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Abstract. Search engines play and will still play a major role in the
use of networks. Sponsored search auctions is the basic tool for a re-
turn on investment in this industry, accounting for an increasing part
of the business. We introduce here a model for consumer behavior in
the context of ad-word auctions. Considering that unsatisfying answers
of the ad-word engine will lead some consumers to perform again the
same request later on, we show that displaying only the highest bidding
or highest revenue-producing advertisers in a deterministic way is not
always the best strategy for the ad-word engine. Instead, some random-
ization among advertisers can provide higher revenues. We also design
a Vickrey-Clarke-Groves auction rule for a display probability and com-
pare it with the current generalized-second-price scheme.

Keywords: Auctions, Random processes

1 Introduction

Search engines play a crucial role in the Internet, allowing, just by giving key-
words, to reach the most relevant web pages. This role is expected to be at
least as important in next generation networks. Search engines make money by
proposing advertising slots to potential advertisers, usually displayed at the top
and/or at the right of the page of results corresponding to the keyword(s). Actu-
ally search engine advertising has become an important business, the combined
revenue of the two main actors in the area, Yahoo! and Google, being more than
$11 billion in 2005 for instance [1], and this business is expected to count for
about 40% of total advertising revenue [2].

Keyword ads work as follows: an Internet user seeking for a web site types
keywords on a search engine. Based on those words, the search engine proposes
a list of links ranked by relevance, but also some commercial links chosen ac-
cording to criteria which depend on the engine. Our goal is to investigate the



allocation of commercial slots to advertisers. For a nice overview of the gen-
eral and recent modeling issues, an interested reader can for instance look at
[3]. We focus in this paper on a single keyword, the best strategy of advertis-
ers in terms of keyword selection being not addressed here as in most of the
literature. Slot allocation is based on auctions, and most of existing works deal
with a game of complete information [1,4,5,6,7] where advertisers make a bid
for the keyword corresponding to the maximum price they would accept to pay
if the link is clicked through. Advertisers are ranked according to a prespecified
criterion, for instance the bid value (initially for Yahoo!), or the revenue they
will generate (more or less corresponding to Google’s situation), taking into ac-
count the click-through rate (CTR) for each advertiser. The K available slots
are then allocated according to the above ranking to the K first advertisers.
Advertisers pay the search engine each time their link is clicked through, the
amount they are then charged being, in the literature, either exactly the bid
(corresponding to the so-called first price auction), the opportunity cost that
the considered advertiser’s presence introduces to all the other advertisers (the
so-called Vickrey-Clarke-Groves (VCG) auction), or the generalized second price
(GSP) where each advertiser pays the bid of the advertiser just below itself in
the ranking (that latter scheme is applied by Google and Yahoo!, and yields the
same incentives to bid truthfully than VCG auction if the game is not one-shot
and advertisers anticipate the effects of the strategies of their competitors [8]).
Most models differ on the assumptions about the CTR modeling, the budget
limit of the advertisers, the game being static or played several times, or the
pricing rule applied.

But all the above works, and to our knowledge all the literature, assume that
an Internet user will make a search only once and will never come again. We
propose here to investigate the consequences of users potentially composing sev-
eral times the same keyword, the interval between two searches being random.
This is typical of users looking for new or additional information, or who do not
remember the previous results. In that situation, always presenting the same
advertisers on the sponsored slots may be a bad option since if a user has not
clicked through the links once, he is likely to proceed the same way again. A
random strategy for the allocation, still dependent on the bid of the advertisers
but allowing advertisers with small bids to be displayed with a positive even
if small probability, may produce a higher expected revenue than the current
deterministic strategy. This paper aims at illustrating the relevance of that ap-
proach. We therefore introduce here a model describing users searching the same
keyword a random number of times, and compare according to the parameter
values the revenues generated by the random or deterministic allocation of slots.
Only K = 1 slot and two advertisers are considered to simplify the analysis
and for comparison purposes. We show that for fixed bids and prices, applying a
random allocation can increase revenue. We then build a VCG auction scheme
based on this allocation rule, and compare the revenues and social welfare at
equilibrium of the bidding game among advertisers with those obtained using a
deterministic GSP rule.



