
HAL Id: hal-00609528
https://hal.science/hal-00609528

Submitted on 19 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the efficiency of collaborative work with trust
management

Xingyu Zheng, Patrick Maillé, Cam Tu Phan Le, Stéphane Morucci

To cite this version:
Xingyu Zheng, Patrick Maillé, Cam Tu Phan Le, Stéphane Morucci. Improving the efficiency of
collaborative work with trust management. IFIP/IEEE Workshop on Managing Federations and
Cooperative Management (ManFed.CoM), May 2011, Dublin, Ireland. �hal-00609528�

https://hal.science/hal-00609528
https://hal.archives-ouvertes.fr

Improving the Efficiency of Collaborative Work

with Trust Management

Xingyu Zheng, Patrick Maillé

Institut Telecom; Telecom Bretagne

2, rue de la Châtaigneraie CS 17607

35576 Cesson Sévigné Cedex, France

Email: {xingyu.zheng},{patrick.maille}@telecom-bretagne.eu

Cam Tu Phan Le, Stéphane Morucci

Swid

80, avenue des Buttes de Coesmes

35700 Rennes, France

Email: {stephane.morucci},{plcamtu}@swid.fr

Abstract—The concept of trust has recently been introduced
in the context of peer-to-peer networks, in order to deal with
uncertainty regarding the behavior of imperfectly known agents.
In this paper, we apply the notion of trust to situations of
collaborative work, more precisely of document editing.

We suggest to use trust to compute a satisfaction score
for each participant, in order to help select the successive
editors of the document so as to avoid unnecessary readings
by all collaborators after each modification. We assume that the
document development process ends when all collaborators are
satisfied with the quality of the document. Two mechanisms using
trust to improve that process are proposed, and compared to the
situation without trust. Extensive simulations suggest that trust
can improve the efficiency of the collaborative work, while it can
be implemented in a distributed manner.

I. INTRODUCTION

Many types of documents cannot be entirely produced by

a single individual, and instead need to be jointly built by

several collaborating participants. One can think of examples

from diverse working sectors: law texts, research articles,

project proposals, course textbooks, or encyclopedias (the

most famous example being the online encyclopedia Wikipedia

[www.wikipedia.org]). In all those cases, collaborative work-

ing is needed because of the prohibitive size of the document

to be produced, and/or because of the diversity of the knowl-

edge fields and competences involved.

There exists a variety of tools to facilitate collaborative

work, such as online wikis or versioning softwares. Those

are not indifferent to the outcomes of the collaborative work-

ing activity: it has for example been shown experimentally

that structuring the processes in collaborative work systems

improves the team results as well as the participant satisfac-

tion [1]. Likewise, some advanced tools can be implemented

to improve group awareness, parallelism, group memory, and

coordination among collaborative workers [2].

Now, an important challenge for collaborative work is to

determine when and how to stop the document development

process. Do all participants need to approve the final version?

If so, when can it be considered that a version is a candidate

for being sent for approval? Such questions might be difficult

to answer when the number of collaborators becomes large.

Likewise, it is not reasonable to assume that all collaborators

go through the whole document after each modification by

one of her peers, therefore some more fine-tuned management

methods could significantly improve the development process

efficiency.

In this paper, we suggest to address those questions by

using the notion of trust [3]. Several kinds of trust usages

have been proposed, mainly for grid computing environments

and peer-to-peer systems. Indeed, in those cases where each

node shares its resources and benefits from those offered by

its peers, trust mechanisms can be used to find the best peers

to exchange with, or to avoid malicious nodes [4], [5], [6], [7].

Remark moreover that inter-company (or even inter-personal)

collaborations often rely on the (most often implicit) notion

of trust, that can also be modeled and somehow automated in

order to make the right business decisions [8].

We propose here a new trust-based mechanism aimed at

optimizing the process of collaborative document building.

Our objective is to use trust as a tool to limit the total time

and the total effort spent to reach the common objective of

the group. More precisely, we intend to avoid unnecessary

readings, and efficiently select editors during the development

process.

The remainder of this paper is organized as follows. In

Section II, we introduce the basic concepts of trust and show

how it can be used to compute user satisfaction scores in a

collaborative working environment model. Section III presents

three models of collaborative working processes, where trust

can be used to select the successive editors of the document.

The performance of those schemes are compared through

simulations in Section IV. We discuss the technical feasibility

of our mechanism in Section V, and conclude and provide

directions for future work in Section VI.

The results presented here follow the same model as the

one we introduced in [9]. However, here we provide more

complete performance results, considering a richer set of

parameter values and also looking at a fairness measure

(the effort repartition among participants). Moreover, with

respect to the work of [9], this extended version describes an

effective implementation of the proposed mechanisms through

an OpenOffice plugin.

