
nent of every realizable sign condition on P over Z(Q,R〈ε, δ〉k). The algorithm has
complexity

(k′(k − k′) + 1)
∑
j≤k′

4j

(
s

j

)
dO(k) = sk′

dO(k)

in D. There is also an algorithm providing the list of signs of all the polynomials
of P at each of these points with complexity

(k′(k − k′) + 1)s
∑
j≤k′

4j

(
s

j

)
dO(k) = sk′+1dO(k)

in D.

Notice that the combinatorial complexity (i.e. the part that depends on s) of
the algorithm in Theorem 2.15 depends on the dimension of the variety rather than
that of the ambient space.

2.3. Certain quantitative results in metric semi-algebraic geometry. In
the case D = Z, a careful analysis of the algorithm in Theorem 2.15 produces
an explicit upper bound on the radius of a ball centered at the origin which is
guaranteed to meet every semi-algebraically connected component of any P-semi-
algebraic set in terms of s, d, k and a bound on the bit-size, τ , of the coefficients of P.
This and related bounds of this type are often needed in designing other algorithms
(for instance, in order to compute certificates of positivity by sub-division method
as done in [32]). The following rather technical but completely explicit estimate
appears in [20] (the same paper contains several other explicit estimates of similar
types).

Notation 3. Given an integer n, we denote by bit(n) the number of bits of its
absolute value in the binary representation. Note that

(2.5) bit(nm) ≤ bit(n) + bit(m),

(2.6) bit

(
n∑

i=1

mi

)
≤ bit(n) +

n
sup
i=1

(bit(mi)).
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Theorem 2.16. [20] Let P = {P1, . . . , Ps} ⊂ Z[X1, . . . , Xk] and suppose that
P ∈ P have degrees at most d, and the coefficients of P ∈ P have bitsizes at most
τ . Then there exists a ball centered at the origin of radius

(
(2DN(2N − 1) + 1)2(2N−1)(τ ′′+bit(2N−1)+bit(2DN+1))

)1/2

where

d′ = sup(2(d + 1), 6),
D = k(d′ − 2) + 2,

N = d′(d′ − 1)k−1,

τ ′′ = N(τ ′
2 + bit(N) + 2bit(2D + 1) + 1),

τ ′
2 = τ ′

1 + 2(k − 1)bit(N) + (2k − 1)bit(k),
τ ′
1 = D(τ ′

0 + 4bit(2D + 1) + bit(N)) − 2bit(2D + 1) − bit(N),
τ ′
0 = 2τ + kbit(d + 1) + bit(2d′) + bit(s)

intersecting every semi-algebraically connected component of the realization of every
realizable sign condition (resp. realizable weak sign condition) on P.

Remark 2.17. Note that asymptotic bounds of the form 2τdO(k)
for the same problem

were known before [19, 46, 67]. One point which needs some explanation is the fact
that s plays a role in the estimate in Theorem 2.16, while it does not appear in the
formula 2τdO(k)

. This is because the total number of polynomials of degree at most
d in k variables with bitsizes bounded by τ is bounded by (2τ+1)(

d+k
k ) = 2τdO(k)

.

2.4. Singly exponential quantifier elimination algorithms. The algorithm
with singly exponential algorithm for computing sample points in every semi-
algebraically connected component of every realizable sign condition of a family of
polynomials used in a parametrized way is a very important ingredient in designing
algorithms with singly exponential complexity for real quantifier elimination. More
precisely, it allows us to eliminate one whole block of variables (quantified by the
same quantifier) at one time, unlike in algorithms based on cylindrical algebraic
decomposition, where the elimination has to proceed one variable at a time regard-
less of the block structure of the quantifiers. The singly exponential algorithm for
eliminating one block of variables at a time is formalized as the Block Elimina-
tion Algorithm [17, Chapter 14] and does the following. Given a finite family of
polynomials P ⊂ R[X1, . . . , Xk, Y1, . . . , Y�], the Block Elimination Algorithm pro-
duces as output a family of polynomials BElimX(P) ⊂ R[Y1, . . . , Y�]. The family
BElimX(P) has the following important property that justifies its name. For each
semi-algebraically connected component, C ⊂ R�, of each realizable sign condition
of BElimX(P), the set of realizable sign conditions of P(y) ⊂ R[X1, . . . , Xk] stay
invariant as y is allowed to vary over C. The Block Elimination Algorithm also
produces a set of parametrized (by y) sample points which are guaranteed to meet
each semi-algebraically connected component of the set of realizable sign condi-
tions of P(y) ⊂ R[X1, . . . , Xk]. The complexity of this algorithm is bounded by
sk+1dO(�+k), where as usual s = card P and d is a bound on the degrees of the
polynomials in P.

2.4.1. Sign Determination Algorithm. The Block Elimination Algorithm is one im-
portant ingredient of the critical point based quantifier elimination algorithm. The
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other important ingredient is a Sign Determination Algorithm that allows one
to compute the vector of signs of a family, P, of s polynomials in D[X] at the real
roots of a fixed polynomial Q ∈ D[X], with complexity sdO(1), where d is a bound
on the degrees of the polynomials in P and Q. This algorithm was first discovered
by Ben-Or, Kozen and Reif [26] and extended by Roy and Szpirglas [69] (see also
[60] for recent improvements). This algorithm has also been generalized to the
multi-variate case (where the zeros of Q could be positive dimensional), and this is
described below in Section 3.3.

2.4.2. Quantifier Elimination Algorithm. The above ingredients (namely, the Block
Elimination Algorithm and the Sign Determination Algorithm), along with numer-
ous technical detail which we omit in this survey, allows one to prove the following
result.

Theorem 2.18. [17] Let P be a set of at most s polynomials each of degree at most
d in k + � variables with coefficients in a real closed field R, and let Π denote a
partition of the list of variables (X1, . . . , Xk) into blocks, X[1], . . . , X[ω], where the
block X[i] has size ki, 1 ≤ i ≤ ω. Given Φ(Y ), a (P, Π)-formula, there exists an
equivalent quantifier free formula,

Ψ(Y ) =
I∨

i=1

Ji∧
j=1

(
Ni,j∨
n=1

sign(Pijn(Y )) = σijn),

where Pijn(Y ) are polynomials in the variables Y , σijn ∈ {0, 1,−1},

I ≤ s(kω+1)···(k1+1)(�+1)dO(kω)···O(k1)O(�),

Ji ≤ s(kω+1)···(k1+1)dO(kω)···O(k1),

Nij ≤ dO(kω)···O(k1),

and the degrees of the polynomials Pijk(y) are bounded by dO(kω)···O(k1). Moreover,
there is an algorithm to compute Ψ(Y ) with complexity

s(kω+1)···(k1+1)(�+1)dO(kω)···O(k1)O(�)

in D, denoting by D the ring generated by the coefficients of P.
If D = Z, and the bit-sizes of the coefficients of the polynomials are bounded by

τ , then the bit-sizes of the integers appearing in the intermediate computations and
the output are bounded by τdO(kω)···O(k1)O(�).

Remark 2.19. The algorithmic results described in Section 2.2 are based on one
common technique – namely, by taking a well chosen infinitesimal perturbation, one
can replace any bounded, real (possibly singular) variety V ⊂ Rk, by a non-singular
variety defined over an (non-archimedean) extension of R, and the projection map
on some co-cordinate (say X1) restricted to this variety has non-degenerate criti-
cal points, which moreover are defined by a zero-dimensional system of equations
which is nicely behaved (is automatically a Gröbner basis). The limits of these
critical points belong to the given variety V and moreover they meet every semi-
algebraically connected component of V . This technique (which is rather special to
real algebraic geometry as opposed to complex geometry) has several advantages
from the point of view of algorithmic complexity. The first advantage is that it
is not necessary to choose any generic co-ordinate system or direction to project
on. Secondly, the method does not care about how singular the given variety V is
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or even its dimension. Moreover, it is possible to relate the topology (up to semi-
algebraic homotopy equivalence) of V with the infinitesimal “tube” around it which
is bounded by the perturbed hyper-surface (say V ′). This reduces most algorith-
mic problems of computing topological invariants of V , to that of the well-behaved
hyper-surface V ′. Since the degree of the polynomial defining V ′ is at most twice
that of the one defining V , and the computations take place in the original ring
adjoined with at most a constant many (i.e. their number is independent of the
input parameters s, d and k) infinitesimals, the complexity is well controlled. The
main disadvantage of the approach (which could a drawback from the point of view
of practical implementation point) is that computations with even a constant many
infinitesimals are quite expensive (even though they do not affect the asymptotic
complexity bounds). Also, the process of taking algebraic limits at the end can be
quite cumbersome. Nevertheless, this perturbation approach remains the only one
which gives deterministic algorithms with the best known worst case complexity
estimates.

2.5. Intrinsic complexity and complex algebraic techniques. The model
for studying complexity of algorithms in this survey is that the size of the input
is measured in terms of the number of coefficients needed to specify the input
polynomials in the dense representation. Since this number is determined by the
following parameters:

(1) the number of variables, k;
(2) the number of polynomials, s;
(3) the degrees of the polynomials, d;

it makes sense to state the complexity estimates in terms of s, d and k.
There is another body of work (see for example [1, 2, 70, 71, 49]) in which the

goal is to obtain algorithms for computing sample points on each semi-algebraically
connected component of a given real algebraic variety V ⊂ Rk, whose complexity
is bounded by a polynomial function of some intrinsic invariant of the variety V or
in some cases the length of straight line programs encoding the input polynomials.
In this approach, the real variety V is considered as the real part of the complex
variety VC ⊂ Ck (where C is the algebraic closure of R), and the intrinsic invariant,
δ(V ) = δ(VC) depends only on the geometry of the complex variety VC, and not
on the particular presentation of it by the given input polynomials. If d is a bound
on the degrees of the polynomials defining V , then δ(V ) is bounded by O(d)k and
could be as large as dk in the worst case. However, δ(V ) could be smaller in special
cases.

Since these algorithms aim at complexity in terms of some geometric invariant of
the variety itself, the infinitesimal perturbation techniques described in the previous
sections is not available, since such a perturbation will not in general preserve this
invariant. Hence, one needs to work directly with the given variety. For example,
one needs to prove that under certain assumptions on the variety, the critical points
of a generic projection (also called the polar variety) is non-singular (see [3]). The
theory of geometric resolutions (see [2]) play an important role in these algorithms.

One feature of the algorithms that follow from these techniques is that it is nec-
essary to choose generic co-ordinates which cannot be done deterministically within
the claimed complexity bounds. As such one obtains probabilistic (as opposed to
deterministic) algorithms, meaning that these algorithms always run within the
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stated complexity time bounds, but is guaranteed to give correct results only with
high probability.

2.6. Variants of quantifier elimination and applications. In certain applica-
tions (most notably in the theory of constraint databases) one needs to perform
quantifier elimination in a more generalized setting than that discussed above. For
instance, it is sometimes necessary to eliminate quantifiers not just from one for-
mula, but a whole sequence of formulas described in some finite terms, where the
number of free variables is allowed to grow in the sequence. Clearly, the quantifier
elimination algorithms described previously is not sufficient for this purpose since
their complexity depends on the number of free variables.

We describe below a variant of the quantifier elimination problem which was
introduced in [6] motivated by a problem in constraint databases.

2.6.1. The Uniform Quantifier Elimination Problem.

Definition 2.20. We call a sequence,

{φn(T1, . . . , T�, Y1, . . . , Yn) | n > 0}
of first-order formulas φn in the language of ordered fields, to be a uniform se-
quence if each φn has the form,

φn(T1, . . . , T�, Y1, . . . , Yn) =

Q1
1≤k1≤n . . . Qω

1≤kω≤nφ(T1, . . . , T�, Yk1 , . . . , Ykω
),

where Qi ∈ {∨,∧}, 1 ≤ i ≤ ω and φ is some fixed (� + ω)-ary quantifier-free first-
order formula.

Thus for every n, φn is a first order formula with � + n free variables. We will
refer to the variables T1, . . . , T� as parameters.

Given a uniform sequence of formulas Φ = {φn | n > 0}, where

φn(T1, . . . , T�, Y1, . . . , Yn) =

Q1
1≤k1≤n . . . Qω

1≤kω≤nφ(T1, . . . , T�, Yk1 , . . . , Ykω
),

we define the size of Φ to be the length of the formula φ.

Example 2.21. Consider the uniform sequence of formulas

φn(T1, Y1, . . . , Yn) =
∧

1≤k1≤n

(Yk1 − T1 = 0), n > 0.

Consider the sequence of quantified formulas, (∃T1)φn(T1, Y1, . . . , Yn). In this
example, it is easily seen that letting

Ψn =
∧

1≤k1≤n

∧
1≤k2≤n

(Yk1 − Yk2 = 0),

we get a uniform sequence of quantifier-free formulas satisfying,

Ψn(Y1, . . . , Yn) ⇔ (∃T1)φn(T1, Y1, . . . , Yn)

for every n > 0.

The uniform quantifier elimination problem is to eliminate quantifiers from
a uniform sequence of formulas and obtain another uniform sequence of quantifier
free formulas.

The following is proved in [6].
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Theorem 2.22. (Uniform Quantifier Elimination) Let,

Φ = {φn(T1, . . . , T�, Y1, . . . , Yn) | n > 0}

be a uniform sequence of formulas with parameters T1, . . . , T�, where

φn(T1, . . . , T�, Y1, . . . , Yn) =

Q1
1≤k1≤n . . . Qω

1≤kω≤nφ(T1, . . . , T�, Yk1 , . . . , Ykω ).

Let the number of different (� + ω)-variate polynomials appearing in φ be s and
let their degrees be bounded by d.

Let R1, . . . , Rm ∈ {∃,∀}, Ri �= Ri+1, and let T [1], . . . , T [m] be a partition of the
variables, T1, . . . , T� into m blocks of size �1, . . . , �m, where

∑
1≤i≤m �i = �.

Then, there exists an algorithm that outputs a quantifier-free first order formula,
ψ(Yk1 , . . . , Ykω′ ), along with Qi ∈ {

∨
,
∧
}, 1 ≤ i ≤ ω′, such that for every n > 0

ψn(Y1, . . . , Yn) = Q1
1≤k1≤n . . . Qω′

1≤kω′≤nψ(Yk1 , . . . , Ykω′ )

⇔ (R1T
[1]) . . . (RmT [m])φn(Y1, . . . , Yn, T1, . . . , T�).

The complexity of the algorithm is bounded by

s
Q

i(�i+1)dω
Q

i O(�2i ),

and the size of the formula ψ is bounded by

s
Q

i(�i+1)dω
Q

i O(�2i )size(φ).

Remark 2.23. In [6] Theorem 2.22 is used to prove the equivalence of two different
semantics and in the theory of constraint databases. However, it also has applica-
tions in logic. For example, in the same paper it is used to prove that semi-algebraic
connectivity is not expressible by a first-order formula (see [6] for a precise defini-
tion of first-order expressibility). This inexpressibility result has as a consequence
that we cannot hope to use quantifier-elimination directly to check whether a given
semi-algebraic set is semi-algebraically connected (unlike other first-order express-
ible topological properties such as being open or closed etc. where it is possible
to do so). Note that the inexpressibility result was also proved by more abstract
model theoretic methods in [27].

The technique used in the proof of Theorem 2.22 is also used in [6] to give
an algorithm for ordinary quantifier elimination whose complexity depends on the
size of the input formula, and which has better complexity than the algorithm in
Theorem 2.18 in case the input formula has a small size. This algorithm is called
Local Quantifier Elimination Algorithm in [17].

3. Computing topological invariants of semi-algebraic sets

As remarked above (see Remark 2.23), an effective algorithm for deciding con-
nectivity of semi-algebraic sets does not automatically follow from the Tarski-
Seidenberg principle. However, one can decide questions about connectivity (as
well as compute other topological invariants such as the Betti numbers) using effec-
tive triangulation of semi-algebraic sets via Cylindrical Algebraic Decomposition.
However, such an algorithm will necessarily have doubly exponential complexity.

Most of the recent work in algorithmic semi-algebraic geometry has focused on
obtaining singly exponential time algorithms – that is algorithms with complexity
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of the order of (sd)kO(1)
rather than (sd)2

k

. An important motivating reason be-
hind the search for such algorithms, is the following theorem due to Gabrielov and
Vorobjov [43] (see also [42]) (see [61, 75, 55, 7], as well as the survey article [15], for
work leading up to this result) which gives singly exponential upper bound on the
topological complexity of semi-algebraic sets measured by the sum of their Betti
numbers.

Theorem 3.1. [43] For a P-semi-algebraic set S ⊂ Rk, the sum of the Betti
numbers of S is bounded by (O(skd))k, where s = card P, and d = maxP∈P deg(P ).

For the special case of P-closed semi-algebraic sets the following slightly better
bound was known before [7] (and this bound is used in an essential way in the proof
of Theorem 3.1). Using the same notation as in Theorem 3.1 above we have

Theorem 3.2. [7] For a P-closed semi-algebraic set S ⊂ Rk, the sum of the Betti
numbers of S is bounded by (O(sd))k.

Remark 3.3. These bounds are asymptotically tight, as can be already seen from
the example where each P ∈ P is a product of d generic polynomials of degree one.
The number of semi-algebraically connected components of the P-semi-algebraic
set defined as the subset of Rk where all polynomials in P are non-zero is clearly
bounded from below by (Csd)k for some constant C.

3.1. Roadmaps. Theorem 2.15 gives a singly exponential time algorithm for test-
ing if a given semi-algebraic set is empty or not. However, it gives no way of testing
if any two sample points computed by it belong to the same semi-algebraically con-
nected component of the given semi-algebraic set, even though the set of sample
points is guaranteed to meet each such semi-algebraically connected component. In
order to obtain connectivity information in singly exponential time a more sophis-
ticated construction is required – namely that of a roadmap of a semi-algebraic set,
which is an one dimensional semi-algebraic subset of the given semi-algebraic set
which is non-empty and semi-algebraically connected inside each semi-algebraically
connected component of the given set. Roadmaps were first introduced by Canny
[33], but similar constructions were considered as well by Grigoriev and Vorobjov
[45] and Gournay and Risler [44]. Our exposition below follows that in [14, 17]
where the most efficient algorithm for computing roadmaps is given. The notions
of pseudo-critical points and values defined above play a critical role in the design
of efficient algorithms for computing roadmaps of semi-algebraic sets.

We first define a roadmap of a semi-algebraic set . We use the following
notation. We denote by π1...j the projection, x �→ (x1, . . . , xj). Given a set S ⊂ Rk

and y ∈ Rj , we denote by Sy = S ∩ π−1
1...j(y).

Definition 3.4 (Roadmap of a semi-algebraic set). Let S ⊂ Rk be a semi-algebraic
set. A roadmap for S is a semi-algebraic set M of dimension at most one contained
in S which satisfies the following roadmap conditions:

• RM1 For every semi-algebraically connected component D of S, D ∩ M is
non-empty and semi-algebraically connected.

• RM2 For every x ∈ R and for every semi-algebraically connected component
D′ of Sx, D′ ∩ M �= ∅.

We describe the construction of a roadmap RM(Z(Q,Rk),N ) for a bounded
algebraic set Z(Q,Rk) which contains a finite set of points N of Z(Q,Rk). A



Université de Rennes 1, 20 - 24 june 2011

30

18 SAUGATA BASU

X2

X3

v3 v4 v5v1
v2 v6

X1

Input points

Figure 3. Roadmap of the torus in R3.

precise description of how the construction can be performed algorithmically can
be found in [17]. We should emphasize here that RM(Z(Q, Rk),N ) denotes the
semi-algebraic set output by the specific algorithm described below which satisfies
the properties stated in Definition 3.4 (cf. Proposition 3.5).

Also, in order to understand the roadmap algorithm it is easier to first concen-
trate on the case of a bounded and non-singular real algebraic set in Rk (see Figure
3 below). In this case several definitions get simplified. For example, the pseudo-
critical values defined below are in this case ordinary critical values of the projection
map on the first co-ordinate. However, one should keep in mind that even if one
starts with a bounded non-singular algebraic set, the input to the recursive calls
corresponding to the critical sections (see below) are necessarily singular and thus
it is not possible to treat the non-singular case independently.

A key ingredient of the roadmap is the construction of pseudo-critical points and
values defined above. The construction of the roadmap of an algebraic set con-
taining a finite number of input points N of this algebraic set is as follows. We
first construct X2-pseudo-critical points on Z(Q,Rk) in a parametric way along
the X1-axis by following continuously, as x varies on the X1-axis, the X2-pseudo-
critical points on Z(Q,Rk)x. This results in curve segments and their endpoints on
Z(Q,Rk). The curve segments are continuous semi-algebraic curves parametrized
by open intervals on the X1-axis and their endpoints are points of Z(Q,Rk) above
the corresponding endpoints of the open intervals. Since these curves and their
endpoints include for every x ∈ R the X2-pseudo-critical points of Z(Q,Rk)x, they
meet every semi-algebraically connected component of Z(Q,Rk)x. Thus, the set of
curve segments and their endpoints already satisfy RM2. However, it is clear that
this set might not be semi-algebraically connected in a semi-algebraically connected
component and so RM1 might not be satisfied. We add additional curve segments
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to ensure connectedness by recursing in certain distinguished hyper-planes defined
by X1 = z for distinguished values z.

The set of distinguished values is the union of the X1-pseudo-critical values, the
first coordinates of the input points N , and the first coordinates of the endpoints
of the curve segments. A distinguished hyper-plane is an hyper-plane defined by
X1 = v, where v is a distinguished value. The input points, the endpoints of the
curve segments, and the intersections of the curve segments with the distinguished
hyper-planes define the set of distinguished points.

Let the distinguished values be v1 < . . . < v�. Note that amongst these are the
X1-pseudo-critical values. Above each interval (vi, vi+1) we have constructed a col-
lection of curve segments Ci meeting every semi-algebraically connected component
of Z(Q,Rk)v for every v ∈ (vi, vi+1). Above each distinguished value vi we have a
set of distinguished points Ni. Each curve segment in Ci has an endpoint in Ni and
another in Ni+1. Moreover, the union of the Ni contains N .

We then repeat this construction in each distinguished hyper-plane Hi defined by
X1 = vi with input Q(vi, X2, . . . , Xk) and the distinguished points in Ni. Thus, we
construct distinguished values vi,1, . . . , vi,�(i) of Z(Q(vi, X2, . . . , Xk), Rk−1) (with
the role of X1 being now played by X2) and the process is iterated until for I =
(i1, . . . , ik−2), 1 ≤ i1 ≤ �, . . . , 1 ≤ ik−2 ≤ �(i1, . . . , ik−3), we have distinguished
values vI,1 < . . . < vI,�(I) along the Xk−1 axis with corresponding sets of curve
segments and sets of distinguished points with the required incidences between
them.

The following theorem is proved in [14] (see also [17]).

Proposition 3.5. The semi-algebraic set RM(Z(Q,Rk),N ) obtained by this con-
struction is a roadmap for Z(Q,Rk) containing N .

Note that if x ∈ Z(Q,Rk), RM(Z(Q,Rk), {x}) contains a path, γ(x), connecting
a distinguished point p of RM(Z(Q,Rk)) to x.

3.1.1. Roadmaps of general semi-algebraic sets. Using the same ideas as above and
some additional techniques for controlling the combinatorial complexity of the al-
gorithm it is possible to extend the roadmap algorithm to the case of semi-algebraic
sets. The following theorem appears in [14, 17].

Theorem 3.6. [14, 17] Let Q ∈ R[X1, . . . , Xk] with Z(Q,Rk) of dimension k′ and
let P ⊂ R[X1, . . . , Xk] be a set of at most s polynomials for which the degrees of
the polynomials in P and Q are bounded by d. Let S be a P-semi-algebraic subset
of Z(Q,Rk). There is an algorithm which computes a roadmap RM(S) for S with
complexity sk′+1dO(k2) in the ring D generated by the coefficients of Q and the
elements of P. If D = Z, and the bit-sizes of the coefficients of the polynomials
are bounded by τ , then the bit-sizes of the integers appearing in the intermediate
computations and the output are bounded by τdO(k2).

Theorem 3.6 immediately implies that there is an algorithm whose output is
exactly one point in every semi-algebraically connected component of S and whose
complexity in the ring generated by the coefficients of Q and P is bounded by
sk′+1dO(k2). In particular, this algorithm counts the number semi-algebraically
connected component of S within the same time bound.
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3.1.2. Recent developments. Very recently Schost and Safey el Din [41] have given
a probabilistic algorithm for computing the roadmap of a smooth, bounded real al-
gebraic hyper-surface in Rk defined by a polynomial of degree d, whose complexity
is bounded by dO(k3/2). Complex algebraic techniques related to the geometry of
polar varieties play an important role in this algorithm. More recently, a deter-
ministic algorithm for computing roadmaps of arbitrary real algebraic sets with the
same complexity bound, has also been obtained [21]. This algorithm is based on
techniques coming from semi-algebraic geometry and can be seen as a direct gen-
eralization of Proposition 3.5 above. The main new idea is to consider the critical
points of projection maps onto a co-ordinate subspace of dimension bigger than 1
(in fact, of dimension

√
k). As a result the dimensions in the recursive calls to the

algorithm decreases by
√

k at each step of the recursion (compared to the case of
the ordinary roadmap algorithms where it decreases by 1 in each step). This results
in the improved complexity. One also needs to prove suitable generalizations of the
results guaranteeing the connectivity of the roadmap (see [17, Chapter 15]) in this
more general situation.

3.1.3. Parametrized paths. One important idea in the algorithm for computing
the first Betti number of semi-algebraic sets, is the construction of certain semi-
algebraic sets called parametrized paths. Under a certain hypothesis, these sets are
semi-algebraically contractible. Moreover, there exists an algorithm for computing
a covering of a given basic semi-algebraic set, S ⊂ Rk, by a singly exponential
number of parametrized paths.
Parametrized Paths. We are given a polynomial Q ∈ R[X1, . . . , Xk] such that
Z(Q,Rk) is bounded and a finite set of polynomials P ⊂ R[X1, . . . , Xk].

The main technical construction underlying the algorithm for computing the
first Betti number in [18], is to obtain a covering of a given P-closed semi-algebraic
set contained in Z(Q,Rk) by a family of semi-algebraically contractible subsets.
This construction is based on a parametrized version of the connecting algorithm:
we compute a family of polynomials such that for each realizable sign condition
σ on this family, the description of the connecting paths of different points in the
realization, R(σ, Z(Q,Rk)), are uniform. We first define parametrized paths. A
parametrized path is a semi-algebraic set which is a union of semi-algebraic paths
having a special property called the divergence property in [18].

More precisely,

Definition 3.7 (Parametrized paths). A parametrized path γ is a continu-
ous semi-algebraic mapping from V ⊂ Rk+1 → Rk, such that, denoting by U =
π1...k(V ) ⊂ Rk, there exists a semi-algebraic continuous function � : U → [0, +∞),
and there exists a point a in Rk, such that

(1) V = {(x, t) | x ∈ U, 0 ≤ t ≤ �(x)},
(2) ∀ x ∈ U, γ(x, 0) = a,
(3) ∀ x ∈ U, γ(x, �(x)) = x,
(4)

∀ x ∈ U,∀ y ∈ U,∀ s ∈ [0, �(x)],∀ t ∈ [0, �(y)]
(γ(x, s) = γ(y, t) ⇒ s = t) ,
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Figure 4. A parametrized path

(5)

∀ x ∈ U,∀ y ∈ U,∀ s ∈ [0, min(�(x), �(y))]
(γ(x, s) = γ(y, s) ⇒ ∀ t ≤ s γ(x, t) = γ(y, t)) .

Given a parametrized path, γ : V → Rk, we will refer to U = π1...k(V ) as its
base. Also, any semi-algebraic subset U ′ ⊂ U of the base of such a parametrized
path, defines in a natural way the restriction of γ to the base U ′, which is another
parametrized path, obtained by restricting γ to the set V ′ ⊂ V , defined by V ′ =
{(x, t) | x ∈ U ′, 0 ≤ t ≤ �(x)}.

The following proposition which appears in [18] describes a crucial property of
parametrized paths, which makes them useful in algorithms for computing Betti
numbers of semi-algebraic sets.

Proposition 3.8. [18] Let γ : V → Rk be a parametrized path such that U =
π1...k(V ) is closed and bounded. Then, the image of γ is semi-algebraically con-
tractible.

For every point x of Z(Q, Rk), denote by σ(x) the sign condition on P at x. Let
R(σ(x),Z(Q,Rk)) = {x ∈ Z(Q, Rk) |

∧
P∈P sign(P (x)) ∈ σ(x)(P )}, where σ is

the relaxation of σ defined by



σ = {0} if σ = 0,
σ = {0, 1} if σ = 1,

σ = {0,−1} if σ = −1.

We say that σ(x) is the weak sign condition defined by x on P. We denote by
P(x) the union of {Q} and the set of polynomials in P vanishing at x.

The following theorem appears in [18].

Theorem 3.9. There exists an algorithm that takes as input a finite set of poly-
nomials P ⊂ R[X1, . . . , Xk], and produces as output,
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• a finite set of polynomials A ⊂ R[X1, . . . , Xk],
• a finite set Θ of quantifier free formulas, with atoms of the form P = 0, P >

0, P < 0, P ∈ A, such that for every semi-algebraically connected compo-
nent S of the realization of every weak sign condition on P on Z(Q,Rk),
there exists a subset Θ(S) ⊂ Θ such that S =

⋃
θ∈Θ(S)

R(θ, Z(Q,Rk)),

• for every θ ∈ Θ, a parametrized path

γθ : Vθ → Rk,

with base Uθ = R(θ, Z(Q, Rk)), such that for each y ∈ R(θ, Z(Q,Rk)),
Im γθ(y, ·) is a semi-algebraic path which connects the point y to a distin-
guished point aθ of some roadmap RM(Z(P ′ ∪ {Q}, Rk)) where P ′ ⊂ P,
staying inside R(σ(y),Z(Q, Rk)).

Moreover, the complexity of the algorithm is sk′+1dO(k4), where s is a bound on
the number of elements of P and d is a bound on the degrees of Q and the elements
of P.

3.2. Computing higher Betti numbers. It clear that the Betti numbers of a
semi-algebraic set which is closed and bounded can be computed using elementary
linear algebra once we have a triangulation of the set. However, triangulations of
semi-algebraic sets are expensive to compute, requiring doubly exponential time.

One basic idea that underlies some of the recent progress in designing algo-
rithms for computing the Betti numbers of semi-algebraic sets is that the coho-
mology groups of a semi-algebraic set can often be computed from a sufficiently
well-behaved covering of the set without having to triangulate the set.

The idea of computing cohomology from “good” covers is an old one in algebraic
topology and the first result in this direction is often called the “Nerve Lemma”. In
this section we give a brief introduction to the Nerve Lemma and its generalizations.

We first define formally the notion of a cover of a closed, bounded semi-algebraic
set.

Definition 3.10 (Cover). Let S ⊂ Rk be a closed and bounded semi-algebraic set.
A cover, C(S), of S consists of an ordered index set, which by a slight abuse of
language we also denote by C(S), and a map that associates to each α ∈ C(S) a
closed and bounded semi-algebraic subset Sα ⊂ S such that

S =
⋃

α∈C(S)

Sα.

For α0, . . . , αp,∈ C(S), we associate to the formal product, α0 · · ·αp, the closed
and bounded semi-algebraic set

(3.1) Sα0···αp
= Sα0 ∩ · · · ∩ Sαp

.

Recall that the 0-th simplicial cohomology group of a closed and bounded semi-
algebraic set X, H0(X), can be identified with the Q-vector space of Q-valued
locally constant functions on X. Clearly the dimension of H0(X) is equal to the
number of connected components of X.

For α0, α1, . . . , αp, β ∈ C(S), and β �∈ {α0, . . . , αp}, let

rα0,...,αp;β : H0(Sα0···αp) −→ H0(Sα0···αp·β)
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be the homomorphism defined as follows. Given a locally constant function, φ ∈
H0(Sα0···αp

), rα0···αp;β(φ) is the locally constant function on Sα0···αp·β obtained by
restricting φ to Sα0···αp·β .