Remark that randomness has already been considered in ad-word auctions.
In [6,9], a Markovian model is used to represent the user behavior when looking
at the ranked ads: she looks at the first ad then clicks and quits or goes to the
second with a given probability, which she clicks or not, then goes to the follow-
ing, up to the number K. In [10], randomness is introduced on the size of the
population and the type of advertisers but the allocation rule is kept determin-
istic. The closest work to ours is maybe [11]. In that paper the authors discuss
the ad-slot placement and pricing strategies maximizing the expected revenue of
search engine over a given interval of time. They find the optimal allocation rule
and show that the cµ-scheduling rule (i.e., maximizing selling probability times
(virtual) valuation) is a good suboptimal policy, but the randomness is rather
on the types of advertisers. To the best of our knowledge, no paper is actually
considering randomness in the behavior of users, coming several times, and the
consequence on slot allocations as we do.

The paper is organized as follows. Section 2 introduces the model and de-
scribes users’ behavior. Section 3 computes the average revenue generated using
a random allocation strategy with fixed price per click for users and shows that
this rule can increase revenue. Then Section 4 suggest to use Vickrey-Clarke-
Groves auctions to allocate the ad display probabilities among the advertisers,
when implementing a randomized instead of deterministic ad display policy. Sec-
tion 5 illustrates the fact that such an auction scheme can perform better than a
deterministic GSP display mechanism in terms of advertiser revenue and overall
wealth generated by the ad slot. Our conclusions and some directions for future
work are given in Section 6.

2 Model

In this section, we introduce a mathematical model aimed at representing the
behavior of a customer when faced with a search engine implementing an ad-
word auction. The particularity of that model is to explicitly express the retry
rate of customers, when previous answers have not resulted into a sale.

Since the paper is mainly focused on illustrating a phenomenon (i.e., the fact
that introducing randomness in the selection of the advertisers to display may
be profitable to the search engine), we consider an extreme case to simplify the
analysis, both for the auction engine and the customer population. The model
can be complicated in order to better fit reality.

2.1 Search engine basic model

We consider a search engine providing only one commercial slot, and two adver-
tisers, say, 1 and 2, competing for that slot on a given ad-word. In an auction,
players (here, advertisers) submit bids, from which allocation and pricing rules
are applied. Each advertiser i = 1, 2, is therefore characterized in the auction by

– bi the bid of advertiser i for that keyword,



– πi the probability that advertiser i’s ad is displayed (which should depend
on the bid profile (b1, b2)),

– pi the price-per-click that advertiser i is charged, also dependent on (b1, b2).

2.2 User behavior model

The population of users likely to search for that ad-word is assumed to be het-
erogeneous, made of two types: some users, called type-A users, can only be
interested in purchasing the good sold by advertiser 1, but can potentially click
on the ad of advertiser 2 without purchasing it eventually. On the other hand,
type-B users are potential buyers of advertiser 2 only (likewise, they will never
purchase advertiser 1’s product even if they click on its ad when displayed).

Formally, customer (new) requests occur randomly over time: we denote by
λA (resp. λB) the average number of first requests per time unit of type-A (resp.
type-B) customers.

For a type-A user who performs a search with the considered keyword:

– if the search engine displays the ad of advertiser 2, then the probability of
the user clicking the ad is denoted by cA,2, but recall that even if the user
clicks on the ad, he does not purchase the good;

– if the search engine displays the ad of advertiser 1, we denote by cA,1 > 0 the
probability of the user clicking on that ad, and by hA,1 > 0 the probability
that the user purchases the good after clicking on the ad.

As a result, for one search, the probability that a type-A user buys its wanted
product is π1cA,1hA,1: indeed, that probability is cA,1hA,1 if advertiser 1 is dis-
played in the ad-word slot, and 0 otherwise.

Inevitably, some users do not end up buying their wanted good, because of the
bad ad displayed or for other reasons (e.g., lack of time to finish the purchase, or
hesitation). In this paper, we assume that some of those users will try again later
and perform a search with the same keyword, after some time, independently of
the number of previous search attempts. For those retries, we assume that the
user has the same behavior, i.e., the same probabilities of clicking on the ad, of
purchasing the good, and of trying again later in the case of no purchase.