II. USING TRUST IN A COLLABORATIVE WORK

ENVIRONMENT

We consider a working system with a number I = |I| of

agents who collaboratively contribute to the elaboration of a

document. Those agents successively improve the document in

an asynchronous manner, until it reaches a satisfying quality:

an agent elaborates a first version of the document, that is

afterwards edited and modified by the other agents in a certain

order.

A. Definition of trust

Trust can be defined as a quantification of the confidence

that an agent has in another agent to behave in an appropriate

manner. Thus, trust represents the beliefs of one agent in the

future actions of the other. In most trust-based models [10],

[11], [12], [13], that quantification is summarized into a

number in the interval [0, 1]. Consequently, trust values may

also be interpreted as probabilities of the trusted agent to

behave properly, from the point of view of the truster agent.

We denote by I the set of agents, and for i, j ∈ I, by ti,j the

trust value representing how much agent i trusts agent j.

The following conventions are classically taken:

• a trust value ti,j of 1 means that agent i perfectly trusts

agent j, while ti,j = 0 means that agent i does not trust

j at all;

• the trust value tj,i can be different from ti,j , as trust

scores materialize some subjective (thus, possibly biased)

perceptions;

• ti,i, representing the self-trust, is fixed to 1.

For an agent i ∈ I, there are two ways of estimating how

much she trusts another agent j ∈ I.

• Agent i can build her own trust score ti,j based on her

experience from previous interactions with j. In peer-

to-peer systems, agent i can for example keep a record

of satisfying and unsatisfying exchanges with peer j,

possibly in the form of a weighted sum, where weights

can be used to take into account the importance of

the interaction or the time aspect [14]. In collaborative

work, one can think of an evaluation score based on

the contributions made by the collaborator in previous

common works, which can also be quantified [15], [16].

• If agent i does not have a sufficiently large history of

interactions with j to compute an accurate trust estima-

tion, she can ask some of her trusted agents to provide

her with a recommendation score, and then combine the

received values with her own trust in those recommenders

to calculate ti,j [17].

In this paper, we do not consider that aspect of trust

estimation; we assume that trust scores (ti,j)(i,j)∈I2 have been

determined, and we rather focus on the use of those scores in

collaborative work environments so as to optimize the joint

work process.

B. Agent satisfaction scores during the collaborative work

An important feature of our model is that each editor k ∈ I
has to associate to the document an evaluation score ek after

her editing the document. That score, that we impose to be

in the interval [0, 1], represents the subjective quality of the

document for editor k. We assume here collaborators to be

honest, so that they truthfully reveal the value of the document

quality. Taking into account other reporting strategies driven

by maliciousness or selfishness is above the scope of this

paper.

The evaluation score is meant to be used by all the other

collaborators, who combine it with their trust in the last editor

of the document to compute a personal satisfaction score for

the document. Formally, if Idlast is the identity of the last

document editor, each agent i ∈ I automatically computes

the satisfaction score

si := ti,Idlast
× eIdlast

, (1)

without even opening the document.

This means that the participants take the declared score eIdlast

into account, but are less optimistic in following the opinion

of Idlast when they do not trust that agent. In that sense, the

multiplicative combination rule can be interpreted as providing

a lower bound of the quality of the document: the document

can be of high quality, but before agent i verifies that through a

careful reading, she remains cautious and lowers the declared

evaluation score, at a greater scale if she does not trust the

last editor. Intuitively, this consists in viewing ti,Idlast
as the

trust value of i in Idlast correctly estimating the quality of the

document. An incorrect (from i’s point of view) evaluation

may be due to the last editor not being aware of all the

elements in the document, or to agents i and Idlast having

different priorities and interests. That last possibility might be

problematic in our case, since there would be here an incentive

for editors to overestimate the evaluation. Therefore, in this

paper we assume that the final objective of all agents is the

same (namely, create a high quality -with the same standards-

document), and that evaluation discrepancies do not stem from

malicious behaviors but rather from imperfect perceptions.

III. MANAGEMENT OF COLLABORATIVE WORKING

THROUGH TRUST

In this section, we introduce three different ways of manag-

ing the collaborative working environment. By management,

we mean here the process of selecting the successive document

editors.

Note that we implicitly assume that agents never edit the

document at the same time, while most current collaborative

work systems offer that possibility. However, in those cases

the last agent to submit her version to the system is asked

to deal with potential inconsistencies with the changes that

have occurred since she last downloaded the document. That

checking procedure could then be interpreted as an extra

reading of the document, which would somehow be similar to

the situation where agents successively modify the document.

