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Abstract. Association rule discovery based on support-confidence frame-
work is an important task in data mining. However, the occurrence fre-
quency (support) of a pattern (itemset) may not be a sufficient crite-
rion for discovering interesting patterns. Temporal regularity, which can
be a trace of behavior, with frequency behavior can be revealed as an
important key in several applications. A pattern can be regarded as a
regular pattern if it occurs regularly in a user-given period. In this paper,
we consider the problem of mining top-k regular-frequent itemsets from
transactional databases without support threshold. A new concise repre-
sentation, called compressed transaction-ids set (compressed tidset), and
a single pass algorithm, called TR-CT (Top-k Regular frequent itemset
mining based on Compressed Tidsets), are proposed to maintain occur-
rence information of patterns and discover k regular itemsets with high-
est supports, respectively. Experimental results show that the use of the
compressed tidset representation achieves highly efficiency in terms of
execution time and memory consumption, especially on dense datasets.

1 Introduction

The significance of regular-frequent itemsets with temporal regularity can be
revealed in a wide range of applications. Regularity is a trace of behavior and
as pointed out by [1], behaviors can be seen everywhere in business and social
life. For example in commercial web site analysis, one can be interested to detect
such frequent regular access sequences in order to assist in browsing the Web
pages and to reduce the access time [2, 3]. In a marketing point of view, managers
will be interested in frequent regular behavior of customers to develop long-term
relationships but also to detect changes in customer behavior [4].

Tanbeer et al. [5] proposed to consider the occurrence behavior of patterns
i.e. whether they occurs regularly, irregularly or mostly in specific time period of
a transactional database. A pattern is said regular-frequent if it is frequent (as
defined in [6] thanks to the support measure) and if it appears regularly (thanks
to a measure of regularity/periodicity which considers the maximum compressed
at which the pattern occurs).

159



To discover a set of regular-frequent itemsets, the authors proposed a highly
compact tree structure, named PF-tree (Periodic Frequent patterns tree), to
maintain the database content, and a pattern growth-based algorithm to mine a
complete set of regular-frequent itemsets with the user-given support and regu-
larity thresholds. This approach has been extended on incremental transactional
databases [7], on data stream [8] and mining periodic-frequent patterns consist-
ing of both frequent and rare items [9].

However, it is well-known that support-based approaches tend to produce
a huge number of patterns and that it is not easy for the end-users to define
a suitable support threshold. Thus, top-k patterns mining framework, which
allows the user to control the number of patterns (k) to be mined (which is easy
to specify) without support threshold, is an interesting approach [10].

In [11] we thus proposed to mine the top-k regular-frequent patterns and the
algorithm MTKPP (Mining Top-K Periodic-frequent Patterns). MTKPP dis-
covers the set of k regular patterns with highest support. It scans the database
once to collects the set of transaction-ids where each item occurs in order to
calculate their supports and regularities. Then, it requires an intersection oper-
ation on the transaction-ids set to calculate the support and the regularity of
each itemset. This operation is the most memory and time consuming process.

In this paper, we thus propose a compressed tidset representation to main-
tain the occurrence information of itemsets to be mined. Indeed, compressed
representation for intersection operation have shown their efficient like in Diff-
sets [12] and bit vector [13]. Moreover, an efficient single-pass algorithm, called
TR-CT (Top-k Regular-frequent itemsets mining based on Compressed Tidsets)
is proposed. The experimental results show that the proposed TR-CT algorithm
achieves less memory usage and execution time, especially on dense datasets for
whose the compressed tidset representation is very efficient.

The problem of top-k regular-frequent itemsets mining is presented in Sec-
tion 2. The compressed tidset representation and the proposed algorithm are
described in Section 3. In Section 4, we compare the performance of TR-CT
algorithm with MTKPP. Finally, we conclude in Section 5.

2 Top-k Regular-frequent itemsets mining

In this section, we introduce the basic definitions used to mine regular-frequent
itemsets [5] and top-k regular-frequent itemsets [11].