As a result, the average number of retries per time unit only depends on the
total average number of searches λtot

A (including new attempts and retries from
previous attempts): Let us denote by RA the probability of a not-buying type-A
user to retry the keyword later. Define by θretryA the overall probability of retry,
given by

θretryA := RA(1− π1cA,1hA,1).

The overall behavior of type-A users is illustrated in Figure 1, representing new
searches, retries and users definitely leaving the search.

In steady-state -which can be easily shown to exist, the system behaving like
an infinite server queue with instantaneous service time-, the mean number of
retries per time unit should equal the total mean number of search tries λtot

A

multiplied by the overall probability of retry θretryA .
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Fig. 1. Type-A users search behavior. Arcs are labeled with the average number of
occurrences per time unit.

We clearly see in Figure 1 that the total mean number of requests by type-A
users per time unit verifies

λtot
A = λA + θretryA λtot

A ,

which gives, since θretryA < 1,

λtot
A =

λA

1− θretryA

=
λA

1−RA(1− π1cA,1hA,1)
. (1)

For type-B users, we define the probabilities cB,1, cB,2, hB,2 > 0, and RB in
the same way as for type-A users. With the same reasoning, the mean number
of requests by type-B users per time unit is λtot

B = λB

1−RB(1−π2cB,2hB,2)
.

3 Search engine revenue

Let us consider fixed values of the advertiser bids b1 and b2, and assume that
the corresponding display probabilities are π1 and π2 = 1− π1, with prices per
click p1 and p2, respectively.

The mean revenue (utility) per time unit for the search engine (for the con-
sidered keyword auction) is

U = p1 π1(λ
tot
A cA,1 + λtot

B cB,1)
︸ ︷︷ ︸

nb of clicks on ad 1

+p2 π2(λ
tot
B cB,2 + λtot

A cA,2)
︸ ︷︷ ︸

nb of clicks on ad 2

= λA

π1(p1cA,1−p2cA,2) + p2cA,2

1−RA(1− π1cA,1hA,1)
+ λB

π1(p1cB,1−p2cB,2) + p2cB,2

1−RB(1−cB,2hB,2+π1cB,2hB,2)
,(2)

where we used the fact that π1 + π2 = 1.

To simplify the analysis, we will first assume that users types are symmetric,
and that users never click on an ad that does not correspond to their type.



Assumption A Users of both types have a similar behavior with respect to their
preferred/less preferred advertisers, in terms of click probability, conversion rate,
and retry probability. Formally,

cA,1 = cB,2 := c

hA,1 = hA,2 := h

RA = RB := R.

Moreover, users are only likely to click on the ad of their preferred advertiser,
i.e., cA,2 = cB,1 = 0.

Under that simplifying assumption, the auctioneer revenue is

U = λAp1c
π1

1−R(1− π1ch)
+ λBp2c

1− π1

1−R(1− ch+ π1ch)
. (3)

For a real ad-word auction mechanism implementing randomization, the price
per click pi charged to each advertiser i = 1, 2 should increase with the proba-
bility πi of displaying each ad. However, if for a moment we fix those prices as
given and look at (3) as a function of π1, we remark that the revenue-maximizing
strategy does not necessarily consist in always displaying the ad with the highest
price, or the ad with the highest product λXi

× pi, with Xi the type of users
potentially interested in buying advertiser i’s product. Indeed, if the retry rate
R is sufficiently close to 1, the revenue in (3) attains its maximum for a π∗

1 in the
interior of (0, 1). The rationale is that potential consumers of the not-displayed
advertiser will perform again the search, giving a large overall request rate for
that type of consumers, which makes it beneficial for the auctioneer to display
the ad.

That result is formalized by the following proposition.

Proposition 1. The value π∗
1 of π1 maximizing the search engine revenue is

• π∗
1 = 0 if

√
λAp1

λBp2

≤
1−R

1−R(1−ch) ,

• π∗
1 = 1 if

√
λBp2

λAp1

≤
1−R

1−R(1−ch) ,

• π∗
1 = 1

R·ch

1−R+R·ch−(1−R)
√

λBp2
λAp1

√

λBp2
λ1p1

+1
if 1−R

1−R(1−ch) <
√

λAp1

λBp2

< 1−R(1−ch)
1−R

.