We define the generalized restriction homomorphisms

δp :
⊕

α0<···<αp,αi∈C(S)

H0(Sα0···αp) −→
⊕

α0<···<αp+1,αi∈C(S)

H0(Sα0···αp+1)

by

(3.2) δp(φ)α0···αp+1 =
∑

0≤i≤p+1

(−1)irα0···α̂i···αp+1;αi(φα0···α̂i···αp+1),

where φ ∈
⊕

α0<···<αp∈C(S) H0(Sα0···αp) and rα0···α̂i···αp+1;αi
is the restriction ho-

momorphism defined previously. The sequence of homomorphisms δp gives rise to
a complex, L•(C(S)), defined by

(3.3) Lp(C(S)) =
⊕

α0<···<αp,αi∈C(S)

H0(Sα0···αp),

with the differentials δp : Lp(C(S)) → Lp+1(C(S)) defined as in Eqn. (3.2).

Definition 3.11 (Nerve complex). The complex L•(C(S)) is called the nerve com-
plex of the cover C(S).

For � ≥ 0 we will denote by L•
� (C(S)) the truncated complex defined by

Lp
� (C(S)) = Lp(C(S)), 0 ≤ p ≤ �,

= 0, p > �.

Notice that once we have a cover of S and we identify the semi-algebraically
connected components of the various intersections, Sα0···αp , we have natural bases
for the vector spaces

Lp(C(S)) =
⊕

α0<···<αp,αi∈C(S)

H0(Sα0···αp)

appearing as terms of the nerve complex. Moreover, the matrices corresponding
to the homomorphisms δp in this basis depend only on the inclusion relationships
between the semi-algebraically connected components of Sα0···αp+1 and those of
Sα0···αp .

Definition 3.12 (Leray Property). We say that the cover C(S) satisfies the Leray
property if each non-empty intersection Sα0···αp is contractible.

Clearly, in this case

H0(Sα0···αp) ∼= Q, if Sα0···αp �= ∅
∼= 0, if Sα0···αp = ∅.

It is a classical fact (usually referred to as the Nerve Lemma) that

Theorem 3.13 (Nerve Lemma). Suppose that the cover C(S) satisfies the Leray
property. Then for each i ≥ 0,

Hi(L•(C(S))) ∼= Hi(S).

(See for instance [68] for a proof.)
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Remark 3.14. There are several interesting extensions of Theorem 3.13 (Nerve
Lemma). For instance, if the Leray property is weakened to say that each t-ary
intersection is (k− t + 1)-connected, then one can conclude that the nerve complex
is k-connected. We refer the reader to the article by Björner [28] for more details.

Notice that Theorem 3.13 gives a method for computing the Betti numbers of S
using linear algebra from a cover of S by contractible sets for which all non-empty
intersections are also contractible, once we are able to test emptiness of the various
intersections Sα0···αp .

Now suppose that each individual member, Sα0 , of the cover is contractible,
but the various intersections Sα0···αp are not necessarily contractible for p ≥ 1.
Theorem 3.13 does not hold in this case. However, the following theorem is proved
in [18] and underlies the singly exponential algorithm for computing the first Betti
number of semi-algebraic sets described there.

Theorem 3.15. [18] Suppose that each individual member, Sα0 , of the cover C(S)
is contractible. Then,

Hi(L•
2(C(S))) ∼= Hi(S), for i = 0, 1.

Remark 3.16. Notice that from a cover by contractible sets Theorem 3.15 allows
us to compute using linear algebra, b0(S) and b1(S), once we have identified the
non-empty semi-algebraically connected components of the pair-wise and triple-wise
intersections of the sets in the cover and their inclusion relationships.

3.2.1. Constructing coverings of closed semi-algebraic sets by closed contractible
sets. The parametrized paths obtained in Theorem 3.9 are not necessarily closed
or even contractible, but become so after making appropriate modifications. At the
same time it is possible to maintain the covering property, namely for any given
P-closed semi-algebraic S set, there exists a set of modified parametrized paths,
whose union is S. Moreover, these modified sets are closed and contractible. We
omit the details of this (technical) construction referring the reader to [18] for more
detail. Putting together the constructions outlined above we have:

Theorem 3.17. [18] There exists an algorithm that given as input a P-closed and
bounded semi-algebraic set S, outputs a set of formulas {φ1, . . . , φM} such that

• each R(φi,R′k) is semi-algebraically contractible, and
•

⋃
1≤i≤M

R(φi,R′k) = Ext(S, R′),

where R′ is some real closed extension of R. The complexity of the algorithm is
bounded by s(k+1)2dO(k5), where s = card P and d = maxP∈P deg(P ).

3.2.2. Computing the First Betti Number. It is now an easy consequence of the
existence of singly exponential time covering algorithm (Theorem 3.17), and The-
orem 3.15 stated above, along with the fact that we can compute descriptions of
the semi-algebraically connected components of semi-algebraic sets in singly expo-
nential time, that we can compute the first Betti number of closed and bounded
semi-algebraic sets in singly exponential time (see Remark 3.16 above), since the di-
mensions of the images and kernels of the homomorphisms of the complex, L•

2(C(S))
in Theorem 3.15, can then be computed using traditional algorithms from linear
algebra. As mentioned earlier, for arbitrary semi-algebraic sets (not necessarily
closed and bounded), there is a singly exponential time reduction to the closed and
bounded case using the construction of Gabrielov and Vorobjov [42].
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3.2.3. Algorithm for Computing the First Few Betti Numbers. Using the same ideas
as above but with a more complicated recursive procedure to construct a suitable
complex one has the following:

Theorem 3.18. [9] For any given �, there is an algorithm that takes as input a P-
formula describing a semi-algebraic set S ⊂ Rk, and outputs b0(S), . . . , b�(S). The
complexity of the algorithm is (sd)kO(�)

, where s = card (P) and d = maxP∈P deg(P ).

Note that the complexity is singly exponential in k for every fixed �.

3.3. Computing generalized Euler-Poincaré characteristic. As mentioned
before in Section 2.4.1, efficient algorithms for sign determination of univariate
polynomials described in [26, 69] are amongst the most basic algorithms in algo-
rithmic real algebraic geometry. Given P ⊂ R[X], Q ∈ R[X] with card P = s,
and deg(P ) ≤ d for P ∈ P ∪ {Q}, these algorithms count for each realizable sign
condition of the family P, the cardinality of the set of real zeros of Q, lying in the
realization of that sign condition. The complexity of the algorithm in [69] is sdO(1).

In the multidimensional case, it is no longer meaningful to talk about the car-
dinalities of the zero set of Q lying in the realizations of different sign conditions
of P. However, there exists another discrete valuation on semi-algebraic sets that
properly generalizes the notion of cardinality. This valuation is the Euler-Poincaré
characteristic.

The Euler-Poincaré characteristic, χ(S), of a closed and bounded semi-
algebraic set S ⊂ Rk is defined as

χ(S) =
∑

i

(−1)ibi(S),

where bi(S) is the rank of the i-th simplicial homology group of S. Note that with
this definition, χ(∅) = 0, and χ(S) = card S, whenever card S < ∞. Moreover, χ
is additive.

The Euler-Poincaré characteristic defined above for closed and bounded semi-
algebraic set can be extended additively to all semi-algebraic sets. This gener-
alized Euler-Poincaré characteristic is then a homeomorphism (but not a
homotopy) invariant, and establishes an isomorphism between the Grothendieck
ring, K0(sa), of homeomorphism classes of semi-algebraic sets and Z.

The problem of determining the Euler-Poincaré characteristic of P-closed semi-
algebraic sets was considered in [7] where an algorithm was presented for comput-
ing the Euler-Poincaré characteristic of a given P-closed semi-algebraic set. The
complexity of the algorithm is (ksd)O(k). Moreover, in the special case when the
coefficients of the polynomials in P are integers of bit lengths bounded by τ , the
algorithm performs at most (ksd)O(k)τO(1) bit operations.

The following result (which should be viewed as a generalization of the univariate
sign determination algorithm) appears in [16].

Theorem 3.19. There exists an algorithm which given an algebraic set Z =
Z(Q,Rk) ⊂ Rk and a finite set of polynomials P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk],
computes the list χ(P, Z) indexed by elements, σ, of Sign(P, Z). If the degrees of the
polynomials in P ∪ {Q} are bounded by d, and the real dimension of Z = Z(Q,Rk)
is k′, then the complexity of the algorithm is

sk′+1O(d)k + sk′
((k′ log2(s) + k log2(d))d)O(k).
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If the coefficients of the polynomials in P ∪{Q} are integers of bit-sizes bounded by
τ , then the bit-sizes of the integers appearing in the intermediate computations and
the output are bounded by τ((k′ log2(s) + k log2(d))d)O(k).

3.4. Relation between the complexity of quantifier elimination and the
complexity of computing Betti numbers. It is clear from the previous sections
that there are two important strands of research in algorithms in real algebraic
geometry, namely

(1) Algorithms for deciding sentences in the first-order theory of the reals (with
several blocks of quantifiers);

(2) Computing topological invariants of semi-algebraic sets (such as their Betti
numbers).

While these two classes of problems might seem quite different, the following re-
duction result gives a polynomial time reduction of the problem of deciding quanti-
fied sentences in the first order theory of the reals with a fixed number of quantifiers
to the problem of computing Betti numbers of semi-algebraic sets. For technical
reasons, the reduction is only proved for a certain sub-class of formulas which is
defined more precisely below.

Definition 3.20. (Compact general decision problem with at most ω quantifier
alternations (GDPc

ω))
Input. A sentence Φ in the first order theory of R

(Q1X1 ∈ Sk1) · · · (QωXω ∈ Skω )φ(X1, . . . ,Xω),

where for each i, 1 ≤ i ≤ ω, Xi = (Xi
0, . . . , X

i
ki

) is a block of ki+1 variables,
Qi ∈ {∃,∀}, with Qj �= Qj+1, 1 ≤ j < ω, and φ is a quantifier-free formula
defining a closed semi-algebraic subset S of Sk1 × · · · × Skω .

Output. True or False depending on whether Φ is true or false in the first order
theory of R.

Notation 4. For any semi-algebraic set S ⊂ Rk, we denote by PS(T ), denote the
Poincaré polynomial of S – namely,

PS(T ) :=
∑
i≥0

bi(S) T i.

Definition 3.21. (Computing the Poincaré polynomial of semi-algebraic sets
(Poincaré))
Input. A quantifier-free formula defining a semi-algebraic set S ⊂ Rk.

Output. The Poincaré polynomial PS(T ).

The following reduction result appears in [25]. It says that with a mild hypothesis
of compactness, the General Decision Problem with a fixed number of quantifier
alternations can be reduced in polynomial time to the problem of computing Betti
numbers of semi-algebraic sets.

Theorem 3.22. [25] For every ω > 0, there is a deterministic polynomial time
reduction of GDPc

ω to Poincaré.

Remark 3.23. Theorem 3.22 is motivated by a well known theorem due to Toda
[76] in discrete complexity theory which relates two complexity classes – namely the
polynomial hierarchy and the complexity class #P. Theorem 3.22 can be viewed
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as an analogue of Toda’s theorem in the Blum-Shub-Smale model of computations
over arbitrary real closed fields [30] (see also [25]).

The main ingredients in the proof of Theorem 3.22 is an efficient semi-algebraic
realization of the iterated fibered join of a semi-algebraic set with itself over a
semi-algebraic map, and Alexander duality that allows one to express the Poincaré
polynomial of a semi-algebraic subset of the sphere in terms of its complement in
the sphere.

3.5. Effective semi-algebraic triangulation and stratification. As mentioned
above in Section 2.1.2 one obtains an algorithm for computing a semi-algebraic
triangulation of semi-algebraic sets using cylindrical algebraic decomposition (after
making a generic linear change of co-ordinates). The complexity of this is algorithm
dominated by the cost of the performing the cylindrical algebraic decomposition,
and is thus doubly exponential.

Algorithms for computing stratifications of semi-algebraic sets, such that the
strata satisfy additional regularity conditions (such as Whitney conditions (a) and
(b)) have been considered by several authors. Rannou [65] gave an algorithm for
obtaining stratification with regularity conditions that imply the Whitney condi-
tions. The complexity of this algorithm is doubly exponential in the depth of the
stratification. Finding a singly exponential algorithm for computing stratifications
of semi-algebraic sets remains a major open problem (see Section 5).

3.6. Semi-algebraic sets defined by quadratic and partially quadratic sys-
tems. A restricted class of semi-algebraic sets - namely, semi-algebraic sets defined
by quadratic inequalities – has been considered by several researchers [4, 5, 47]. As
in the case of general semi-algebraic sets, the Betti numbers of such sets can be
exponentially large in the number of variables, as can be seen in the following
example.

Example 3.24. The set S ⊂ R� defined by

Y1(Y1 − 1) ≥ 0, . . . , Y�(Y� − 1) ≥ 0

satisfies b0(S) = 2�.

However, it turns out that for a semi-algebraic set S ⊂ R� defined by m quadratic
inequalities, it is possible to obtain upper bounds on the Betti numbers of S which
are polynomial in � and exponential only in m. The first such result is due to
Barvinok [5], who proved the following theorem.

Theorem 3.25. [5] Let S ⊂ R� be defined by Q1 ≥ 0, . . . , Qm ≥ 0, deg(Qi) ≤
2, 1 ≤ i ≤ m. Then b(S) ≤ �O(m).

Remark 3.26. Notice that the bound in Theorem 3.25 is polynomial in the dimen-
sion � for fixed m, and this fact depends crucially on the assumption that the degrees
of the polynomials Q1, . . . , Qm are at most two. For instance, the semi-algebraic
set defined by a single polynomial of degree 4 can have Betti numbers exponentially
large in �, as exhibited by the semi-algebraic subset of R� defined by

�∑
i=0

Y 2
i (Yi − 1)2 ≤ 0.
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The above example illustrates the delicate nature of the bound in Theorem 3.25,
since a single inequality of degree 4 is enough to destroy the polynomial nature of
the bound. In contrast to this, it is shown in Theorem 3.31 below that a polynomial
bound on the Betti numbers of S continues to hold, even if we allow a few (meaning
any constant number) of the variables to occur with degrees larger than two in the
polynomials used to describe the set S.

The bound on the sum of all the Betti numbers in Theorem 3.25 has exponential
dependence on the number of inequalities. This dependence is unavoidable, since
the semi-algebraic set S ⊂ Rk defined by

X1(1 − X1) ≤ 0, . . . , Xk(1 − Xk) ≤ 0,

has b0(S) = 2k.
Hence, it is somewhat surprising that for any fixed constant �, the Betti num-

bers bk−1(S), . . . , bk−�(S), of a basic closed semi-algebraic set S ⊂ Rk defined by
quadratic inequalities, are polynomially bounded. The following theorem appears
in [8].

Theorem 3.27. Let R a real closed field and S ⊂ Rk be defined by

P1 ≤ 0, . . . , Ps ≤ 0, deg(Pi) ≤ 2, 1 ≤ i ≤ s.

Then, for � ≥ 0,

bk−�(S) ≤
(

s

�

)
kO(�).

3.6.1. Algorithm for testing emptiness. The problem of deciding whether a given
semi-algebraic set defined by a finite set of quadratic inequalities is empty or not
was considered first by Barvinok [4] who proved the following theorem.

Theorem 3.28. [4] There exists an algorithm which decides if a given system of
inequalities Q1 ≥ 0, . . . , Q� ≥ 0, with each Qi ∈ R[X1, . . . , Xk], deg(Qi) ≤ 2, has a
solution in Rk, whose complexity is bounded by kO(�).

Barvinok’s algorithm did not produce explicit sample points meeting every semi-
algebraically connected component of the set of solutions (in the style of Theorem
2.15 in the general case). This was done by Grigoriev and Pasechnik [47]. In fact,
they consider the following more general situation.

Let S ⊂ Rk be the pull-back of a P-semi-algebraic subset T ⊂ R� via a qua-
dratic map Q = (Q1, . . . , Q�) : Rk → R�, where P ⊂ R[Y1, . . . , Y�], Q1, . . . , Q� ∈
R[X1, . . . , Xk] with deg(Qi) ≤ 2 for i = 1, . . . , �.

In [47], Grigoriev and Pasechnik give an algorithm that computes a set of sample
points guaranteed to meet every semi-algebraically connected component of S whose
complexity is bounded by (ksd)O(�) where s = card P, and d is a bound on the
degrees of the polynomials in P.

Remark 3.29. Note that the problem of deciding the feasibility of even one quartic
real polynomial equation is an NP-hard problem, and the same is true for systems
of quadratic equations. Thus, there is little hope for obtaining a polynomial-time
algorithm for either of these problems. The above results are somewhat surprising
in that they imply in the quadratic case one obtains polynomial time algorithms
for testing feasibility, provided the number of polynomials is kept fixed (see also
Section 3.6.3 below). We refer the reader to [58] and [30] for precise definitions of
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the computational complexity classes that we refer to here and elsewhere in this
survey.

3.6.2. Computing the top few Betti numbers of basic semi-algebraic sets defined by
quadratic inequalities. Motivated by the polynomial bound on the top few Betti
numbers of sets defined by quadratic inequalities (Theorem 3.27), the problem of
obtaining a polynomial time algorithm to compute these numbers was investigated
in [11] where the following result is proved.

Theorem 3.30. [11] There exists an algorithm which given a set of s polynomi-
als, P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], with deg(Pi) ≤ 2, 1 ≤ i ≤ s, computes
bk−1(S), . . . , bk−�(S), where S is the set defined by P1 ≤ 0, . . . , Ps ≤ 0. The com-
plexity of the algorithm is

(3.4)
�+2∑
i=0

(
s

i

)
k2O(min(�,s))

.

If the coefficients of the polynomials in P are integers of bit-sizes bounded by τ ,
then the bit-sizes of the integers appearing in the intermediate computations and
the output are bounded by τ(sk)2

O(min(�,s))
.

3.6.3. Significance from the computational complexity theory viewpoint. Semi-algeb-
raic sets defined by a system of quadratic inequalities have a special significance in
the theory of computational complexity. Even though such sets might seem to be
the next simplest class of semi-algebraic sets after sets defined by linear inequali-
ties, from the point of view of computational complexity they represent a quantum
leap. Whereas there exist (weakly) polynomial time algorithms for solving linear
programming, solving quadratic feasibility problem is provably hard. For instance,
it follows from an easy reduction from the problem of testing feasibility of a real
quartic equation in many variables, that the problem of testing whether a sys-
tem of quadratic inequalities is feasible is NPR-complete in the Blum-Shub-Smale
model of computation (see [30]). Assuming the input polynomials to have integer
coefficients, the same problem is NP-hard in the classical Turing machine model,
since it is also not difficult to see that the Boolean satisfiability problem can be
posed as the problem of deciding whether a certain semi-algebraic set defined by
quadratic inequalities is empty or not. Counting the number of semi-algebraically
connected components of such sets is even harder. In fact, it is PSPACE-hard [66]
(PSPACE is a complexity class which contains the entire polynomial hierarchy),
and the proof of this results extend easily to the quadratic case. Moreover, it is
proved in [11] for � = O(log k), computing the �-th Betti number of a basic semi-
algebraic set defined by quadratic inequalities in Rk is PSPACE-hard. In view of
these hardness results, it is unlikely that there exist polynomial time algorithms for
computing the Betti numbers (or even the first few Betti numbers) of such a set.

From this point of view, Theorem 3.30 is quite surprising, since it gives a polyno-
mial time algorithm for computing certain Betti numbers of a class of semi-algebraic
sets for which computing the zero-th Betti number is already PSPACE-hard.

3.6.4. Semi-algebraic sets defined by partially quadratic systems. We have discussed
topological as well as algorithmic results concerning general semi-algebraic sets, as
well as those defined by quadratic constraints In [24], the authors try to interpo-
late between results known for general semi-algebraic sets (defined by polynomials
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of arbitrary degrees) and those known for semi-algebraic sets defined by polyno-
mials of degree at most 2. In order to do so they consider semi-algebraic sets
defined by polynomial inequalities, in which the dependence of the polynomials on
a subset of the variables is at most quadratic. As a result we obtain common gen-
eralizations of the bounds stated in Theorems 3.2 and 3.25. Given any polynomial
P ∈ R[X1, . . . , Xk, Y1, . . . , Y�], we will denote by degX(P ) (resp. degY (P )) the
total degree of P with respect to the variables X1, . . . , Xk (resp. Y1, . . . , Y�).

Denote by
• Q ⊂ R[Y1, . . . , Y�, X1, . . . , Xk], a family of polynomials with

degY (Q) ≤ 2,degX(Q) ≤ d, Q ∈ Q, card Q = m,

• P ⊂ R[X1, . . . , Xk], a family of polynomials with

degX(P ) ≤ d, P ∈ P, card P = s.

The following theorem that interpolates between Theorems 3.1 and 3.25 above
is proved in [24].

Theorem 3.31. Let S ⊂ R�+k be a (P ∪Q)-closed semi-algebraic set. Then

b(S) ≤ �2(O(s + � + m)�d)k+2m.

In particular, for m ≤ �, we have b(S) ≤ �2(O(s + �)�d)k+2m.

Notice that Theorem 3.31 can be seen as a common generalization of Theorems
3.2 and 3.25, in the sense that we recover similar bounds (that is bounds having
the same shape) as in Theorem 3.2 (respectively Theorem 3.25) by setting � and m
(respectively s, d and k) to O(1).

Note also that as a special case of Theorem 3.31 we obtain a bound on the
sum of the Betti numbers of a semi-algebraic set defined over a quadratic map.
As mentioned before, such sets have been considered from an algorithmic point of
view in [47], where an efficient algorithm is described for computing sample points
in every semi-algebraically connected component, as well as testing emptiness, of
such sets.

More precisely we have:

Corollary 3.32. Let Q = (Q1, . . . , Qk) : R� → Rk be a map where each Qi ∈
R[Y1, . . . , Y�] and deg(Qi) ≤ 2. Let V ⊂ Rk be a P-closed semi-algebraic set for
some family P ⊂ R[X1, . . . , Xk], with card P = s and deg(P ) ≤ d, P ∈ P. Let
S = Q−1(V ). Then

b(S) ≤ �2(O(s + � + k)�d)3k.

The techniques developed in this paper for obtaining tight bounds on the Betti
numbers of semi-algebraic sets defined by partly quadratic systems of polynomials
also pave the way towards designing more efficient algorithms for computing the
Euler-Poincaré characteristic as well as the Betti numbers of such sets.

The following theorem appears in [24].

Theorem 3.33. There exists an algorithm that takes as input the description of
a (P ∪ Q)-closed semi-algebraic set S (following the same notation as in Theorem
3.31) and outputs its the Euler-Poincaré characteristic χ(S). The complexity of
this algorithm is bounded by (�smd)O(m(m+k)). In the case when S is a basic closed
semi-algebraic set the complexity of the algorithm is (�smd)O(m+k).
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The algorithm for computing all the Betti numbers has complexity (�smd)2
O(m+k)

and its description can be found in [23]. While the complexity of both the algorithms
discussed above is polynomial for fixed m and k, the complexity of the algorithm
for computing the Euler-Poincaré characteristic is significantly better than that of
the algorithm for computing all the Betti numbers.

Note that the first versions of both these algorithms for computing the Euler-
Poincaré characteristic as well as the Betti numbers of semi-algebraic sets defined
by purely quadratic constraints having complexity which is polynomial for fixed
number of constraints, appeared first in [10] and [11] respectively. The extensions
of these algorithms to semi-algebraic sets defined by partially quadratic systems
were made in [24] and [23] respectively.

These latter results indicate that the problem of computing the Betti numbers
of semi-algebraic sets defined by a constant number of polynomial inequalities is
solvable in polynomial time, even if we allow a small (constant sized) subset of
the variables to occur with degrees larger than two in the polynomials defining the
given set.

4. Sums of squares and semi-definite programming

All the algorithms surveyed above have the feature that they are exact, and
most of them work over arbitrary real closed fields (even non-archimedean ones).
For example, the ring generated by the coefficients, D, could be the ordered ring,
Z[ε] with ε positive and infinitesimal, contained in the real closed field R = Ralg〈ε〉
and all algorithms reported above would still work without any modification.

There are some other approaches to designing algorithms for solving systems of
real polynomial equations or testing emptiness of semi-algebraic sets that deserve
mention. These approaches strictly assume that the underlying real closed field
is the field R of real numbers, and the computations are done with some finite
precision. In other words, the algorithms are numerical rather than exact, and as
such there is some possibility of error in the outputs. These algorithms are often
used in practical applications, where exact or symbolic algorithms are deemed to
be too expensive and small errors are considered not very significant.

We mention one such approach below.

4.1. Deciding non-negativity of polynomials using sums-of-squares. The
problem is to decide whether a given polynomial P ∈ R[X1, . . . , Xk] is non-negative
in Rk. More generally, the problem is to decide whether a given polynomial P ∈
R[X1, . . . , Xk] is non-negative over a given basic, semi-algebraic subset K ⊂ Rk.

There are also optimization versions of these problems namely.
Given P ∈ R[X1, . . . , Xk] compute

pmin := inf
x∈Rk

P (x).

More generally, Given P ∈ R[X1, . . . , Xk] and K ⊂ Rk a basic semi-algebraic
set, compute

pmin := inf
x∈K

P (x).

For purposes of exposition we concentrate on the first versions of these problems.
Let the degree of P be 2d and let Posk,d (resp. Σk,d) denote the cone of non-

negative polynomials (resp. cone of sum of squares) in R[X1, . . . , Xk] of degree at
most 2d. Clearly Σk,d ⊂ Posk,d and as known since Hilbert, the inclusion is strict



Université de Rennes 1, 20 - 24 june 2011

44

32 SAUGATA BASU

unless the pair (k, d) is of the form (1, d), (k, 1) or (k, d) = (2, 2) [31, Chapter 6].
Note that the cones Posk,d are in general not understood very well (for instance,
their face structure, extreme rays etc.) and testing membership in them is clearly an
NP-hard problem. On the other hand, the cones Σk,d are relatively well understood
and membership in Σk,d can be tested via semi-definite programming as a result of
the following theorem.

For any symmetric, square matrix X ∈ Rk×k, we let X � 0 denote that X is
positive, semi-definite. For each k, d ≥ 0, we denote by Mk,d the set of exponent
vectors α = (α1, . . . , αk) ∈ Nk with |α| =

∑k
i=1 αi ≤ d.

Theorem 4.1. [34, 63] The following are equivalent.
(1) P =

∑
α∈Mk,d

pαXα ∈ Σk,d.
(2) The following system in matrix variables X = (Xα,β)α,β∈Mk,d

is feasible:

X � 0∑
β,γ∈Mk,d,β+γ=α

Xβ,γ = pα, α ∈ Mk,2d.

The feasibility problem in the above theorem is an instance of the feasibility prob-
lem in the theory of semi-definite programming . Semi-definite programming
(or semi-definite optimization) is a generalization of linear programming, where
the problem is to optimize a linear functional over some affine section of the cone
of real symmetric positive semi-definite matrices in the space of k×k real symmet-
ric matrices. Because of its wide ranging applicability, semi-definite programming
has been the focus of intense effort on the part of researchers in optimization for
developing efficient algorithms for solving semi-definite programming problems. As
a result very efficient algorithms based on “interior point methods” (see [57]) have
been developed for solving semi-definite optimization problems such as the one in
Theorem 4.1. These algorithms are very efficient in practice, but there seems to be
no definitive mathematical result which states that the running time is polynomial
(in the bit-size of the input) (unlike in the case of linear programming).

Note that the polynomial optimization problems can also be “approximated”
using the sum of squares cone just like above. For example, in order to compute

pmin := inf
x∈Rk

P (x) = sup{ρ ∈ R | P − ρ ∈ Posk,d},

one computes
psos := sup{ρ ∈ R | P − ρ ∈ Σk,d}.

Since, this latter problem is an example of semi-definite optimization problem
and can be solved in practice using efficient interior points methods. Also note that
since the latter problem involves optimization over a smaller cone we have that

psos ≤ pmin.

The idea of “relaxing” polynomial optimization problems to semi-definite pro-
gramming has been utilized by Lasserre [50, 52, 51], Parrilo [59] and others to obtain
algorithms for performing polynomial optimization which perform well in practice
(but see Remark 4.2 below).

Remark 4.2. While the idea of approximating the cone of non-negative polynomials
by the smaller cone of sums of square seems to work well in practice for solving
or approximating well solutions of polynomial optimization problems, one should
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be aware of certain negative results. Blekherman [29] proved that the ratio of the
volumes of certain fixed sections of the cones Σk,d and Posk,d goes to 0 with k
exponentially fast. This seems to indicate that the approximation of Posk,d by Σk,d

is very inaccurate as k grows (with d fixed).

We refer the reader to the excellent survey article by Laurent [53] for more de-
tailed information about the sums-of-squares methods in algorithmic real algebraic
geometry.

4.2. Complexity of semi-definite programming. Since semi-definite optimiza-
tion problems play an important role in the sums-of-square approximation algo-
rithms described above, it is important to be aware of the current complexity sta-
tus of this problem. As noted above, while interior points algorithms for solving
semi-definite programming problems are extremely efficient in practice, there is no
definite result known placing the semi-definite programming problem in the class P.
Khachiyan and Prokolab [62] proved that there exists a polynomial time algorithm
for semi-definite programming in case the dimension is fixed. Using results proved
by Ramana [64] on exact semi-definite duality theory, it can be deduced (see [73])
that semi-definite feasibility cannot be NP-complete unless NP = co-NP (a hy-
pothesis not believed to be true). In the Blum-Shub-Smale model of computation
over real machines [30], the semi-definite feasibility problem is clearly in the class
NPR , and it is unknown if it is any easier than ordinary real polynomial feasibility
problem in this model.

5. Open problems

We list here some interesting open problems some of which could possibly be
tackled in the near future.

Computing Betti numbers in singly exponential time ? Suppose S ⊂ Rk is a semi-
algebraic set defined in terms of s polynomials, of degrees bounded by d. One of
the most fundamental open questions in algorithmic semi-algebraic geometry, is
whether there exists a singly exponential (in k) time algorithm for computing the
Betti numbers of S. The best we can do so far is summarized in Theorem 3.18
which gives the existence of singly exponential time algorithms for computing the
first � Betti numbers of S for any constant �. A big challenge is to extend these
ideas to design an algorithm for computing all the Betti numbers of S.

Computing semi-algebraic triangulations in singly exponential time ? A related
question is whether there exists an algorithm for computing semi-algebraic tri-
angulations with singly exponential complexity. Clearly, such an algorithm would
also make possible the computation of Betti numbers in singly exponential time.

More Efficient Algorithms for Computing the Number of Connected Components
in the Quadratic Case ? As described in Section 3.6 for semi-algebraic sets in Rk

defined by � quadratic inequalities, there are algorithms for deciding emptiness, as
well as computing sample points in every semi-algebraically connected component
whose complexity is bounded by kO(�). We also have an algorithm for computing
the Euler-Poincaré characteristic of such sets whose complexity is kO(�). However,
the best known algorithm for computing the number of semi-algebraically connected
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components of such sets has complexity k2O(�)
(as a special case of the algorithm

for computing all the Betti numbers given in Theorem 3.27). This raises the ques-
tion whether there exists a more efficient algorithm with complexity kO(�) or even
kO(�2) for counting the number of semi-algebraically connected components of such
sets. Roadmap type constructions used for counting semi-algebraically connected
components in the case of general semi-algebraic sets cannot be directly employed
in this context, because such algorithms will have complexity exponential in k. Re-
cent work by Coste and Moussa [38] on the geodesic diameter of semi-algebraic sets
defined by few quadratic inequalities might contain some relevant hints towards
this goal.

More Efficient Algorithms for Computing the Number of Connected Components
for General Semi-algebraic Sets ? A very interesting open question is whether the
exponent O(k2) in the complexity of roadmap algorithms (cf. Theorem 3.6) can be
improved to O(k), so that the complexity of testing connectivity becomes asymp-
totically the same as that of testing emptiness of a semi-algebraic set (cf. Theorem
2.15). Recent improvements in the complexity of roadmap algorithms described in
Section 3.1.2 above, certainly gives some hope in this regard.