Let I = {i1, . . . , in} be a set of items. A set X = {ij1 , . . . , ijl} ⊆ I is called an
itemset or an l-itemset (an itemset of size l). A transactional database TDB =
{t1, t2, . . . , tm} is a set of transactions in which each transaction tq = (q, Y ) is
a tuple containing a unique transaction identifier q (tid in the latter) and an
itemset Y . If X ⊆ Y , it is said that tq contains X (or X occurs in tq) and is
denoted as tXq . Therefore, TX = {tXp , . . . , tXq }, where 1 ≤ p ≤ q ≤ |TDB|, is the
set of all ordered tids (called tidset) where X occurs. The support of an itemset
X, denoted as sX = |TX |, is the number of tids (transactions) in TDB where
X appears.
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Definition 1 (Regularity of an itemset X). Let tXp and tXq be two consecu-

tive tids in TX , i.e. where p < q and there is no transaction tr, p < r < q, such
that tr contains X (note that p, q and r are indices). Then, rttXq = tXq − tXp
represents the number of tids (transactions) not containing X between the two
consecutive transactions tXp and tXq .

To find the exact regularity of X, the first and the last regularities are also
calculated : (i) the first regularity of X(frX) is the number of tids not containing
X before it first occurs (i.e. frX = tX1 ), and (ii) the last regularity (lrX) is the
number of tids not containing X from the last occurring of X to the last tids of
database (i.e. lrX = |TDB| − tX|TX |).

Thus, the regularity of X is defined as rX =
max(frX , rttX2 , rttX3 , . . . , rttX|TX |, lr

X) which is the maximum number of

tids that X does not appear in database.

Definition 2 (Top-k regular-frequent itemsets). Let us sort itemsets by
descending support values, let Sk be the support of the kth itemset in the sorted
list. The top-k regular-frequent itemsets are the set of first k itemsets having
highest supports (their supports are greater or equal to Sk and their regularity
are no greater than the user-given regularity threshold σr).

Therefore, the top-k regular-frequent itemsets mining problem is to discover
k regular-frequent itemsets with highest support from TDB with two user-given
parameters: the number k of expected outputs and the regularity threshold (σs).

3 TR-CT: Top-k Regular-frequent itemsets mining based

on Compressed Tidsets

We now introduce an efficient algorithm, called TR-CT, to mine the top-k
regular-frequent itemset from a transactional database. It uses a concise repre-
sentation, called compressed transaction-ids set (compressed tidset) to maintain
the occurrence information of each itemset. It also uses an efficient data struc-
ture, named top-k list (as proposed in [11]) to maintain essential information
about the top-k regular-frequent itemsets.

3.1 Compressed tidset representation

The compressed tidset representation is a concise representation used to store
the occurrence information (tidset: a set of tids that each itemset appears) of
the top-k regular-frequent itemsets during mining process. The main concept
of the compressed tidset representation is to wrap up two or more consecutive
continuous tids by maintaining only the first (with one positive integer) and the
last tids (with one negative integer) of that group of tids. TR-CT can thus reduce
time to compute support and regularity, and also memory to store occurrence
information. In particular this representation is appropriate for dense datasets.
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Definition 3 (Compressed tidset of an itemset X). Let TX =
{tXp , tXp+1, . . . , t

X
q } be the set of tids that itemset X occurs in transactions where

p < q and there are some consecutive tids {tXu , tXu+1, . . . , t
X
v } that are continuous

between tXp and tXq (where p ≤ u and q ≥ v). Thus, we define the compressed
tidset of itemset X as:

CTX = {tXp , tXp+1, . . . , t
X
u , (tXu − tXv ), tXv+1, . . . , T

X
q }

This representation is efficient as soon as there are three consecutive contin-
uous transaction-ids in the tidsets. In the worst case, the compressed represen-
tation of a tidset is equal of the size of the tidset.

Table 1. A transactional database as a running example of TR-CT

tid items

1 a b c d f
2 a b d e
3 a c d
4 a b
5 b c e f
6 a d e
7 a b c d e
8 a b d
9 a c d f

10 a b e
11 a b c d
12 a d f

From the TDB on the left side we have T a =
{t1, t2, t3, t4, t6, t7, t8, t9, t10, t11, t12} which is composed of
two groups of consecutive continuous transactions. Thus,
the compressed tidset of item a is CT a = {1,−3, 6,−6}.
For example, the first compressed tids (1,−3) represents
{t1, t2, t3, t4} whereas (6,−6) represents the last seven con-
secutive continuous tids. For the item a, the use of com-
pressed tidset representation is efficient. It can reduce seven
tids to be maintained comparing with the normal tidset
representation. For items b and c, the sets of transac-
tions that they occur are T b = {t1, t2, t4, t5, t7, t8, t10, t11}
and T c = {t1, t3, t5, t7, t9, t11}, respectively. Therefore, the
compressed tidsets of the items b and c are CT b =
{1,−1, 4,−1, 7,−1, 10,−1} and CT c = {1, 3, 5, 7, 9, 11}
which are the examples of the worst cases of the compressed
tidset representation.