A. Collaborative work model

We describe here the condition to end the editing process.

We assume that each agent i ∈ I has a threshold bi ∈ [0, 1)

that she considers to be the minimal satisfaction level for the

document to be acceptable. Following the idea of collaborative

work as a way to reach a consensus among participating

agents, we consider that the document editing process stops

when all agents are satisfied with the quality of the document,

i.e., when the satisfaction scores (si)i∈I are such that

si ≥ bi ∀i ∈ I. (2)

Until that condition is satisfied, we assume that users go on

successively editing the document.

We immediately notice that the process as we defined it

may never converge: assume two agents i 6= j are such that

their trust values for the other one are below their threshold

level, i.e.,

∀k ∈ I,

{

k 6= i ⇒ ti,k < bi
k 6= j ⇒ tj,k < bj .

Then in that case, the condition (2) can never be met since

evaluation scores ek are in the interval [0, 1].
For that reason, we slightly modify the calculation mode

of satisfaction values, by introducing an aspect related to the

document history. From now on, we consider that satisfaction

scores (si)i∈I are computed according to the relation

si := min
[

(ti,Idlast
+αnedit(i))×eIdlast

, 1
]

, (3)

where

• nedit(i) is the number of edits by agent i in the process,

and

• α is the bias in the satisfaction calculation, that corre-

sponds to each extra edit of the document.

The rationale behind that new expression is as follows: Since

we assumed that agent evaluations are aimed at a common

objective, and only differ because of imperfect knowledge

of the document and of quality criteria, we can reasonably

assume that the more an agent has gone through the document,

the more confident she is in its quality. We upper bound the

result by 1, so that satisfaction scores remain in the interval

[0, 1].
Note that the new expression (3) ensures that the document

development process stops if all unsatisfied agents have the

possibility to edit the document.

In the remainder of this section, we describe the three

development process management algorithms that are studied

in the rest of the paper.

B. A naı̈ve scheme: pure round-robin document editing

The first mechanism considered does not actually use trust

values to manage the document development process. We only

use satisfaction scores to decide when to stop the process, but

the order in which participants edit the document is fixed.

More precisely, we assume in that case that the “edit token”

circulates in a round-robin fashion: if agents are numbered

{1, 2, ..., I} (up to a permutation), then the identity of the

editor just follows a simple rotation pattern 1, 2, ..., I, 1, 2, ...,
until condition (2) is met.

Later in this paper, we will also assume that agent i may not

always be available when it is her turn to edit the document.

In the naı̈ve scheme described here, we assume that in that

case the token immediately goes to the next agent (i.e., the

agent [(i mod I) + 1]), so that no time is lost waiting for i

to be available again.

C. Using trust to choose the next editor: round-robin among

unsatisfied agents

In this subsection, we propose to adapt the peer-to-peer

strategy consisting in selecting, as the peer to download files

from, one peer among all sufficiently trusted peers (i.e., those

for which the trust level is above a given threshold).

In our collaborative work context, this can be translated into

the following: the next editor of the document is still chosen

according to a round-robin scheme, but only among agents i

for which the current satisfaction value is below their quality

threshold bi. In other words, we simply follow the scheme

of the previous subsection, but skipping participants who are

already satisfied with the current document quality.

Interestingly, that scheme can be completely decentralized.

The circulation of the edit token can follow a pre-specified

pattern as described in the previous subsection, with satisfied

participants immediately transmitting it to their successor

without modifying the document. (Notice that each participant

computes her satisfaction score locally, based on the declared

evaluation score and her trust values in the collaborators.)

Moreover, detecting the end of the process is made easier: ac-

tually no agent will edit the document anymore if condition (2)

is satisfied, so there is in any case no risk of unnecessary

edits. To officially stop the process, one can imagine that

if a participant receives the document and notices she was

the last editor, then this means all other participants were

satisfied with the document, and thus she can declare the

process as terminated. In the case when collaborators are

not always available, a more developed method needs to be

defined. A possibility would be to automatically add to the

document a flag stating that the agent was unsatisfied with the

current version (when asked to edit it) but was unavailable;

that method would avoid wrongly stopped processes.

D. Having the least satisfied agent improve the document

We now follow a different strategy inspired by peer-to-peer

networks, where peers choose to download their requested files

from the host with the highest trust value [4]. We adapt that

policy to the context of collaborative work, by giving the edit

token to a collaborative agent k for whom the satisfaction

score is the furthest below her threshold, i.e., the next editor

is the (an) agent k such that sk − bk = mini∈I(si − bi).
Intuitively, that third scheme should be more efficient than

the one defined in Subsection III-C, since we choose to specif-

ically target the minimal satisfaction minus threshold value,

and the process ending precisely depends on that minimal

value (it stops when mini∈I si − bi ≥ 0).