Such an improvement would go a long way in making this algorithm practically
useful. It would also be of interest for studying metric properties of semi-algebraic
sets because of the following. Applying Crofton’s formula from integral geometry
one immediately obtains as a corollary of Theorem 3.6 (using the same notation as
in the theorem) an upper bound of sk′+1dO(k2) on the length of a semi-algebraic
connecting path connecting two points in any semi-algebraically connected compo-
nent of S (assuming that S is contained in the unit ball centered at the origin).
An improvement in the complexity of algorithms for constructing connecting paths
(such as the roadmap algorithm) would also improve the bound on the length of
connecting paths. Recent results due to D’Acunto and Kurdyka [39] show that it
is possible to construct semi-algebraic paths of length dO(k) between two points of
S (assuming that S is a semi-algebraically connected component of a real algebraic
set contained in the unit ball defined by polynomials of degree d). However, the
semi-algebraic complexity of such paths cannot be bounded in terms of the param-
eters d and k. The improvement in the complexity suggested above, apart from its
algorithmic significance, would also be an effective version of the results in [39].

Remove the compactness assumption in Theorem 3.22. More generally, investigate
the role of compactness in the Blum-Shub-Smale model of computations over real
closed fields (see [25] for more details).
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[61] I. G. Petrovskĭı and O. A. Olĕınik. On the topology of real algebraic surfaces. Izvestiya Akad.

Nauk SSSR. Ser. Mat., 13:389–402, 1949.
[62] Lorant Porkolab and Leonid Khachiyan. On the complexity of semidefinite programs. J.

Global Optim., 10(4):351–365, 1997.
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1. Introduction

The field of topology of real algebraic varieties is wide, active and many
different techniques are employed. To write a survey on the subject forces
one to make drastic choices. I chose to report on some recent work on
rational real algebraic surfaces that I found enjoyable.

One of the aims of a survey is to make the subject more accessible to
people working in other areas. I tried to present things in a most elemen-
tary way. However, some prerequisites are inavoidable like basic notions of
algebraic geometry, topology and differential geometry.

I will conclude the paper with a section on two lines of research that seem
promising, in my opinion.

Other topics concerning the topology of real algebraic varieties that I was
not able to treat, but would have deserved to be treated, are, among oth-
ers: cobordism classes of real algebraic varieties and morphisms [61, 42]1,
cohomology of real algebraic varieties [67, 32, 34, 63, 33, 20], equivariant
homotopy theory of spaces of real cycles [18, 62, 19], homotopy groups of
real algebraic varieties [69], M -varieties [17, 39, 40], moduli of real sta-
ble maps [73, 74], Kollár’s conjectures [28, 29, 12, 13], real algebraic cy-
cles [8, 48, 49, 50, 9, 25, 55, 53, 70, 54], real algebraic models of smooth
manifolds [47, 36, 10, 68, 1, 51, 52, 57], real algebraic surfaces [66, 58, 15,
76, 81, 11, 24, 16, 82, 59, 4, 65, 2], real cubic surfaces [26, 72, 3] three-
folds [41, 43, 45] and four-folds [21, 44, 46, 22, 23]. I have left out here
references concerning algorithms in real algebraic geometry, analytic geom-
etry, enumerative real geometry, Hilbert’s 16th problem, Klein surfaces and
real algebraic curves, Nash manifolds, patch-working, real-root counting,
semi-algebraic geometry and o-minimal structures, singularity theory, toric
geometry, tropical geometry, and the B. and M. Shapiro conjecture. They
will, most probably, be treated elsewhere in this volume, or during the con-
ference.

1Here and further in this section, only references over the past 10 years are included

1
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Convention. In this paper, a real algebraic variety can either be considered
as a separated scheme over R of finite type, or as a quasi-projective complex
algebraic variety endowed with an antiholomorphic involution.

2. Real rational surfaces

Let X be an irreducible projective real algebraic surface. The surface X
is rational if X admits a covering by open subsets U1, . . . , Un, each of which
is isomorphic to the affine real algebraic plane A2.

We will be interested in the topological space X(R) of real points of a
rational surface X. Here, the topology on X(R) is the euclidean topology,
not the Zariski topology. It follows from our definition that X(R) is a
compact connected topological surface. In fact, X(R) comes along with the
structure of a smooth C∞ surface.

Examples 1. 1. The real projective plane P2 is rational. Indeed, the
standard affine open subsets U0, U1, U2 defined by the inequalities x �= 0,
y �= 0, z �= 0, respectively, constitute a covering by open subsets, each of
which is isomorphic to A2.

The set of real points P2(R) of P2 is the topological real projective plane.
2. The real algebraic torus P1 × P1 is rational. Indeed, let U0, U1 be

the standard affine open subset of the real projective line P1 defined by
the inequalities x �= 0, y �= 0, respectively. Then the subsets Ui × Uj , for
i, j = 0, 1, constitue a covering of P1×P1 by open subsets, each of which is
isomorphic to A2.

The set of real points (P1×P1)(R) of P1×P1 is the topological torus S1×
S1, where S1 denotes the unit circle in R2.

3. The real algebraic sphere S2 in real projective space P3 given by the
affine equation x2+ y2+ z2 = 1 is rational. Indeed, for a real point P of S2,
let TPS

2 be the real projective plane in P3 tangent to S2 at P , and let πP
be the linear projection, or the stereographic projection, from S2 \ TPS

2

into A2. The morphism πP is an isomorphism of real algebraic varieties.
Choose 3 distinct real points P1, P2, P3 of S2, and denote the open subset
S2 \ TPiS

2 by Ui, for i = 1, 2, 3. Since the projective tangent planes at the
points P1, P2, P3 intersect in 1 point only that, moreover, does not belong
to S2, the subsets U1, U2, U3 constitute an open covering of S2. It follows
that S2 is rational.

The set of real points S2(R) of S2 is the unit sphere S2 in R3.

Remark 2. The informed reader has noted that our definition of a rational
surface is not the standard one. IfX is a rational surface in our sense, thenX
contains a dense open subset isomorphic to A2, and therefore, its function
field is isomorphic to the rational function field R(x, y). The converse is
somewhat harder to prove. Since it is not essential for what we want to
explain, we omit a proof.

Let us recall the explicit construction of the blow-up of A2 at a real
point P . For simplicity, we may assume that P is the origin O. Let x, y be
the coordinates on A2. We need 2 further copies of A2 that we will denote
by A2

0 and A2
1 in order to distinguish them from each other. Denote by
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xi, yi the coordinate functions on A2
i , for i = 0, 1. Define two morphisms

ϕ0 : A
2
0 −→ A2 and ϕ1 : A

2
1 −→ A2

by

ϕ0(x0, y0) = (x0, x0y0) and ϕ1(x1, y1) = (x1y1, y1).

Geometrically, the morphism ϕ0 maps the horizontal lines y0 = cst in A2
0

to the nonvertical lines that pass through the origin in A2. Similarly, ϕ1

maps the vertical lines in A2
1 to the nonhorizontal lines that pass through

the origin in A2. In particular, ϕ0 maps the y0-axis in A2
0 onto the origin

of A2, and ϕ1 maps the x1-axis in A2
1 onto the origin of A2.

Let U0, U1 be the open subsets of A2 defined by the inequalities x �= 0,
y �= 0, respectively. The morphism ϕi is an isomorphism from ϕ−1

i (Ui)
onto Ui, for i = 0, 1. In particular, one gets an induced isomorphism ϕ10

from the open subset ϕ−1
0 (U0∩U1) of A

2
0 onto the open subset ϕ−1

1 (U0∩U1)
of A2

1, and ϕ01 in the opposite direction. Explicitly,

ϕ10(x0, y0) = ( 1
y0
, x0y0) and ϕ01(x1, y1) = (x1y1,

1
x1
).

These reciprocal isomorphisms extend to reciprocal isomorphisms between
the open subset V0 of A2

0 defined by the inequality y0 �= 0 and the open
subset V1 of A2

1 defined by the inequality x1 �= 0. The blow-up BOA
2 of A2

at O is the real algebraic surface obtained by gluing A2
0 and A2

1 along their
open subset V0 and V1 via the reciprocal isomorphisms ϕ10 and ϕ01.

The morphisms ϕ0 and ϕ1 glue together to produce a morphism

ϕ : BOA
2 −→ A2.

It is an isomorphism over the open subset A2 \ {O}. We will, therefore,
often identify ϕ−1(A2 \{O}) with A2 \{O}. The fiber ϕ−1(O) is isomorphic
to the real projective line P1, and is called the exceptional curve.

What is important for us here is that BOA
2, or more generally, the blow-

up BPA
2 of A2 at a real point P admits an open covering by two affine

subsets, both isomorphic to A2.
Let X be a rational surface. If P is a real point of X, then we can choose

an open affine subset U of X containing P and isomorphic to A2, and define
the blow-up of X at P to be the real algebraic surface obtained from X \{P}
and BPU by gluing them along their common open subset U \ {P}. The
price we have to pay for our down-to-earth treatment of the blow-up is that
it is now not immediately clear that the blow-up of X at P does neither
depend on the choice of U , nor on the choice of the isomorphism between
U and A2. The sceptical reader is invited to consult any standard textbook
on algebraic geometry of his liking to wipe away any persistent doubts. In
any case, it is clear that the blow-up of a rational surface X at a real point
is again rational. More generally:

Proposition 3. Let X be a rational surface and let

Xn → Xn−1 → · · · → X0 = X

be a sequence of blow-ups at real points, starting with X. Then Xn is a
rational surface. �
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If one wants to know what the set of real points of such a surface looks
like, one has to get back to the construction of the blow-up of A2 at the
origin O. As observed above, the exceptional curve E in BOA

2 is isomorphic
to the real projective line P1. Therefore, its set of real points E(R) is,
topologically speaking, a circle. It is also a smooth curve in the smooth
surface (BOA

2)(R). One can check that its normal bundle is not orientable,
i.e., it is isomorphic to the Moebius bundle over E(R). It follows that the
set of real points (BOA

2)(R) of the blow-up of A2 at O is homeomorphic
to the connected sum R2#P2(R) of the real affine plane R2 with the real
projective plane P2(R).

It follows that, if X is a rational surface, then the set of real points
(BPX)(R) of the blow-up of X at a real point P is homeomorphic to the
connected sum X(R)#P2(R) of the set of real points X(R) of X with the
real projective plane P2(R).

From the classification of topological surfaces we know that for any nonori-
entable compact connected topological surface S there is a unique natural
integer g such that S is homeomorphic to the connected sum of g+1 copies
of the real projective plane P2(R). The integer g will be called the genus of
the surface S, e.g., the real projective plane P2(R) has genus 0, the Klein
bottle P2(R)#P2(R) has genus 1.

Let S be a compact connected topological surface. A rational surface X
is a rational algebraic model for S if the set of real points X(R) of X is
homeomorphic to S. The preceding observations and Examples 1.2 and 1.3
above lead to the following consequence:

Corollary 4. Let S be compact connected topological surface. If S is nonori-
entable, or orientable and of genus 0 or 1, then S admits a rational algebraic
model. �

A deep result of Comessatti [14, p. 257] states that the other topological
surfaces do not have any rational model:

Theorem 5 (Comessatti). Let X be a rational surface. Then X(R) is not
homeomorphic to an orientable surface of genus greater than 1. �

A modern proof uses the Minimal Model Program for real algebraic va-
rieties as developped by Kollár [35, p. 206, Theorem 30]. In fact, that
approach gives an even more precise statement.

Let S be a topological surface, and let X and Y be two rational mod-
els of S. We will say that X and Y are isomorphic as rational models if
X(R) and Y (R) have isomorphic Zariski open neigborhoods in X and Y ,
respectively. Equivalently, the differentiable surfaces X(R) and Y (R) are
algebraically diffeomorphic, i.e., there is a diffeomorphism f from X(R) into
Y (R) whose coordinate functions are rational functions on X(R) without
poles on X(R), and the same holds for f−1.

Example 6. Let P be a real point of the real algebraic sphere S2. Then
the blow-up BPS

2 of S2 at P is a rational algebraic model of the topological
real projective plane P2(R). The algebraic real projective plane P2 is a
rational algebraic model of P2(R) as well. Although the real algebraic sur-
faces P2 and BPS

2 are not isomorphic, the stereographic projection induces
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an algebraic diffeomorphism from (BPS
2)(R) onto P2(R). The rational

models BPS
2 and P2 are isomorphic rational models of the topological sur-

face P2(R).

Using Kollár’s Minimal Model Program one can prove the following state-
ment (compare [5, Thm 3.1]):

Theorem 7. Let S be a compact connected topological surface. Let X be a
rational model of S.

(1) If S is not orientable then X is isomorphic to a rational model of S
obtained from S2 by successively blowing up at real points only.

(2) If S is orientable then X is isomorphic to S2 or P1 × P1, as a
rational model. �

This clearly implies Comessatti’s Theorem above, but it also opens the
door to the classification of rational models of a given topological surface.
Surprisingly enough, all rational models of a given topological surface turn
out to be isomorphic as rational models [5, Thm 1.2]:

Theorem 8. Let S be a compact connected topological surface. Then, any
two rational algebraic models of S are isomorphic. �

One of the crucial ingredients of the proof is the following. Let S be a
nonorientable compact connected topological surface. According to Theo-
rem 7, any rational model X of S is isomorphic to a rational model Y of S
obtained from S2 by successively blowing up real points. This means that
there is a sequence of blow-ups at real points

Y = Yn → Yn−1 → · · · → Y0 = S2.

A difficulty arises when, for example, Y2 is the blow-up of Y1 at a real point P
of the exceptional curve E of Y1. One gets rid of this difficulty by using
Example 6. Let us explain this in case n = 2, for simplicity. The algebraic
surface Y1 is a rational model of P2(R). Therefore, Y1(R) is algebraically
diffeomorphic toP2(R). Moreover, there is such a diffeomorphism that maps
the set of real points E(R) of the exceptional curve E to a real projective
line of P2(R). Now, all real projective lines in P2(R) are equal. Choose
a real projective line D(R) of P2(R) that does not contain the point Q
of P2(R) that corresponds to P under the diffeomorphism between Y1(R)
andP2(R). Then there is a blow-up Y ′

1 of S
2 at a real point, and an algebraic

diffeomorphism from Y ′
1(R) onto P 2(R) mapping the set of real points of

the exceptional curve of Y ′
1 onto D(R). Let P ′ be the real point of Y ′

1 that
corresponds to Q under the diffeomeorphism. Then, P ′ is not a real point
of the exceptional curve of Y ′

1 . Since there is an algebraic diffeomorphism
from Y1(R) into Y ′

1(R) that maps P onto P ′, there is also an algebraic
diffeomorphism from Y2(R) into Y ′

2(R), the set of real points of the blow-
up Y ′

2 of Y ′
1 at P ′. Now, Y ′

2 is the blow-up of S2 at 2 distinct real points,
and is isomorphic as a rational model, to Y2.

By an induction argument, one shows more generally that any rational
model X of a nonorientable compact connected surface is isomorphic to a
rational model Y obtained from S2 by blowing up S2 at a finite number of
distinct real points. A proof of Theorem 8, different from the one in [5], can
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then be obtained by showing that the group of algebraic self-diffeomorphisms
of S2(R), i.e., the standard unit sphere S2 in R3, is n-transitive, for each n.
This approach has been followed in [30]. In fact, adapting the above induc-
tion argument, one can show even more [30, Thm 1.4]:

Theorem 9. Let X be a rational surface. Then the group of algebraic self-
diffeomorphisms Diffalg(X(R)) of X(R) acts n-transitively on X(R), for all
natural integers n. �

Recall that a group G, acting on a set S, acts n-transitively on S if for
two n-tuples (P1, . . . , Pn) and (Q1, . . . , Qn) of distinct elements of S, there
is an element g ∈ G such that g · Pi = Qi for all i.

In the case when X is the real algebraic torus P1 × P1, Theorem 9
was proved before [5, Thm 5.4]. In order to give an idea of the proof
of Theorem 9, let us show how one can construct many algebraic self-
diffeomorphisms of the unit sphere S2 in R3 (cf. [30, Lemma 2.1]).

Let I be the interval [−1, 1] in R. Choose any smooth algebraic map
f from I into the circle S1. This simply means that the two coordinate
functions of f are real rational functions in one variable without poles in I.
Define

ϕf : S
2 −→ S2

by
ϕf (x, y, z) = (f(z) · (x, y), z),

where · denotes complex multiplication in R2 = C. Then ϕf is an algebraic
self-diffeomorphism of S2. Indeed, its inverse is ϕf−1 , where f−1 maps z to

the multiplicative inverse f(z)−1 of f(z).
It is not difficult to prove, using the algebraic self-diffeomorphisms ϕf

defined above, that the group of algebraic self-diffeomorphisms Diffalg(S
2)

of S2 acts n-transitively on S2, for all natural integers n.
Theorem 9 remains valid if one considers the action of the group of al-

gebraic self-diffeomorphisms on the set of real infinitely near points, or
more precisely, real curvilinear subschemes of given length of a rational
surface [31].

The question has been raised whether the group Diffalg(X(R)) is dense
in the group Diff(X(R)) of all self-diffeomorphisms of X(R), for a rational
surface X. This turns out to be true and has been proved by Kollár and
Mangolte [37, Thm 4]:

Theorem 10. Let X be a rational surface. Then the subgroup Diffalg(X(R))
is dense in Diff(X(R)). �

In case when X is the real algebraic sphere S2, the proof uses a result
of Lucackii to the effect that SO(3, 1) is a maximal closed subgroup of the
neutral component Diff0(S

2) of Diff(S2). It follows that O(3, 1) together
with any nontrivial algebraic self-diffeomorphism of S2 of the form ϕf above,
generate a dense subgroup of Diff(S2). A similar argument applies when X
is the real algebraic torus.

Kollár and Mangolte then proceed by showing that the mapping class
group

M(X(R)) = Diff(X(R))/Diff0(X(R))



Conference Real Algebraic Geometry

57

TOPOLOGY OF REAL VARIETIES 7

can be generated by algebraic self-diffeomorphisms of X(R), in case X is a
rational surface [37, Thm 27]. These are the main ingredients of the proof
of Theorem 10.

A closely related line of research studies generators of the group of al-
gebraic self-diffeomorphisms of X(R), for a rational surface X, and in fact
mainly P2 (see work of Ronga and Vust [75] and Blanc [unpublished]).

Blanc and Mangolte have studied transitivity of the group Diffalg(X(R))
for a real algebraic surface X that is geometrically rational, i.e., its com-
plexification XC is rational as a complex algebraic surface [6].

3. Prospects

Continuous rational maps. In a recent paper, Kucharz introduces the
notion of continuous rational maps between real algebraic varieties. More
precisely, let X and Y be irreducible real algebraic varieties whose sets of
real points are dense. A continuous rational map from X(R) into Y (R) is
a rational map f from X into Y with the following property. Let U be the
domain of the rational map f . The restriction of f to U(R) extends to a
continuous map from X(R) into Y (R).

A typical example of a continuous rational map is the rational func-
tion f = x3/(x2 + y2) on A2. It defines a continuous rational map from R2

into R by defining f(0, 0) = 0. Such continuous rational functions have also
been studied by Kollár very recently [38].

Let Sn be the unit sphere in Rn+1. Several authors have studied different
kinds of algebraic representatives of homotopy classes of continuous maps
between spheres of different dimensions, without definite success [83, 7, 71].
Kucharz shows that all homotopy classes can be represented by continuous
rational maps [56, Thm 1.1]:

Theorem 11. Let n and p be nonzero natural integers. Any continuous
map from Sn to Sp is homotopic to a continuous rational map. �

In fact, the statement is more precise; one can impose arbitrary Cr-
regularity on the continuous rational map. In any case, Theorem 11 may
open new ways of access to the ever mysterious homotopy groups of spheres.

Kucharz shows many other properties of continuous rational maps that
give the feeling that this class of maps deserves to be studied more thor-
oughly. In fact, one should try to set up a theory of real algebraic varieties
where affine subsets are allowed to be glued along continuous birational
maps (work in progress of Mangolte, Monnier and the author). This would
give rise to a concept of real algebraic varieties that is more flexible than
the real algebraic varieties in the sense of [7], however still being finer than
real birational geometry.

Totally real cycles on, and reduced real Lawson homology of pro-
jective real algebraic varieties. Let X be a projective real algebraic va-
riety. A totally real irreducible cycle on X is an irreducible real algebraic
subvariety Y of X whose set of real points Y (R) is dense in Y . Denote
by Zd(X)tr the Z/2-vector space freely generated by all totally real irre-
ducible cycles on X of dimension d. It comes naturally equipped with the
structure of a topological vector space. Since its elements can be represented
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by reduced real algebraic cycles, the group Zd(X)tr is called, somewhat abu-
sively, the group of reduced real algebraic cycles of dimension d on X.

The group Z0(X)tr of reduced real 0-cycles on X can be easily described.

Let X(R)(i) be the i-fold symmetric power of the set of real points X(R)
of X, where i is a natural integer. The euclidean topology on X(R) induces

a topology on X(R)(i). The disjoint union
∞∐
i=0

X(R)(i)

is then, in a natural way, a topological monoid mapping surjectively to Z0(X)tr.
The topology of the latter is induced by that map.

The group Zd(X)tr has been introduced and studied in the Ph.D. Thesis
of Lam [60]2. One of the results concerns the group Zd(P

n)tr of reduced
real algebraic cycles on the n-dimensional real projective space Pn. The
projective cone over a cycle defines an algebraic suspension map

Σ: Zd(P
n)tr −→ Zd+1(P

n+1)tr

which is shown to be a homotopy equivalence.
Let X be a projective real algebraic variety. In a recent paper [80], Teh

defines the real reduced Lawson (p, n)-th homology group ofX as the (n−p)-
th homotopy group of the topological space Zp(X)tr, i.e.

RLpHn(X) = πn−p(Zp(X)tr),

where n and p are natural numbers satisfying p ≤ n. In case p = 0, the
Dold-Thom isomorphism gives rise to a natural isomorphism between the
real reduced (0, n)-th homology group of X and the ordinary singular n-th
homology group of X(R) with Z/2 coefficients. In case p > 0, the Dold-
Thom isomorphism induces natural morphisms from the real reduced Law-
son (p, n)-th homology group of X into the ordinary singular n-th homology
group of X(R) with Z/2 coefficients [80, Prop 7.6]. Many other properties
are derived. An interesting application can be found in [79], where Teh
proves a generalization of the Harnack-Thom Inequality for real reduced
Lawson homology groups (see [79, Thm 4.6]).

Another—seemingly disjoint—branch of real algebraic geometry also stud-
ies totally real cycles, in fact, totally real divisors [77, 27, 64, 78]. It makes
one wonder whether cross-pollination between the two branches would give
new insights into the topology and geometry of real algebraic varieties, in
general, and rational real algebraic varieties, in particular.
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[70] Öztürk, A.: Homology of real algebraic varieties and morphisms to spheres. Proc.
Amer. Math. Soc. 137(2) (2009), 505–509

[71] Peng, J., Tang, Z.: Algebraic maps from spheres to spheres. Sci. China Ser. A 42(11)
(1999), 1147–1154

[72] Polo-Blanco, I., Top, J.: Explicit real cubic surfaces. Canad. Math. Bull. 51(1) (2008),
125–133

[73] Puignau, N.: Première classe de Stiefel-Whitney des espaces d’applications stables
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(J. Huisman)Université de Brest; CNRS, UMR 6205 Laboratoire de Mathématiques
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1. Introduction.

The goal of this survey is to present some aspects of the recent progress in the

theory of real analytic singularities with particular emphasis on the use of analytic

arcs and the structure of the spaces of such arcs.

The famous Curve Selecting Lemma of Bruhat-Cartan-Wallace has appeared al-

ready in the 50’s of the last century and later was made by S. �Lojasiewicz one of

the most powerful methods in the real analytic geometry. The idea of studying the

structure of the space of germs of analytic or formal arcs on singular complex vari-

eties appeared in a preprint of J.F. Nash (1965), which was published 30 years later

[29]. The motivation of J. F. Nash was to understand the resolution of singulari-

ties of H. Hironaka or possibly to give an alternative approach to this fundamental

problem.

In the 70’s T.C. Kuo introduced a notion of blow-analytic map, and suggested

that the blow-analytic equivalence of an analytic family of real analytic function

germs has no moduli [20]. Given real analytic manifolds M,N , he called a mapping

f : M → N blow-analytic if there exists σ : M̃ → M a locally finite composition of

blowing-ups with smooth centers such that f ◦ σ is analytic.

In the 80’s a notion of arc-analytic function was introduced by the author [21].

Let M,N be real analytic manifolds, a function f : M → N is called arc-analytic

if f ◦ γ is analytic for every analytic arc γ. Clearly each blow-analytic map is arc-

analytic (and subanalytic). In the semialgebraic setting the inverse was established

by E. Bierstone and P.D. Milman [2], and also by A. Parusiński [31]. However in

the general analytic case the question whether every subanalytic and arc-analytic

function is blow-analytic remains a challenging open problem. I will discuss this

issue in the survey.

In the late 90’s M. Kontsevich brought new ideas of the motivic measure to

study the structure of the space of analytic (or formal) arcs. This sparkling idea

was developed in a spectacular way by J. Denef and F. Loeser [5]. This was an

important breakthrough which has numerous applications in algebraic geometry

and singularity theory. It turns out to be also surprisingly useful and applicable

in the real context. I will describe in this survey some important results obtained

using motivic integration in the real analytic case. In January 2003 a Winter School

Real Algebraic and Analytic Geometry & Motivic Integration was held in Aussois.

The goal was to introduce motivic integration methods to the community of real

algebraic and analytic geometers. Looking back from the eight-year perspective, I

am convinced that it was a successful investment.

2. Virtual Betti numbers and the weight filtration

First I will recall some relevant notions.

2.1. Arc-symetric and AS-sets. Let M be a real analytic manifold, we say that

E ⊂ M is arc-symmetric in M (cf. [21]), if it satisfies the following test: given

an analytic arc γ : (−1, 1) → M , then either γ−1(E) consists of isolated points
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or γ(−1, 1) ⊂ E. Arc-symmetric semialgebraic subsets of an affine space form a

family which contains all connected (even analytic) components of real algebraic

sets. Taking the sets of this family as closed sets we define a topology AR on

Rn. This topology is actually noetherian, and stronger than the Zariski topology.

Moreover the AR-irreducible components are connected (and closed) for the strong

topology. So, to some extent, the AR topology is similar to the Zariski topology in

the complex case and it is well known how powerful are topological methods in the

complex case.

In the sequel we will be mostly interested in the case where M = Rn and E

is semialgebraic. So by an arc-symmetric set we will mean a semialgebraic arc-

symmetric set unless otherwise stated.

The local topological properties of arc-symmetric sets are presented in [22]. We

have used the technique of the Euler integral of constructible functions, in a similar

way as for the real algebraic sets as explained in [4]. In particular we have proved

that the arc-symmetric sets satisfy the same local topological properties as the real

algebraic ones, they are (mod 2) Euler spaces, for instance. This similarity is more

transparent if we restrict ourselves to the compact arc-symmetric sets or, in general,

to the finite set-theoretic combinations of compact arc-symmetric sets, called the

AS-sets.
Precisely AS subsets of Rn, considered by A. Parusiński in [32], are the traces on

Rn of finite set-theoretic combinations of arc-symmetric subsets in Pn. For such sets

we do not need the properness assumption to show that the image of an AS-set by
an injective map with an AS graph is again an AS-set.

2.2. Virtual Betti numbers. Recently the arc-symmetric sets appeared as well in

the construction of new invariants in real singularity theory. Recall that for a real

algebraic set X new additive invariants, called the virtual Betti numbers βi(X) have

been introduced independently by Totaro [39] , McCrory and Parusiński [27], see

also Pennaneac’h [35]. These invariants coincide with the standard Betti numbers

for X compact and nonsingular, that is βi(X) = dimHk(X,Z2). But in the singular

case they distinguish fine analytic structure of a set. For instance, two compact

curves which look like a figure eight

X = {(x, y) : y2 = x2 − x4}

and another one which is a union of two circles with one common point

Y = {(x, y) : ((x+ 1)2 + y2 − 1)((x− 1)2 + y2− 1) = 0}

are homeomorphic, but β1(X) = 1 and β1(Y ) = 2. So virtual Betti numbers are

not topological invariants, but they are invariants of bijections with algebraically

constructible graphs. (A set is called algebraically constructible if it is a finite union

of differences of algebraic sets.)

These invariants have been extended to the AS-sets by G. Fichou in [6]. So in

fact virtual Betti numbers are invariants of bijections with a graph which is an AS
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set. As in the classical way one defines a virtual Poincaré polynomial of X ⊂ Rn

which is an AS set by the formula

β(X,u) =
d∑

i=0

βi(X)ui,

where d = dimX. Note that βi(X) = 0 for i > d. We have: β(∅) = 0, β(Pn) =

1 + u + u2 + · · · + un, β(Rn) = un. So β : AS → Z[u] is a map with the following

properties

• β(X) = b(X) is a standard Poincaré polynomial for X nonsingular and

compact.

• β(X) = β(X − Y ) + β(Y ) if Y is a closed subset in X.

• β(X × Y ) = β(X)β(Y ).

Using the AS-sets C. McCrory and A. Parusinski associate in [28] to each real

algebraic variety (or more generally to each locally compact AS-set) a filtered chain

complex, which induces on Borel-Moore homology with Z2 coefficients an analog

of the weight filtration for complex algebraic varieties. This filtered complex is

functorial with respect to proper maps with AS graphs, so in particular, with respect

to regular or Nash (semialgebraic and analytic) proper morphisms. The virtual Betti

numbers can be computed from the spectral sequence associated to this filtration.

As McCrory and Parusiński show the virtual Betti numbers are the only additive

invariants of real algebraic varieties that do not distinguish Nash isomorphic compact

varieties (all the others invariants are combinations of virtual Betti numbers).

We call χc(X) := β(X,−1) a virtual Euler characteristic of X. The additivity of

these invariants allows one to construct new invariants of the germs of real analytic

functions, analogous to the zeta function of Denef and Loeser. This will be discussed

in the next sections.

3. Blow-analytic equivalence and its invariants

One of the fundamental questions in the classification of germs of analytic func-

tions is finding a ”good” definition of their equivalence. Assume that we are given

two germs f, g : (Rn, 0) → (R, 0) of analytic functions, we would like to say that they

are equivalent if there exists the germ of a homeomorphism h : (Rn, 0) → (Rn, 0)

such that f = g ◦ h. But this equivalence is too coarse i.e naturally distinct germs

like f(x, y) = x and g(x, y) = x3 − y2 are equivalent. So we would like to put some

restrictions on homeomorphism h, for instance that h is a Ck diffeomorphism, k ≥ 1

. However with this definition we obtain too fine equivalence relation in the sense

that there are analytic families of analytic germs in finitely many parameters such

that every two germs are not C1 equivalent. In the classical example of Whitney,

the zeros of the family ft(x, y) = xy(x+ y)(x− ty), t ∈ (−1, 1) form a 1-parameter

family of 4 lines with non-constant cross-ratio. So t �= s implies that ft is not C1

equivalent to fs.
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An idea of T.C. Kuo was to consider the equivalence relation defined by the family

of blow-analytic homeomorphisms. Actually he proved in[20] that the blow-analytic

equivalence of an analytic family of real analytic function germs with isolated sin-

gularities has no moduli.

The most general definition of blow-analytic equivalence of two germs of analytic

functions f, g : (Rn, 0) → (R, 0) is as follows: there exists the germ of a home-

omorphism h : (Rn, 0) → (Rn, 0) such that f = g ◦ h, moreover h and h−1 are

blow-analytic. However with this definition the theory is rather at the very begin-

ning. In the sequel several more restrictive definitions of blow-analytic equivalence

shall be used.

3.1. Fukui’s invariant. Let me recall F(f) the invariant of Fukui [11] associated

to the germ of an analytic function f : (Rn, 0) → (R, 0). F(f) is a subset of N which

consists of those k for which there exists the germ of an analytic arc γ : (R, 0) →
(Rn, 0) such that the order of f ◦ γ at 0 is equal to k. It is quite straightforward to

check that if f and g are blow-equivalent then F(f) = F(g). Indeed if h and h−1

are blow-analytic then they preserve analytic arcs. More precisely, if we denote by

L the space of germs of analytic arcs γ : (R, 0) → (Rn, 0), then the mapping

h∗ : L � γ �→ h ◦ γ ∈ L

is a bijection if and only h and h−1 are arc-analytic. In particular, if h and h−1

are blow-analytic, then h∗ is a bijection. Recent progress in the study of Fukui’s

invariant can be found in [15].