In other words, when R is sufficiently close to 1, we are in the third case, and
the search engine gets a higher revenue than when always showing one of the
advertisers.

Proof. It can be easily seen that for R < 1 the revenue (3) is a continuous,
derivable and strictly concave function of π1 on [0, 1], with derivative

U ′(π1) = (1−R)c

(

λAp1

[1−R(1− π1ch)]
2 −

λBp2

[1−R(1− (1− π1)ch)]
2

)

.

Due to the strict concavity of U , we have three possibilities:



– either U ′(0) ≤ 0, i.e.,
√

λAp1

λBp2

≤
1−R

1−R(1−ch) , then π∗
1 = 0;

– or U ′(1) ≥ 0, i.e.,
√

λBp2

λAp1

≤
1−R

1−R(1−ch) , then π∗
1 = 1;

– or 1−R
1−R(1−ch) <

√
λAp1

λBp2

< 1−R(1−ch)
1−R

, which is always the case when R

is sufficiently close to 1, then π∗
1 ∈ (0, 1), i.e., it is in the interest of the

auctioneer to randomize when choosing which ad to display.

Example 1. Consider a simple and arbitrarily chosen example illustrating the
kind of gain that can be obtained through randomization. Use the probability
values c = 1/2, h = 1/2, the rates λA = 1, λB = 0.8 and prices per click p1 = 1,
p2 = 0.8. The retry probability is taken as R = 0.8 so that we are in the third
situation presented in the proposition. The revenue (3) is maximized at π∗

1 = 2/3
and given by 1.4. If we compare it with the optimal revenue when only one ad
is displayed, max(λAp1, λBp2) = 1, a gain of 40% is observed. This gain is even
increased for a larger value of R.

A similar result applies in the general case, as illustrated by the following
proposition.

Proposition 2. In the non-symmetric case, there also exists a unique π∗
1 max-

imizing the revenue U(π1) of the search engine given by (2). The solution is in
the interior of the interval [0, 1] if U ′(0) > 0 and U ′(1) < 0.

Proof. The proof is similar to the one of Proposition 1, given that the revenue
defined by (2) is still a strictly concave function of π1 with RA, RB < 1.

Remark 1. Notice that the randomization proposed here transfers some of the
complexity from the advertiser to the auctioneer, since in most current auctions
the advertisers develop quite complex bidding strategies to adapt over time to the
opponents’ bids and to the flow of requests, so that it appears effectively that
not always the same ads are displayed when users perform the same request
several times. With the randomization suggested here, we might imagine that
advertisers fix their bid for a time period, and the auctioneer computes the ad
displaying probabilities based on the bids and some knowledge of the demand
(which it is more likely to be able to estimate than the advertiser is).

4 A VCG auction mechanism for display probability

In this section, we highlight a utility function for an advertiser i, that depends
on the display probability πi of its ad. Such a utility function being continuous
and increasing in πi, we propose to define an auction scheme among providers to
allocate and price the “probability range”, i.e., the interval [0, 1], as an infinitely
divisible resource. We then study a game where advertisers submit their bid
representing how much they are accepting to pay per click, and the display
probability is allocated and charged according to VCG auction rules.



4.1 Advertiser willingness-to-pay in terms of the ad display
probability

We first quantify the average revenue in terms of display probability for each
advertiser. With the same notations as in the previous sections and under As-
sumption A (symmetry among both types of customers, customers only inter-
ested in clicking for one advertiser), the mean sales income per time unit due to
the keyword searches for, say, provider 1, is

V1(π1) = λtot
A π1chv1

=
λAπ1ch

1−R(1− π1ch)
v1, (4)

where v1 is the benefit that the advertiser makes on each sale (i.e., the selling
cost of the product minus its production cost). We call that function V1 the
valuation function of provider 1, since it represent the monetary benefit due to
the ad display probability. Remark that exactly the same form would be obtained
when computing the valuation V2(π2) of provider 2.