On the other hand, the potential extra efficiency of that

scheme will have a price in terms of applicability, since

implementing it in a fully decentralized way becomes difficult.

Some possible solutions to choose the next editor according

to that policy are given below.

• A central entity can be used to collect all satisfaction

scores and notify the next editor. The satisfaction scores

could be computed locally by each agent and transmitted

to the entity. We can also imagine that they be computed

within the central entity to minimize communication

exchanges, but that would imply that each participant

i ∈ I uploads her trust vector (ti,1, ..., ti,I) to the

entity, which might not be well perceived: since trust

values are private and sensitive data, agents may be

reluctant to reveal them to the system, even with the

assurance that they will not be disclosed to the other

collaborators. Moreover, that solution would have the

classical drawbacks of centralized systems, in terms of

fault tolerance and communication overhead.

• For the implementation to remain decentralized, a full

rotation among participants without editing could be per-

formed to collect the identities of the candidates for being

the next editor. More precisely, in the document metadata,

the identity of the current least satisfied collaborator k and

the value of her dissatisfaction bk − sk are checked out

and updated if necessary, so that at the end of the round

the document carries the identity of the next editor. While

that scheme is decentralized, it still has the drawback of

revealing some information about the trust value tk,Idlast
,

since all agents know the evaluation score eIdlast
and thus

have access to the dissatisfaction level of user k.

Due to those extra difficulties with respect to the mechanism

proposed in Subsection III-C, we should be inclined to prefer

that scheme over the simpler round-robin among unsatisfied

clients, only if the efficiency gain of the development process

is significant. Actually, the performance evaluation that we

present in the next section does not show such a large gain.

IV. EXPERIMENTS

This section presents some simulation results aimed at

evaluating the performance of the three management methods

of Subsections III-B, III-C, and III-D.

A. Simulation model

The model we consider in this paper has several parameters,

namely, the set of participants I, the trust values (ti,j)i,j∈I ,

and the bias α that previous edits introduce in the satisfaction

score computation (3). We moreover describe now how we

model the participant behavior.

1) Trust values and satisfaction score computation: Trust

values (ti,j)i,j∈I are chosen randomly, according to a uniform

distribution on an interval [tmin, 1]. In our simulations, we

consider different situations, with tmin = 0.2, tmin = 0.5, and

tmin = 0.8 to model low-trust and high-trust communities.

As regards the computation of the satisfaction score si after

each document modification, we follow relation (3), where the

bias α equals 0.1 in our simulations. Similarly, the quality

threshold of each participant i is fixed to the same value

bi = 0.9 ∀i ∈ I.

2) Contributor’s availability: In a collaborative working

system, the participants may be online or offline over time.

To model that aspect, we discretize time into slots (a slot

corresponding to an agent editing the document), and consider

that at each time slot, each participant is available with a

given probability, independently of all other events. Unless

otherwise stated, we fixed that availability probability to 0.5
in our simulations. With respect to the problem of contributors

not being available, our three management schemes behave as

follows:

• Naı̈ve (round-robin) scheme: if the editor who is sup-

posed to edit the document is not available, then the token

immediately goes to the next one and no time slot is lost.

• Round-robin among unsatisfied agents: if the next

unsatisfied agent is unavailable, then the token goes to

the next unsatisfied agent in the predefined order. If all

unsatisfied agents are unavailable, then the time slot is

lost (nobody edits the document).

• Next editor=least satisfied agent: the edit token im-

mediately goes to the unsatisfied participant i with the

minimum value of si− bi, among available participants.

As a result, like for the previous scheme the time slot is

lost when all unsatisfied agents are unavailable.

3) Computation of the evaluation score: In a real imple-

mentation of our mechanisms, the evaluation score e would be

set by the editor after her editing the document, according to

her personal competences and knowledge of quality criteria. In

our simulation model, we introduce some asymmetry among

participants by associating to each one i ∈ I a performance

level qi ∈ [0, 1], that can represent the “writing quality” of

participant i. That performance level qi is here randomly

chosen for each participant i ∈ I, according to a uniform

law on [0.5, 1] in our simulations.

We then assume that each participant improves the quality

of the document -at least from her point of view- when editing

it, and that this improvement increases with her writing quality.

More precisely, in our simulations the evaluation score ek set

by editor k is computed according to the formula

ek := sk,prev + (1− sk,prev)× qk, (4)

where sk,prev is the satisfaction value that k had just before

editing the document.