With this representation a tidset of any itemset may contain some negative
tids and the original Definition 1 is not suitable. Thus, we propose a new way to
calculate the regularity of any itemset from the compressed tidset representation.

Definition 4 (Regularity of an itemset X from compressed tidset). Let
tXp and tXq be two consecutive tids in compressed tidset CTX , i.e. where p < q

and there is no transaction tr, p < r < q, such that tr contains X (note that p,
q and r are indices). Then, we denote rttXq as the number of tids (transactions)

between tXp and tXq that do not contain X. Obviously, rttX1 is tX1 . Last, to find
the exact regularity of X, we have to calculate the number of tids between the
last tid of CTXand the last tid of the database. This leads to the following cases:
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tXq if q = 1

tXq − tXp if tXp and tXq > 0, 2 ≤ q ≤ |CTX |

1 if tXp > 0 and tXq < 0, 2 ≤ q ≤ |CTX |

tXq + (tXp − tXp−1) if tXp < 0 and tXq > 0, 2 ≤ q ≤ |CTX |

|TDB| − tX|CTX | if tX|CTX | > 0, (i.e. q = |CTX |+ 1)

|TDB|+ (tX|CTX | − tX|CTX |−1
) if tX|CTX | < 0, (i.e. q = |CTX |+ 1)

Finally, we define the regularity of X as rX = max(rttX1 , rttX2 , . . . , rttXm+1).

For example, consider the compressed tidset CT a = {1,−3, 6,−6} of item
a. The set of regularities between each pair of two consecutive tids is {1, 1, 6 +
(−3− 1), 1, 12− (−6− 6)} = {1,1,2,1,0} and the regularity of item a is 2.

3.2 Top-k list structure

As in [11], TR-CT is based on the use of a top-k list, which is an ordinary
linked-list, to maintain the top-k regular-frequent itemsets. A hash table is also
used with the top-k list in order to quickly access each entry in the top-k list.
As shown in Fig. 1, each entry in a top-k list consists of 4 fields: (i) an item or
itemset name (I), (ii) a total support (sI), (iii) a regularity (rI) and (iiii) an
compressed tidset where I occurs (CT I). For example, an item a has a support of
11, a regularity of 2 and its compressed tidset is CT a = {1,−3, 6,−6} (Fig. 1(d)).

3.3 TR-CT algorithm description

The TR-CT algorithm consists of two steps: (i) Top-k list initialization: scan
database once to obtain and collect the all regular items (with highest support)
into the top-k list; (ii) Top-k mining: use the best-first search strategy to cut
down the search space, merge each pair of entries in the top-k list and then inter-
sect their compressed tidsets in order to calculate the support and the regularity
of a new generated regular itemset.

Top-k initialization. To create the top-k list, TR-CT scans the database
once transaction per transaction. Each item of the current transaction is then
considered. Thanks to the help of the hash table we know quickly if the current
item is already in the top-k list or not. In the first case we just have to update
its support, regularity and compressed tidset. If it is its first occurrence then
a new entry is created and we initialize its support, regularity and compressed
tidset.

To update the compressed tidset CTX of an itemset X, TR-CT has to com-
pare the last tid (ti) of CTX with the new coming tid (tj). Thanks to the
compressed representation (see Definition 3) it simply consists into the following
cases:
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– if ti < 0, i.e. there are former consecutive continuous tids occur with the
exact tid of ti. TR-CT calculates the exact tid of ti < 0 (i.e. ti−1 − ti)
and compares it with tj to check whether they are continuous. If they are
consecutive continuous tids (i.e. tj − ti−1 + ti = 1), TR-CT has to extend
the compressed tidset CTX (it consists only of adding −1 to ti). Otherwise,
TR-CT adds tj after ti in CTX .

– if ti > 0, i.e. there is no former consecutive continuous tid occurs with ti.
TR-CT compared ti with tj to check whether they are continuous. If they
are consecutive continuous tids (i.e. tj − ti = 1), TR-CT creates a new tid
in CTX (it consists of adding −1 after ti in CTX). Otherwise, TR-CT adds
tj after ti in CTX .

After scanning all transactions, the top-k list is trimmed by removing all
the entries (items) with regularity greater than the regularity threshold σr, and
the remaining entries are sorted in descending order of support. Lastly, TR-CT
removes the entries after the kth entry in the top-k list.