As a result, the overall utility (revenue) for an advertiser i who has to pay a
price pi to have its ad displayed with probability πi is quasi-linear, that is,

Ui = Vi(πi)− pi. (5)

Interestingly, we remark that for each i = 1, 2, Vi is a continuously derivable,
nondecreasing and concave function on [0, 1], and that Vi(0) = 0. Such properties
are often needed when designing some pricing and allocation mechanisms with
nice properties -both from economic and computational perspectives-.

In the following subsection, we therefore propose an auction scheme to effi-
ciently allocate the overall resource (display probabilities) among advertisers.

4.2 VCG auctions for allocating an infinitely divisible good

In this subsection, we use the possibility of randomization to define an auction on
ad display probabilities. The auction is interpreted as an auction for an infinitely
divisible good, with total quantity 1. Indeed, from the formulation of the previous
subsection, advertisers are only sensitive to their display probability and the
price they pay, while the total sum of advertiser (probability) allocations cannot
exceed 1.

The problem of the auctioneer is therefore to share that total amout 1 of
resource among bidders. In this work, we look at the well-known Vickrey-Clarke-
Groves (VCG) [12,13,14] mechanism, which is the only auction mechanism with
the properties below for bidders with quasi-linear utility functions [15]:

– Incentive compatibility : truthfully declaring one’s value for the good is a
dominant strategy, i.e., there is no gain to expect from lying about one’s
willingness-to-pay.

– Efficiency : when bidders are truthful, allocations maximize social welfare,
that is the sum of all bidders willingness-to-pay.



– Individual rationality : every bidder pays less than his declared willingness-
to-pay, so there is always an interest in participating in the auction.

– Non-negativeness of prices.

The VCG mechanism works as follows: Each bidder i is asked to declare its
entire valuation (willingness-to-pay) function Vi(·). Then,

– (allocation rule) the auctioneer computes an allocation vector (πi)i∈I that
maximizes social welfare, i.e., the sum of bidders declared valuations;

– (pricing rule) the price that each bidder has to pay equals the loss of social
welfare that it imposes the others through its presence.

4.3 Applying VCG

Based on (4), declaring one’s willingness-to-pay function consists in revealing
the four parameters of Vi, namely for provider 1: λA, R, v1, and the product ch.
However, as pointed out in Remark 1, some parameters like the retry rate R are
more likely to be measured by the search engine itself: We can therefore consider
that provider 1 only has to declare the parameters λA, v1, and ch. Since being
truthful is a dominant strategy for advertisers, we consider that they reveal their
real valuation parameters.

Allocation rule. The auctioneer computes the display probabilities πi solving
the strictly convex optimization problem

max
π1,π2 s.t. π1+π2≤1

V̄1(π1) + V̄2(π2), (6)

where V̄i is the declared willingness-to-pay function of advertiser i (V̄i = Vi if i
bids truthfully). Remark that since the functions V̄i are strictly increasing, the
solution of (6) lies in the set where π1 + π2 = 1. Therefore, the declared-welfare
maximizing allocation (π̄1, π̄2) is such that

π̄1 = arg max
π1∈[0,1]

π1λAch

1−R(1− π1ch)
v1 +

(1− π1)λBch

1−R(1− (1− π1)ch)
v2 (7)

π̄2 = 1− π̄1.

The optimization problem (7) is exactly the same as in (3), with vi playing the
role of pi for each advertiser i. Therefore, from Proposition 1, π̄1 is given by

• π̄1 = 0 if
√

λAv1
λBv2

≤
1−R

1−R(1−ch) ,

• π̄1 = 1 if
√

λBv2
λAv1

≤
1−R

1−R(1−ch) ,

• π̄1 = 1
R·ch

1−R+R·ch−(1−R)
√

λBv2
λAv1

√

λBv2
λ1v1

+1
if 1−R

1−R(1−ch) <
√

λAv1
λBv2

< 1−R(1−ch)
1−R

.



Pricing rule. Finally, to determine the charge to each advertiser, the auctioneer
computes the loss of value (in terms of declared willingness-to-pay) that each
advertiser imposes on the other through its presence. Since we consider only
two advertisers, then, had one of them been absent from the auction, the whole
resource (i.e., display probability 1) would have been given to the other. As a
result, the total price ti per time unit that each advertiser i is charged under the

VCG rule is given by

{
t1 = V̄2(1)− V̄2(π̄2)
t2 = V̄1(1)− V̄1(π̄1).