B. Performance measures

The efficiency of the document development process is

measured by three performance metrics:

• the total duration of the document development process,

that is measured by the number of iterations until a

satisfying document quality is reached;

• the total effort spent by the collaborating community

during the whole process. To compute that measure, we

use the quality parameter qk of the previous subsection,

to also represent the effort spent by editor k each time

she edits the document1. The total effort is then the sum

over all editing slots of that value qk;

• the repartition of that effort among collaborators, that is

quantified by the coefficient of variation of the participant

individual efforts during the development process.

C. Results

We now present the performance comparison among the

three schemes defined in Section III, focusing on the influence

of the size of the collaborative community and the availability

of participants.

In each case, we simulated the development of a document

a sufficiently large number of times, so that the width of the

90% confidence intervals were at least 100 times smaller than

the mean values plotted.

1) Effect of the number of participants:

Convergence time. Figure 1 shows the average number of it-

erations that are needed before the document reaches a quality

that is sufficient to all participants, for the three mechanisms

defined before, while Figure 2 compares that convergence time

for the trust-based schemes to the one for the naı̈ve round-

robin mechanism. As could be expected, the convergence is

0 10 20 30 40 50
0

100

200

300

400

tmin = 0.2

tmin = 0.5

tmin = 0.8

Number of collaborators

N
u

m
b

er
o

f
it

er
at

io
n

s
b

ef
o

re
co

n
v
er

g
en

ce No trust

Next unsatisfied agent

Least satisfied agent

Figure 1. Total time until convergence for the three possibilities of next
editor selection.

faster when collaborators trust each other (i.e., when tmin is

larger). On the other hand, it unexpectedly appears that the

naı̈ve round-robin mechanism is the one that performs best

when the number of collaborators is below 10. This is due

to the fact that collaborators are assumed to sometimes be

unavailable: while in the round-robin case, the documents goes

on being improved even if no unsatisfied agent is available, this

is not the case for our trust-based schemes and some time slots

may be lost. On the contrary, when the number of collaborators

becomes large, then such situations occur less frequently, and

1In our opinion, it is quite realistic to consider effort and quality to be
positively correlated, but the model can be complemented further by adding
some randomness.

0 10 20 30 40 50

0.8

1

1.2

tmin = 0.2

tmin = 0.5

tmin = 0.8

Number of collaborators

co
n
v
er

g
en

ce
ti

m
e

co
n
v
er

g
en

ce
ti

m
e

fo
r

ro
u
n
d
-r

o
b
in

Next unsatisfied agent

Least satisfied agent

Figure 2. Time gain due to trust-based management.

trust-based mechanisms outperform the round-robin scheme

by targeting only unsatisfied agents. The gain in terms of time

is for example of 20% for collaborative groups of I = 50
participants.

Total effort. Let us now analyze the influence of the partic-

ipant number I on the total effort spent by the group before

reaching a satisfying quality level. Figures 3 and 4 are the

respective counterparts of Figures 1 and 2 for that effort

performance metric. In terms of total effort, our two trust-

0 10 20 30 40 50

0

100

200

300

tmin = 0.2

tmin = 0.5

tmin = 0.8

Number of collaborators

T
o

ta
l

ef
fo

rt
u

n
ti

l
co

n
v
er

g
en

ce

No trust

Next unsatisfied agent

Least satisfied agent

Figure 3. Total effort until convergence for the three possibilities of next
editor selection.

based management schemes always yield an improvement with

respect to the naı̈ve round-robin mechanism: when tmin = 0.5,

the total effort is reduced by about 20% for I = 50 collabo-

rators, but the improvement is of less than 10% if there are

less than 10 collaborators.

Effort repartition. We plot in Figure 5 the variation coeffi-

cient of the effort repartition among participants. Simulation

results indicate that both trust-based schemes allow a fairer

repartition of the total effort than the naı̈ve mechanism.

0 10 20 30 40 50

0.7

0.8

0.9

1

tmin = 0.2

tmin = 0.5

tmin = 0.8

Number of collaborators

to
ta

l
ef

fo
rt

to
ta

l
ef

fo
rt

fo
r

ro
u
n
d
-r

o
b
in

Next unsatisfied agent

Least satisfied agent

Figure 4. Effort gain due to trust-based management.

0 10 20 30 40 50
0

0.2

0.4

0.6

tmin = 0.2

tmin = 0.5

tmin = 0.8

Number of collaborators

E
ff

o
rt

re
p

ar
ti

ti
o

n
(c

o
ef

fi
ci

en
t

o
f

v
ar

ia
ti

o
n

) No trust

Next unsatisfied agent

Least satisfied agent

Figure 5. Effort repartition for the three possibilities of next editor selection.

