
HAL Id: hal-00609512
https://hal.science/hal-00609512v1

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Session-Based Role Programming for the Design of
Advanced Telephony Applications

Gilles Vanwormhoudt, Areski Flissi

To cite this version:
Gilles Vanwormhoudt, Areski Flissi. Session-Based Role Programming for the Design of Advanced
Telephony Applications. 11th Distributed Applications and Interoperable Systems (DAIS), Jun 2011,
Reykjavik, Iceland. pp.77-91, �10.1007/978-3-642-21387-8_7�. �hal-00609512�

https://hal.science/hal-00609512v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Session-Based Role Programming for the Design

of Advanced Telephony Applications

Gilles Vanwormhoudt1,2 and Areski Flissi2

1 Institut TELECOM
2 LIFL/CNRS - University of Lille 1 (UMR 8022)

59655 Villeneuve d’Ascq cedex - France
{Gilles.Vanwormhoudt,Areski.Flissi}@lifl.fr

Abstract. Stimulated by new protocols like SIP, telephony applications
are rapidly evolving to offer and combine a variety of communications
forms including presence status, instant messaging and videoconferenc-
ing. This situation changes and complicates significantly the program-
ming of telephony applications that consist now of distributed entities
involved into multiple heterogeneous, stateful and long-running inter-
actions. This paper proposes an approach to support the development
of SIP-based telephony applications based on general programming lan-
guage. Our approach combines the concepts of Actor, Session and Role.
Role is the part an actor takes in a session and we consider a session
as a collaboration between roles. By using these concepts, we are able
to break the complexity of SIP entities programming and provide flex-
ibility for defining new ones. Our approach is implemented as a coding
framework above JAIN-SIP.

1 Introduction

In recent years, telephony services have endorsed significant changes by integrat-
ing a variety of communication forms including video, text and presence while
managing aspects like mobility, security, etc. This evolution has created a need
for telephony applications to involve an increasing widely range of distributed
entities with capacities for participating into multiple, heterogeneous, stateful
and long-running interactions. This requirement, compounded with the intri-
cacies of underlying communications, make the programming of new telephony
applications a daunting task.

By supporting a rich range of communication forms, the ‘Session Initiation
Protocol’ (SIP) has contributed a lot to this evolution and many advanced tele-
phony applications are now SIP-based. For programming the entities involved
in these applications, two main categories of approaches have been proposed
over the years. In the first category, we find domain-specific languages (DSL)
like LESS[12], SPL[8], ECharts[11], StratoSIP[9] to program specific kind of SIP
entities such as routing server, end user-agent or back-to-back user agents. All
these DSLs provide high-level concepts to hide the intricacies of the underlying
SIP technologies but they are usually limited to coarse-grained and dedicated op-
erations and therefore prevent from implementing arbitrary telephony services.
The second category of approaches is based on general purpose programming

P. Felber and R. Rouvoy (Eds.): DAIS 2011, LNCS 6723, pp. 77–91, 2011.
c© IFIP International Federation for Information Processing 2011



78 G. Vanwormhoudt and A. Flissi

language and the providing of large, powerful and generic APIs or frameworks
such as JAIN-SIP, SIP-Servlet and JAIN-SLEE for the Java language1. However,
although they enable the programming of unrestricted SIP applications, these
approaches provide little support to layer the design of entities that are involved
into multiples sessions or participate into sessions with complex message flow,
two requirements often meet in advanced telephony applications.

In this paper, our goal is to facilitate the development of SIP-based applications
programmed with general-purpose languages. To do so, we provide the developer
with a programming model that raises the abstraction level with Actor, Session
and Role as key concepts. Our notion of role encapsulates one fragment of the
behavior played by an entity similarly to other existing role-based programming
approaches[10,4] but in our model this notion is specifically related with the no-
tion of session of interactions to provide session-based role programming.The roles
played by a SIP entity, which is represented by an Actor, depend automatically
on the sessions it participates in at runtime. Advantages provided by this model is
to simplify the reasoning on entities description, to achieve a better modulariza-
tion between session-dependent parts of entities and to improve the capacities for
constructing SIP entities from reusable components. In addition to this model, we
propose a lightweight implementation over JAIN-SIP that supports the definition
of the proposed notions through a set of Java annotations.

The rest of this paper is organized as follows. After pointing out some issues
underlying the design of advanced SIP applications in the next section, section 3
presents our programming model. Section 4 illustrates the model and discusses
its benefits. Section 5 describes a lightweight implementation of the model in
Java. Section 6 presents related works prior to conclude with section 7.