3.2. Motivic type invariants. More fine invariants of a blow-analytic equivalence

were constructed following the idea of J. Nash of truncation of arcs and motivic type

constructions of J. Denef and F. Loeser. We start with notations: let

Lk := {α : (R, 0) → (Rn, 0) : polynomial of degree a most k} = Rkn.

Let f : (Rn, 0) → (R, 0) be the germ of an analytic function. The following spaces

are algebraically constructible

Ak(f) := {α ∈ Lk : ord(f ◦ α) = k} A±
k (f) := {α ∈ Lk : f◦α = ±tk + · · · }

We remark that if f and g are analytically equivalent (i.e f = g ◦h with h the germ

of an analytic diffeomorphism), then Ak(f) ∼ Ak(g), A±
k (f) ∼ A±

k (g). (Here ∼
means isomorphism of algebraically constructible sets.) Hence, not only they have

the same Poincaré polynomials, but also the same virtual Poincaré polynomials.

3.3. Zeta functions. S. Koike and A. Parusiński [17] defined zeta functions of a

germ f by the following formulas:

Zf (t) :=
∑
k≥1

χc(Ak(f)) t
k Z±

f (t) :=
∑
k≥1

χc(A±
k (f)) t

k

where χc(·) is the Z2-Euler characteristic with compact supports. They proved that

Zf (t) = Zg(t) and Z±
g (t) = Z±

g (t) provided that the germs f, g are blow-analytically
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equivalent in the following sense: f = g ◦ h, for some h such that the following

diagram is commutative

(Mf , σ
−1
f (0))

H−−−−→ (Mg, σ
−1
g (0))

σf

�
�σg

(Rn, 0)
h−−−−→ (Rn, 0)

where σf , σg are real analytic modifications which are isomorphisms over comple-

ments of f−1(0) and g−1(0), Mf , Mg are smooth analytic manifolds and H is an

analytic diffeomorphism. Then consequently h is a homeomorphism and h, h−1 are

blow-analytic. Note that it is an open question whether this relation is transitive.

S. Koike and A. Parusiński also prove the Thom-Sebastiani formula for these zeta

functions, which expresses the zeta functions for the function f(x) + g(y) in terms

of the zeta functions of f(x) and g(y). They also investigated the zeta functions

for Brieskorn polynomials in two and three variables. They found that the zeta

functions of the Brieskorn polynomials xp + ykp + zkp, where p is an even num-

ber, do not depend on k. This means that we still do not know whether they are

blow-analytically equivalent or not.

3.4. Blow-Nash equivalence and zeta functions. G. Fichou [6] has considerably

extended this approach taking into account the virtual Poincaré polynomials of the

sets A±
k (f). Given two germs of Nash functions (i.e analytic and semialgebraic)

f, g : (Rn, 0) → (R, 0) we say that they are blow-Nash equivalent if f = g ◦ h for

some h such that the following diagram is commutative

(Mf , σ
−1
f (0))

H−−−−→ (Mg, σ
−1
g (0))

σf

�
�σg

(Rn, 0)
h−−−−→ (Rn, 0)

where σf , σg are proper birational morphisms which are isomorphisms over com-

plements of f−1(0) and g−1(0); Mf , Mg are open neighborhoods of σ−1
f (0), σ−1

g (0)

and H is a Nash diffeomorphism. Then consequently h is a homeomorphism and h,

h−1 are blow-Nash. In fact he assumed even more, namely that f ◦ σf and jac σf
(respectively f ◦ σg and jac σg) are normal crossings. (Again it is an open question

whether this relation is transitive).

Then he defined zeta functions as follows

Zf (t) :=
∑
k≥1

β(Ak(f))
( t

un

)k
Z±
f (t) :=

∑
k≥1

β(A±
k (f))

( t

un

)k

where β is the virtual Poincaré polynomial. G. Fichou proved that Zf (t) = Zg(t)

and Z±
g (t) = Z±

g (t) if f, g are blow-Nash equivalent. He obtained the classification

of two-variable Brieskorn polynomials under blow-Nash equivalence. He answered

also the question of the non-existence of moduli for blow-Nash equivalence in the



Conference Real Algebraic Geometry

69

ANALYTIC ARCS AND REAL ANALYTIC SINGULARITIES 7

case of an algebraic family with isolated singularities. Applying this approach G.

Fichou has obtained several interesting results on blow-Nash equivalence and virtual

Betti numbers [7, 8, 9, 10].

3.5. Blow-analytic equivalence for two variable germs. Koike and Parusiński

[18] obtained complete blow analytic classification of germs of analytic functions in

two variables. The authors use the blow-analytic equivalence of f, g in the sense

Subsection 3.3 , namely that f = g ◦ h and the following diagram is commutative

(Mf , σ
−1
f (0))

H−−−−→ (Mg, σ
−1
g (0))

σf

�
�σg

(Rn, 0)
h−−−−→ (Rn, 0)

where σf , σg are real analytic modifications which are isomorphisms over comple-

ments of f−1(0) and g−1(0), Mf , Mg are smooth analytic manifolds and H is an

analytic diffeomorphism. In fact, as they prove, this definition is equivalent (in 2

dimensional case) to cascade blow-analytic equivalence which means the following:

σf , σg are the composition of the same number of point blow-ups σf = σ1 ◦ · · · ◦ σn,
σg = τ1 ◦ · · · ◦ τn. Moreover on each level of the tower there is a homeomorphism hi
such that

hi ◦ (σi ◦ · · · ◦ σn) = τi ◦ · · · ◦ τn,
for i = 0, . . . , n − 1, where h0 = h. With this definition it is much easier to work,

for instance the transitivity is proved.

As shown in [18] for two variable real analytic function germs the blow-analytic

equivalence is a natural counterpart of topological equivalence of complex analytic

germs. Recall that, by an old result of Zariski, the topological type of a plane curve

singularity (X, 0) ⊂ (C2, 0) is determined by the Puiseux pairs of each irreducible

component and the intersection numbers of any pairs of distinct components. It can

be shown, cf. [33], that the topological type of function germs f : (C2, 0) → (C, 0) is
completely characterized, also in the non-reduced case f =

∏
fdi
i , by the embedded

topological type of its zero set and the multiplicities di of its irreducible components.

As shown in [18] the two variable blow-analytic equivalence classes are classified

by multiplicities of irreducible components, their mutual intersection numbers, and

real analytic versions of Puiseux pairs. The precise result says

Theorem 3.1. Let f : (R2, 0) → (R, 0) and g : (R2, 0) → (R, 0) be real analytic

function germs. Then the following conditions are equivalent:

(1) f and g are blow-analytically equivalent.

(2) f and g have isomorphic minimal resolutions.

(3) The real tree models of f and g are isomorphic.

We refer to [18] for a precise definition of the real tree model, a combinatorial

invariant that encodes the Puiseux pairs in particular (a version of the real tree

model was used in [24] to study Lipschitz properties of some arc-analytic functions).
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Theorem 3.1 gives that blow-analytically equivalent weighted homogeneous iso-

lated singularities f : (R2, 0) → (R, 0) and g : (R2, 0) → (R, 0) are either both

analytically equivalent to xy or they have the same weights, the result obtained

first by Abderrahmane [1]. Theorem 3.1 gives also the blow-analytic classification

of Brieskorn two variable singularities ±xp ± yq. In another example given in [18],

it is shown that f(x, y) = x(x3 − y5)(x3 + y5) and g(x, y) = x(x3 − y5)(x3 − 2y5)

have the same Fukui invariants and zeta functions but they are not blow-analytically

equivalent.

The two dimensional case is very special and sometimes surprising. Using the

Newton polygon method it is shown in [19] that C1 equivalent germs f : (R2, 0) →
(R, 0) and g : (R2, 0) → (R, 0) are blow-analytically equivalent, in particular the

corresponding components of their zero sets have the same Puiseux pairs. This is

not longer true if one replaces C1 with bi-Lipschitz equivalence, cf. [19] Example

4.3.

4. Arc-analyticity versus blow-analyticity

One of the intriguing questions in the real analytic singularity theory is the fol-

lowing: assume that M is a compact analytic manifold and f : M → R is an

arc-analytic and subanalytic function, does there exist π : M̃ → M a finite compo-

sition of blowing-ups with smooth and closed centers such that f ◦π is analytic (i.e.

that f is blow-analytic) ?

By E. Bierstone and P.D. Milman [2], see also A. Parusiński [31], the answer is

positive if f satisfies an equation G(x, f(x)) = 0, where G(x, y) =
∑p

i=0 gi(x)y
p−i

with gi : M → R analytic. In the case dimM = 2, the answer is always positive

(without any extra assumption). However the proof is not trivial and essentially uses

results of [2] or [31] and the fact that the centers are points so they are naturally

closed.

Probably the answer (if positive) in the general case would require a better under-

standing of flattening of real analytic mappings and a more geometric understanding

of the resolution of singularities. Some progress towards the solution of this problem

was made by K. Kurdyka and A. Parusiński [23].

For an arc-analytic subanalytic function f : M → R denote by S(f) the set of

non-analyticity of f . By definition, S(f) is the complement of the set R(f) of points

p ∈ M , such that f is analytic at p. It is known that S(f) is closed, subanalytic

and dimS(f) ≤ dimM − 2. We proved in [23] that the set S(f) is actually arc-

analytic. Note that, this is a necessary condition for the positive answer to the

question stated in the beginning of this section. The second main theorem of that

paper is a refinement of the main result of [2].

Theorem 4.1. Let M be a real analytic manifold and let f : M → R be an arc-

analytic function. Suppose that G(x, f(x)) = 0, where G(x, y) =
∑p

i=0 gi(x)y
p−i is

a nonzero polynomial in y with coefficients gi which are analytic functions on M .

Then there is a mapping π : M ′ → M , which is a composite of a finite sequence of
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blowing-ups with nonsingular closed centers over any relatively compact open subset

of M , such that

(1) f ◦ π is analytic.

(2) over any open relatively compact subset of M , π is a composite of a finite

sequence of blowing-ups with nonsingular closed centers : π = π0 ◦ · · · ◦ πk,
and for every j = 0, . . . , k the center of πj is contained in the locus of non-

analyticity of f ◦ π0 ◦ · · · ◦ πj−1.

In particular, π is an isomorphism over the set of analyticity of f .

This theorem holds in the Nash category with π actually a finite composite of a

sequence of blowings-up with nonsingular Nash closed centers.

4.1. Algebraic case. Theorem 4.1 can be stated in the real algebraic version, see

[2]. In this case if we assume that X is a nonsingular real algebraic variety and that

the coefficients gi are regular, then we may require that π is a finite composite of

blowing-ups with nonsingular algebraic centers. However we cannot require that the

centers of blowing-ups are entirely contained in the non-analyticity loci as Example

1.6 [23] shows.

5. Lipschitz properties of arc- and blow- analytic functions

Arc-analytic (and subanalytic) function need not be locally Lipschitz. The first

explicit example was given by L. Paunescu [34], namely f(x, y) = xy5

x4+y6
, f(0, 0) = 0.

K. Kurdyka and L. Paunescu [24] proved that, if h is arc-analytic and hr is

analytic for some integer r, then h : (Rn, 0) → (R, 0) is Lipschitz. The method of

the proof is based on the reduction to the two dimensional case and a thorough

investigation of the real tree model mentioned in the previous section. However,

in general, arc-analytic roots of polynomials with analytic coefficients may not be

Lipschitz.

Example 5.1. Consider a polynomial P (x, y, z) = (z4− (x2+ y8))2−x4− y20. It has

an arc-analytic (blow-analytic) root

f =
4

√
x2 + y8 −

√
x4 + y20,

which is not lipschitz! Note that the above polynomial is not hyperbolic (we will

explain this in the next section).

5.1. Lipschitz arc- and blow-analytic homeomorphisms. Surprisingly, several

analogues of the analytic Inverse Mapping Theorem are true for arc- or blow-analytic

homeomorphisms, when a Lipschitz property is satisfied. First T. Fukui, K. Kurdyka

and L. Paunescu [13] proved the following.

Theorem 5.2. Let f : (Rn, 0) → (Rn, 0) be the germ of a subanalytic homeomor-

phism which is bi-Lipschitz and arc-analytic. Then f−1 is also arc-analytic.



Université de Rennes 1, 20 - 24 june 2011

72

10 KRZYSZTOF KURDYKA

In the case of blow-analytic semialgebraic homeomorphism a stronger result is

true. Namely, T. Fukui, K. Kurdyka, A. Parusiński [14] using motivic type argu-

ments have proved the following theorem.

Theorem 5.3. Let f : (Rn, 0) → (Rn, 0) be a semialgebraic homeomorphism such

that f is Lipschitz and f−1 is blow-analytic. Then f−1 is Lipschitz and f is blow-

analytic.

Theorem 5.3 gives a negative answer to Question 7.8 of [15]. As a corollary we

obtain the following Inverse Function Theorem. By Cω we mean real analytic.

Corollary 5.4. Let f : (Rn, 0) → (Rn, 0) be a semialgebraic homeomorphism such

that f−1 is blow-analytic. If f is Ck, k = 1, 2, . . . ,∞, ω, then so is f−1.

The proof of Theorem 5.3 uses the jet spaces of real analytic arcs and additive

invariants of real algebraic sets.

6. Analytic families of symmetric matrices

Arc-analytic phenomena appear in the theory of hyperbolic polynomials with

analytic coefficients and analytic families of symmetric matrices. Let me first quote

a classical result of F. Rellich [37] published in 1937, (see also [38]).

Theorem 6.1. Let P (x, z) = zd +
∑d

i=1 ai(x)z
d−i, where ai : I → R real analytic

in an open interval I ⊂ R. Assume that for each x ∈ I all roots of the polynomial

z �→ P (x, z) are real (we call such a polynomial hyperbolic). Then there exist real

analytic functions fi : I → R such that

P (x, z) =

d∏
i=1

[z − fi(x)].

Example 6.2. Rellich’s theorem fails if coefficients ai depend on 2 variables, take for

instance P (x, z) = z2 − (x21 + x22).

So if the coefficients ai are analytic in open set Ω ⊂ Rn, n ≥ 2, then we don’t

have such a splitting. However P−1(0), the set of roots of P , can be naturally

seen as a multivalued arc analytic function in variable x ∈ Ω. It turns out that

indeed this multivalued function has properties similar (and even stronger) to those

discussed in the previous sections. These result were obtained by K. Kurdyka and

L. Paunescu [25]. The first main result is a positive answer to a question posed by

S. �Lojasiewicz. Let P (x, z) = zd+
∑d

i=1 ai(x)z
d−i, ai : Ω → R real analytic, Ω ⊂ Rn

open. Assume that for each x ∈ Ω all roots of the polynomial z �→ P (x, z) are

real and denote them by λ1(x) ≤ · · · ≤ λd(x). So we have a mapping Λ : Ω → Rd,

Λ(x) = (λ1(x), . . . , λd(x)).

Theorem 6.3. Λ : Ω → Rd is locally lipschitz.
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The proof goes by reduction to the 2-dimensional case and a thorough study of a

desingularization of such a polynomial. According to Bronshtein [3] and also Wak-

abayashi [40] this result holds actually with weaker assumption, that the coefficients

are of the class Cd, but their proofs are difficult to follow.

6.1. Desingularization of hyperbolic polynomials and analytic families.

Multiparameter versions of Rellich’s theorems were obtained in [25].

Theorem 6.4. Consider a polynomial P (x, z) = zd+
∑d

i=1 ai(x)z
d−i, with ai : Ω →

R real analytic functions in an open set Ω ⊂ Rn. Assume that for each x ∈ Ω

all roots of the polynomial z �→ P (x, z) are real. Then, there exists σ : W → Ω a

locally finite composition of blowing-ups with smooth (global) centers, such that for

any w0 ∈ W there is a neighborhood U and analytic functions Fi : U → R such that

P (w, z) = zd +
d∑

i=1

ai(σ(w))z
d−i =

d∏
i=1

[z − Fi(w)],

for any w ∈ U , z ∈ R.

Example 6.5. Let z2 − (x21 + x22), put x1 = w1,x2 = w1w2, so P (w1, w2, z) = (z −
F1(w))(z−F2(w)), with F1 = w1(1+w2

2)
1/2, F2 = −w1(1+w2

2)
1/2 analytic functions.

Let Sd stand for the space of symmetric d× d matrices with real entries.

Theorem 6.6. Consider an analytic family A : Ω → Sd of symmetric matrices,

where Ω is an open connected subset of Rm. Then, there exists σ : W → Ω a locally

finite composition of blowing-ups with smooth (global) centers, such that for any

w0 ∈ W there is a neighborhood U such that the corresponding family A ◦σ|U : U →
Sd admits a simultaneous analytic diagonalization.

The statement that the family of matrices A◦σ|U : U → Sd admits a simultaneous

analytic diagonalization means that we can choose in an analytic way eigenvalues

and eigenvectors of the family A ◦ σ|U . An analogous version of this theorem for

antisymmetric matrices is also given in [25]. Recently these results were generalized

and extended to the case of quasi-analytic families of symmetric and normal matrices

by A. Rainer [36]. Another approach to a generalization of those result was given

by K. J. Nowak [30].
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[17] S. Koike and A. Parusiński, Motivic-type invariants of blow-analytic equivalence, Ann. Inst.

Fourier 53 (2003), 2061–2104.
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Positive Polynomials and Sums of Squares: Theory

and Practice

Victoria Powers ∗

May 21, 2011

In theory, theory and practice are the same. In practice, they are
different. - A. Einstein

If a real polynomial f in n variables can be written as a sum of squares
of real polynomials, then clearly f must take only nonnegative values in
Rn. This simple, but powerful, fact and generalizations of it underlie a
large body of theoretical and computational results concerning positive
polynomials and sums of squares.

An explicit expression of f as a sum of squares is a certificate of positiv-
ity for f , i.e., a polynomial identity which gives an immediate proof of the
positivity of of f on Rn. In recent years, much work has been devoted to the
study of certificates of positivity for polynomials. In this paper we will give
an overview of some recent results in the theory and practice of positivity
and sums of squares, with detailed references to the literature. By “the-
ory”, we mean theoretical results concerning the existence of certificates of
positivity. By “practice”, we mean work on computational and algorithmic
issues, such as finding certificates of positivity for a given polynomial.

For the most part, we restrict results to those in a real polynomial
ring. This is somewhat misleading, since it is impossible to prove most
of the results for polynomials without using a more abstract approach.
For example, in order to obtain a solution to Hilbert’s 17th problem, it
was necessary for Artin (along with Schreier) to first develop the theory
of ordered fields! The reader should keep in mind that underneath the
theorems in this paper lie the elegant and beautiful subjects of Real Algebra
and Real Algebraic Geometry, among others.

The subject of positivity and sums of squares has been well-served by
its expositors. There are a number of books and survey articles devoted
to various aspects of the subject. Here we mention a few of these that
the interested reader could consult for more details and background on
the topics covered in this paper, as well as related topics that are not

∗Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322. Email:
vicki@mathcs.emory.edu.
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included: There are the books by Prestel and Delzell [58] and Marshall
[33] on positive polynomials, a survey article by Reznick [63] about psd
and sos polynomials with a wealth of historical information, and a recent
survey article by Scheiderer [70] on positivity and sums of squares which
discusses results up to about 2007. Finally, there is a survey article by
Laurent [31] which discusses positivity and sums of squares in the context
of applications to polynomial optimization.

Many worthy topics and results did not make it into this article due to
lack of time; we hope to expand this article in the near future. In particular,
we hope to include a section on applications in a future version.

1 Preliminaries and background

In this section, we introduce the basic concepts and review some of the
fundamental results in the subject, starting with results in the late 19th
century. For a fuller account of the historical background, see the survey
[63]. For a more detailed survey of the subject up to about 2007, readers
should consult the survey article [70].

1.1 Notation

Throughout, we fix n ∈ N and let R[X] denote the real polynomial ring
R[X1, . . . , Xn]. We denote by R[X]+ the set of polynomials in R[X] with
nonnegative coefficients. The following monomial notation is convenient:
For α = (α1, . . . , αn) ∈ Nn, let Xα denote Xα1

1 · · ·Xαn
n . For a commutative

ring A, we denote the set of sums of squares of elements of A by
∑

A2.
We define the basic objects studied in real algebraic geometry. Given a

set G of polynomials in R[X], the closed semialgebraic set defined by G is

S(G) := {x ∈ Rn | g(x) ≥ 0 for all g ∈ G}.

If G is finite, S(G) is the basic closed semialgebraic set generated by G.
The basic algebraic objects of interest are defined as follows. For a finite

subset G = {g1, . . . , gr} of R[X], the preordering generated by G is

PO(G) := {
∑

e=(e1,...,er)∈{0,1}r
seg

e1
1 . . . gerr | each se ∈

∑
R[X]2}.

The quadratic module generated by G is

M(G) := {s0 + s1g1 + · · ·+ srgr | each si ∈
∑

R[X]2}.

Notice that if f ∈ PO(G) or f ∈ M(G), then f is clearly positive on S(G)
and an identity f =

∑
e∈{0,1}r seg

e1
1 . . . gerr or f = s0 + s1g1 + · · ·+ srgr is a

certificate of positivity for f on S(G).
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Traditionally, a result implying the existence of certificates of positivity
for polynomials on semialgebraic sets is called a Positivstellensatz or a
Nichtnegativstellensatz, depending on whether the polynomial is required
to be strictly positive or non-strictly positive on the set. We will use the
term “representation theorem” for any theorem of this type and refer to
a “representation of f” (as a sum of squares, in the preordering, etc.),
meaning an explicit identity for f .

1.2 Classic results

A polynomial f ∈ R[X] is positive semidefinite, psd for short, if f(x) ≥ 0
for all x ∈ Rn. We say f is sos if f ∈

∑
R[X]2. Of course, f sos implies

that f is psd, and for n = 1, the converse follows from the Fundamental
Theorem of Algebra.

We begin our story in 1888, when the 26-year-old Hilbert published his
seminal paper on sums of squares [20] in which he showed that for n ≥ 3,
there exist psd forms (homogenous polynomials) in n variables which are
not sums of squares. 1 In the same paper, he proved that every psd ternary
quartic – homogenous polynomial of degree 4 in 3 variables – is a sum of
squares. Hilbert was able to prove that for n = 3, every psd form is a
sum of squares of rational functions, but he was not able to prove this
for n > 2. This became the seventeenth on his famous list of twenty-
three mathematical problems that he announced at the 1900 International
Congress of Mathematicians in Berlin. In 1927, E. Artin [1] settled the
question:

Theorem 1 (Artin’s Theorem). Suppose f ∈ R[X] is psd, then there exists
nonzero g ∈ R[X] such that g2f is sos.

The following Positivstellensatz has until recently been attributed to
Stengle [79], who proved it in 1974. It is now known that the main ideas
were in a paper of Krivine’s from the 1960’s.

Theorem 2 (Classical Positivstellensatz). Suppose S = S(G) for finite
G ⊆ R[X] and f ∈ R[X] with f > 0 on S. Then there exist p, q ∈ PO(G)
such that pf = 1 + q.

1.3 Bernstein’s and Pólya’s theorems

Certificates of positivity for a univariate p ∈ R[x] such that p ≥ 0 or
p > 0 on an interval [a, b] have been studied since the late 19th century.

1Hilbert worked with forms, however for the purposes of this paper we prefer to work in a non-
homogenous setting. A form can be dehomogenized into a polynomial in one less variable and the
properties of being psd and sos are inherited under dehomogenization. When discussing work related to
Hilbert’s work, we will use the language of forms, otherwise, we state results in terms of polynomials.
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Questions about polynomials positive on an interval come in part from the
relationship with the classic Moment Problem, in particular, Hausdorff’s
solution to the Moment Problem on [0, 1] [19].

In 1915, Bernstein [4] proved that if p ∈ R[x] and p > 0 on (−1, 1),
then p can be written as a positive linear combination of polynomials (1−
x)i(1 + x)j for suitable integers i and j; however, it might be necessary for
i + j to exceed the degree of p. Notice that writing p as such a positive
linear combination is a certificate of positivity for p on [−1, 1].

Pólya’s Theorem, which he proved in 1928 [47], concerned forms which
are positive on the standard n-simplex ∆n := {(x1, . . . , xn) ∈ Rn | xi ≥
0,
∑

i xi = 1}.

Theorem 3 (Pólya’s Theorem). Suppose f ∈ R[X] is homogeneous and is
strictly positive on ∆n, then for sufficiently large N , all of the coefficients
of (X1 + · · ·+Xn)

Nf are positive.

Here “all coefficients are positive” means that every monomial of degree
deg f +N appears with a strictly positive coefficient.

Bernstein’s result is equivalent to the one-variable dehomogenized ver-
sion of Pólya’s Theorem: If p ∈ R[x] is positive on (0,∞), then there exists
N ∈ N such that (1 + x)Np has only positive coefficients. The equivalence
is immediate by applying the “Goursat transform” which sends p to

(x+ 1)dp

(
1− x

1 + x

)
,

where d = deg p.

1.4 Schmüdgen’s Theorem and beyond

In 1991, Schmüdgen [74] proved his celebrated theorem on representations
of polynomials strictly positive on compact basic closed semialgebraic sets.
This result began a period of much activity in Real Algebraic Geometry,
which continues today, and stimulated new directions of research.

Theorem 4 (Schmüdgen’s Positivstellensatz). Suppose G is a finite subset
of R[X] and S(G) is compact. If f ∈ R[X] is such that f > 0 on S(G),
then f ∈ PO(G).

Schmüdgen’s theorem yields “denominator-free” certificates of positiv-
ity, in contrast to Artin’s theorem and the Classic Positivstellensatz. The
underlying reason that such certificates exist is that the preordering PO(G)
in this case is archimedean: Given any h ∈ R[X], there exists N ∈ N such
that N ± h ∈ PO(G). Equivalently, there is some N ∈ N such that
N −

∑
X2

i ∈ PO(G). It is a fact that if S(G) is compact, then PO(G) is

4
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archimedean. This follows from Schmüdgen’s proof of his theorem; there
is a direct proof due to Wörmann [81].

The definition of archimedean for a quadratic module M is the same
as for a preordering. If M(G) if archimedean, then it is immediate that
S(G) is compact; the converse is not true in general. In 1993, Putinar [59]
gave a denominator-free representation theorem for archimedean quadratic
modules.

Theorem 5 (Putinar’s Positivstellensatz). Suppose G is a finite subset of
R[X] and M(G) is archimedean. If f ∈ R[X] is such that f > 0 on S(G),
then f ∈ M(G).

In 1999, Scheiderer began a systematic study of questions concerning
the existence of certificates of positivity in a broader setting. Let A be a
commutative ring, then a ∈ A is called psd if its image is nonnegative in
every element of the real spectrum of A. One then asks when does psd =
sos in A? In a series of fundamental papers, Scheiderer settles this question
in many cases for coordinate rings of real affine varieties, and more general
rings [66], [67], [69], [72], [73]. This work led to many new representation
theorems for polynomial rings. See [70] for a detailed account.

2 Theory: Certificates of Positivity

In this section we look at very recent theoretical results concerning sums
of squares, psd polynomials, and certificates of positivity. We start with
some modern riffs on Hilbert’s 1888 paper. We then look at the sums of
squares on algebraic curves. We discuss stability in quadratic modules,
a topic which is important in computational questions and applications.
Finally, we look at recent work concerning sums of squares in cases where
the polynomials have some special structure.

2.1 Psd ternary quartics

Hilbert’s 1888 proof that a psd ternary quartic is a sum of three squares of
quadratic forms is short, but difficult; arguably a high point of 19th century
algebraic geometry. Even today the proof is not easy to understand and
Hilbert’s exposition lacks details in a number of key points. Several authors
have given modern expositions of Hilbert’s proof, with details filled in.

There is an approach due to Cassels, published in Rajwade’s book
Squares [61, Chapter 7], and articles by Rudin [64] and Swan [80]. In
1977, Choi and Lam [11] gave a short elementary proof that a psd ternary
quartic must be a sum of five squares of quadratic forms. In 2004, Pfis-
ter [43] gave an elementary proof that a psd ternary quartic is a sum of
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four squares of quadratic forms and he gave an elementary and construc-
tive argument in the case that the ternary quartic has a non-trivial real
zero. Very recently, Pfister and Scheiderer [44] gave a complete proof of
Hilbert’s Theorem, using only elementary tools such as the theorems on
implicit functions and symmetric functions.

In the “Practice” section of this paper, we will discuss computational
issues around Hilbert’s theorem on ternary quartics.

2.2 Hilbert’s construction of psd, not sos, polynomials

In Hilbert’s 1888 paper, he described how to find psd forms which are
not sums of squares. However, his construction did not yield an explicit
example of a psd, not sos, polynomial. It took nearly 80 years for an explicit
example of a psd, not sos, polynomial to appear in the literature; the first
published example was due to Motzkin. Since then, other examples and
families of examples have been produced (see the survey [63] for a detailed
account), however only recently has there been attempts to understand
Hilbert’s proof and make it constructive.

Reznick [62] has isolated the underlying mechanism of Hilbert’s con-
struction and shown that it applies to more general situations than those
considered by Hilbert. He is then able to produce many new examples of
psd, not sos, polynomials.

Hilbert’s proof, and Reznick’s modern exposition and generalization, use
the fact that forms of degree d satisfy certain linear relations, known as the
Cayley-Bacharach relations, which are not satisfied by forms of full degree
2d. Very recently, Blekherman [6] shows that the Cayley-Bacharach rela-
tions are, in fact, the fundamental reason that there are psd polynomials
that are not sos. In small cases, he is able to give a complete characteriza-
tion of the difference between psd and sos forms. For example, the result
for forms of degree 6 in 3 variables is the following:

Theorem 6 ([6],Theorem 1.1). Let H3,6 be the vector space of degree 6
forms in 3 variables. Suppose p ∈ H3,6 is psd and not sos. Then there
exist two real cubics q1, q2 intersecting in 9 (possible complex) projective
points γ1, . . . , γ9 such that the values of p on γi certify that p is not a sum
of squares in the following sense: There is a linear functional l on H3,6,
defined in terms of the γi’s, such that l(q) ≥ 0 for all sos q and l(p) < 0.

2.3 Polynomials positive on noncompact semialgebraic sets

We now turn to representation theorems for polynomials positive on non-
compact basic closed semialgebraic sets. Given finite G ⊆ R[X], let S =
S(G) and suppose that S is not compact. Let P = PO(G) andM = M(G).

6



Conference Real Algebraic Geometry

83

We would like to know if Schmüdgen’s Theorem or Putinar’s Theorem ex-
tends to this case: Given f > 0 on S, is f ∈ P or f ∈ M? More generally,
we can ask whether this holds for f ≥ 0 on S, in which case we say that P
or M is saturated. We have the following negative results due to Scheiderer:

Theorem 7 ([66]). 1. Suppose dimS ≥ 3. Then there exists p ∈ R[X]
such that p ≥ 0 on Rn and p �∈ P.

2. If n = 2 and S contains an open 2-dimensional cone, then there is
p ∈ R[X] with p ≥ 0 on R2 and p �∈ P.

In contrast to these, the n = 1 case has been completely settled, by
Kuhlmann and Marshall [27], extending work of Berg and Maserick [3]. In
this case, the preordering P is saturated, provided one chooses the right
set of generators.

Definition 1 ([27], 2.3). Suppose S is a closed semialgebraic set in R, then
S is a union of finitely many closed intervals and points. Define a set of
polynomials F in R[x] as follows:

• If a ∈ S and (−∞, a) ∩ S = ∅, then x− a ∈ F .

• If a ∈ S and (a,∞) ∩ S = ∅, then ax ∈ F .

• If a, b ∈ S and (a, b) ∩ S = ∅, then (x− a)(x− b) ∈ F .

It is easy to see that S(F ) = S; F is called the natural choice of
generators for S.

Theorem 8 ([27],Thm. 2.2, Thm. 2.5). Let S be as above and suppose G
is any finite subset in R[X] such that S(G) = S. Let P = PO(G) and let
F be the natural choice of generators.

1. Every p ∈ R[x] such that p ≥ 0 on S is in P iff the set of generators
G of S contains F .

2. Let M = M(F ), then every p ∈ R[x] such that p ≥ 0 on S is in M iff
|F | ≤ 1, or |F | = 2 and S has an isolated point.