To summarize, the simulations suggest that with few collab-

orators, introducing trust-based management will not improve

the speed of the development process, and the improvement in

terms of effort will be quite small. Therefore, in those cases

it might not be interesting to use trust. On the other hand,

when the number of collaborators becomes large, then apply-

ing one of our trust-based schemes yields a non-negligible

improvement, in terms of time, of effort spent, and of fairness

of the effort repartition. For both performance measures, the

difference between the two trust-based schemes is always at

the advantage of the one targeting the least satisfied agent, but

remains small when compared to the improvement brought

by trust. This suggests that the round-robin among unsatisfied

agents should be preferred due to the implementation and

privacy drawbacks of the other scheme.

2) Effect of the mean availability of participants: We now

investigate the influence of participants availability over the

development process. More precisely, we vary the probability

of each individual user to be available, and observe the

consequences on our performance measures. For simplicity

reasons, we assume all agents have the same probability of

being online. Simulations were carried out for a collaborative

working group with I = 20 participants.

Convergence time. Figure 6 shows the ratio in terms of

convergence time of trust-based mechanisms with respect to

the round-robin scheme. Interestingly, we remark that trust-

0.2 0.4 0.6 0.8 1

0.9

1

1.1

1.2

tmin = 0.2

tmin = 0.5

tmin = 0.8

Participant mean availability
co

n
v
er

g
en

ce
ti

m
e

co
n
v
er

g
en

ce
ti

m
e

fo
r

ro
u
n
d
-r

o
b
in

No trust

Next unsatisfied agent

Least satisfied agent

Figure 6. Time gain due to trust-based management.

based mechanisms yield an improvement in terms of time only

when the participant availability is within an interval (around

[0.3, 0.85] for our simulation parameters when tmin = 0.5),

while for extreme values convergence is faster with the round-

robin mechanism. For low values of the availability, this can

be explained in terms of time slots losses (i.e., time slots where

no agent edits the document), that occur for our trust-based

mechanisms and not for the round-robin. For high values of the

availability (take the extreme case where all agents are always

available for simplicity), the difference may come from the

fact that in the round-robin mechanism, all participants (even

the satisfied ones) edit the document. There might be some

cases where an agent is already satisfied with the document,

but has a very high writing quality: in that case, with the

round-robin mechanism the agent will improve the quality of

the document significantly (thus benefitting to all participants),

while she would not have edited it with a trust-based scheme.

Total effort. The same phenomenon occurs when considering

the effort metric when participants are available very often:

the round-robin scheme performs better. However this is not

true anymore for low availability values since lost time slots

have no impact in terms of effort.

Those results are illustrated in Figure 7, that moreover

shows that the two trust-based schemes are almost insensitive

to participant availability, while the total cost with the round-

robin scheme strongly decreases when participants are more

frequently available. As a result, when the availability of

participants is not known a priori, using trust enables to still

control the total amount of effort needed to reach a satisfying

document quality.

0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

tmin = 0.2

tmin = 0.5

tmin = 0.8

Participant mean availability

T
o

ta
l

ef
fo

rt
b

ef
o

re
co

n
v
er

g
en

ce
No trust

Next unsatisfied agent

Least satisfied agent

Figure 7. Total effort until convergence

V. IMPLEMENTATION: THE CASE OF OPENOFFICE

DOCUMENTS

OpenOffice [www.openoffice.org] is now known as the

most popular open-source document editor, with intuitive

and familiar interfaces. OpenOffice has been chosen as the

principal document editor in many companies, schools, as well

as important projects. In order to increase the efficiency of the

collaborative working process, we suggest to enable the use

of our trust model in the OpenOffice editor using a dedicated

plugin that interacts directly with OpenOffice menus. The

plugin would be in charge of updating the evaluation records

in the metadata (and possibly of storing trust values and

computing satisfaction scores).

An OpenOffice text document is in fact a zipped package.

An example of such a document is given below:

document.odt

styles.xml

settings.xml

meta.xml

content.xml

mimetype

Thumbnails/

META-INF/

Configurations2/

The file meta.xml contains information about the

document itself (metadata information). We propose to

use that file to store data computed from our trust-based

evaluation model. OpenOffice metadata information rely

on six Dublin Core [18] elements (title, subject,

description, creator, date, language), and

eight own defined metadata elements (generator,

initial-creator, creation-date, keyword,

editing-cycles, editing-duration,

user-defined, document-statistics).