Top-k mining. A best-first search strategy (from the most frequent itemsets to
the least frequent itemsets) is adopted to quickly generate the regular itemsets
with highest supports from the top-k list.

Two candidates X and Y in the top-k list are merged if both itemsets have
the same prefix (i.e. each item from both itemsets is the same, except the last
item). This way of doing will help our algorithm to avoid the repetition of gen-
erating larger itemsets and can help to prune the search space. After that, the
compressed tidsets of the two elements are sequentially intersected in order to
calculate the support, the regularity and the compressed tidset of the new gen-
erated itemset. To sequentially intersect compressed tidsets CTX and CTY of
X and Y , one has to consider four cases when comparing tids tXi and tYj in order

to construct CTXY (see Definition 3):

(1 ) if tXi = tYj > 0 add tXi at the end of CTXY

(2 ) if tXi > 0, tYj < 0, tXi ≤ tYj−1 − tYj , add tXi at the end of CTXY

(3 ) if tXi < 0, tYj > 0, tYj ≤ tXi−1 − tXi , add tYj at the end of CTXY

(4 ) if tXi , tXj < 0, add tXY
|CTXY | − (tXi−1 − tXi ) at the end of CTXY if tXi−1 − tXi <

tYj−1 − tYj otherwise add tXY
|CTXY | − (tYj−1 − tYj ) at the end of CTXY

From CTXY we can easily compute the support sXY and regularity rXY of
XY (see definition 4). TR-CT then removes the kth entry and inserts itemset
XY into the top-k list if sXY is greater than the support of the kth itemset in
the top-k list and if rXY is not greater than the regularity threshold σr.

3.4 An example

Consider the TDB of Table 1, a regularity threshold σr of 4 and the number of
desired results k of 5.
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4.2 Execution time

Figures 3, 4, and 5 give the processing time of dense datasets which are acci-
dents, connect, and pumsb, respectively. From these figures, we can see that the
proposed TR-CT algorithm runs faster than MKTPP algorithm using normal
tids set under various value of k and regularity threshold σr. Since the character-
istic of dense datasets, TR-CT can take the advantage of the compressed tidset
representation which groups consecutive continuous tids together. Meanwhile,
the execution time on sparse dataset retail is shown in Figure 6. Note that the
performance of TR-CT is similar with MTKPP as with sparse dataset TR-CT
can only take the advantage of grouping very few consecutive continuous tids.
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4.3 Space usage

Based on the use of top-k list and compressed tidset representation, the memory
usage and the number of maintained tids during mining process are examined. To
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evaluate the space usage, the regularity threshold σr is set to be the highest value
(used in previous subsection) for each dataset. The first experiment compare the
memory consumption of TR-CT and MTKPP algorithm. As shown in Fig. 7,
TR-CT uses less memory than that of MTKPP on dense datasets (i.e. accidents,
connect and pumsb) whereas the memory consumption of TR-CT is quite similar
as MTKPP on sparse database retail. In some cases, the use of the compressed
tidset representation may generate more concise tidsets than the original tidsets
(used in MTKPP) since the former maintains only the first and last tids of
the two or more consecutive continuous tids by using only one positive and
one negative integer, respectively. That is why TR-CT has a good performance
especially on dense datasets.

In the second experiment, the number of maintained tids is considered (see
Fig. 8). The use of the compressed tidset representation may generate more con-
cise tidsets than the original tidsets (used in MTKPP) since the former maintains
only the first and last tids of the two or more consecutive continuous tids by using
only one positive and one negative integer, respectively. The numbers of main-
tained tids between the two representations (algorithms) are shown in Fig. 8. It
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is observed from the figure that the TR-CT maintained nearly the same number
of tids as the MTKPP when dataset are sparse. Meanwhile, TR-CT significantly
reduces the number of tids on dense datasets.
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5 Conclusion

In this paper, we have studied the problem of mining top-k regular-frequent
itemsets mining without support threshold. We propose a new algorithm called
TR-CT (Top-k Regular-frequent itemset mining based on Compressed Tidsets)
based on a compressed tidset representation. By using this representation, a set
of tids that each itemset occurs consecutively continuous is transformed and
compressed into two tids by using only one positive and negative integer. Then,
the top-k regular-frequent itemsets are found by intersection compressed tidsets
along the order of top-k list.

Our performance studies on both sparse and dense datasets show that
the proposed algorithm achieves high performance, delivers competitive per-
formance, and outperforms MTKPP algorithm. TR-CT is clearly superior to
MTKPP on both the small and large values of k when the datasets are dense.
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