We are left with the case of noncompact semialgebraic subsets of R2

which do not contain a 2-dimensional cone. We write R[x] for the polyno-
mial ring in one variable and R[x, y] for the polynomial ring in two vari-
ables. The first example given of a noncompact basic closed semialgebraic
set in R2 for which the corresponding preordering is saturated is due to
Scheiderer [69]. His example is the preordering in R[x, y] generated by
{x, 1− x, y, 1− xy}. Powers and Reznick [52] studied polynomials positive
on noncompact rectangles in R2 and obtained some partial results. They
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showed that if F = {f1, . . . , fr, y} with f1, . . . , fr ∈ R[x] and S(F ) is the
half-strip [0, 1] × R+, then there always exists g > 0 on [0, 1] × R+ with
g �∈ M(F ). On the other hand, it is shown that under a certain condition,
g ≥ 0 on [0, 1]×R implies g = s+t(x−x2) with s, t ∈

∑
R[x, y]2. Recently,

Marshall proved this without the condition on g, settling a long-standing
open problem.

Theorem 9 ([34]). Suppose p ∈ R[x, y] is non-negative on the strip [0, 1]×
R. Then there exist s, t ∈

∑
R[x, y]2 such that p = s+ t(x− x2).

In other words, any p which is nonnegative on the strip [0, 1] × R is in
the quadratic module M(x − x2). This result has been extended by H.
Nguyen in her PhD thesis [37] and by Nguyen and Powers.

Theorem 10 ([38], Thm. 2). Suppose U ⊆ R is compact and F is the
natural choice of generators for U . Let S = U × R ⊆ R2 and let M be the
quadratic module in R[x, y] generated by F . Then every p ∈ R[x, y] with
p ≥ 0 on S is in M .

By the result from [52], we know that this does not generalize to the half-
strip case, however we do obtain a representation theorem if the quadratic
module is replaced by a preordering and we use the natural choice of gen-
erators.

Theorem 11 ([38], Thm. 3). Given compact U ⊆ R with natural choice
of generators {s1, . . . , sk} and q(x) ∈ R[x] with q(x) ≥ 0 on U , let F =
{s1, . . . , sk, y− q(x)}, so that S(F ) is the upper half of the strip U ×R cut
by {q(x) = 0}. If P is the preordering in R[x, y] generated by F , then P is
saturated.

There are also examples for which no corresponding finitely generated
preorder is saturated. The following from [38] is a generalization of an
example from [13] due to Netzer.

Example 1. Suppose F = {x − x2, y2 − x, y}, so that S = S(F ) is the
half-strip [0, 1]×R+ cut by the parabola y2 = x. Then for any F̃ ⊆ R[x, y]
such that S(F̃ ) = S, there is some p ∈ R[x, y] such that p ≥ 0 on S and
p �∈ PO(F̃ ).

For all of the positive examples above, the fibers S ∩ {y = a} are con-
nected. It is not known if there are positive examples for which this doesn’t
hold, e.g., we have the following open problem:

Question: Let S = S({x − x2, y2 − 1}) in R2, so that S = [0, 1] ×
((−∞,−1] ∪ [1,∞)). Given g ∈ R[x, y] such that g ≥ 0 on S, is g ∈
PO({x− x2, y2 − 1})?

8



Conference Real Algebraic Geometry

85

2.4 Sums of squares on real algebraic varieties

We know look at a more general setting than polynomial rings. Let V be
an affine variety defined over R, R[V ] the coordinate ring of V , and V (R)
the set of real points of V . Then f ∈ R[V ] is psd if f(x) ≥ 0 for all
x ∈ V (R), and f is sos if f is a finite sum of squares of elements of R[V ].
It is interesting to ask whether psd = sos in this more general setting.

If dim(V ) ≥ 3, then Hilbert’s result that psd �= sos has been extended
to R[V ] by Scheiderer [66] . In the dimension 2 case, Scheiderer proves the
surprising theorem that if V is a nonsingular affine surface and V (R) is
compact, then psd = sos holds on V , see [69]. There is a nice application
of this to Hilbert’s 17th problem: If f ∈ R[x, y, z] is a psd ternary forms
and g is any positive definite ternary form, then there exists N ∈ N such
that gNf is sos.

The case where dim(V ) = 1 (real algebraic curves) is completely un-
derstood in the case where V is irreducible, again due to Scheiderer [67].
In 2010, Plaumann [45] showed that in the reducible case, the answer de-
pends on the irreducible components of the curve, and also on how these
irreducible components are configured with respect to each other. He gives
necessary and sufficient conditions for psd = sos in this case. He shows,
for example, that for the family of curves Ca = {(y − x2)(y − a) = 0} for
a ∈ R (the union of a parabola and a line), psd �= sos always.

2.5 Stability

A quadratic module M = M(g1, . . . , gk) in R[X] is stable if there exists
a function φ : N → N such that the following holds: For every d ∈ N
and every f ∈ M with deg f ≤ d, there is a representation of f in M ,
f = s0 + s1g1 + · · · + skgk such that for all i, deg si ≤ φ(d). A similar
definition can be made for preorders, although stability has been studied
mostly in the quadratic module case. The notion of stability was introduced
in [55], where it was used to study the multivariable Moment Problem for
noncompact semialgebraic sets.

The easiest example of a stable quadratic module in R[X] is
∑

R[X]2:
If f is sos and f = h2

1 + · · · + h2
r, then for all i, deg h2

i ≤ deg f , since the
leading forms of the h2

i ’s cannot cancel. A generalization of this simple
argument yields families of stable preorderings in [55]. (The arguments
apply immediately to quadratic modules as well.) On the other hand, if
S(G) has dimension ≥ 2 and M(G) is archimedean, then M(G) is never
stable; this follows from [68, Thm. 5.4].

The notion of stability is important for computational problems as well
as applications to the Moment Problem. It is this key property of stability
that allows for effective algorithms for the problem of deciding whether
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f ∈ R[X] is sos, and finding an explicit representation if so. See §3.1 for
further discussion of these algorithims. In the case of compact semialgebraic
sets, the non-stability of the underlying preordering or quadratic module
means the problem of finding representations of polynomials positive on
the set must be difficult.

Netzer [36] generalizes the idea of stability of a quadratic module to
the notion of stable with respect to a given grading on a polynomial ring.
The usual notion of stability is then stability with respect to the standard
grading. Considering stability with respect to other gradings allows the
development of tools to prove stability with respect to the standard grading
by proving it first for finitely many non-standard ones. The paper [36]
contains interesting new examples of stable quadratic modules.

2.6 Certificates of positivity for polynomials with special struc-
ture

If a polynomial f for which there is a certificate of positivity has some
special structure, it can happen that there exists a certificate of positivity
with nice properties related to the structure. This can have implications
for applications, since it can imply the existence of smaller certificates for
f than the general theory implies.

2.6.1 Invariant sums of squares

In practical applications of sums of squares, there is often some inherent
symmetry in the problem. This symmetry can be exploited to yield finer
representation theorems which in turn can lead to a reduction in problem
size for applications.

Consider the following general situation: Suppose K is a closed subset
of Rn which is invariant under some subgroup G of the general linear group.
Can we characterize G-invariant polynomials which are positive on K? For
example, can they be described in terms of invariant sums of squares, or
even sums of squares of invariant polynomials?

Gatermann and Parrilo [17] considered these questions in the context of
finding effective sum of squares decompositions of invariant polynomials.
They look at finding a decomposition of an sos polynomial f which is
invariant under the action of a finite group. Cimpric, Kuhlmann, and
Scheiderer [13] consider a more general set-up: G is a reductive group
over R acting on an affine R-variety V with an induced dual action on
the coordinate ring R[V ] and on the linear dual space of R[V ]. In this
setting, given an invariant closed semialgebraic set K in Rn, they study
the problem of representations of invariant polynomials that are positive
on K using invariant sums of squares. Most of their results apply in the
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case where the group G(R) is compact. They obtain a generalization of
the main theorem of [17] and apply their results to an investigation of the
equivariant version of the K-moment problem.

2.6.2 Polynomials with structured sparsity

We discuss a “sparse” version of Putinar’s theorem, where the variables
consist of finitely many blocks that are allowed to overlap in certain ways,
and we seek a certificate of positivity for a polynomial f that is sparse in
the sense that each monomial in f involves only variables in one block.
Then there is a representation of f in the quadratic module in which the
sums of squares respect the block structure.

For I ⊆ {1, . . . , n}, let XI denote the set of variables {Xi | i ∈ I} and
R[XI ] the polynomial ring in the variables XI . Suppose that I1, . . . Ir are
subsets of {1, . . . , n} satisfying the running intersection property: For all
i = 2, . . . , r, there is some k < i such that Ii ∩

⋃
j<i Ij ⊆ Ik. Suppose

that for each i, i = 1, . . . , r, we are given a finite set of polynomials Gi =

{g(j)1 , . . . , g
(j)
lj
} in R[XIj ] . Then let Sj = S(Gj) and let Mj be the quadratic

module in R[XIj ] generated by Gj. Also, let S = ∩jSj. The following
theorem was proven by Lasserre [30] in the case where S has non-empty
interior and in the general case by Kojima and Muramatsu [26]:

Theorem 12. Suppose all of the quadratic modules Mj are archimedean,
and f ∈ R[XI1 ] + · · · + R[XIk ] is strictly positive on S. Then f ∈ M1 +
· · ·+Mk.

Notice that the case r = 1 is Putinar’s Theorem. Grimm, Netzer, and
Schweighofer [18] gave a new simple proof of the theorem.

2.7 Pure states and sums of squares

Recently, a new approach to certificates of positivity for polynomials non-
negative on compact basic closed semialgebraic has been introduced by
Burgdorf, Scheiderer, and Schweighofer [8]. Their techniques allow simple,
uniform proofs of already known representation theorems, as well as several
new results.

This new approach is based on pure states of convex cones in R[X].
The techniques come from the Eidelheit-Kakutani separation theorem for
convex sets in a real vector space V and when combined with the Krein-
Milman theorem yield a sufficient condition for membership in a convex
cone C ⊆ V provided that C has an order unit (an algebraic interior
point). This condition can then be applied to preorderings and quadratic
modules in R[X]. Here is a concrete example of the type of results that are
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proven. Recall that a semiring in commutative ring is a subset containing
{0, 1} and closed under addition and multiplication.

Theorem 13 ([8],Theorem 7.8). Let K ⊆ Rn be a nonempty compact
convex polyhedron defined by linear inequalities g1 ≥ 0, . . . gs ≥ 0. Let S be
the semiring in R[X] generated by R+ and the polynomials g1, . . . , gs. Let F
be a face of K and suppose f ∈ R[X] satisfies f |F= 0 and f | |K \ F > 0.
For every z ∈ F and every y ∈ K \F , assume Dy−zf(z) > 0. Then f ∈ S.

Here Dvf(z) denotes the directional derivative of f at z in the direction
of v. Roughly speaking, the last assumption in the theorem says that every
directional derivative of f at a point of F pointing intoK and not tangential
to F should be strictly positive.

Previous to this work, examples of Nichtnegativstellensätze required
that the nonnegative polynomial f on a compact basic closed semialge-
braic set S have discrete zeros in S. Results in [8] are the first that allow
f to have arbitrary zeros in S.

Example 2 ([8], Example 7.13). Suppose M is an archimedean quadratic
module in R[x, y, z], K = {x ∈ R3 | g(x) = 0 for all g ∈ M} and let
Z = {(0, 0, t) | t ∈ R}, the z-axis in R3. Assume p, q, r ∈ R[x, y, z] are such
that

f = x2p+ y2q + 2xyr,

f > 0 on S \Z, and f = 0 on Z. Then if p and pq− r2 are strictly positive
on Z ∩ S, f ∈ M .

3 Practice: Computational and algorithmic issues

Recently, there has been much interest in developing algorithms for decid-
ing positivity of a polynomial and finding certificates of positivity, in part
because of the many applications of these algorithms. In this section, we
discuss computational problems and issues related to postivity and sums
of squares. We will discuss algorithms for finding explicit certificates of
positivity for f ∈ R[X], both in the global case (sums of squares) and
for f positive on a compact basic closed semialgebraic set (algorithmic
Schmüdgen and Putinar theorems). We also discuss computational issues
around Bernstein’s Theorem and Pólya’s Theorem as well as quantitative
questions on psd ternary quartics (Hilbert’s Theorem).

3.1 Finding sum of squares representations

For f ∈ R[X], suppose we would like to decide if f is sos and if so, find an
explicit representation of f as a sum of squares. The method we describe,
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sometimes called the Gram matrix method reduces the problem to linear
algebra. For more details and examples, see e.g. [12], [56], [31, §3.3].

Suppose f ∈ R[X] has degree 2d, let N =
(
n+d
d

)
and let V be the N × 1

vector of all monomials in R[X] of degree at most d. Then f is sos iff there
exists an N ×N symmetric psd matrix A such that

f(X) = V · A · V T , (1)

The set of matrices A such that (1) holds is an affine subset L of the
space of N ×N symmetric matrices; a matrix in L is often called a Gram
matrix for f . Then f is sos iff L ∩ PN �= ∅, where PN is the convex cone
of psd symmetric N × N matrices over R. Finding this intersection is a
semidefinite program (SDP). There are good numerical algorithms – and
software – for solving semidefinite programs. For details on using SDPs to
find sum of squares representations , see e.g. [41], [57].

Since there is an a priori bound on the size of the SDP corresponding to
writing a particular f as a sum of squares, this gives an exact algorithm.
However, since we are using numerical software, there are issues of exact
versus numerical answers.

Consider the following example, due to C. Hillar: Suppose

f = 3− 12y − 6x3 + 18y2 + 3x6 + 12x3y − 6xy3 + 6x2y4,

is f sos? If we try to decide this with software we might get the answer
“yes” and a decomposition similar to this:

f = (x3 + 3.53y + .347xy2 − 1)2 + (x3 + .12y + 1.53xy2 − 1)2+

(x3 + 2.35y − 1.88xy2 − 1)2. (2)

The coefficients of the right-hand side of (2) are not exactly the same as
the coefficients of f , so we might wonder if f is really sos. It turns out that
f is sos, and (2) is an approximation of a decomposition for f of the form

(x3 + a2y + bxy22− 1)2 + (x3 + b2y + cxy2 − 1)22 + (x3 + c2y + axy2 − 1)2,

where a, b, c are real roots of x3 − 3x+ 1.
In theory, a SDP problem can be solved purely algebraically, for ex-

ample, using quantifier elimination. In practice, this is impossible for all
but trivial problems. Work by Nie, Ranestand, and Sturmfels [39] shows
that optimal solutions of relatively small SDP’s can have minimum defining
polynomials of huge degree, and hence we could encounter sos polynomials
of relatively small size which have decompositions using algebraic numbers
of large degree.

Since solving the underlying SDP exactly is impossible in most cases,
we are led to the following question: Suppose f ∈

∑
Q[X]2 and we find a
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numerical (approximate) certificate f =
∑

g2i (via SDP software, say), can
we find an exact decomposition of f in

∑
Q[X]2? Recent approaches using

hybrid symbolic-numeric approaches are very promising.
Peyrl and Parrilo [42] give an algorithm for converting a numerical sos

decomposition into an exact certificate, in some cases. The idea: Given
f ∈

∑
Q[X]2, we want to find a symmetric psd matrix A with rational

entries so that
f = V · A · V T (3)

The SDP software will produce a psd matrix A which only approximately
satisfies (3). The idea is to project A onto the affine space of solutions to
(3) in such a way that the projection remains in the cone of psd symmetric
matrices. The Peyrl-Parrilo method is (theoretically!) guaranteed to work
if there exists a rational solution and the underlying SDP is strictly feasible,
i.e., there is a solution with full rank. Kaltofen, Li, Yang, and Zhi [24]
have generalized the technique of Peyrl and Parrilo and used these ideas to
find sos certificates certifying rational lower bounds for several well-known
problems.

3.2 Certificates of positivity via Artin’s Theorem

Recall Artin’s solution to Hilbert’s 17th Problem which says that if f ∈
R[X] is psd, then there exists nonzero g ∈ R[X] such that g2f is sos.
Recent work of Kaltofen, Li, Yang, and Zhi [23] turns Artin’s theorem into
a symbolic-numeric algorithm for finding certificates of positivity for any
psd f ∈ Q[X]. The algorithm finds a numerical representation of f as a
quotient g/h, where g and h are sos, and then converts this to an exact
rational identity using techniques described above. The algorithm has been
implemented as software called ArtinProver. Kaltofen, Yang, and Zhi have
used this technique and the software to settle the dimension 4 case of the
Monotone Column Permanent Conjecture, see [25].

3.3 Schmüdgen’s and Putinar’s theorems

Let G ⊆ R[X] be a finite and suppose S := S(G) is compact. Set P =
PO(G). Recall Schmüdgen’s Theorem says that every polynomial that
is strictly positive on S is in P , regardless of the choice of generating
polynomials G. Schmüdgen’s proof uses functional analytic methods and
is not constructive in the sense that no information is given concerning how
to find an explicit certificate of positivity in P for a given f which is strictly
positive on S.
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3.3.1 Algorithmic Schümdgen Theorem

In 2002, Schweighofer [76] gave a proof of Schmüdgen’s Theorem which is
algorithmic, apart from an application of the Classical Positivstellensatz.
The idea of the proof is to reduce to Pólya’s Theorem (in a larger number
of variables). The Classical Positivstellensatz is used to imply the existence
of a “certificate of compactness” for S, i.e., the existence of s, t ∈ P and
r ∈ R such that

s(r2 −
∑

X2
i ) = 1 + t (4)

3.3.2 Degree bounds for Schmüdgen Theorem

Unlike the global (sum of squares) case, in general, there is no bound on
the degree of the sums of squares in a representation of f in P in terms
of the degree of f only. This has obvious implications for applications of
Schmüdgen’s Theorem, for example in recent work on the approximation
of polynomial optimization problems via semidefinite programming. Using
model and valuation theoretic methods, Prestel [58, Theorem 8.3.4] showed
that there exists a bound on the degree of the sums of squares which de-
pends on three parameters, namely, the polynomials G used to define S,
the degree of f , and a measure of how close f is to having a zero on S.
Schweighofer [77] used his algorithmic proof of the result to give a bound
on the degree of the sums of squares in a representation of f in P . Roughly
speaking, the bound makes explicit the dependence on the second and third
parameter in Prestel’s theorem. The first parameter appears in the bound
as a constant, which depends only on the polynomials G, and which comes
from the compactness certificate (4). The exact result is as follows:

Theorem 14 ([77],Theorem 3). Let G = {g1, . . . , gk}, S, and P be as
above and suppose S ⊆ (−1, 1)n. Then there exists c ∈ N so that for every
f ∈ R[X] of degree d with f > 0 on S and f ∗ = min{g(x) | x ∈ S},

f =
∑

e∈{0,1}k
seg

e1
1 . . . gekk ,

where se ∈
∑

R[X]2 and se = 0 or

deg(seeg
e1
1 . . . gekk ) ≤ cd2

(
1 +

(
d2nd ||f ||

f ∗

)c)
.

Here ||f || is a measure of the size of the coefficients of f . The constant
c depends on the polynomials G in an unspecified way, however in concrete
cases one could (in theory!) obtain an explicit c from the proof of the
theorem.
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3.3.3 Putinar’s Theorem

Let G and S be as above and set M = M(G). Recall Putinar’s Theorem
says that if M is archimedean, then every f > 0 on S is in M . Again,
Putinar’s proof is functional analytic and does not show how to find an
explicit certificate of positivity for f in M . In [78], Schweighofer extends
the algorithmic proof of Schmüdgen’s Theorem to give an algorithmic proof
of Putinar’s Theorem. Nie and Schweighofer [40] then use this proof to give
a bound for the degree of the sums of squares in a representation, similar
to Theorem 14. Recently, Putinar’s Theorem has been used by Lasserre
to give an algorithm for approximating the minimum of a polynomial on a
compact basic closed semialgebraic set, see [29]. The results in [40] yields
information about the convergence rate of the Lasserre method.

3.4 Rational certificates of positivity

In §3.1, an algorithm for finding sum of squares certificates of positivity
for sos polynomials f is described, using semidefinite programming. This
technique can also be used to find certificates of positivity for a polynomial
f which is positive on a compact semialgebraic set. However, there is
another question which arises when we are using numerical software: All
polynomials found in a certificate of positivity, for example in the sums
of squares, will have rational coefficients. But do we know that such a
certificate exists, even if we start with f ∈ Q[X]?

3.4.1 Sums of squares of rational polynomials

Sturmfels asked the following question: Suppose f ∈ Q[X] is in
∑

R[X]2,
is f ∈

∑
Q[X]2? Here is a trivial, but illustrative example: The rational

polynomial 2x2 is a square, since 2x2 = (
√
2x)2. But 2x2 is also in

∑
Q[x]2

since 2x2 = x2 + x2. Less trivially, recall the Hillar example:

f = 3− 12y − 6x3 + 18y2 + 3x6 + 12x3y − 6xy3 + 6x2y4,

as noted above, f is a sum of three squares in R[x, y]. It turns out that f
is a sum of six squares in Q[x, y]:

f = (x3+xy2+
3

2
y−1)2+(x3+2y−1)2+(x3−xy2+

5

2
y−1)2+(2y−xy2)2+

3

2
y2+3x2y4.

The answer to Sturmfel’s question is not known in general, however
there are partial results. In the univariate case, the answer is “yes”; proofs
have been given by Landau [28] and Schweighofer [75]. Porchet [48] showed
that at most five squares are needed. Hillar [21] showed that the answer to
Sturmfel’s question is “yes” if f ∈

∑
K2, whereK is a totally real extension
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of Q, and he gave bounds for the number of squares needed. There is a
simple proof of a slightly more general result with a better bound given
(independently) by Scheiderer [65] and Quarez [60].

Remark 1. The proof of Artin’s Theorem shows immediately that if f ∈
Q[X] is psd, then there always exist g, h ∈

∑
Q[X]2 such that f = g/h.

The rationality question is not an issue in this case.

3.4.2 Rational certificates of positivity on compact sets

There is an obvious analog of Sturmfels’ question for the case of polynomials
positive on compact semialgebraic sets. Let P = PO(G) for finite G ⊆
Q[X]. If f ∈ Q[X] is in P , does there exist a representation of f in P
such that the sums of squares that occur are in

∑
Q[X]2? We can ask a

similar question for the quadratic module M(G). In [49], it is shown that
the answer is “yes” for P in the compact case and “yes” for M with an
additional assumption.

Theorem 15. Let G = {g1, . . . , gr} ⊆ Q[X] and suppose S = S(G) is
compact. Let P = PO(F ) and M = M(F ). Given f ∈ Q[X] such that
f > 0 on S, then
1. There is a representation of f in the preordering P,

f =
∑

e∈{0,1}r
σeg

e1
1 . . . gerr ,

with all σe ∈
∑

Q[X]2.

2. There is a rational representation of f in M provided one of the gener-
ators is N −

∑
X2

i . More precisely, there exist σ0 . . . σs, σ ∈
∑

Q[X]2

and N ∈ N so that

f = σ0 + σ1g1 + · · ·+ σsgs + σ(N −
∑

X2
i ).

The proof of the first part follows from an algebraic proof of Schmüdgen’s
Theorem, due to T. Wörmann, which uses the Abstract Positivstellensatz.
Wörmann’s proof can be found in [5] or [58, Thm. 5.1.17]. The second
part follows from Schweighofer’s algorithmic proof of Putinar’s Theorem.

3.5 Certificates of positivity using Bernstein’s and Pólya’s the-
orems

Using Bernstein’s Theorem and Pólya’s Theorem, certificates of positiv-
ity for polynomials positive on simplices can be obtained. Furthermore,
this approach yields degree bounds for the certificates and, in some cases,
practical algorithms for finding certificates.
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3.5.1 The univariate case

For k ∈ N, define in R[x]:

Bk :=

{ ∑
i+j≤k

cij(1− x)i(1 + x)j | cij ≥ 0

}
.

Suppose a univariate p ∈ R[x] is strictly positive on [−1, 1], then Bernstein’s
Theorem says that there is some r = r(p) such that p ∈ Br. Suppose
p ∈ R[x] has degree d, then let p̃ denote the Goursat transform applied to
p, i.e.,

p̃(x) = (1 + x)dp

(
1− x

1 + x

)
.

Powers and Reznick gave a bound on r(p) in terms of the minimum of p
on [−1, 1] and size of the coefficients of p̃, which in turn yields a bound for
the size of a certificate of positivity for p.

More recently, F. Boudaoud, F. Caruso, and M.-F. Roy [7] obtain a local
version of Bernstein’s Theorem which yields a better bound. They show
that if deg p = d and p > 0 on [−1, 1], then there exists a subdivision
−1 = y1 < · · · < yt = 1 of [−1, 1] such that Bernstein-like certificates of
positivity for p can be obtained on each interval [yi, yi+1]. This yields a
certificate of positivity for p on [−1, 1] of bit-size O((d4(τ + log2 d)), where
d = deg p and the coefficients of p have bit-size ≤ τ . Moreover, their
result holds with R replaced by any real-closed field, which is not true for
Bernstein’s Theorem.

3.5.2 Polynomials positive on a simplex

Recall that Pólya’s Theorem says that if a form (homogeneous polynomial)
f is strictly positive on the standard simplex ∆n := {x ∈ Rn | xi ≥ 0 for
all i and

∑
xi = 1}, then for sufficiently large N ∈ N, all coefficients of

(
∑

Xi)
Nf are strictly positive. Powers and Reznick [51] gave a bound on

N , in terms of the degree of f , the minimum of f on ∆n, and the size of the
coefficients. This result has been used in several applications, for example
the algorithmic proof of Schmüdgen’s theorem given by Schweighofer dis-
cussed in §3.3.1. Also, de Klerk and Pasechnik [16] used it to give results
on approximating the stability number of a graph.

In theory, the bound for Pólya’s Theorem could be used to obtain certifi-
cates of positivity on the simplex, however in practice the bounds require
finding minimums of forms on closed subsets of the simplex and so are not
of much practical use. Another, more feasible, approach to certificates of
positivity for polynomials positive on a simplex, due to R. Leroy [32], uses
the multivariable Bernstein polynomials and a generalization of the ideas in
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[7]. The Bernstein polynomials are more suitable that the standard mono-
mial basis in this case since this approach gives results for an arbitrary
non-degenerate simplex and yields an algorithm for deciding positivity of a
polynomial on a simplex. The idea is to subdivide the simplex and obtain
local certificates so that the sizes of the local certificates are smaller than
those of a global certificate.

Let V be a non-degenerate simplex in Rn, i.e., the convex hull of n+ 1
affinely independent points v0, v1, . . . , vn in Rn. The barycentric coordi-
nates of V , λ1, . . . , λk, are linear polynomials in R[X] such that

n∑
i=0

λi = 1, (X1, . . . , Xn) =
n∑

i=1

λi(X)vi.

Then for d ∈ N, the Bernstein polynomials of degree d with respect to V
are {Bd

α | α ∈ Nn+1, |α| = d}, where

Bd
α =

d!

α0!α1! · · ·αn!

n∏
i=0

λαi
i .

They form a basis for the vector space of polynomials in R[X] of degree
≤ d, hence any f ∈ R[X] of degree ≤ d can be written uniquely as a
linear combination of the Bd

α’s. The coefficients are called the Bernstein
coefficients of f . If f > 0 on V , then for sufficiently large D, the Bernstein
coefficients using the BD

α ’s are nonnegative, which yields a certificate of
positivity for f on V .

This can be made computationally feasible, as well as lead to an algo-
rithm for deciding if f is positive on V . The idea is to triangulate V into
smaller simplices and look for certificates of positivity on the sub-simplices.
A stopping criterion is obtained using a lower bound on the minimum of a
positive polynomial on V , in terms of the degree, the number of variables,
and the bitsize of the coefficients. This was proven by S. Basu, Leroy, and
Roy [2] and later improved by G. Jeronimo and D. Perrucci [22].

3.5.3 Pólya’s Theorem with zeros

What can we say if the condition “strictly positive on ∆n” in Pólya’s The-
orem is replaced by “nonnegative on ∆n”? It is easy to see that in this case
we must use a slightly relaxed version of Pólya’s Theorem, replacing the
condition of “strictly positive coefficients” by “nonnegative coefficients”.
Let Po(n, d) be the set of forms of degree d in n variables for which there
exists an N ∈ N such that (X1 + · · · + Xn)

Np ∈ R+[X]. In other words,
Po(n, d) are the forms which satisfy the conclusion of Pólya’s Theorem,
with “positive coefficients” replaced by “nonnegative coefficients.”
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It is easy to see that p ∈ Po(n, d) implies p ≥ 0 on ∆n and that p > 0 on
the interior of ∆n. Further, Z(p), the zero set of p, must be a union of faces
of ∆n. Pólya’s Theorem and the bound are generalized to forms that are
positive on the simplex apart from zeros on the corners (zero dimensional
faces) of ∆n, in papers by Powers and Reznick [53] and M. Castle, Powers,
and Reznick [10]. See also work by H.-N. Mok and W.-K. To [35], who give
a sufficient condition for a form to satisfy the relaxed version of Pólya’s
Theorem, along with a bound in this case.

Very recently, Castle, Powers, and Reznick [9] give a complete charac-
terization of forms that are in Po(n, d) along with a a recursive bound
for the N needed. Before stating the main theorem of [9], we need a few
definitions.

Definition 2. Let α = (α1, . . . , αn), β = (β1, . . . , βn) be in Nn.

1. We write α � β if αi ≤ βi for all i, and α ≺ β if α � β and α �= β.

2. Suppose F is a face of ∆n, say F = {(x1, . . . , xn) ∈ ∆n | xi = 0 for i ∈
I} for some I ⊆ {1, 2, . . . , n}. Then we denote by αF the vector
(α̃1, . . . , α̃n) ∈ Nn, where α̃i = αi for i ∈ I and α̃j = 0 for j /∈ I.

3. For a form p ∈ R[X], let Λ+(p) denote the exponents of p with positive
coefficients and Λ−(p) the exponents of p with negative coefficients.

4. For a face F of ∆n and a subset S ⊆ N, we say that α ∈ S is minimal
in S with respect to F if there is no γ ∈ S such that γF ≺ αF .

Theorem 16. Given p =
∑

aβX
β, a nonzero form of degree d, such that

p ≥ 0 on ∆n and Z(p) ∩ ∆n is a union of faces. Let Λ+(p) denote the
exponents of p with positive coefficients and Λ−(p) the exponents of p with
negative coefficients. Then p ∈ Po(n, d) if and only if for every face F ⊆
Z(p) the following two conditions hold:

1. For every β ∈ Λ−(p), there is α ∈ Λ+(p) so that αF � βF .

2. For every α ∈ Λ+(p) which is minimal on Λ+(p) with respect to F ,
the form

∑
{γ∈supp(p)|γF=αF } aγX

γ−αF is strictly positive on the relative
interior of F .

3.5.4 Certificates of positivity on the hypercube

Finally, we mention briefly some recent work by de Klerk and Laurent
[15] concerning polynomials positive on a hypercube Q = [0, 1]n. Using
Bernstein approximations, they obtain bounds for certificates of positivity
for a polynomial f which is strictly positive on Q, in terms of the degree of
f , the size of the coefficients, and the minimum of f on Q. They also give
lower bounds, and sharper bounds in the case where f is quadratic.
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3.6 Psd ternary quartics

Recall Hilbert’s 1888 theorem that says every psd ternary quartic (homo-
geneous polynomial of degree 4 in 3 variables) is a sum of three squares
of quadratic forms. Hilbert’s proof in non-constructive in the sense that it
gives no information about the following questions: Given a psd ternary
quartic, how can one find three such quadratic forms? How many “funda-
mentally different” ways can this be done?

Several recent works have addressed these issues. In [50], Powers and
Reznick describe methods for finding and counting representations of a psd
ternary quartic and answer these questions completely for some special
cases. In several examples, it was found that there are exactly 63 inequiv-
alent representations as a sum of three squares of complex quadratic forms
and, of these, 8 correspond to representations as a sum of squares of real
quadratic forms. By “inequivalent representations” we mean up to orthog-
onal equivalence; two representations are equivalent iff they have the same
Gram matrix (see §3.1).

