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Collective fabrication of all-organic microcantilever chips based on a hierarchical combination of shadow-masking and waferbonding processing methods

This paper describes a new collective microfabrication process of all-organic microcantilever chips. This method is based on the hierarchical combination of shadow-masking and wafer-bonding processes. The shadow-masking combines deposition and patterning in one step thanks to spray-coating through a polymer microstencil that gives the opportunity of patterning thermosensitive material such as PMMA. The shadow-masking parameters have been optimized to obtain suspended microcantilevers characterized by a convenient thickness profile. The resulting PMMA structures were then transferred onto SU-8 chips by using an SU-8 waferbonding process. The effect of the UV exposure dose of both SU-8 layers in contact on the bonding quality has been investigated and optimized. With the optimized bonding process we have achieved the large scale transfer of microstructures with a yield of 100% and a bond strength of 50 MPa. These microcantilevers were also tested at resonance, to determine Young's moduli of patterned polymers. The low values obtained (below 5 GPa) make these organic MEMS structures strong candidates for highly sensitive sensing applications when used in the static mode.

Introduction

Silicon-based free-standing microcantilevers are widely used as micro-and nanoelectromechanical systems. More specifically, silicon cantilevers have shown great potential for sensing applications such as, molecular recognition [1,2] or virus detection [3] in liquid media. These cantilevers generally operate in either the dynamic mode, where analytes binding on the cantilevers increase mass and thus decrease the resonant frequency, or in the static deflection mode, where analytes binding on one side of the cantilevers causes unbalanced surface stress resulting in a measurable mechanical deflection. In the dynamic mode, the operation of silicon microcantilevers in viscous fluids is limited by the fact that the quality factor (Q factor) is very low because of viscous damping and squeezing effects [4]. The static mode is usually preferred in liquid media but the deflection measurement may be difficult due to intrinsic rigidity of silicon, resulting in mechanical deflections that rarely exceed hundreds of nanometers. In this context, the introduction of polymers in microcantilever fabrication as an alternative solution to silicon is particularly promising. In fact, they are attractive for sensitive sensing applications in the static mode (bilayer effect) as single-use sensors due to their low cost, good processability, bio-compatibility [5] and tunable properties that may be achieved by an appropriate design of the materials [6]. Indeed, an organic free-standing structure is more flexible than a silicon one. Thus, the use of such low Young's modulus materials will enhance the transduction of molecular recognition using, for instance, an organic biomimetic sensitive layer, thus improving limits of detection of analytes. SU-8 epoxy negative photoresist is widely employed for organic microcantilever fabrication due to its high achievable aspect ratio, its chemical compatibility [7] and its versatility due to tunable properties obtained by mixing SU-8 with other materials. For instance, SU-8 may be made piezoresistive by mixing it with black carbon [8]. Generally, standard organic microcantilever fabrication methods are: (i) using a sacrificial layer, or (ii) sealing a free structure by transferring it to another layer (Figure 1) [9]. For (i), different polymers can be used as a sacrificial layer, including positive photoresists [10], metals [10] or thermally decomposable materials [11]. But this method is mostly limited by the chemical compatibility between the structural and sacrificial layers. For example, solvents used to remove the sacrificial layer [12] can also elute the structural one. Also, no concrete examples were found in the literature where thick films (> 50µm) of positive photoresists, metals or thermally decomposable materials were used as a sacrificial layer. This is not desirable for organic microcantilevers where large deflections are expected in the static mode. For this, using uncrosslinked SU-8 as the sacrificial layer shows great potential. Indeed, it can maintain a flat (doi: 10.1088/0960-1317/21/9/095021).