2 Issues in SIP-Based Applications Design

For supporting applications ranging from simple VoIP routing or instant messag-
ing to sophisticated multimedia sessions involving multiple parties with presence
management, SIP provides a rich range of communications forms. Communica-
tions can be stateless for simple messages exchange, session-based to exchange
messages over a period of time or event-based to propagate information like
state-change of an entity. One main benefit of SIP is that it enables mixing its
communication forms to design advanced telephony applications. As an example
of such application, which will serve in the following, we propose to consider an
application that manages presence-based redirection2 of invitation to a dialog
combining voice and text. In this application, a server manages the incoming
invitation for registered users depending on their status: when available, the
server replies with the current user’s address to directly invite him, otherwise
the invitation is rejected. Figure 1 shows the architecture of this application and
a use case of presence-based redirection leading to a successful dialog. In this
figure, Alice updates its status because she leaves its office for a meeting (1,2).

1 http://java.sun.com/products/jain/
2 In SIP, redirection consists in directing the client to contact an alternate address.



Session-Based Role Programming 79

Presence-based

Redirect Server

1) Publish [meeting]

7) Invite alice

3)Invite alice Alice User Agent

4).486 Busy Here 2) 200 OK

5) Publish [available]

6) 200 OK

Bob User Agent

8) 302 Moved @alice

Session 
Setup

User Message 
exchange

Session 
Ending

9) Invite alice

10) 180 Ringing

11) 200 OK

12) Ack

15) Message

16) 200 OK

13) Message 

14) 200 OK

17) Bye 

18) 200 OK

Successful Session establishment between UserAgent

Accept or Decline ?

Accept 

Fig. 1. Example of Presence-based Redirection

Then, Bob calls Alice during her meeting and he receives a BUSY response (3,4).
When Alice becomes available (5,6), a new invitation from Bob results in a redi-
rect response including Alice’s address to initiate a dialog (7,8). Thanks to the
returned address, Bob can directly contact Alice to establish a successful dialog
(9 to 18).

Despite SIP features for supporting multiple communications forms, develop-
ing advanced applications like the previous one remains a complex task. In the
following, we give three of the typical issues that complicate the programming
of SIP entities.

1) Complex messages flow within a session : Within a session, SIP entities
exchange and handle messages at each end. The handling of these messages
consists generally in checking that the received message is valid with the entity’s
current state, performing actions and then changing to next state. There are
several difficulties related to the handling of messages in a SIP application.

– A first difficulty is that messages can be received at any time. This entails
that SIP entities may be prepared to react to any received messages, including
while others are processed. In general, this is achieved by adopting an event-
driven approach for message handling.

– Another difficulty related to message handling is that interpretation of mes-
sages in the flow is generally state-dependent. In the example, OK responses
have a meaning that depends upon the current state or the previous request.
Distinguishing between these interpretations generally require that the applica-
tion maintains a session state according to the exchanged messages.

– Sometimes, the messages flow of a session may contain messages that are
related to distinct concerns. For each concern, the related messages are not
necessarily in separate sequences but may be interleaved with those from others
concerns. In the example, this is illustrated in the lower part of Figure 1 where



80 G. Vanwormhoudt and A. Flissi

we can identify three groups of messages corresponding to session setup, user
message exchange and session ending concerns.

– A last difficulty is that message flow can be inverted during the session.
Illustrations in the example are given by MESSAGE and BYE requests. This
implies that entities must be able to provide behaviours for handling session flow
in both directions and to act both as requestor and responder.

Because of the difficulties described previously, the behaviour of entities han-
dling some part of the session flow like the previous one is usually not easy to
design and there is a need to provide the developer with appropriate abstractions
and decomposition mechanisms to facilitate the handling of messages related to
a particular concern or a particular state inside the code.

2) Multi-branches session : A SIP session is not always restricted to a peer-to-
peer conversation. There are some classical calling or presence scenarios which
involve more than two peers in the same session. In these scenarios, one or sev-
eral SIP entities generally act as facilitator between several participants to the
session. For such an entity, this entails to handle more that one conversation
within the same session and to coordinate all the conversations in order to serve
the communication partners properly. In our example, we initially assume a redi-
rect behaviour for the server but we can easily imagine changing this behaviour
to a proxy-like one in order to extend the status of a user according to its par-
ticipation in an existing dialog3. Compared to the previous behaviour, adopting
this change requires that the server manages and coordinates two communica-
tion paths within a session : one to the callee and one to the caller, switching
back and forth being a client and a server at the same time. When a SIP en-
tity is involved in more than one conversation within a session, the complexity
for describing its behaviour is inherently increased. To help the developer de-
signing behaviour for multiple interwoven conversations, mechanisms should be
provided. Such mechanism should enable expressing the state and behaviour
related to each conversation separately but also simplify their coordination.