The fact that a psd ternary quartic f has 63 inequivalent representations
as a sum of squares of complex quadratic forms is a result due to Coble [14].
In 2004, Powers, Reznick, Scheiderer, and Sottile [54] showed that for every
real psd ternary quartic f such that the complex plane curve Q defined by
f = 0 is smooth, exactly 8 of the 63 inequivalent representations correspond
to a sum of three squares of real quadratic forms. More recently, in [71],
Scheiderer extends this analysis to the singular case and computes the
number of representations, depending on the configuration of the singular
points. For example, if f is a psd singular ternary quartic and Q has a real
double point, then there are exactly four inequivalent representations of f
as a sum of three quadratic forms.

The elementary proof of Hilbert’s Theorem on ternary quartics in [44]
is constructive in some sense. The authors state: “It should be possible to
follow our deformation argument for constructing such representations with
arbitrary numeric precision, for example by using finite element methods.”
Furthermore, their arguments give information on the number of inequiv-
alent representations. In particular, this yields a new, elementary proof of
the fact that for a generically chosen psd ternary quartic f , there are ex-
actly 8 inequivalent representations and when f is generically chosen with
a real zero, there are 4 inequivalent representations.

Finally, we mention very recent work on quartic curves due to Plaumann,
Sturmfels, and Vinzant [46]. They give a new proof of the Coble result
which yields an algorithm for computing all representations of a smooth
ternary quartic as a sum of squares of three complex quadratic forms.
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A SURVEY ON O-MINIMAL STRUCTURES

JEAN-PHILIPPE ROLIN

Abstract. We analyze some aspects of the theory of o-minimal structures.
In particular, we illustrate on various examples several analytic and geometric
methods involved in the proofs of o-minimality.

The theory of o-minimal structures is a river that has several sources. A. Tarski
and his monograph on the elementary theory of the structure R, , is obviously
one of them [Tar51]. S. Lojasiewicz’ work on semianalytic sets [Łoj71], followed
by with A. Gabrielov’s celebrated theorem of the complement of a subanalytic set
[Gab68], and subsequently by H. Hironaka’s rectilinearization of subanalytic sets
[Hir73], are undoubtedly another one. It is also worth mentioning the amazing title
of the fifth section of A. Grothendieck’s “Esquisse d’un programme”: Haro sur la
topologie dite “générale”, et réflexions heuristiques vers une topologie dite “mod-
érée”1 [Gro97], from which the terminology “tame geometry”, or “tame topology”,
comes.

The notion of o-minimal structure is introduced as such by L. van den Dries
in [Dri84] (although the author does not speak of “o-minimal structures”, but of
“structure of finite type”). The terminology “o-minimal” appears in another sem-
inal paper due to A. Pillay and C. Steinhorn [PS84], inspired by van den Dries’
approach. This important topic, on the border between model theory and geom-
etry, has been the subject of an impressive body of literature. Several excellent
surveys and books are devoted to it. Let us mention van den Dries’ book [Dri98],
M. Coste’s monograph [Cos00] and C. Miller’s and van den Dries’ article [DM96].
We should cite M. Shiota’s book [Shi97], which develops the theory of X-sets, and
contains the proof of several nice results.

The main purpose of this text is to extend the contents of the former surveys.
We address in particular the questions asked in some of them. We also want to
show that many proofs of o-minimality are based on common techniques, which
generalize the well known method of quadratic blow-up transformations. Of course,
our presentation is incomplete, and many interesting aspects are missing.

We assume some familiarity with the basic vocabulary of model theory (including
the notions of language, structures, theories, quantifier elimination, . . . ).

1. The initial works in o-minimality

1.1. Van den Dries’ theories of finite type. The article [Dri84] addresses the
following question, asked by Tarski in his monograph on the elementary structure
of R, , : can we extend the results of [Tar51] to the structure R, , , exp 2?

1Denunciation of so-called “general” topology, and heuristic reflections towards a so-called
“tame” topology.

2Actually, instead of exp, Tarski suggests the function f : x 2x, which makes little difference
since exp is definable in R, , , f .

1
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The central result of [Tar51] is the elimination of quantifiers for R, , 0, 1, , . It
implies quantifier elimination for the structure R, , a a R , , and hence the so-
called Tarski-Seidenberg theorem: the image of a semialgebraic subset of Rm under
a semialgebraic map from Rm to Rn is a semialgebraic subset of Rn. It is well known
that such a result is false for the elementary theory of R, , a a R , , , exp .
This is illustrated by the following example, due to Osgood [Osg16]. Consider the
function f defined on R R 0 by f x, y y exp x y . Its graph

Γ f x, y, z R3 : y 0 t z y exp t ty x

is actually nothing but the cone, with vertex at the origin, on the plane analytic
curve x, 1, exp x : x R 3. This set is definable in R, , , exp . However, it
can not be defined by a quantifier free formula in this language (see [Dri84, p. 100]
for an proof of this last claim).

In order to go further with the investigation of Tarski’s problem despite the
failure of “naive” quantifier elimination, van den Dries introduces in [Dri84] the
following notion:

Definition 1.1. Let A, be a nonempty dense linear order without endpoints,
to which we add two “endpoints” and such that a for all
a A. A subset X A is called of finite type if X is the union of a finite set and
finitely many intervals (an interval is a subset a, b x A : a x b , where

a b ).

Remark 1.2. Obviously, if A, R, , then a set X R is of finite type if and
only if X has finitely many connected components.

Given a first order language L with equality, and an L-structure A A, . . . ,
recall that an L-formula ϕ v1, . . . , vn , n 1, defines the set

a1, . . . , an An : A ϕ v1, . . . , vn

and that every set of this form is called a definable subset of An. A subset of An

defined by a formula in the language LA (with a constant symbol for each element
of A) is called A-definable (or definable with parameters in A).

Suppose that the language L contains a binary predicate symbol and that the
L-structure A A, , . . . is an expansion of the dense linear ordering without
endpoints A, .

Definition 1.3. 1) An L-theory T (extending the theory of dense linear order
without endpoints) is of finite type if each model A A, , . . . of T has the
property that each A-definable subset of A is of finite type.

2) A structure A A, , . . . is of finite type if the theory Th A is of finite
type.

Remark 1.4. It is interesting to notice the following intuitive comment of [Dri84, p.
106]: if a structure A A, , . . . is of finite type, then each A-definable subset of
A is of finite type, but the converse is probably not valid. Actually, the converse has
been proved to be valid by J. Knight, A. Pillay and C. Steinhorn in [KPS86](see
Section 1.2 of the present survey). Hence the familiar notion of o-minimal structure,
that the reader may recognize in the former definitions, is given in [Dri84] in a pretty
strong form (called strong o-minimality in [PS86]).

3We can remark the analogy with the construction of a subanalytic subset of R3 which is not
semianalytic.
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The paper [Dri84] ends with a detailed investigation of the properties of the ex-
pansions R of R, of finite type. In particular, the familiar notion of cylindrical
decomposition, inspired by Collins’ proof of quantifier elimination for R, , 0, 1, ,
[Col75], is introduced on pp. 109-111, and the following famous theorem is proved:

Theorem 1.5. Consider an expansion R of R, of finite type. Let n 1.

(1) For each definable set X Rn 1 and definable function f : X R there is
a finite partition of X into definable sets on each of which f is continuous.

(2) Given any definable subsets A1, . . . , Am of Rn there exists a cylindrical
decomposition of Rn partitioning each of A1, . . . , Am.

Remark 1.6. 1) One can easily deduce from this result the fact that every definable
set has finitely many connected components, and each component is also definable.

2) The relationship between “cylindrical decomposition” and “quantifier elimi-
nation” is recalled on p. 116: if each quantifier free definable subset of Rm has a
quantifier free cylindrical decomposition, then Th R admits quantifier elimination.

Let us conclude this section by quoting a few problems raised in [Dri84].
1. The paper is motivated by the conviction that the structure R, , , , exp is

of finite type. An interesting line of attack is outlined on pp 101-102, consisting in
inductively building a family of real analytic manifolds, each of which equipped with
an algebra of real analytic functions. These collections of algebras should contain
the exponential function, and be closed under certain classical operations, such as
taking implicit functions. The delicate step, leading to finite type properties, is to
show that, given a function which appears at some stage of the process, its zero-set
is a disjoint union of finitely many manifolds built at previous stages. Actually, the
idea of considering the properties of algebras of functions closed under “reasonable”
operations turns out to be a rich intuition, which has been used since in several
proofs of o-minimality. The o-minimality of the exponential structure itself has
been proved by A. Wilkie in 1996 in the celebrated paper [Wil96].

2. The possible approach of Tarski’s question via quantifier elimination is a goal
which has been achieved in the remarkable work of L. van den Dries, A. Macin-
tyre and D. Marker in [DMM94]. They introduce the theory Tan exp obtained
by extending the theory Tan of restricted real analytic functions by a few axioms
which express the classical properties of the exponential function. They then prove
that this theory is complete, and that the theory Tan exp, log admits quantifier
elimination (see Section 7.2 for an analysis of these methods). These results extend
those obtained by L. van den Dries and C. Miller in [DM94] (in this paper, the o-
minimality of Ran, exp is proved, via methods of Wilkie’s, as well as the analytic
cell decomposition property).

3. The question (A10) of the appendix asks the following: let R be an expansion
of finite type of R, , , and ϕ v1, . . . , vm n be an LR-formula. Does the family
of R-definable sets Xa a Rm , where Xa b Rn : R ϕ a, b , have only finitely
many homeomorphism types? A precise, positive, answer to this question is given
in [Dri98, Chapter 9]. Let’s recall that a definable map f : S Rn A Rm is
definably trivial if there exists a pair F, λ consisting of a definable set F RN

for some N and a definable map λ : S F such that f, λ : S A F is a
homeomorphism. Given a definable subset A A we call f definably trivial over
A if the restriction f f 1 A : f 1 A A is definably trivial. We then have:
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Theorem 1.7. Let f : S A be a continuous definable map. Then there is a finite
partition A A1 AM of A into definable sets Ai such that f is definably
trivial over each Ai.

This theorem answers question (A10) in the following way. Consider the definable
set X a, b Rm n : R ϕ a, b and the projection map f : X Rm. Take
a partition of Rm into definable sets A1, . . . , AM over which f is definably trivial,
with definable trivialization λi, Fi over Ai. Then Xa is definably homeomorphic
to Fi for all a Ai.

1.2. Pillay’s and Steinhorn’s study of o-minimal structures. A. Pillay and
C. Steinhorn start in [PS86] a model theoretic investigation of o-minimal structures.
Consider a first order language L which contains, among other things, a symbol .
Their study concerns with infinite L-structures M in which represents a linear
order of M .

Definition 1.8. 1) A linearly ordered structure M is o-minimal if every (paramet-
rically) definable set X M is a finite union of intervals of M .

2) An L-theory T is strongly o-minimal if every model of T is o-minimal.

We recognize in the point 2) of the above definition van den Dries’ notion of
theory of finite type4. As a consequence of Tarski’s theorem, every real closed field
is o-minimal. We have the following result:

Proposition 1.9. Every o-minimal structure is definably complete: every para-
metrically definable subset of M that is bounded from above has a least upper bound
in M .

Remark 1.10. The converse is not true. For example, the structure Q, , P where
P is a unary predicate interpreted as P 1 n : n N 0 is definably complete
but not o-minimal.

Another important result is :

Theorem 1.11. 1) An ordered group G is o-minimal if and only if G is abelian
and divisible.

2) An ordered ring R is o-minimal if and only if R is a real closed field.

The following useful characterization of o-minimality is related to the notion of
cut: a cut C in an ordered structure M is a maximal consistent set of formulas
with parameters from M of the form m x or x m where m M. We have:

Theorem 1.12. Le M be an linearly ordered structure. Then M is o-minimal if
and only if for each cut C in M, there is a unique complete one-type with parameters
from M which extends C.

A nice improvement of van den Dries’ approach is achieved in [KPS86]. Obvi-
ously, the notion of structure of finite type, which is clearly a property of a theory
rather than of a structure, seems difficult to handle. The following result, proved
by J. Knight, A. Pillay and C. Steinhorn, shows how to overcome this problem:

4Another source of inspiration for Pillay and Steinhorn is Baldwin’s and Lachlan’s work on
strongly minimal theories [BL71]: a theory T is strongly minimal if all parametrically definable
subsets in any model of T are finite or cofinite.
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Theorem 1.13. Consider an o-minimal structure M in which the underlying order
is dense. Then:

(1) Any definable subset of Mn is a disjoint union of finitely many definably
connected definable sets (or connected definable sets if M is an expansion
of R, ).

(2) M is strongly o-minimal.
(3) Let ϕ x1, . . . , xn; y1, . . . , ym be a formula of the language L (the language

of M). Then there exists K N such that for every b Mm, the set
a Mn : M ϕ a, b has at most K definably connected components

(connected components if M is an expansion of R, ).

The proof of the first claim of the above theorem follows in outline that of van
den Dries in [Dri84], who worked under the assumption of strong o-minimality, and
the assumption that M expands R, .

A. Pillay and C. Steinhorn prove in [PS88] that an arbitrary o-minimal structure
is strongly o-minimal for any (possibly non dense) linear order.

1.3. Another survey: van den Dries, 1998. Let us recall a few questions asked
in van den Dries’ survey [Dri99].

(1) Is each o-minimal structure on the real field exponentially bounded?
(2) Do all o-minimal structures on the real field have analytic cell decomposi-

tion? Same question with “analytic” replaced by “C ”.
(3) Is there a largest o-minimal structure on the real field?

We cannot resist quoting the wise and funny comment added by van den Dries after
these questions : a positive answer to any of these questions would be too good to
be true! Actually, we can summarize the present knowledge about these problems:

(1) No idea (but we agree with the above comment).
(2) No, and no (see Sections 3 and 5)
(3) No (see Section 3)

Van den Dries also asks the following questions, considered by him as “more open-
ended”.

(1) Does quasianalyticity imply o-minimality ?
(2) Do the “analysable functions” in the sense of Ecalle [Éca92] generate an

o-minimal structure on the real field ?
The answers today are :

(1) Yes and no (one first has to define clearly what is exactly understood by
quasianalyticity, see section 3).

(2) Well ... no idea, as long as the exact definition of analysable function is
still far to be clear. But some progress in this direction have been made
(see Section 6).

We explain our answers in the next sections. As the blowing-up method plays such
an important role in several polynomially bounded examples, we have decided to
discuss it in detail.

2. Blowing-ups and generalized power series

The papers [DS98] and [DS00] written by L. van den Dries and P. Speissegger il-
lustrate perfectly the following principle : o-minimality (on the reals) is nothing but
real analytic geometry based on algebras of non-analytic functions. They consider
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two expansions of the real field, and prove their o-minimality, model completeness
and polynomial boundedness. More precisely, they show how a convenient blow-
up process leads to a situation very similar to the starting point of the proof of
Gabrielov’s theorem of the complement. This method became very familiar: o-
minimality appears now in many examples as a consequence of model-completeness
rather than quantifier elimination, which seems hard to obtain in general5.

We consider in this section the structure analyzed in [DS98]. If X X1, . . . , Xm

denotes a tuple of m indeterminates, we consider the R-algebra R X of formal
power series

F F X
α

cαX
α

where the multi-index α α1, . . . , αm ranges over 0,
m, with real coefficients

cα, and Xα : Xα1
1 Xαm

m , and the set

supp F α 0,
m

: cα 0

is contained in a cartesian product S1 Sm of well ordered subsets of 0, .
Moreover, for each polyradius r r1, . . . , rm 0,

m we let R X r be the
subalgebra of R X consisting of the F ’s such that

F r
α

cα rα .

Each F X cαX
α R X r gives rise to a continuous function x F x

cαx
α : 0, r1 0, rm R, which is analytic on 0, r1 0, rm . Let

Ran be the expansion of the reals by all functions f : Rm R, m N, that are
0 outside 0, 1

m and are given on 0, 1
m by a power series F R X r for some

polyradius r with r1 1, . . . , rm 1. Then we have:

Theorem 2.1. The expansion Ran is o-minimal, model complete and polynomially
bounded.

We first give an overview of the blow-up process involved. Then we recall the
statement which generalizes in this framework (and many others) the usual theorem
of the complement.

2.1. Blowing-ups for generalized power series. Even if we work with series
with real exponents, the general idea follows the analysis of the classical Newton
polyhedron of a given generalized series. Simplifying this Newton polyhedron via
blow-up transforms is a classical tool in analytic geometry. Here, “simplifying”
actually means several different things:

(1) After a convenient blowing-up, a indeterminate with real exponents be-
comes an indeterminate with integer exponents.

(2) After a convenient blowing-up, the series is “closer” to be a normal series
(that is, a series equal to the product of a monomial and a unit).

(3) If a series has at least two variables X1 and X2 with integer exponents (and
hence defines a function which is analytic in these variables [DS98, Lemma
6.5]), a linear change of coordinates leads to a series which is regular in
one of these variables. Hence, we can apply Weierstrass’ preparation with
respect to this variable [DS98, Prop. 5.10].

5Let us mention nevertheless J. Denef’s and L. van den Dries’ proof of Gabrielov’s theorem of
the complement via quantifier elimination in [DD88].
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In order to “get rid” of variables with real exponents, the idea is to work with a
ring A and to define as above the A-algebra A X of generalized formal power
series with coefficients in A. In the following, A will be understood to be the ring
of classical formal power series R Y in the tuple of variables Y Y1, . . . , Yn .

In order to give an idea of this process, consider a finite collection F A X of
generalized power series. The minimal monomials of F are the minimal monomials
(ordered by divisibility) of the supports of the elements of F . Since the supports
of generalized power series are well ordered, the set G of these minimal monomials
is finite. We can now define the blow-up height of the family F :

Definition 2.2. 1) Suppose given two monomials Xα and Xβ , α, β 0, m. If
gcd Xα, Xβ 1, we let

a i 1, . . . ,m : αi 0 and b j 1, . . . ,m : βj 0

and we define the blow-up height of Xα and Xβ by:

b Xα, Xβ 0 if Xα 1 or Xβ 1

a b otherwise.

In general, if gcd Xα, Xβ Xω, we set b Xα, Xβ b Xα ω, Xβ ω .
2) Given a finite family G of monomials, the blow-up height of G is the pair p, q ,

where p is the number of pairs of monomials in G with nonzero blow-up heights
and q is the minimum of the blow-up heights of such pairs if they exist, and 0, 0
otherwise.

3) The blow-up height b F of a finite family F A X is the blow-up height
of its family of minimal monomials.

We can now define a transformation whose effect is to lower the blow-up height
of a finite family of power series:

Definition 2.3. Assume m 2. Given distinct i, j 1, . . . ,m and γ 0,
the singular blow-up substitution on X is the injective monoid homomorphism
sγij : X X such that sγij Xk Xk for k i and sγij Xi XiX

γ
j . This

morphism extends to an injective A-algebra endomorphism of A X by putting
sγij cαX

α cαs
γ
ij Xα .

Proposition 2.4. Consider a finite collection F of formal generalized power series.
Then:

(1) If b F 0, 0 then there are γ 0 and distinct i, j 1, . . . ,m such that
b sγij F b F and b s

1 γ
ji F b F .

(2) If b F 0, 0 , then each nonzero f F is of the form f Xωg with
g A X , g 0 0.

As in classical analytic geometry, another transformation is needed to be able to
give a geometric meaning to the notion of blow-up. Let

X,Y X1, . . . , Xm, Y1, . . . , Yn

be a tuple of m n distinct indeterminates. We consider the subring A X , Y of
A X, Y consisting of those f A X, Y in which the Y -indeterminates have
only natural numbers as exponents. We have:
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Proposition 2.5. Let f A X , Y (with m 2), and let γ, λ 0. Put X
X1, . . . , Xm 1 . Then the regular substitution rγ,λ defined by

rγ,λ f X ,Xm, Y f X ,Xγ
m 1 λ Xm , Y

maps A X , Y into A X ,Xm, Y .

It is also proved in [DS98] that the algebras of convergent generalized power
series are closed under the previous substitutions, regular and singular. Hence,
the blowing-ups, adapted to the scale of monomials with real exponents, can be
considered as geometric transformations. The effect of such transformations is to
reduce the number of indeterminates with non integer exponents or to reduce the
number of minimal monomials.

As we mentioned above, another classical (and crucial) tool is Weierstrass’ prepa-
ration. Let us denote by A X , Y the sub-algebra of A X , Y which consists
of convergent elements of A X , Y .

Theorem 2.6. Consider a convergent generalized power series f R X ,Y reg-
ular of order d in the variable Yn. Then f factors uniquely as f UW , where
U X , Y is a unit and W R X ,Y1, . . . , Yn 1 Yn is a monic polynomial of
degree d in Yn.

Roughly speaking, these statements allow to transform, by finitely many blowing
ups and linear transformations, a given generalized power series into a normal series
or a polynomial in one of the indeterminates. The zero-set of such series is “simple”.
More precisely, the quantifier free definable sets satisfy a general criterion for model-
completeness, called the Λ-Gabrielov property, explained in the following section.

2.2. Λ-Gabrielov property. A set S Rk has dimension if S is a countable
union of C1-manifolds. In that case we put

dim S max dim M : M S is a manifold .

Consider a collection Λn of bounded subsets of Rn be given for each n, and let
Λ Λn n N. An element A Λ is called a Λ-set, and a Λ-manifold if A is a
manifold. A sub-Λ-set is the image of a Λ-set under a linear projection. A sub-Λ-
set which is also a manifold is called a sub-Λ-manifold.

Definition 2.7. A set A Rn has the Λ-Gabrielov property, if for each m n
there are connected Λ-manifolds B1 Rn q1 ,. . . , Bk Rn qk , where q1, . . . , qk N,
such that

Πm A Πm B1 Πm Bk

where Πm means the linear projection onto Rm, and, for each i 1, . . . , k we have:
(1) fr Bi Bi Bi is included in a closed sub-Λ-set Di Rn qi such that Di

has dimension with dim Di dim Bi ;
(2) dim Bi m, and there is a strictly increasing sequence λ 1, . . . ,m

d,
with d dim Bi , such that Πλ Bi

: Bi Rd is an immersion.

From now on, we assume moreover that Λ Λn n N where each Λn is a collec-
tion of subsets of 1, 1

n which contains the diagonals and the complement of the
diagonals, which is closed under union and intersection, and such that, for every
A Λn, we have:

(1) 1, 1 A and A 1, 1 belongs to Λn 1.



Conference Real Algebraic Geometry

113

A SURVEY ON O-MINIMAL STRUCTURES 9

(2) A has the Λ-Gabrielov property.
The next result [DS98, Theorem 2.7] is the fundamental property which leads in sev-
eral situations, modulo routine arguments, to model completeness and o-minimality:

Theorem 2.8. If E 1, 1
m is a sub-Λ-set, then 1, 1

m
E is a sub-Λ-set.

Actually, it is not that easy to prove that the Λ-Gabrielov property is a conse-
quence of the blow-up process described in the previous section and from Weier-
strass’ preparation. But this goal can be achieved via classical methods, namely a
fiber cutting lemma [DS98, 8.12], directly inspired by its analytic analogue [BM88,
Lemma 3.6].

We have given quite a lot of details in this section, because we consider that
the results of the paper [DS98] are of great importance. In some sense, all the
subsequent proofs of o-minimality via model completeness consist in convenient
adaptations of the methods explained here : blow-up substitutions, Weierstrass
preparation, fiber cutting lemma, and Λ-Gabrielov property. Hence in the next
sections, we simply give the main result of the corresponding papers, and add short
comments.

3. Quasianalyticity and o-minimality

Let us recall the question asked by L. van den Dries in his survey [Dri99]: does
quasianalyticity imply o-minimality? A precise answer to this question is given
in [RSW03] by the author of this survey, P. Speissegger and A. Wilkie. Actually
it is proved there that a family of quasianalytic algebras closed under reasonable
operations generates a polynomially bounded o-minimal expansion of the real field.
Let us state this result more precisely.

Consider, for each compact box B a1, b1 an, bn Rn, n N, an
R-algebra CB of functions f : B R such that:

C1: CB contains the functions x1, . . . , xn xi, and for every f CB , the
restriction of f to int B is C ;

C2: if B Rm is a compact box and g1, . . . , gn CB are such that g B
B, where g g1, . . . , gn , then for every f CB the function y
f g1 y , . . . , gn y belongs to CB ;

C3: for every compact box B B we have f B CB for all f CB , and,
for every f CB there is a compact box B Rn and g CB such that
B int B and g B f ;

C4: f xi CB for every f CB and each i 1, . . . , n.
For every polyradius r r1, . . . , rn 0,

n, we put

Ir r1, r1 rn, rn and Ir cl Ir

If ε 0, we write Iε ε, ε
n. We denote by Cn the collection of all germs at the

origin of the functions in r 0, n CIr
. Let : Cn R X R X1, . . . , Xn be the

map that sends each germ to its (infinite) Taylor series at the origin.
We add the following assumptions:

C5: The map defined on Cn is injective (quasianalyticity);
C6: if n 1 and f Cn is such that f 0 0 and f xn 0 0,

there is a an α Cn 1 with α 0 0 and f x , α x 0 (where x
x1, . . . , xn 1 ) (implicit function);
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C7: if f Cn and i n are such that f X XiG X for some G X
R X , then f xig x for some g Cn such that G g.

We then have the following result:

Theorem 3.1. Consider a collection of algebras CB satisfying the conditions C1-
C7. For each n N, we put Kn 1, 1

n. For each function f CKn
we define

the function f : Rn R by f x f x if x Kn and f x 0 otherwise.
Then the expansion of the real ordered field by the functions f is o-minimal, model
complete and polynomially bounded.

Remark 3.2. It is worth noticing that the closure properties required in this theorem
are not so far from what is suggested in the very initial strategy conceived by L.
van den Dries in [Dri84].

The proof of this result is mostly based on the techniques described in Section
2. We should however notice the lack of Weierstrass’ preparation in the general
quasianalytic framework. It implies that the hypothesis of the Λ-Gabrielov property
for quantifier free definable sets has to be obtained by slightly different methods,
involving a more accurate blowing-up process, leading to a normalization of every
quasianalytic germ of our initial system.

Let us mention the two main applications of the above theorem given in [RSW03].
They are both based on a well known special case of quasianalytic system satisfying
the hypothesis C1 to C7, namely the quasianalytic Denjoy-Carleman classes. Let us
recall one nice result, due initially to S. Mandelbrojt, which has some non-obvious
consequences in o-minimality:

Theorem 3.3. Given any C function f : 1, 1 R, there exist two C func-
tions f1, f2 : 1, 1 R belonging to different quasianalytic Denjoy-Carleman
classes, such that:

(1) f f1 f2.
(2) f1 (resp. f2) is definable in an o-minimal expansion R1 (resp. R2) of the

ordered real field.

We immediately deduce from this result the negative answers (as it was expected)
to two questions quoted from [Dri99]:

1. If f is an oscillating function, the structures R1 and R2 are “incompatible”:
they do not admit a common o-minimal expansion. Hence there is no largest o-
minimal expansion of the real field.

2. If f is a C function which is not analytic at any point of the interval
1, 1 , then there exists an interval on which either f1 or f2 is nowhere analytic.

Hence at least one of the two structures R1 and R2 does not admit smooth cell
decomposition.

4. non-oscillating trajectories of analytic vector fields

In [RSS07], the author of this survey, F. Sanz, R. Schäfke apply the above general
quasianalytic result to some non-oscillating trajectories of real analytic vector fields.
The difficult part here is to prove that the algebras generated by the components of
the trajectories via operations, like monomial division and taking implicit function,
are quasianalytic. This is a consequence of some assumptions on the so-called
“Stokes phenomenon” of the formal asymptotic expansion of these components.
The initial goals of this work were:
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(1) to prove model completeness for the structure generated by some pfaffian
curves (such as the solutions of Euler’s differential equation x2y y x);
recall that model completeness is not a consequence of A. Wilkie’s general
pfaffian result [Wil99];

(2) extending o-minimality to non pfaffian (that is, non definable in the Pfaffian
closure of Ran) non oscillating trajectories of vector fields.

These goals are achieved, but two surprising unexpected results appear as conse-
quences of the main theorem of this paper:

(1) There exists, not only pairs of, as was proved in [RSW03], but an infinite
family of pairwise “incompatible” o-minimal expansions of the reals. More-
over, the elements of this family are generated by trajectories of the same
polynomial vector field.

(2) There exists a non oscillating trajectory of a polynomial vector field which
is not o-minimal. However, the existence of such a trajectory for an analytic
vector field in dimension 3 is still an important open question.

5. An o-minimal structure without C cell decomposition and
genericity

O. Le Gal and the author of this survey give in [LR09] an (expected) negative
answer to another question of [Dri99]: does every o-minimal expansion of the real
field admit smooth cell decomposition?

The idea of the construction is to “create” quasianalyticity with a function
H : R R, whose germ at the origin is weakly C but not C . More precisely,
inspired by similar results for Hardy fields, the authors consider a formal power
series h x anx

n whose coefficients are all algebraically independent over the
field of the rationals. Then, by a slight modification of Borel’s method, they build
a function H : R R such that:

(1) H is weakly C but not C at the origin.
(2) The Taylor expansion of H at the origin is h x .
(3) The restriction of H to the complement of any open interval centered at

0 R is piecewise polynomial (with finitely many pieces).

The work consists then in proving that the hypotheses on h x imply the quasian-
alyticity of the algebras of germs generated by H via the usual operations (com-
position, implicit function, etc.). Moreover, one has to check that the general
quasianalyticity result of [RSW03] can be adapted to this non-C framework.

O. Le Gal uses in [Gal10] these methods based on a transcendence property of
the coefficients of the Taylor expansion to obtain two nice results:

(1) The set of elements of C 0, 1 ,R which generate an o-minimal expansion
of the reals is residual for some Whitney topology.

(2) There exists an o-minimal expansion Rh of the real field by a function
h C 0, 1 ,R such that Ran,h is not o-minimal.

6. Partial o-minimal answers to Dulac’s problem

The analysable functions introduced by Ecalle in [Éca92] are considered since
the beginning as a possible target for o-minimal methods. They appear in Du-
lac’s problem: consider an analytic planar vector field X, and a non-degenerate
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monodromic polycycle Γ of X (non degenerate meaning that the vector has a non-
nilpotent linear part at each vertex of Γ). The problem is to prove that the first
return map P of Γ cannot have an accumulating sequence of isolated fixed points.

The classical treatment of this problem consists in writing P as a finite composi-
tion of restricted analytic and non-analytic transition maps defined in the neighbor-
hood of each singular point. Proving the o-minimality of P would be a remarkable
result, of great help in the proof of the celebrated Hilbert 16-th problem: prove that
a planar polynomial vector field admits at most finitely many limit cycles. The de-
velopment of o-minimal techniques suitable to Dulac’s problem is a major research
topic at this time. So far, only one result in this direction has been published in
[KRS09]:

Theorem 6.1. If all the vertices of the polycyle Γ are hyperbolic and non resonant
(which means that the linear part of the vector field X admits, for each of these ver-
tices, two eigenvalues of opposite sign, with an irrational ratio), then the Poincaré
first return map of Γ is defined in an o-minimal, model complete and polynomially
bounded expansion of the real field.

It is known, after Dulac, that the transition maps of each vertex has an asymp-
totic expansion cnx

αn where αn is an increasing and unbounded sequence of
positive real numbers. Ilyashenko proves in [Il’91] the quasianalyticity of this as-
ymptotic expansion. In this situation the theorem is obtained by applying all the
methods explained in this survey.

The general case (which would involve non hyperbolic, or hyperbolic resonant
vertices) leads to non polynomially bounded (yet exponentially bounded) asymp-
totic expansions. The quasianalyticity is clear for hyperbolic vertices, and much
more involved for non hyperbolic vertices. But, even in the hyperbolic case, work-
ing with divergent series, in several variables, involving log-exp monomials, seems
extremely difficult.

7. Two non polynomially bounded examples

7.1. The pfaffian structures. Since the original work of A. Khovanskii [Kho91],
one can find in the literature several definitions of Pfaffian sets and Pfaffian func-
tions. One of them, based on the notion of Rolle leaves of foliations of codimension
1, has been introduced by R. Moussu and C.A. Roche in [MR91]. Wilkie works
with another definition, closer to Khovanskii’s original one:

Definition 7.1. A C1 function f : Rn R is called Pfaffian if there exist C1

functions f1, . . . , fk : Rn R with fk f , such that for each i, j with 1 i k
and 1 j n, fi xj is expressible as a polynomial in x1, . . . , xn,f1, . . . , fi. The
expansion of the real field by all pfaffian functions is denoted by RPfaff .