surface (when crosslinked SU-8 is used for the supporting layer) for subsequent surface patterning of the structural layer, and can be etched selectively in the presence of different organic materials. However, at the moment, methods using uncrosslinked SU-8 as the sacrificial layer require a metallic UV-blocking coating between the structural and the sacrificial layers to protect this layer from UV radiation [13], or the use of complementary light absorption properties for the structural polymer [START_REF] Dubourg | Proceedings of the MNE conference (Micro and Nano Engineering) Ginoa[END_REF]. Other reported fabrication methods that include the use of adhesive PET lamination to create three-dimensional flexible microfluidic networks [9]. Although the authors suggest that this technique could be used to fabricate suspended microstructures, no fabricated devices were reported. An alternative solution is to use the transfer method (ii) that can be combined with several processing methods such as nanoimprint lithography for the patterning of thermoplastics and biopolymers [9] or photolithography. However, a manual, one-by-one transfer of microstructures is most often observed in the literature [START_REF] Johansson | [END_REF]16]. Only two examples showed promising results for the wafer level fabrication of such organic devices. In a first approach, non-reticulated SU-8 was used to transfer SU-8 cantilevers, allowing an integrated readout of cantilevers behavior thanks to single-mode waveguides [17]. This process was then improved by using a partially reticulated SU-8 layer where the transferring layer could be patterned individually before bonding [18]. These pioneering works demonstrated the large scale fabrication of free-hanging organic microcantilevers. However, based on this approach, further improvements are necessary since: (i) a transparent wafer is mandatory for precise alignment of both substrates in contact during transfer, restricting the choice of substrates, (ii) qualitative characterization of bonding quality does not ensure a strong bond of transferred microstructures, with possible consequences on organic microcantilevers behavior, as already observed for resonant silicon ones [19,[START_REF] Fadel-Taris | Proceedings of IEEE International Frequency Control Symposium[END_REF] and (iii) the fabrication process was validated only on SU-8 microcantilevers. Thus, the wafer level microfabrication of organic free-standing structures clamped on a substrate must be optimized to define a standard fabrication process. In this context, we have combined two hierarchical processing methods to achieve the large-scale fabrication of all-organic microcantilever chips. First, the solution inspired from the wafer-level bonding of organic materials has been optimized for the rapid and collective microfabrication of organic freestanding cantilevers. Then, it is particularly interesting to combine this transfer method with a versatile patterning method where photosensitivity of materials is no longer mandatory for the structural layer. Indeed, some classes of organic materials such as biomaterials, gels, and thermoplastics are difficult or impossible to be structured with standard microfabrication methods based on optical lithography. To overcome this challenge, we have developed a shadow-masking approach dedicated to organic materials to create organic microcantilevers that remains compatible with other processing methods. Shadowmasking is a powerful method used for the micro-and nanopatterning of metals [START_REF] Selvarasah | [END_REF]. This method is based on the fabrication of a stencil where mechanical apertures allow the deposition and patterning of materials in one step. To our knowledge, only one example of the combination of shadow-masking with organic materials can be found in the literature for the fabrication of organic thin film transistors [22]. Thermal evaporation of an organic semiconductor was used for deposition, which is not compatible with higher molecular weight polymers, such as those used in the field of organic microsystems. In the present work, we propose a method where the organic structural material is spray-coated through a polymer microstencil, combining deposition and patterning in one step. This shadow masking approach does not require photo-masking of materials and allows patterning of most organic materials, i.e., photo-or thermosensitive ones, showing the great potential of this method in the field of organic microsystems. Moreover, using a flexible polymer microstencil, it can be easily adapted for the patterning on topographically rough, curved and unconventional surfaces [23,24]. Flexible stencils made of PDMS [24], parylene [START_REF] Atsuta | Proceedings of the 8 th International Conference on Miniaturized Systems for Chemistry and Life Sciences[END_REF] or SU-8 [23] have shown great potential for metals patterning. Also, hybrid parylene-SU-8 microstencils have been used for the patterning of nontraditional materials [START_REF] Pal | [END_REF]. In the present work, the microstencil is made of SU-8 photoresist and requires only two photolithography steps, making this solution consistent with the low-cost characteristic of organic MEMS. Also, SU-8 is a suitable material for microstencils fabrication since high aspect ratios can be obtained easily, combining high resolution with mechanical robustness. Thus, thanks to the hierarchical combination of shadow-masking and waferbonding processing methods, we have achieved the wafer level fabrication of PMMA suspended microcantilever chips characterized by a low Young's modulus and suitable for further integration in industrial processes, due to collective fabrication at low-cost. structures will be clamped and a temporary top substrate used for structural layer patterning. Single side polished 4 inches silicon wafers with a thickness of 525 µm were used as substrates. The two substrates were cleaned by using UV-Ozone for 10 minutes to improve adhesion of subsequent deposited layers (Figure 2.a and b). These substrates were rinsed with deionized water and dehydrated at 200 °C for 2 h. On the top substrate, two thin layers of Omnicoat TM were successively spun at 1000 rpm and baked at 200 °C for 1 min that result in an omnicoat thickness of 200 nm (Figure 2.c). This layer will act as a sacrificial layer to release microstructures after transferring step.