OpenOffice also allows users to define their own metadata

parameters via a user-defined field. We exploit that flexibility

by adding four user-defined fields into the metadata of the

processed document:

• transaction_Id, that is a unique identifier for the

transaction (i.e., the last edit);

• E_last, the evaluation score set by the last editor;

• Id_nextEditor, the identity of the next editor (fol-

lowing the trust-based scheme);

• (in order to have a fully decentralized scheme)

trust_records: that element stores all trust val-

ues between participants in a format [Id1, Id2,

tId1,Id2] that represents the trust value of agent Id1 on

agent Id2, for all Id1,Id2∈ I. Remark that we choose

here to regroup all trust values within the document itself

(more precisely, in its metadata) so as to prevent the need

for extra software or files locally stored by agents. This

implicitly means that in a first phase, agents are asked

to declare their whole trust vector, which they might be

reluctant to do. However, we believe that implementation

will be simpler (because it is stand-alone) than other

possibilities where trust vectors have to be stored and

called locally.

Since the trust values of the type tk,k always equal 1
for all k ∈ I, we suggest to use the values tId1,Id1 in

trust_records to store the quality threshold bId1 of

each user.

Our plugin interacts directly with OpenOffice menus: when

a menu item is selected, the corresponding method of our

plugin is called instead of the genuine OpenOffice one. When a

participant terminates the editing process, she has to select the

Export menu which has been re-implemented by our plugin.

The editor is then asked to enter an evaluation score that

is then stored in the E_last field by our plugin. It also

generates an identifier for that transaction, that is stored in

the transaction_Id field. Finally, our plugin computes

satisfaction values based on the identity of the last editor, the

fields trust_records, transaction_Id, and E_last

values; it then chooses the next participant that has to mod-

ify the document according to the policy chosen (round-

robin among unsatisfied agents, or least satisfied agent).

The corresponding participant identity is then stored in the

Id_nextEditor field. All those metadata are then saved

in the meta.xml file. Only the elected participant(s) can

then edit the document. When all satisfaction values are above

the acceptability threshold, the editing process is considered

terminated, and our plugin locks the document to prevent

further modifications. To prevent malicious modifications and

unauthorized access (to trust values for example), all content

is encrypted using an X509 certificate. Only our plugin is able

to decrypt that document.

The plugin has been developed using Java technology and

relies on OpenOffice (v3.1) Java API. Metadata manipula-

tion is made possible thanks to Java library jOpenDocument

[www.jopendocument.org], a GPL free library. Bouncy Castle

free libraries [www.bouncycastle.org] have been used for

encryption.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed some new management

methods, based on the notion of trust, to improve the process

of collaborative document writing. Our simulation results show

that trust can help reduce significantly the time and effort spent

until a satisfying document version is produced, especially

in the realistic cases when the number of collaborators is

large and collaborators are not always available to edit the

document.

We considered a simple model with strong assumptions to

highlight some basic phenomena that occur when trust is used

in such contexts. However, it would be interesting to extend

that model in future work, in different directions. One could be

to avoid asking editors to evaluate the document themselves;

indeed that can be an incentive to declare an over-estimated

score if agents’ interests are not perfectly aligned. A possibility

would be that the document be checked and evaluated by some

collaborators [1], [19]. That would improve the accuracy of the

evaluation score, but would also imply some extra evaluation

effort.

Also, our simulations rely on a model of user behavior

determining the quality improvement of each edit. Since in

reality the contribution of each participant is hard to predict,

some experiments of real collaborative work (for example with

users jointly producing an OpenOffice document using our

plugin) could give more insight about the efficiency of our

trust-based mechanisms.

The assumption that we make in this paper, of all collab-

orators having the same objective, is quite strong. We would

like to relax it and introduce some objective misalignment

among participants, so that the interaction has to be robust to

agent selfishness: to ensure that property, the system should

be studied as a noncooperative game [20], for which the agent

equilibrium strategies should lead to a satisfying outcome.

As another research direction, we would also like to con-

sider the possibility for agents to update their trust vector

during the document development process, based on their

perception of the contributions from their peers, as is suggested

in [21] to detect malicious agents.

Finally, the probabilistic interpretation of the satisfaction

value computation could be continued and enriched, in two

directions:

• that computation could be based not only on the last

version but also on the previous ones (e.g., if some

participants do not know the last editor but highly trust

the previous one),

• the trust values could be multidimensional, for example

following the representation introduced in [22].

ACKNOWLEDGEMENTS

This work has been partially funded by the French Agence

Nationale pour la Recherche through the FLUOR project.

REFERENCES

[1] P. B. Lowry, J. F. Nunamaker Jr, A. Curtis, and M. R. Lowry, “The
impact of process structure on novice, virtual collaborative writing
teams,” IEEE Transactions on Professional Communication, vol. 48,
no. 4, p. 341, Dec 2005.