The main result of [Wil99] is:

Theorem 7.2. The structure RPfaff is o-minimal.

This result is a consequence of a general method leading to o-minimality. Suppose
n 1 and A Rn. Let γ A denote the smallest natural number N with the
following property: for every affine subspace X of Rn we have A X A1 AN

for some connected subsets A1, . . . , AN of Rn. If no such N exists we write γ A
.
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Theorem 7.3. Let M be an expansion of the ordered field of real numbers by C
functions. Suppose that for each n 1 every quantifier-free, M-definable (with
parameters) subset A of Rn satisfies γ A . Then M is o-minimal.

The method of proof has, at least apparently, nothing to do with any blow-up
method. It is instead based on a way to approach the boundary of definable sets
which allows to control their topology.

This result looks very impressive. Instead of proving the finiteness property
for every definable set (or every definable subset of the real line), it is enough to
focus on the quantifier free definable sets, for which a uniform finiteness property
is required6. Actually, Wilkie uses the uniform finiteness for pfaffian sets proved
in Khovanskii’s work to deduce the o-minimality of RPfaff . However, it turns out
that, given a collection of C functions, it is not that easy to prove the finiteness
property for quantifier free definable sets. To our knowledge, the structure RPfaff

(or its variants) is the only one which has been proved to be o-minimal by this
method. For example, several attempts have been made to use Wilkie’s theorem
to prove o-minimality for non oscillating trajectories of analytic vector fields in
dimension 3. So far, they are unsuccessful.

7.2. Quantifier elimination for exponential structures. L. van den Dries, A.
Macintyre and D. Marker prove in [DMM94] the following result:

Theorem 7.4. The theory Tan exp admits quantifier elimination in the language
Tan exp, log .

This result is proved via a study of the valuation properties of (non standard)
models of Tan exp : given two models F K of this theory and a element y of K F ,
how does the valuation group of the Skolem closure F y in K behave, compared
to the valuation group of F? This approach is closer to a blowing-up approach than
it looks. Translated in a more conventional language of equations and solutions,
it may be understood as a way of dealing with equations as f x, y 0, where
x x1, . . . , xn and f is an exp log analytic function. More precisely, the idea
is to detect the possible “principal parts” of the solutions (valuative analysis), and
then to deduce from this initial part a change of variables which transforms f into
a simpler equation (blow-up). Of course we have in mind a notion of blowing-
up adapted to the exp log scale. This approach, which is literally a geometric
translation of the model theoretic methods of [DMM94], has been done by J.-
M. Lion and the author of this survey, leading to their “preparation theorem for
exp log functions” in [LR97].

Example. In order to give a simple example of these ideas, we consider the equa-
tion y log y x. Let us describe the process with allows to solve it wrto y in a
neighborhood of . We consider y log y and x as two “monomials”, namely two
“vertices” of the “Newton polygon” of the equation. As in the classical process, we
have to compute the “slope” of the line which joins these two vertices. In order to
determine this “slope”, we apply the logarithm function to the two members of the
equation :

log y log log y log x .

6Actually, J.-M. Lion proved in [Lio02] that the word “uniform” can be removed if the structure
M is generated by algebras of C functions closed under partial derivatives.
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Hence log y log x and y
x

log x
. This monomial is the “slope” we were looking

for. Now, still following the classical process, we can introduce the following change
of variables :

y
x

log x
1 y1 , and log y log

x

log x
log 1 y1

which is analytic wrto the variable y1 (because y1 0). Hence, this change of
variables, which is nothing but a blowing-up transformation in the logarithmic-
exponential scale, transforms the original equation (which is “transcendental” in
the variable y), into a new equation (which is analytic in the variable y1).

It would be interesting (for example in vue of Dulac’s problem) to know if such
methods, model-theoretic or geometric, could be extended to algebras of functions
which would admit divergent exp log series as asymptotic expansions (whatever
it means!).

8. o-minimality and number theory

This is a more recent and very promising direction for research in o-minimality.
We mention only one result in this survey, but, undoubtedly, this topic will deserve
its own survey very soon. J. Pila and A. Wilkie prove in [PW06] address the
problem of the distribution of rational and integer points on certain nonalgebraic
sets in Rn. More precisely, they give a nice estimation of the number of rational
points with a controlled height belonging to a definable set.

The height is defined in the following way. If a b Q, with b 0 and gcd a, b
1, then its height is defined by H a b max a , b . The height of a tuple of
rational numbers is defined by H α1, . . . , αn max H αj . If X Rn, let
X Q denote the subset of points with rational coordinates. For T 1 we set:

X Q, T P X Q : H P T

and define the density function of X to be

N X,T X Q, T

We have:

Theorem 8.1. Consider an o-minimal expansion S of the real field, a definable set
X Rn, and let ε 0. Denote by Xalg the union of all connected semialgebraic
subsets of X of positive dimension, Then there is a constant c X, ε such that

N X Xalg, T c X, ε T ε

The exclusion of the algebraic part Xalg is similar to the “exclusion of the special
set” in diophantine geometry, for example in the formulation of the conjecture of
Lang, which asserts that an algebraic variety has finitely many rational points out-
side its “special set”. The diophantine part of the proof of the above theorem follows
the strategy going back to former works of J. Pila. The heart of the analytic part
of the proof is the possibility of a certain uniform parameterization of the fibers in
a definable family. This is achieved by establishing an o-minimal version of Gro-
mov’s algebraic reparameterization lemma, which obtains such parameterizations
for closed semi-algebraic sets.
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9. Conclusion

Among the questions asked in [Dri84], at least two of them seem to need ideas
still missing.

1. The possible o-minimality of Ecalle’s analysable functions. Any technique
would be welcome, including a deep understanding of resurgent functions, Stokes
phenomena, real summation process, . . . It should be a long, hard and fascinating
work!

2. The existence of a transexponential o-minimal expansion of the real field. Of
course, a natural possible starting point seems to be the existence of transexpo-
nential Hardy fields. But what else should be involved? To make a comparison,
the existence of Hardy fields with non C elements was known for a long time.
But it was not sufficient to prove the existence of o-minimal structures without C
cell decomposition, before the o-minimalist community acquired some familiarity
with quasianalyticity. Is it reasonable to expect an extension of this notion to a
transexponential setting?
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Francesca Acquistapace, On Pfister’s multiplicative formulae for the ring of real ana-
lytic functions :

We present “infinite” multiplicative formulae for countable collections of sums of squares
(of meromorphic functions on Rn). Our formulae generalize the classical Pfister’s ones con-
cerning the representation as a sum of 2r squares of the product of two elements of a field
K which are sums of 2r squares. As a main application, we reduce the representation of
a positive semidefinite analytic function on Rn as a sum of squares to the representation
as sums of squares of its irreducible factors.

Joint work with Fabrizio Broglia and José F. Fernando.

Janusz Adamus, Tameness of complex dimensions in real algebraic sets :
Given a real-algebraic (or more generaly, semialgebraic) set R in a complex ambient

space, a natural question to ask is how much of the complex structure is inherited (locally)
by R. One way of measuring this influence at a point p ∈ R is to look at the minimal
dimension of a complex germ containing Rp and, dually, the maximal dimension of a
complex germ contained in Rp. We will consider the problem of tameness of these “outer”
and “inner” complex dimensions along R.

Joint work with Serge Randriambololona and Rasul Shafikov.

Alexandre Bardet, Diviseurs à support réel sur les courbes réelles :
Dans un article sur les sommes de carrés, Scheiderer a montré que pour toute courbe

réelle projective lisse, il existe un entier naturel N tel que tout diviseur de degré plus grand
que N soit linéairement équivalent à un diviseur dont le support est totalement réel. Bien
que la preuve laisse penser que l’entier N est grand, Huissman et Monnier ont montré
qu’on pouvait prendre N = g − 1 + s si le nombre de composantes connexes s est plus
grand que g. On s’intéressera alors à étendre des résultats de Monnier sur un analogue
concernant les courbes singulières.

Salvatore Barone, Refined bounds on the number of connected components of sign con-
ditions on a variety :

Let R be a real closed field, P,Q ⊂ R[X1, ..., Xk] finite subsets of polynomials, with the
degrees of the polynomials in P (resp. Q) bounded by d (resp. d0). Let V ⊂ Rk be the real
algebraic variety defined by the polynomials in Q and suppose that the real dimension of V
is bounded by k′. We prove that the number of semi-algebraically connected components
of the realizations of all realizable sign conditions of the family P on V is bounded by

2k−k′
(2k + 1) dk−k′

0

k′X
j=0

4j

 
s + 1

j

!
dj max{2d0, d}k′−j .
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In case 2d0 ≤ d, the above bound can be written simply as

(
k′X

j=0

 
s + 1

j

!
)dk′

dk−k′

0 O(1)k = (sd)k′
dk−k′

0 O(1)k.

This improves in certain cases (when d0 � d) the best known bound of

X
1≤j≤k′

 
s

j

!
4jd(2d − 1)k−1

on the same number proved in the case d = d0. The distinction between the bound
d0 on the degrees of the polynomials defining the variety V and the bound d on the
degrees of the polynomials in P that appears in the new bound seems to be significant in
several applications in discrete geometry, especially in recent work on bounding incidences
between points and algebraic varieties in fixed dimensional real affine spaces.

Frédéric Bihan, Recent Fewnomial Bounds :
Since the work of A. Khovanskii on Fewnomials, we know explicit bounds on the topol-

ogy of real algebraic varieties, in particular on the number of real solutions to polynomial
systems, which depend only on the number of monomials appearing in the defining equa-
tions. Such bounds are better than the classical ones when the number of monomials
is small comparatively to the degrees. This talk will survey recent fewnomial bounds,
including bounds which take into account additionnal structures on the supports of the
equations.

Ludwig Broecker, Stability indices over R((X)) and p-adic fields :
Basic sets are the generators for the lattice of all semialgebraic sets over R((X)) or

p-adic fields. For the semialgebraic sets one has elimination of quantifiers. However, the
basic sets are defined by n th- power predicates for arbitrary n. (Over the ordinary reals
n = 2 is sufficient). As for the reals we present bounds, only depending on the dimension
of the ambient space, for the number of polynomials wich is required to describe arbitrary
basic sets.

Sabine Burgdorf, Hilbert’s question on trace-positive polynomials :
Hilbert proved that a ternary quartic is nonnegative if and only if it can be written

as a sum of squares of polynomials whereas this is false in general if the degree of the
polynomial exceeds four. We will consider the question if the same holds true in the
tracial context. Namely, a real polynomial in non-commuting variables is called trace-
positive if its trace is nonnegative under all matrix evaluations of symmetric matrices or
of a given semialgebraic set K of symmetric matrices. These polynomials are intimately
connected to the embedding conjecture of Connes, which corresponds to Tsirelson’s prob-
lem from Quantum Physics. A second connection to Quantum Physics is given via the
BMV conjecture. We present results and examples concerning the question whether a
trace-positive polynomial can be written as a sum of hermitian squares and commutators.
If time permits we will also focus on the dual problem given by the tracial K-moment
problem.

Joint work with Igor Klep.
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Fabrizio Catenese, Moduli spaces of Galois coverings of algebraic curves.

Yann Cogan, Minimal degree of affine algebraic surfaces of given genus :
We present a study of the minimal degree of all smooth compact connected algebraic

surfaces of R3 of given genus. We prove that this minimal degree is equal to

(i) 4 in genus 1, 2, 3, 4, 5,
(ii) 6 in genus 10, 11, . . . , 27, 28,
(iii) 8 in genus 63, 64, . . . , 80, 81, and
(iv) 10 in genus 172, 173, 174, 175, 176.

The result is based on level surfaces of sums of Tchebychev’s polynomials of even degree
d (Banchov-Chmutov surfaces). It’s genus is ( d

2
− 1)2(d + 1). For example, the Banchov-

Chmutov surface of degree 4 has genus equal to 5, and the one of degree 6 has genus equal
to 28.

An explicit perturbation of the polynomial allows us to reduce the genus of the surface
without losing connectedness, compactness and smoothness. For each even degree d, any
genus less than ( d

2
− 1)2(d + 1) can be obtained in this way. It results in an upper bound

of the minimal degree in terms of the genus.
The Inequality of Milnor-Olienik-Petrovski-Thom, and Kharlamov’s Theorem on pro-

jective quartic surfaces give rise to a lower bound of the minimal degree of a surface of
genus g. Finally, we obtain the exact values given above, and tight bounds in other cases.
The question of the minimal degree of surfaces of genus 6, 7, 8 and 9, in particular, remains
open. It is equal to 4 or 6.

Marc Coppens, Separating pencils on (M − 2)-curves :
A smooth real curve X of genus g is called an (M − 2)-curve in case the real locus has

exactly g−1 components. A separating pencil on X is a base point free real linear system
g1

k on X such that the support of each real divisor in g1
k only contains real points. If X has

such pencil then X(C)\X(R) is disconnected (X is called separating). A result of Gabart
implies a separating (M − 2)-curve has a separating pencil of degree at most g. We show
the existence of separating (M −2)-curves having no separating pencil of degree g−1. As
a corollary, although for a separating (M − 1)-curve X the scheme W 1

g−1 parameterizing

linear systems g1
g−1 on X has dimension g − 4, there exist such curves having an isolated

point in the real locus W 1
g−1(R).

Felipe Cucker, On a Problem posed by Steve Smale :
At the request of the International Mathematical Union, in 1999, Steve Smale proposed

a list of 18 problems for the mathematicians of the 21st century. The 17th of these
problems asks for the existence of a deterministic algorithm computing an approximate
solution of a system of n complex polynomials in n unknowns in time polynomial, on the
average, in the size N of the input system. The talk gives fundamental advances in this
problem including the smoothed analysis of a randomized algorithm and a deterministic
algorithm working in near-polynomial (i.e., NO(log log N)) average time.

Joint work with Peter Buergisser.

Alex Degtyarev, On real determinantal quartics :
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We describe all possible arrangements of the ten nodes of a generic real determinantal
quartic surface in CP3 with nonempty spectrahedral region.

Joint work with I. Itenberg.

Charles N. Delzell, Eliminating nontransversal zeros in the Finiteness Theorem for
open semialgebraic sets :

Let R be a real closed field (e.g., R), with the usual, order topology. Let K be a subfield
(e.g., Q). Below, f and gij will denote elements of K[X] := K[X1, . . . , Xn], and {f > 0}
will denote {x ∈ Rn | f(x) > 0 } (a “subbasic open s.a. set”). A subset S of Rn is called
(K-R-)semialgebraic (or “s.a.”) if it is a Boolean combination of sets of the form {f > 0}.
The “Finiteness Theorem for open s.a. sets” asserts that if S is open s.a., then there are
finitely many gij such that S can be written as

(1)
[
i

\
j

{gij > 0}
(the converse is obvious).

We call a zero x ∈ Rn of f transversal if f changes sign in every neighborhood of x; we
write Zt(f) for the set of all transversal zeros of f , and Znt(f) for the set Z(f) \ Zt(f).

Theorem: For every f , there are finitely many gij such that {f > 0} can be written in
the form (1) with Znt(gij) = ∅ for each i, j.

The Theorem is proved by induction on n, and then by induction on maxdim W , where
W ranges over the “strata” of Znt(f).

An open set V in a topological space is called regular open if V = V
◦
.

For any open set V , V
◦

is regular open. A finite intersection of regular open sets is
regular open.

Corollary 1: If S is open s.a., then there are finitely many gij satisfying (1) with {gij > 0}
regular open for each i, j.

This answers a question of Brumfiel (1991), who had proved:

Corollary 2: If S is open s.a., then there are finitely many gij such that

S =
[
i

„\
j

{gij > 0}
◦«

.

I.e., S is a finite union of “basically” (not necessarily basic) regular open s.a. sets.

Corollary 2 follows easily from Corollary 1 and the paragraph before it. And Corollary
1, in turn, follows immediately from the Theorem using the Finiteness Theorem and either
of the following two (obvious) propositions:

Proposition 1: For every f , Znt(f) = ∅ iff {f > 0} and {−f > 0} are regular open.

Proposition 2: For every f , {f > 0} is regular open iff {f > 0} \ {f > 0} ⊆ Zt(f).

Example: Let n = 2, and write (X, Y ) instead of (X1, X2). Then Znt(Y
2−X2(X−1)) =

{(0, 0)} �= ∅, and hence {Y 2 − X2(X − 1) > 0} is not regular open. But the latter equals

({Y (Y 2 − X2(X − 1)) > 0} ∩ {Y > 0})

∪ ({Y (Y 2 − X2(X − 1)) < 0} ∩ {Y < 0}) ∪ ({X > 0} ∩ {1 − X < 0}) ∪ {X < 0},
where each polynomial on the righthand side has only transversal zeros, as in the Theorem.

Pawe�l Domański, Extension properties of real analytic sets and composition operators :
Some properties of real analytic sets turned out to be crucial in the study of composition

operators Cϕ, Cϕ(f) = f ◦ ϕ, acting on spaces A (Ω) of real analytic functions, where
ϕ : Ω → Ω is a fixed analytic map and Ω is a real analytic manifold.
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For instance, we prove that for semi-proper ϕ the image of ϕ is an analytic set with an
extension property (i.e., every real analytic function on ϕ(Ω) extends to the whole space)
if and only if Cϕ has closed range. Analogously, Cϕ is open onto its image if and only if
ϕ(Ω) has some “semi-local” extension property and ϕ is semi-proper.

We compare these two extension properties, explain which real analytic sets satisfy
these extension properties and which do not satisfy. We present some open problems
and compare results for Cϕ on spaces of real analytic functions with analogous results for
operators on spaces of smooth functions.

Based on a joint work with M. Goliński (Poznań) and M. Langenbruch (Oldenburg).

Nicolas Dutertre, On the topology of semi-algebraic functions on closed semi-algebraic
sets :

We consider a closed semi-algebraic set X ⊂ Rn and a C2 semi-algebraic function
f : Rn → R such that f|X has a finite number of critical points. We relate the topology
of X to the topology of the sets X ∩ {f ∗ α}, where ∗ ∈ {≤, =,≥} and α ∈ R, and the
indices of the critical points of f|X and −f|X . We also relate the topology of X to the
topology of the links at infinity of the sets X ∩ {f ∗ α} and the indices of these critical
points. We give applications when X = Rn and when f is a generic linear function.

Ido Efrat, Topological spaces as spaces of R-places :
The set of R-places of a field of characteristic not 2 carries a natural topology, induced

from its space of orderings. Becker and Gondard asked which topological spaces are real-
izable in this way. We report on recent progress made on this open problem. In particular,
we show that this class of spaces is closed under various topological constructions.

Joint work with Katarzyna Osiak.

Abdelhafed Elkhadiri, Link between noetherianity and weierstrass division theorem on
some quasianalytic local rings :

In the setting of well behaved quasianalytic differentiable system, we prove that Weier-
strass Division Theorem holds if, and only if, the system is Noetherian.

José Fernando, On the polynomial and regular images of Rn :
The first part of this talk is devoted to present a panoramic view of the main results

concerning the study of the polynomial and regular images of Rn developed during the
last 20 years. As far as we know the problem of determining the semialgebraic sets which
are either polynomial or regular images of Rn was firstly proposed by Gamboa in the 1990
Oberwolfach week ”Reelle Algebraische Geometrie”.

In the second part of the talk we present some new results developed during the last
year. We prove first that the set of points at infinite of a semialgebraic set S ⊂ Rm

which is the image of a polynomial map f : Rn → Rm is connected. This result is no
further true in general if f is a regular map, although it still works for a large family of
regular maps that we call ”quasi-polynomial maps”. We also provide new obstructions
for a semialgebraic set S ⊂ Rm to be the image of an either polynomial or regular map
f : Rn → Rm. Finally, we present a full geometric characterization of the 1-dimensional
polynomial and regular images of Rn.
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Séverine Fiedler-Le Touzé, M-curves of degree 9 :
The first part of Hilbert’s sixteenth problem deals with the classification of the iso-

topy types realizable by real plane algebraic curves of a given degree m. For m = 9 the
classification of the M -curves is still wide open. After systematic constructions, Korcha-
gin formulated three conjectures predicting that some lists of isotopy types shouldn’t be
realizable. We will present the current state of knowledge about these conjectures, and
expose some restrictions. The method, inspired from the classical one, combines Bezout’s
theorem with rational curves or pencils of curves, and all of the existing results on complex
orientation. The novelty here is the involvement of auxiliary cubics and quartics, and of
Orevkov’s complex orientation formulas.

Sergey Finashin, Real cubics and their varieties of lines :
I will mainly focus on the Fano variety of lines on a real cubic threefold and the related

spectral curves (plane real quintics with a Spin structure).

Andrei Gabrielov, Semi-monotone sets and triangulation of tame monotone families :
Let S(t), for t > 0, be a monotone (decreasing) family of compact sets in a compact

subset K of Rn. Both S(t) and K are assumed to be definable in an o-minimal struc-
ture (for example, real semialgebraic). The following problem emerges from a conjecture
formulated by Gabrielov and Vorobjov (2009) in connection with their work on approxi-
mation of a definable set by homotopy equivalent compact sets: Construct a triangulation
of K so that restriction of S(t) to each open simplex is equivalent to one of the 1 + 2n

”standard” families. The list of standard families is based on lex-monotone Boolean func-
tions in n Boolean variables. This can be done for n < 4. A weaker conjecture claims
that K admits a regular cell decomposition such that restriction of S(t) to each k-cell is
a family of regular k-cells, and its boundary is a family of regular (k − 1)-cells. To prove
this conjecture, Basu, Gabrielov and Vorobjov (2010) introduced semi-monotone sets, a
generalization of convex sets. Definable semi-monotone sets are PL-regular cells. They
are related to regular Boolean functions, for which the result of any quantifier elimination
does not depend on the order of quantifiers.

Joint work with S. Basu and N. Vorobjov.

Riccardo Ghiloni, The principle of moduli flexibility in Real Algebraic Geometry :
This talk deals with deformations of algebraic structures in the purely real setting.
The notion of deformation of the complex analytic structure of a given compact com-

plex analytic manifold M has been studied since the time of Riemann, who considered
the 1–dimensional case. In simplest terms, a deformation of M is a family {Mt}t∈B of
compact complex analytic manifolds, parametrized by a domain B of some Cn, depending
analytically on t ∈ B, such that Mt0 = M for some t0 ∈ B. In this context, a first
basic problem is to compute the maximum number of effective parameters on which a
deformation of M can depend. As discovered by Kodaira, Spencer and Kuranishi, such a
maximum number is finite for each compact complex analytic manifolds.

In the setting of complex algebraic geometry, the notion of deformation has a different,
more algebraic, nature. In fact, it is deeply connected with the moduli problem; that is,
the problem of finding spaces, called moduli spaces, that classify, up to complex biregu-
lar isomorphism, all the projective complex algebraic manifolds with assigned numerical
invariants or additional structures as the polarizations. Anyway, we can assert again that
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the complex algebraic structure of every projective complex algebraic manifold can be
deformed by an at most finite number of effective parameters.

In complex algebraic geometry, a real manifold is usually defined as a pair (X, σ)
in which X is a projective complex algebraic manifold and σ : X −→ X is an anti–
holomorphic involution. We call (X, σ) real–complex algebraic manifold and σ real–
complex algebraic structure on X. In this real–complex setting, we do not know if the
real–complex algebraic structure of every real–complex algebraic manifold can be deformed
by an at most finite number of effective parameters. However, if the real isomorphic class
of a given real–complex algebraic manifold (X, σ) belongs to a (coarse) real moduli space
R, then the maximum number of effective parameters on which a deformation of (X, σ)
can depend is ≤ dimR and hence is finite. A shining example is the one of real–complex
curves.

In this talk, we treat the notion of deformation of real algebraic structures from the
point of view of purely real algebraic geometry; that is, of the real algebraic geometry
systematically studied, as an independent discipline, in the foundational book “Real Al-
gebraic Geometry” of Bochnak, Coste and Roy. As far as we know, this is the first time
that such a treatment has been done.

The main purpose of this talk is to make rigorous the following informal principle,
which is in sharp contrast with the complex analytic, complex algebraic and real–complex
algebraic cases.

Principle of real algebraic moduli flexibility. The algebraic structure of every real algebraic
manifold of positive dimension can be deformed by an arbitrarily large number of effective
parameters.

Joint work with Edoardo Ballico.

Dima Grigoriev, Complexity of resolution of singularities :
We estimate the complexity of Hironaka’s desingularization algorithm in terms of Grze-

gorczyk’s classes (the latter being a hierarchy of primitive-recursive functions). The main
conclusion is that the dimension of a variety brings the principal contribution into the
complexity bound.

Joint work with E.Bierstone, P.Milman, J.Wlodarczyk.

Viatcheslav Kharlamov.

Igor Klep, The Convex Nichtnegativstellensatz in a free algebra :
Given linear matrix inequalities (LMIs) L1 and L2 it is natural to ask: does one dom-

inate the other? That is,

(Q) does L1(x) � 0 imply L2(x) � 0?

In this talk we describe a natural relaxation of an LMI, based on substituting matrices
for the variables xj . With this relaxation, the domination question (Q) has an elegant
answer. Indeed, for our “matricial” relaxation, a positive answer to (Q) is equivalent to
the existence of matrices Vj such that

(A) L2(x) = V T
1 L1(x)V1 + · · · + V T

r L1(x)Vr.

The relaxed LMI domination problem is equivalent to a classical problem in operator
algebras. Namely, the problem of determining if a linear map is completely positive.

Algebraic certificates for positivity, such as (A) for LMIs, are typically called Posi-
tivstellensätze. We shall also give a positivity certificate for polynomials: p is positive



Université de Rennes 1, 20 - 24 june 2011

130

semidefinite on the matricial LMI domain L(X) � 0 if and only if it has a weighted sum
of squares representation with optimal degree bounds:

(B) p(x) = s(x)T s(x) +
X

j

fj(x)T L(x) fj(x),

where s(x), fj(x) are vectors of polynomials of degree no greater than deg(p)/2.
A main ingredient of the proof is an analysis of extensions of Hankel matrices.
Based on joint papers with J.W. Helton and S. McCullough.

Manfred Knebusch, Tropical and supertropical degenerations of a commutative ring :
If R is a commutative ring, then degeneration of R to a “simpler” commutative ring

usually means moding out the congruence relation by an ideal. In particular a field does
not have such a degeneration. Things become more interesting if we allow degeneration
to semirings. The simplest such degenerations are provided by m-valuations (= monoid
valuations). They can be interpreted as a modest generalization of the valuations on R
in the sense of Bourbaki (Alg. comm. Chap. 6). An m-valuation is a multiplicative and
subadditive map v : R → M to a totally ordered semiring of very special kind, a so-called
“bipotent” semiring.
An m-valuation v : R → M can be “covered” by a supervaluation ϕ : R → U in various
ways. This means degenerating R to a multiplicative submonoid of a “supertropical”
semiring U . Applying a supervaluation ϕ to the coordinates of R-valued points of an
affine scheme V over R means degenerating V (R) in a less coarse way than by applying v.
The various supertropical degenerations of V (R) provide a refinement of tropical geometry.
If time allows I will give natural examples of m-valuations and supervaluations in the talk.

Joint work with Zur Izhakian and Louis Rowen.

Wojciech Kucharz, Transcendental submanifolds of projective space :
A smooth submanifold M of real projective n-space Pn(R) is said to be of algebraic type

if it is isotopic in Pn(R) to the set of real points of a nonsingular complex algebraic subset
of Pn(C) defined over R; otherwise M is said to be transcendental. If codim M = 1 or
2 dim M < n, then M is of algebraic type. In particular, every submanifold of dimension 1
is of algebraic type. It is not at all obvious that transcendental submanifolds exist. I will
give an explicit construction of transcendental submanifolds of any dimension greater than
3 and of any codimension greater than 1. The result is particularly nice for submanifolds
of codimension 2.

Aaron Kunert, Faces of cones of nonnegative quartics :
We study the facial structure of cones of positive semidefinite quartics. For certain types

of faces we will name an ambient vector space and give a criterion of fulldimensionality
in this vector space. This leads to an estimate of occurring dimensions of faces. We will
compare them to dimensions of corresponding faces of the cone of sums of squares and
point out explicit dimensional differences between these cones. As an application we can
list all faces of the cone of ternary quartics and thereby we obtain a complete description
of the facial structure of this cone. In particular this will give us an alternative proof of
Hilbert’s theorem.

Noa Lavi, Some possitivstellensatz in real closed valued fields :
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The purpose of this talk is to give a generalization of Hilbert’s seventeenth problem
in real closed valued fields, that is, to give an algebraic characterization, for a definable
set, of the set of polynomials which get only non-negative values on it. We give a general
characterization of the positive semi-definite polynomials for any definable set with a
Ganzstellensatz, and we also give a representation of those polynomials in the sense of
Hilbert 17th problem (that is, in terms of sums of squares) for definable sets from a certain
kind.

Antonio Lerario, Systems of Quadratic Inequalities :
Systems of quadratic inequalities are very flexible objects in mathematics, e.g any

system of polynomial equations can be reduced to a system of quadratic equations by
substitutions. Thus the set X of the solutions of a system of quadratic inequalities can
describe a very large class of semi-algebraic sets (the complexity of X is hidden in the
number of linearly independent inequalities). To study such a system we focus on the dual
object: the convex hull, in the space of all real quadratic forms on Rn, of those quadratic
forms involved in the system (n is the number of variables in the system). It turns out
that the homology of X is determined by the arrangement of this convex hull with respect
to the cone of degenerate forms. This approach allows to efficiently compute homology for
a very big number of variables n as long as the number of linearly independent inequalities
is limited. Moreover, it works also for systems of integral quadratic inequalities, i.e. in the
infinite dimension, beyond the semi-algebraic context. The calculations are organized in a
spectral sequence whose member E2 and the differential d2 have a simple clear geometric
interpretation.

Joint work with A. Agrachev.

Thierry Limoges, Products of real weight filtrations :
The weight filtration for real algebraic varieties has been developed by McCrory and

Parusiński, by analogy with Deligne’s weight filtration for complex algebreaic varieties.
They associate to each variety X a filtered chain complex G•C∗(X) which computes the
Borel-Moore homology HBM

∗ (X), and a spectral sequence Er(X), functorial and additive
for closed inclusions. The filtration is build using semi-algebraically constructible func-
tions. We explain how the operation of cross product allows us to compare the respective
filtered complexes and spectral sequences for varieties X, Y and their product X ×Y . We
have a dual cohomological theory on H∗

c (X), which gives informations about cup and cap
products of X.

Henri Lombardi, Effective Positivstellensatz :
In this talk, we speak about a work in progress with D. Perrucci and M.-F. Roy about

bounds on the real Positivstellensatz. A Positivstellensatz is a rational algebraic certifi-
cate of impossibility for a system of polynomial equalities and inequalities in a real closed
field. This certificate can also be seen as a very elementary proof of impossibility within
the theory of ordered domains. Previous algorithmic proofs of the Positivstellensatz are
based upon very long elementary proofs of impossibility and lead to very large bounds on
the degree of the certificate. More geometric proofs of impossibility lead to testing empti-
ness through algorithms of simple exponential size. But these “short” algorithmic proofs
are very unlikely transformed in algebraic certificates. Finding a “good” algorithm for
the Positivstellensatz is similar to finding a short and elementary proof for impossibilities
within the theory of ordered domains. It happens that this could be achieved through
a convenient variation on proofs through CAD (cylindric algebraic decomposition). But
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usual proofs that CAD work rely on the subtle notion of semialgebraic connectedness,
which is not defined as a first order concept. So we have to replace connectedness argu-
ments by a convenient use of Hermite theory of signature of real quadratic forms, which is
based on the existence of complex roots. From the point of view of algebraic certificates,
existence has to be replaced by a kind of dual notion, called “weak existence”. It happens
that weak existence of complex roots lead to triple exponential bounds. Combined with
the usual double exponential bounds for CAD, we obtain, hopefully, 5-exponential bounds
for the Positivstellensatz.

Frédéric Mangolte, Topologie des variétés algébriques réelles de dimension 3 :
La topologie des variétés algébriques réelles de dimension 3 est de mieux en mieux

connue. Depuis que Kollar, il y a une dizaine d’années, a ouvert une voie d’étude grâce
une solution du MMP sur R, les avancées ont été nombreuses. Dans cet exposé, je parlerai
de plusieurs conjectures de Kollar résolues depuis. On se rapproche d’une classification
des 3-variétés uniréglées et des 3-variétés rationnellement connexes. Je décrirai l’état de
l’art concernant ce problème, et en particulier mes contributions obtenues en collaboration
avec J. Huisman, F. Catanese, et J.-Y. Welschinger.