Shadow-masking process

The next step to be considered is the patterning of the structural layer on the top substrate. The present work proposes a versatile method to fabricate organic microcantilevers that does not require photomasking of materials as currently used [9] and thence, allows patterning of most organic materials, i.e., photo-or thermosensitive ones. For this, the proposed technique combines deposition and patterning in one step thanks to spray-coating through polymer microstencils.

Organic microstencil fabrication

Polymers are attractive materials to fabricate miniaturized microstencils for their low cost, good processability and flexibility [23][24][START_REF] Atsuta | Proceedings of the 8 th International Conference on Miniaturized Systems for Chemistry and Life Sciences[END_REF][START_REF] Pal | [END_REF]. Indeed, the polymer microstencil fabrication process proposed in this work requires only two photolithography steps. Also, flexible polymer microstencil can be adapted to several varieties of substrates such as flexible or non-flat ones. The process fabrication starts by the spincoating of a 200 nm omnicoat sacrificial layer on a silicon wafer to allow the release of microstencil from substrate after fabrication. The microstencil process results from the structuration of two levels of SU-8 epoxy-based negative photoresist (SU-8® 3005 and 3050) (Figure 3). SU-8 is a suitable material for this two steps device since several layers having different thicknesses (0.5-200 µm) can be stacked-up by multiple spin-coating and UV-exposures to define high aspect ratio structures. In the present work, a first thin film of SU-8 was patterned to create apertures with high resolution. The influence of microstencil thickness was studied and chosen in order to obtain the most suitable PMMA thickness uniformity used as structural layer. For this, an 8 µm thick SU-8 layer was spun, baked at 95 °C for 3 min and UV-exposed with a dose of 150 mJ/cm 2 by using a manual mask aligner (MJB4, Suss Microtec. Corp, Germany). After, the layer was post-exposure baked at 65 °C for 1min and 2 min at 95 °C. But with this thickness, microstencil handling without cracking is challenging. Thus, circular apertures characterized by a diameter of 1 mm were patterned with a 100 µm thickness of SU-8 that encircle the microstructure apertures on the thin layer, to strengthen the microstencil. This 100 µm thick layer of SU-8 was successively spun and baked at 95 °C for 45 min. Then, this layer was exposed with a dose of 250 mJ/cm 2 and baked at 65 °C for 1min and 3 min at 95 °C. After, both layers were simultaneously developed with propylene-glycol-monoether-acetate (PGMEA, Microchem Corporation). A low stress microstencil was required to allow a flat and conformal contact with the substrate during the spray-coating. In fact, a gap between the microstencil and the substrate would induce a loss of resolution in the geometries of the designed microstructures. Highly cross-linked SU-8 is known to induce residual stress in the patterned films. Several sources have been identified [27,28] including residual solvent in the polymeric matrix [27], UV exposure dose [29], heating temperature for soft [28] and post-exposure bakes [27] and induced stress due to CTE mismatch between SU-8 and the substrate [30]. This can result in buckling of polymer microstencil and thus, gap increase during deposition. An efficient solution was proposed by introducing a hard-bake at the end of the SU-8 process, reducing residual stress gradient in highly cross-linked SU-8 films [27]. The hard-bake must be adapted to the thickness layer. For our process, a hard-bake step at 150 °C for 7 min was optimal. To finish the microstencil fabrication, the substrate was dipped in the omnicoat developer (MF 319) for 2 h to release the organic microstencil.
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Sacrificial layer release