[2] P. B. Lowry, J. F. Nunamaker Jr, and M. C. Hall, “Using Internet-based,
distributed collaborative writing tools to improve coordination and
group awareness in writing teams,” IEEE Transactions on Professional

Communication, vol. 46, no. 4, pp. 277–297, 2003.
[3] T. Grandison and M. Sloman, “A survey of trust in internet applications,”

IEEE Communications Surveys and Tutorials, vol. 3, no. 4, pp. 2–16,
2000.

[4] X. Ding, W. Yu, and Y. Pan, “A dynamic trust management scheme to
mitigate malware proliferation in P2P networks,” in Proc. of IEEE ICC,
Beijing, PR China, 2008.

[5] X. Li and H. Zhao, “A personalized group trust management system
for collaborative services,” in Proc. of 17th International Conference of

Computer Communications and Networks (ICCCN’08), St. Thomas, US
Virgin Islands, Aug 2008.

[6] Q. Zhang, T. Yu, and K. Irwin, “A classification scheme for trust
functions in reputation-based trust management,” in Proc. of ISWC

Workshop on Trust, Security, and Reputation on the Semantic Web,
Hiroshima, Japan, Nov 2004.

[7] Q. Zhang, Y. Zhuo, and Z. Gong, “A trust inspection model based on
society behavior similarity rule in dynamic networks,” in Proc. of Inter-

national Conference on Computer Science and Software Engineering,
Wuhan, PR China, Dec 2008, pp. 970–973.

[8] S. Ruohomaa, “Trust management for inter-enterprise collaborations,”
Web proceedings of the I-ESA, vol. 7, 2007.

[9] X. Zheng, P. Maillé, C. T. Phan Le, and S. Morucci, “Trust mechanisms
for efficiency improvement in collaborative working environments,” in
Proc. of MASCOTS, Miami, FL, USA, Aug 2010.

[10] J. Golbeck and J. Hendler, “Inferring binary trust relationships in web-
based social networks,” ACM Transactions on Internet Technology,
vol. 6, no. 4, pp. 497–529, 2006.

[11] B. Khosravifar, J. Bentahar, M. Gomrokchi, and R. Alam, “An approach
to comprehensive trust management in multi-agent systems with credi-
bility,” in Proc. of 2nd International Conference on Research Challenges

in Information Science (RCIS), Marrakech, Morocco, Jun 2008, pp. 53–
64.

[12] S. Marti, “Trust and reputation in peer-to-peer networks,” Ph.D. disser-
tation, Stanford University, May 2005.

[13] G. Suryanarayana and R. N. Taylor, “A survey of trust management and
resource discovery technologies in peer-to-peer applications,” University
of California, Irvine, Tech. Rep. UCI-ISR-04-6, Jul 2004.

[14] A. A. Selçuk, E. Uzun, and M. R. Pariente, “A reputation-based trust
management system for P2P networks,” in Proc. of IEEE International

Symposium on Cluster Computing and the Grid (CCGRID’04), Wash-
ington, DC, USA, 2004, pp. 251–258.

[15] S. Javanmardi and C. V. Lopes, “Modeling trust in collaborative informa-
tion systems,” in Proc. of 3rd International Conference on Collaborative

Computing (CollaborateCom), New York, NY, USA, Nov 2007.
[16] C. T. Phan Le, F. Cuppens, N. Cuppens, and P. Maillé, “Evaluating the

trustworthiness of contributors in a collaborative environment,” in Proc.

of TrustCol 2008, Orlando, FL, USA, Nov 2008.
[17] Y. Liu, “Trust-based access control for collaborative system,” in Proc.

of ISECS International Colloquium on Computing, Communication,

Control, and Management, Guangzhou City, China, Aug 2008.
[18] S. Weibel, “The Dublin core: A simple content description model for

electronic resources,” Bulletin of the American Society for Information

Science, vol. 24, no. 1, pp. 9–11, 1997.
[19] S. Sumiya and T. Saito, “Development of a multimedia document

management system for cooperative work environment,” in Proc. of 16th

Computer Software and Applications Conference (COMPSAC), Chicago,
IL, USA, Sept 1992, pp. 346–355.

[20] M. J. Osborne and A. Rubinstein, A Course in Game Theory. MIT
Press, 1994.

[21] K. S. Barber and J. Kim, “Soft security: Isolating unreliable agents from
society,” in Proc. of the International Workshop on Deception, Fraud,

and Trust in Agent Societies, Bologna, Italy, Jul 2002.
[22] A. Jøsang, “Artificial reasoning with subjective logic,” in Proc. of 2nd

Australian Workshop on Commonsense Reasoning, Perth, Australia, Dec
1997.