Arnaud Moncet, Real versus complex volumes on real algebraic surfaces :
Let X be a real algebraic surface. The comparison between the volume of D(R) and

D(C) for ample divisors D brings us to define the concordance α(X), which is a number
between 0 and 1. This number equals 1 when the Picard number ρ(XR) is 1, and for some
surfaces with a “quite simple” nef cone, e.g. Del Pezzo surfaces. For abelian surfaces, α(X)
is 1/2 or 1, depending on the existence or not of positive entropy automorphisms on X. In
the general case, the existence of such an automorphism gives an upper bound for α(X),
namely the ratio of entropies htop(f |X(R))/htop(f |X(C)). Moreover α(X) is equal to this
ratio when the Picard number is 2. An interesting consequence of the inequality is the non-
density of Aut(XR) in Diff(X(R)) as soon as α(X) > 0. Finally we show, thanks to this
upper bound, that there exist K3 surfaces with arbitrary small concordance, considering
a deformation of a singular surface of tridegree (2, 2, 2) in P1 × P1 × P1.

Seydou Moussa, Singularités des robots 6-UPS :
L’exposé a pour but de présenter une étude géométrique des singularités des robots

parallèles 6 degrés de liberté de type 6-UPS. Ce dernier présente beaucoup de similarités
avec les robots parallèles plans 3-RPR. En utilisant un espace de travail modifié et une
paramétrisation de la surface des configurations singulières, le Professeur Michel Coste a
donné en particulier une preuve géométrique simple du fait qu’un robot 3-RPR générique a
deux aspects (deux composantes connexes). Nous nous proposons d’utiliser cette méthode
dans l’étude du robot 6-UPS.

Tim Netzer, Polynomials with and without determinantal representations :
The problem of writing real zero polynomials as determinants of linear matrix polyno-

mials has recently attained a lot of attention. It is in fact the algebraic question behind
the geometric problem to characterize spectrahedra. Spectrahedra are the feasible sets of
semidefinite optimization problems, and thus of great importance. I will discuss positive
and negative results concerning the problem of finding determinantal representations of
polynomials.
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Ha Nguyen, Polynomials Non-negative on Strips and Half-strips :
Recently, M. Marshall answered a long-standing question in real algebraic geometry by

showing that if f ∈ R[x, y] and f ≥ 0 on the strip [0, 1] × R, then f has a representation
f = σ0 + σ1x(1 − x), where σ0, σ1 ∈ R[x, y] are sums of squares.

Representation theorems of this type have a rich and remarkable history, going back
at least to Hilbert. In this talk, we give the background to Marshall’s result, and our
generalizations to other non-compact semialgebraic subsets of R2. Our results give many
new examples of non-compact semialgebraic sets in R2 for which all polynomials that are
non-negative on the set can be characterized.

Andreea Nicoara, The Non-Noetherianity of the Denjoy-Carleman Rings of Germs :
A ring R of Denjoy-Carleman quasianalytic germs of functions that is stable under

derivation and strictly contains the ring of analytic germs is not Noetherian in dimension
2 or higher. This result settles a question open since 1976 when Childress proved such rings
fail Weierstrass Division. The argument uses a stronger version of Artin Approximation.

Joint work with Liat Kessler (Technion).

Krzysztof Nowak, On the singular locus of sets definable in a quasianalytic structure :
Given a quasianalytic structure, I prove that the singular locus of a quasi-subanalytic

set E is a closed quasi-subanalytic subset of E. I rely on some stabilization effects linked
to Gateaux differentiability and formally composite functions. An essential ingredient of
the proof is a quasianalytic version of Glaeser’s composite function theorem, presented in
my earlier paper.

Adamou Otto, Analysis of a two-strain transmission model with vaccination using com-
puter algebra :

We present a typical example of a compartmental transmission model that can be dealt
with algebraically. We use exact methods from real algebraic geometry and computer al-
gebra to find all the equilibria of the ODE system describing the model and to study their
stability as well as their bifurcations.
The model concerns a host population, a part of its individuals are under antibiotic (Ab)
treatment against a two-strain bacterial pathogen. Individuals who are not under Ab
treatment can be colonized by an antibiotic-susceptible (Ab-S) strain or by an antibiotic-
resistant (Ab-R) strain of a bacterial pathogen, but not by both at the same time (i.e.,
maximal competition), while those under antibiotic treatment can only be colonized by
the Ab-R strain. We assume that there is a fitness cost for resistance such that the Ab-R
strain is somewhat less transmissible than the Ab-S strain. The host population is sub-
divided into 7 compartments representing the fractions of the population in each state,
4 states for individuals not under Ab treatment: susceptible (S), colonized by the Ab-S
strain (I1) and colonized by the Ab-R strain (I2), the individuals who are in the vaccinated
state not under antibiotic treatment. those individuals are assumed to have a temporary
complete immunity to infection by the 2 strains (V ), and 3 states for individuals under
Ab treatment: susceptible (T ), and colonized by the Ab-R strain (T2), the individuals
who are in the vaccinated state currently under antibiotic treatment. Those individuals
are assumed to have a temporary complete immunity to infection by the 2 strains (VT ) .
We give below the transfer diagram of the model.
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The model has a unique disease free equilibria and three other equilibrias. We give a com-
plete characterization of their existence and stability. We also show that all codimension-
one bifurcations are transcritical.

Joint work with M. EL Kahoui, M.-F. Roy and T. Van Effelterre.

Franklin Vera Pacheco, Resolution of singularities of pairs preserving semi-simple nor-
mal crossings :

A partial desingularization consists in removing all singularities, except for those of
certain class S, with a proper birational map that is an isomorphism over the points
already in S. For example, if S consists only of the smooth singularities, then a partial
desingularization in this sense corresponds to the usual (strong) resolution of singularities.
For other classes of singularities this problem has also been studied, solved or proved
impossible, e.g. simple normal crossings, normal crossings, normal singularities, rational
singularities... It was asked by János Kollár the existence of a partial desingularization
preserving the semi simple normal crossings singularities of a pair. This is the analogous
of simple normal crossings singularities in a non-normal ambient space. We show how to
produce this partial desingularization by using a general philosophy applicable to some of
these problems.

Joint work with Edward Bierstone.

Daniel Pecker, On the minimum degree of a polynomial knot representing a given knot :
A polynomial knot is a polynomial embedding of the real line into Euclidean space. The

study of the space of polynomial knots of a given degree d is achieved only for d ≤ 4. We
study a converse problem: given a knot, what is the minimum degree of a polynomial knot
representing it ? We give answers for the simplest knots, and for some infinite families of
knots.
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Albrecht Pfister, An elementary and constructive proof of Hilbert’s theorem on ternary
quartics :

We present a new proof of Hilbert’s theorem which is elementary in the sense that it uses
only undergraduate methods from algebra, analysis and topology including the implicit
function theorem. The proof is also essentially constructive and shows that there are at
most 8 inequivalent representations as a sum of 3 squares for a given positive semidefinite
quartic over the reals.

Joint work with Claus Scheiderer.

Daniel Plaumann, Quartic curves and their bitangents :
We will consider two types of representations of real ternary quartics: 1) As determi-

nants of symmetric 4x4-matrices with linear entries. 2) As sums of three (signed) squares.
We will discuss explicit constructions of these representations, using the classical theory
of bitangents. We also address more recent connections to spectrahedra and semidefinite
programming.

Joint work with Bernd Sturmfels and Cynthia Vinzant.

Lucas Prelli, O-minimal sheaf theory :
O-minimal sheaf theory generalize Delfs semi-algebraic and real algebraic sheaf theory

as well as Kashiwara-Schapira sheaf theory on the (globally) sub-analytic site. The for-
malism of Grothendiecks six operations on o-minimal sheaves that we propose to develop
generalizes also similar works in the topological context (Verdier) and the subanalytic
context (Kashiwara-Schapira and Prelli). Besides the interest that this theory has on its
own, it will provide the main tools for the cohomological approach to problems related to
algebraic analysis one one side and o-minimal geometry on the other.

Joint work with M. Edmundo.

Armin Rainer, Quasianalytic and Lipschitz perturbation theory for normal operators :
We study the regularity of the eigenvalues and the eigenvectors of families of normal

operators. This is evidently connected to the regularity of the roots of complex polynomi-
als. Surprisingly though, the eigenvalues and eigenvectors possess much better regularity
properties than the roots. For instance, we shall see that the eigenvalues and eigenvectors
of a real analytic (or, even quasianalytic) family of normal matrices may be desingularized
by means of local blow-ups; for the roots, in addition, we must substitute powers. More-
over, any continuous eigenvalue of a Lipschitz family of normal operators is Lipschitz; the
roots need not be Lipschitz even if the coefficients are polynomial. We will also state
infinite dimensional versions of our results, i.e., for normal operators in a Hilbert space
with compact resolvents and common domain of definition.

Tomas Recio, Generalizing circles over algebraic extensions :
Partially supported by the project MTM2005-08690-C02-01/02.
This contribution deals with a family of spatial rational curves that were introduced by

Carlos Andradas, Tomás Recio, and J. Rafael Sendra at Base field restriction techniques
for parametric curves, (Proceedings of the 1999 International Symposium on Symbolic
and Algebraic Computation (Vancouver, BC), ACM, 1999, pp. 17–22), under the name of
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hypercircles, as an algorithmic tool in the context of simplifying, if possible, the coefficients
of the rational functions of a given parametrization of an algebraic variety.

The simplest hypercircles should be the circles themselves. Circles live on a real plane.
We can think of the real plane as the field of complex numbers C, an algebraic extension
of the reals R of degree 2. Analogously, we can consider a characteristic zero base field
K and an algebraic extension of degree n, K(α). Let us identify K(α) as the vector space
Kn, via the choice of a suitable base, such as the one given by the powers of α. This is
the framework in which hypercircles are defined.

Circles are real rational curves. This means that there are two real rational functions
φ(t) = (φ1(t), φ2(t)) whose image cover almost all the points of the circle. Every proper
(almost one-to-one) rational parametrization of a circle verifies that φ1(t)+iφ2(t) = at+b

ct+d
∈

C(t) \ C, which defines a conformal mapping u : C → C. Moreover, if we identify C with
R2, the image of the real axis (t, 0) under u is exactly the circle parametrized by φ(t).
Conversely, let u(t) = at+b

ct+d
∈ C(t) be a unit of the near-ring C(t) under the composition

operator. If c �= 0 and d/c /∈ R then, the closure of the image by u of the real axis is a
circle. Otherwise, it is a line.

This method to construct circles generalizes easily to algebraic extensions. Namely, let
u(t) = at+b

ct+d
be a unit of K(α)(t) (i.e. verifying that ad − bc �= 0). Let us identify K(α)

with Kn and let u be the map

u : K(α) ≈ Kn → K(α) ≈ Kn

t �→ u(t)
.

Then, the Zariski-closure of the image of the axis (t, 0, . . . , 0) under the map u is a rational
curve in Kn. These curves are, by definition, our hypercircles.

Example 0.1. Let us consider the algebraic extension Q ⊆ Q(α), where α3 +2α+2 = 0.
The unit t−α

t+α
has an associated hypercircle parametrized by

φ(t) =

„
t3 + 2t + 2

t3 + 2t − 2
,

−2t2

t3 + 2t − 2
,

2t

t3 + 2t − 2

«

Let K be a field of characteristic zero, K ⊆ L a finite algebraic extension of degree n and
F the algebraic closure of K and α be a primitive element of L over K. As it stands, the
definition of a hypercircle U depends on a given unit u(t) and on a primitive generator α of
an algebraic extension K ⊆ L. But notice that, given a unit u(t) ∈ L(t) and two different
primitive elements α and β of the extension K ⊆ L, we can expand the unit in two different
ways u(t) =

Pn−1
i=0 αiφi(t) =

Pn−1
i=0 βiψi(t). The hypercircles Uα � (φ0(t), . . . , φn−1(t))

and Uβ � (ψ0(t), . . . , ψn−1(t)) generated by u(t) are different curves in Fn, see Example
0.2.

Example 0.2. Let us consider the algebraic extension Q ⊆ Q(α), where α4 + 1 = 0. Let
us take the unit u(t) = t−α

t+α
. By normalizing u(t), we obtain the parametrization φ(t)

associated to u(t):

φ(t) =

„
t4 − 1

t4 + 1
,
−2t3

t4 + 1
,

2t2

t4 + 1
,

−2t

t4 + 1

«
.

This hypercircle Uα is the zero set of {X1X2−X3X0−X3, X
2
1 +X2

3 −2X2, X1X0+X2X3−
X1, X

2
0 + X3X1 − 1}. Now, we take β = α3 + 1, instead of α, as the primitive element of

Q(α) = Q(β). The same unit u(t) generates the β-hypercircle Uβ parametrized by

ψ(t) =

„
t4 + 2t3 − 2t2 + 2t − 1

t4 + 1
,
−6t3 + 4t2 − 2t

t4 + 1
,
6t3 − 2t2

t4 + 1
,
−2t3

t4 + 1

«
,

which is different to Uα; note that ψ(1) = (1,−2, 2,−1) that does not satisfy the equation
X2

0 + X3X1 − 1 = 0 of Uα.

Nevertheless, let A ∈ Mn×n(K) be the matrix of change of basis from {1, α, . . . , αn−1}
to {1, β, . . . , βn−1}. Then, A(φ0(t), . . . , φn−1(t))

t = (ψ0(t), . . . , ψn−1(t))
t. That is, it

carries one of the curve onto the other. Thus, Uα and Uβ are related by the affine trans-
formation induced by the change of basis and, so, they share many important geometric
properties.
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The aim of this talk is to extend, to the case of hypercircles, some of the specific
properties of circles. We will show that hypercircles are precisely, via K-projective trans-
formations, the rational normal curve of a suitable degree. We will also obtain a complete
description of the points at infinity of these curves (generalizing the cyclic structure at
infinity of circles). We will characterize hypercircles as those curves of degree equal to the
dimension of the ambient affine space and with infinitely many K-rational points, passing
through these points at infinity. If time permits, we will give explicit formulae for the
parametrization and implicitation of hypercircles.

Besides the intrinsic interest of this very special family of curves, we think the under-
standing of its properties has a direct application to the simplification of parametrizations
problem.

The talk will be based on a recent paper by R. Sendra, L.F. Tabera, C. Villarino and
the author: Generalizing circles over algebraic extensions, Mathematics of Computation,
Volume 79, Number 270, April 2010, Pages 1067–1089.

Bruce Reznick, Sums of fourth powers of real polynomials :
What are necessary and sufficient conditions on a real polynomial p(x) in one variable

so that there exist polynomials hk(x) so that p =
P

k h4
k? We will present some partial

results and conjectures.

Jean-Jacques Risler, On the curvature of the Real Amoeba
For a real smooth algebraic curve A ⊂ (C∗)2, the amoeba A ⊂ R2 is the image of A

under the map Log : (x, y) �→ (log |x|, log |y|). We describe an universal bound for the
total curvature of the real amoeba ARA and we prove that this bound is reached if and
only if the curve A is a simple Harnack curve in the sense of Mikhalkin.

Joint work with Mikael Passare.

Claus Scheiderer, Positive polynomials and sums of hermitian squares :
In 1968, Quillen proved that every real polynomial that is strictly positive on a Eu-

clidean sphere in complex n-space Cn coincides with a sum of hermitian squares on that
sphere. We give an abstract characterization of all real algebraic subsets X of Cn on which
every strictly positive polynomial is a hermitian sum of squares and discuss the relation
with commuting subnormal tuples of operators. We also plan to discuss extensions of the
results to semi-algebraic subsets of Cn.

Joint work with Mihai Putinar.

Marco Schlichting, The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes :
Extending Knebusch’s definition of the Grothendieck-Witt group of a scheme to cat-

egories of chain complexes, and in analogy with algebraic K-theory, we define higher
Grothendieck-Witt groups of a scheme (or category of chain complexes) as the homotopy
groups of an explicitly defined topological space. We show that an open covering of a
scheme with an ample family of line-bundles gives rise to a Mayer-Vietoris long exact
of the corresponding higher Grothendieck-Witt groups. The main point here is that all
this works even when the scheme is singular and 2 is not invertible in the ring of regular
functions.
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Tamara Servi, Preparation theorem and quantifier elimination for quasi-analytic classes :
We consider the structures generated by a family of quasi-analytic algebras of func-

tions which have asymptotic expansion as generalised power series. We show that these
structures are o-minimal and polynomially bounded. Furthermore, we prove that van
den Dries’ and Speissegger’s preparation theorem for definable functions admits in these
structures an ”explicit” form, from which we deduce a quantifier elimination result (in a
reasonable language).

Joint work with J.-P. Rolin.

Masahiro Shiota, By replacement of real closed fields :
By replacement of real closed fields we can sometimes prove globally problems on real

algebraic geometry when they are already proved locally by algorithm. This is the case
for the second �Lojasiewicz inequality. Let f be a polynomial function on Rn. Then there
exist a semialgebraic neighborhood V of f−1(0) in Rn and a number θ such that 0 < θ < 1

and |f(x)|θ ≤
Pn

i=1 |
∂f
∂xi

(x)| for x ∈ V .

Rainer Sinn, SO(2)-Orbitopes :
An SO(2)-orbitope is the convex hull of an orbit under some linear action of SO(2) on a

finite dimensional real vector space. Such a set is always a compact convex semi-algebraic
set. We will study the question whether or not it is basic closed, i.e. defined by a finite
number of simultaneous polynomial inequalities. We will be particularly interessted in the
case of the so-called Barvinok-Novik orbitopes. This work is in progress.

Ahmed Srhir, �Lojasiewicz’s exponents in o-minimal structures :
We prove the rationality of the �Lojasiewicz’s exponent for definable functions in poly-

nomially bounded o-minimal structures with certain conditions. In the parametric case,
we show that the parameter space can be splitting into finitely many definable subsets on
each of which the �Lojasiewicz’s exponent is constant.

Zbigniew Szafraniec, Quadratic forms and the intersection number for polynomial im-
mersions :

Several important invariants associated with polynomial mappings and real algebraic
sets may be expressed in terms of signatures of appropriate quadratic forms.

There will be presented such methods of computing the intersection number for poly-
nomial immersions.

Carlos Ueno, On convex polyhedra as regular images of Rn. :
We show that convex polyhedra in Rn and their interiors are images of regular maps

Rn → Rn. As a main ingredient in the proof we construct, given an n-dimensional,
bounded, convex polyhedron K ⊂ Rn and a point p ∈ Rn \ K, a suitable partition of
the boundary ∂K of K determined by p and compatible with the interiors of the faces of
K. Finally, we also prove that closed balls in Rn and their interiors are images of regular
maps Rn → Rn.
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Guillaume Valette, De Rham theorems on singular varieties :
I will explain how some recent results of mine on the Lipschitz geometry of subanalytic

sets make it possible to extend some theorems of differential geometry, such as the de
Rham theorem, to the framework of (possibly singular) subanalytic varieties.

Nicolai Vorobjov, Approximation of definable sets by compact families :
We suggest a construction for approximating a large class of sets, definable in an o-

minimal structure over the reals, by compact sets. The class includes sets defined by
arbitrary Boolean combinations of equations and inequalities, and images of such sets
under a large class of definable maps, e.g., projections. Based on this construction, we
prove k-equivalence of definable sets to compact definable sets. This leads to a refinement
of the known upper bounds on Betti numbers, and a proof of similar upper bounds,
individually for different Betti numbers, for images under arbitrary continuous definable
maps.

Joint work with Andrei Gabrielov.





PARTICIPANTS





Conference Real Algebraic Geometry

143

Family name First name Institute Country E-mail
Acquistapace Francesca Università di Pisa Italy acquistf@dm.unipi.it
Adamou Otto / Niger otto_adamou@yahoo.com
Adamus Janusz University of Western Ontario / 

Jagiellonian University
Canada jadamus@uwo.ca

Alonso Mariemi Complutense University of Madrid Spain m_alonso@mat.ucm.es
Amidou Morou Université de Niamey Niger moorou_a@yahoo.fr
Astier Vincent University College Dublin Ireland vincent.astier@ucd.ie
Bardet Alexandre Université d’Angers France bardet@math.univ-angers.fr
Barone Salvador Purdue University USA sbarone@math.purdue.edu
Basu Saugata Purdue University USA sbasu@math.purdue.edu
Bekka Karim Université de Rennes 1 - IRMAR France karim.bekka@univ-rennes1.fr
Bertrand Benoît Institut de math. de Toulouse / IUT 

de Tarbes
France benoit.bertrand@math.univ-toulouse.fr

Biborski Iwo Jagiellonian University Poland Iwo.Biborski@im.uj.edu.pl
Bihan Frédéric Université de savoie France frederic.bihan@univ-savoie.fr
Bilski Marcin Jagiellonian University Poland marcin.bilski@im.uj.edu.pl
Bodin Arnaud Université Lille 1 France Arnaud.Bodin@math.univ-lille1.fr
Boucher Delphine Université de Rennes 1 - IRMAR France delphine.boucher@univ-rennes1.fr
Boudaoud Fatima Université d’Oran Es senia Algeria fboudaoud@yahoo.fr
Broecker Ludwig Universität Münster Germany broe@uni-muenster.de
Broglia Fabrizio Università di Pisa Italy broglia@dm.unipi.it
Brugallé Erwan Institut Mathématiques de Jussieu France brugalle@math.jussieu.fr
Buresi Jérôme Université d’Artois France jerome.buresi@univ-artois.fr
Burgdorf Sabine Universität Konstanz Germany sabine.burgdorf@uni-konstanz.de
Cafuta Kristijan University of Ljubljana Slovenia kristijan.cafuta@fe.uni-lj.si
Casale Guy Université de Rennes 1 - IRMAR France guy.casale@univ-rennes1.fr
Catanese Fabrizio Universität Bayreuth Germany Fabrizio.Catanese@uni-bayreuth.de
Chen Ying Université de Lille 1 France topspeed_cy@hotmail.com
Chevallier Benoît Université Toulouse II-le Mirail France chevalli@univ-tlse2.fr
Cimpric Jaka University of Ljubljana Slovenia cimpric@fmf.uni-lj.si
Cogan Yann Université Bretagne Occidentale France yann.cogan.29@gmail.com
Comte Georges Université de Savoie France georges.comte@univ-savoie.fr
Coppens Marc KHKempen/KULeuven Belgium marc.coppens@khk.be
Coste Michel Université de Rennes 1 - IRMAR France michel.coste@univ-rennes1.fr
Cucker Felipe City University of Hong Kong Hong 

Kong
macucker@cityu.edu.hk

Degtyarev Alex Bilkent University Turkey degt@fen.bilkent.edu.tr
Delzell Charles Louisiana State University USA delzell@math.lsu.edu
Denkowska Zofia Université d’Angers - LAREMA France denkows@univ-angers.fr



Université de Rennes 1, 20 - 24 june 2011

144

Dias Luis Renato 
Gonçalves

Université de Lille 1 France dias@math.univ-lille1.fr

Dickmann Max Institut de Mathématiques de  
Jussieu

France dickmann@logique.jussieu.fr

Domanski Pawel Adam Mickiewicz University Poland domanski@amu.edu.pl
Dutertre Nicolas Université de Provence France dutertre@cmi.univ-mrs.fr
Efrat Ido Ben-Gurion University of the Negev Israel efrat@math.bgu.ac.il
El Boukhary Mohamed Mohammed 1st University Morocco ouldemane@gmail.com
ElKhadiri Abdelhafed University Ibn Tofail Morocco kabdelhafed@hotmail.com
Fekak Azzeddine Ecole Royale Navale Casablanca Morocco fekak.azed@hotmail.com
Fernando 
Galvan

Jose F. Universidad Complutense de 
Madrid

Spain josefer@mat.ucm.es

Fichou Goulwen Université de Rennes 1 - IRMAR France goulwen.fichou@univ-rennes1.fr
Fiedler Séverine / France severine.fiedler@live.fr
Finashin Sergey Middle East Technical University Turkey serge@metu.edu.tr
Gabrielov Andrei Purdue University USA agabriel@math.purdue.edu
Ghiloni Riccardo University of Trento Italy ghiloni@science.unitn.it
Gladki Pawel University of Silesia Poland pawel.gladki@us.edu.pl
Goel Charu University of Konstanz Germany charu.goel@uni-konstanz.de
Gondard Danielle Université Pierre et Marie Curie France gondard@math.jussieu.fr
Gonzalez-Lopez Maria Jose Universidad de Cantabria Spain gonzalelm@unican.es
Gonzalez-Vega Laureano Universidad de Cantabria Spain laureano.gonzalez@unican.es
Grigoriev Dima Université de Lille 1 France Dmitry.Grigoryev@math.univ-lille1.fr
Hanselka Christoph Universität Konstanz Germany christoph.hanselka@uni-konstanz.de
Huisman Johannes Université de Brest France johannes.huisman@univ-brest.fr
Ibrahim Adamou University of Cantabria Spain ibrahim.adamou@unican.es
Itenberg Ilia Université de Strasbourg France ilia.itenberg@math.unistra.fr
Kharlamov Viatchelslav Université de Strasbourg France viatcheslav.kharlamov@math.unistra.fr
Klep Igor University of Ljubljana Slovenia igor.klep@fmf.uni-lj.si
Krzyzanowska Iwona Poland iwona.krzyzanowska@mat.ug.edu.pl
Kucharz Wojciech Jagiellonian University Poland Wojciech.Kucharz@im.uj.edu.pl
Kunert Aaron University Konstanz Germany Aaron.Kunert@uni-konstanz.de
Kurdyka Krzysztof Université de Savoie France kurdyka@univ-savoie.fr
Lavi Noa Ben-Gurion University of the Negev Israel lano@math.bgu.ac.il
Le Gal Olivier / / olegal@agt.uva.es
Lerario Antonio Sissa Italy lerario@sissa.it
Limoges Thierry Université de Nice France thierry.limoges@unice.fr
Lion Jean-Marie Université de Rennes 1 - IRMAR France jean-marie.lion@univ-rennes1.fr
Lombardi Henri Université de Franche-Comté France henri.lombardi@univ-fcomte.fr
Maciejewski Lukasz Jagiellonian University Poland lukasz.maciejewski@im.uj.edu.pl
Mahboubi Assia INRIA Saclay France Assia.Mahboubi@inria.fr



Conference Real Algebraic Geometry

145

Mahé Valéry Université de Franche-Comté France Valery.Mahe@univ-fcomte.fr
Mahé Louis Université de Rennes 1 - IRMAR France louis.mahe@univ-rennes1.fr
Mangolte Frédéric Université d’Angers France frederic.mangolte@univ-angers.fr
Matusinski Mickaël Université de Versailles France mickael.matusinski@math.uvsq.fr
Michalska Maria Universite de Savoie/University of 

Lodz
Poland Maria.Michalska@univ-savoie.fr

Moncet Arnaud Université de Rennes 1 - IRMAR France arnaud.moncet@univ-rennes1.fr
Monnier Jean-

Philippe
Université d’Angers France monnier@tonton.univ-angers.fr

Mourougane Christophe Université de Rennes 1 - IRMAR France christophe.mourougane@univ-rennes1.fr

Moussa Seydou Université de Maradi Niger seydmoussa@yahoo.fr
Netzer Tim Universitaet Leipzig Germany tim.netzer@math.uni-leipzig.de
Nguyen Ha Wesleyan College USA n_n_ha@yahoo.com
Nguyen Vu / USA stoopidsavant@gmail.com
Nguyen Thi 
Bich

Thuy Université de la Méditerranée France thuy.nguyen-thi-bich@etumel.univmed.fr

Nicoara Andreea University of Pennsylvania USA anicoara@math.upenn.edu
Nowak Krzysztof Jagiellonian University Poland nowak@im.uj.edu.pl
Nowel Aleksandra University of Gdansk Poland olanowel@mat.ug.edu.pl
Parusinski Adam Université de Nice France adam.parusinski@unice.fr
Pawlucki Wieslaw Jagiellonian University Poland Wieslaw.Pawlucki@im.uj.edu.pl
Pecker Daniel Université Paris 6 France pecker@math.jussieu.fr
Pernazza Ludovico Università di Pavia Italy ludovico.pernazza@unipv.it
Pfister Albrecht Mathematisches Institut/ Univer-

sität Mainz
Germany pfister@mathematik.uni-mainz.de

Plaumann Daniel Universität Konstanz Germany Daniel.Plaumann@uni-konstanz.de
Powers Victoria Emory University USA vicki@mathcs.emory.edu
Prelli Luca Università degli Studi di Padova Italy lprelli@math.unipd.it
Prestel Alexander University of Konstanz Germany alex.prestel@uni-konstanz.de
Priziac Fabien Université de Rennes 1 - IRMAR France fabien.priziac@univ-rennes1.fr
Quarez Ronan Université de Rennes 1 - IRMAR France ronan.quarez@univ-rennes1.fr
Rainer Armin University of Vienna Austria armin.rainer@univie.ac.at
Randriambo-
lolona

Serge the University of Western Ontario Canada srandria@uwo.ca

Recio Tomas Universidad de Cantabria Spain tomas.recio@unican.es
Reznick Bruce University of Illinois USA reznick@math.uiuc.edu
Risler Jean-Jacques IMJ, UPMC (Paris 6) France risler@math.jussieu.fr
Rolin Jean-

Philippe
Université de Bourgogne France rolin@u-bourgogne.fr

Roy Marie- 
Françoise

Université de Rennes 1 - IRMAR France marie-francoise.roy@univ-rennes1.fr

Rusek Kamil Jagiellonian University Poland Kamil.Rusek@im.uj.edu.pl



Université de Rennes 1, 20 - 24 june 2011

146

Scheiderer Claus Universitat Konstanz Germany claus.scheiderer@uni-konstanz.de
Schlichting Marco University of Warwick United 

Kingdom
m.schlichting@warwick.ac.uk

Schweighofer Markus Universität Konstanz Germany markus.schweighofer@uni-konstanz.de
Servi Tamara Universidade de Lisboa Portugal tamara.servi@gmail.com
Sfouli Hassan Université Ibn Tofail Morocco hassansfouli@hotmail.com
Shiota Masahiro Nagoya University Japan shiota@math.nagoya-u.ac.jp
Sinn Rainer Université de Konstanz Germany rainer.sinn@uni-konstanz.de
Srhir Ahmed Faculté Poly-disciplinaire de safi 

Université Cadi Ayyad
Morocco ahmedsrhir@hotmail.com

Szafraniec Zbigniew Uniwersytet Gdański Poland szafran@mat.ug.edu.pl
Szpirglas Aviva Université de Poitiers France Aviva.Szpirglas@math.univ-poitiers.fr
Tabera Luis Felipe Universidad de Cantabria Spain taberalf@unican.es
Tibar Mihai Université Lille 1 France tibar@math.univ-lille1.fr
Tripathi Girja Louisiana State University,  

Tata Institute
USA girja@math.lsu.edu

Trotman David Université Aix-Marseille France trotman@cmi.univ-mrs.fr
Tuan Hiep Dang Dipartimento di Matematica,  

Università degli Studi di Bari
Italy dang@dm.uniba.it

Ueno Jacue Carlos Universidad Complutense de 
Madrid

Spain carlos.ueno@terra.es

Unger Thomas University College Dublin Ireland thomas.unger@ucd.ie
Uribe Vargas Ricardo Université de Bourgogne France r.uribe-vargas@u-bourgogne.fr
Valette Guillaume Polish Academy of Science Poland gvalette@impan.pl
Valette Anna Uniwersytet Jagiellonski Poland anna.valette@im.uj.edu.pl
Vera Pacheco Franklin University of Toronto Canada franklin.vp@gmail.com
Vinzant Cynthia University of California, Berkeley USA cvinzant@math.berkeley.edu
Vorobjov Nicolai University of Bath United 

Kingdom
nnv@cs.bath.ac.uk

Welschinger Jean-Yves Université Lyon 1 / CNRS France welschinger@math.univ-lyon1.fr
Wenzel Sebastian Konstanz Germany Sebastian.wenzel@uni-konstanz.de
Zell Thierry Lenoir-Rhyne University USA thierry.zell@lr.edu