To finish the fabrication process, the top wafer must be removed to obtain chips composed of polymer free-standing microstructures clamped on the bottom substrate obtained by collective fabrication. The omnicoat layer initially deposited was etched by using MF319 developer (Figure 2.j). The low gap between both wafers (about 150 µm) can prevent the release. Thus, to accelerate structures release, channels characterized by a width of 500µm were introduced on the transferring layer to enhance access to the sacrificial layer, reducing the release duration from 24 h to 6 h. Last, the resulting wafer, containing free-standing microcantilevers, was cleaned according to a protocol where successive batches of omnicoat developer (to remove residual omnicoat), isopropanol, ethanol and deionized water were used. Cantilevers chips were then dried using a hotplate (40 °C), ensuring rapid evaporation of water and thus, avoiding stiction of cantilevers onto the transferring layer.

Results and discussion

Organic microcantilevers characterization

By combining shadow-masking and wafer-bonding processing methods, we have successfully achieved the fabrication of free-standing PMMA cantilevers (Figure 4 and5) characterized by a length ranging from 100 to 700 μm and a width ranging from 50 to 250 μm. The geometries are in agreement with the design (maximum standard deviation of 2% for geometry with respect to designed mask), but the thickness profile is not uniform: the bottom surface of the cantilevers is not perfectly flat. In fact, protrusions at the microcantilever edges appear during the spray-coating through the shadow-masks (Figure 6). This effect has already been observed with other printing methods, such as screen-printing, nanoimprint or microfountain pen [32]. In our case, one origin of the phenomenon is capillary interactions that occur between the PMMA solution and SU-8 due to the wettability of anisole used as solvent for the PMMA solution [START_REF] Low | United States Patent Application Publication[END_REF]. To confirm this wettability effect, the SU-8 microstencil surface was made hydrophilic by submitting it to a short plasma oxygen event, resulting in the formation of PMMA clusters in the microstencil apertures after subsequent spray-coating, showing repulsive interactions between anisole and SU-8. At the moment, no concrete solution was found to avoid completely the edge effect, but the combined spray-coating/ shadow-masking process was optimized to obtain a convenient PMMA profile. For this, by using a mechanical profiler, the influence of the microstencil thickness and the solid content of the PMMA solution on the polymerized PMMA thickness profile has been studied (Figure 6.a).

From this figure, it can be seen that at the center of the cantilever, the thickness is thin while at the edges it is increased, resulting in a thickness gradient with a parabolic profile. Also, the height of protrusions is defined by microstencil thickness: protrusions height increases with the microstencil thickness (Figure 6.a). A thin microstencil is thus required to limit this effect. But with a too thin SU-8 microstencil, there is not any PMMA material at the center of the structure and thus the whole microstructure surface cannot be covered. In this context, to restrict the protrusions height to a few micrometers, a microstencil characterized by a thickness of 8 µm has been used while apertures have been then filled thanks to ten successive spray-coatings. For this, a homemade polymer solution that contains 4.5 % of PMMA diluted in anisole has been used to reduce size of droplets. In this case, the thickness at the center of the cantilever is 5 μm, while at the edges it is 7.5 µm (figure 6.b). With the optimized process, the aspect ratio between the height at the edge and the height at the center of the structures was clearly reduced, since an improvement from 8.3 to 1.5 was obtained.

Preprint (doi: 10 values. These organic cantilevers, characterized by a low Young's modulus, have the potential to serve as highly sensitive transducing devices in biological and chemical sensing applications. Indeed, for a 200μm long bi-layered cantilever, the static deflection due to swelling effects in an organic sensitive layer will be thirty times higher when using these organic materials instead of silicon (theoretical calculation using a modified Stoney equation [37]). Based on this approach, work is now in progress for the development of tuned Young's modulus organic materials for highly sensitive biological and chemical sensing applications in static mode.
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