Such an average charge per time unit can easily be converted to a price per
click, to fit current auctions charging base. The mean number of clicks per time
unit for advertiser 1 is λtot

A π̄1c, where λtot
A is given in (1); as a result, under

Assumption A the auctioneer may charge advertiser 1 a price per click

p1 =
(
V̄2(1)− V̄2(π̄2)

) 1−R(1− π̄1ch)

λAπ̄1c
.

Likewise, the price per click for advertiser 2, whose ad is displayed with proba-
bility π̄2, should be

p2 =
(
V̄1(1)− V̄1(π̄1)

) 1−R(1− π̄2ch)

λAπ̄2c
.

4.4 Asymmetric case

The asymmetric case can easily be handled equivalently. The valuation functions
V1(π1) and V2(π2) are then respectively the first and second terms of the revenue
(2), with again p1 and p2 replaced by v1 and v2. The rest of the discussion follows
as well, invoking Proposition 2 instead of Proposition 1.

5 VCG for randomizing displayed ads versus

deterministic GSP

In this section, we consider a simple illustrative example comparing the con-
sequences of a VCG auction on display probability to those obtained with a
deterministic GSP pricing scheme. We consider a symmetric case, with v1 = 1,
v2 = 0.8, λA = λB = 1, c = h = 0.5. Since the main phenomenon we want to
model in this paper is the fact that consumers try out the same research several
times, we make the retry probability R vary.

The currently used GSP auction consists in asking each advertiser the price
it is willing to pay to be displayed (with probability 1). In the numerical compu-
tations we make here, we assume that advertisers bid truthfully, i.e. they declare
their real value of a customer click if their ad were to be displayed with proba-
bility 1. Under Assumption A, b1 = v1h = 0.5 and b2 = v2h = 0.4. As a result,
GSP will always result in advertiser 1’s ad being displayed. At each click on its
ad, advertiser 1 will be charged b2 = 0.4. The corresponding revenue per time
unit for the auctioneer is thus λtot

A cb2 = 0.8
4−3R , while the per-unit net benefit



of provider 1 is λtot
A c(v1h − b2) = 0.2

4−3R . Provider 2 gets no benefit from the
auction, since its ad is never displayed and it does not pay any charge to the
search engine.

In Figure 2, we compare the advertiser as well as auctioneer net benefits
under VCG and GSP auction schemes. Social welfare, i.e., the sum of those
utilities (or in other words, the total wealth generated by the ad slot), is shown
in Figure 3.
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This example illustrates that when a VCG auction is applied on the display
probability, the revenue of advertisers is larger than when applying a determin-
istic GSP pricing. and the difference increases with R, while it is the opposite
for the search engine revenue. In the case of a search engine in the situation of
a monopoly, a deterministic GSP would be preferable than a random VCG in
terms of revenue, but in the case of competitive engines with comparable quality
(for instance Yahoo! against Google), advertisers would prefer the one applying
VCG due to their larger revenue, and the advantage may change. Also, as seen
on Figure 3, social welfare is larger with our new VCG scheme, which points out
a better use of the resource (here, the ad slot).

6 Conclusion

This paper proposes a new randomized allocation rule for ad-word auctions,
based on the idea that users often retry the same search. We have shown that
for fixed bids and prices, applying a random allocation can increase revenue.
We have also designed a VCG auction scheme based on that allocation rule,
and compared the revenues and social welfare at equilibrium of the bidding
game among advertisers with those obtained using a deterministic GSP rule.
The search engine revenue is lower with our scheme, but not social welfare nor
advertisers’ revenue. Due to that last point, we claim that in a competition



between engines, our new scheme will be preferred, and therefore could also
generate more revenue.

Next works will go into several directions. First, we would like to study
theoretically the competition game between two engines, to support our claim.
Studying the case of multiple slots, as well as the game between advertisers
under the randomized allocation rule but with a GSP pricing rule and a reserve
price are also important issues we intend to address.
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