3) Multi-sessions management : The need to handle multiple sessions is an-
other situation than makes the development of SIP applications and their entities
complicated. Two cases may be distinguished for multi-sessions management.
The first case is the one where the sessions managed by a SIP entity have the
same type and typically occur concurrently. We generally encounter this case
when designing SIP server. In our example, the redirect server is an illustration
of this case as it must be able to manage calling session coming from multiple
requestors. Here, the difficulty is that multiple session states must be maintained
separately and concurrently. The second case is the one where each session has
a different type. This case can be found particularly in the development of rich
user agents and rich servers. In our example, Alice’s user agent illustrates this
case as it must be able to manage several sessions related to registration, in-
coming invitation and status modification. For this case, an additional difficulty
besides maintaining multiple states is that each session may require the handling

3 Proxy behaviour in SIP consists in relaying each request and response between user
agents of a session.



Session-Based Role Programming 81

of distinct set of messages resulting in a significant amount of messages to han-
dle. Note that a combination of the two cases may sometimes be required for the
design of a SIP entity as it is illustrated by the redirect server. For SIP entities,
supporting multiple sessions makes their design more complicated because they
must include characteristics for many states and behaviours. Therefore, some
facilities are needed to limit the complexity. Such facilities should make possible
to describe and manage part of the entity related to each session separately from
others while simplifying the selection of the appropriate parts during interaction.

Regarding the previous issues, it appears that existing SIP APIs or frame-
works do not provide abstractions to solve them. Because of this lack of abstrac-
tions, it is common for application developers using SIP frameworks to express
the multiple states and behaviours related to parts like concerns, conversations or
sessions in a monolithic way and manage them manually with intricate and scat-
tered if-statements. This greatly complicates the application development task
and results in cluttered code that is harder to understand, reuse and maintain.
To cope with these issues and fill the gap, we present our role-based programming
model in the next section.

3 Programming Model with Actor, Session and Role

As explained previously, development of advanced SIP applications is complex,
leading to intricate structure of behaviour for SIP entities. In this section, we
propose a programming model based on Actor, Session and Role concepts to
help this development. By relying on these concepts, we are able to break the
complexity of actor behaviour and to define this behaviour in a flexible way.

In our model, an actor is a top level component which represents a distributed
SIP entity. During its lifetime, an actor is involved into one or several SIP sessions
that may have the same nature or being different and exist concurrently. To
handle sessions programmatically, we define two related concepts : session and
session part. The session concept is orthogonal to actors : it aims to group the
definition of roles that characterize a specific session. The session part concept
establishes the link between an actor and a specific session : it aims to define one
or several roles played by an actor when it participates to a particular session.
Role concept is the basic unit of our programming model. It is used to describe
one of the behaviour involved in a session. Within a particular session, an actor
communicates with other actors that play dual or consistent roles.

Figure 2 summarizes the idea of actor, session and role concepts and shows
capabilities of the model. Related actors A1 and A2 participate to a SIP session
S1. Within this session, actor A1 plays a single role R1 and communicates with
A2 that plays dual roles R2 and R2’. Figure 2 also shows a second SIP session
S2 independent from S1 that involves actors A3 and A4 but also A1, already
engaged in S1. For this session, we may observe that actor A1 plays a role R1’
distinct from R1 played in S1. Actor A3 plays two distinct roles to communicate
with A1 and A4 actors.

The combined use of actor, session and role proposed by our model allows
to deal with the issues identified above. The first issue can be managed by



82 G. Vanwormhoudt and A. Flissi

actor A3

role R3

actor A1

role R1

role R1'

role R3'

Session S1

Session S2

actor A4

role R4'

role R4

actor A2

role R2

role R2'

role R2
Session S1

Fig. 2. Illustration of Actors, Sessions and Roles

defining multiple roles for a particular session (e.g. A2), each role dealing with
one session concern. The capacity for an actor to play multiple roles for distinct
communication path (e.g. A3) of a session may be exploited to solve the second
issue. Concerning the last issue, the solution is provided by the ability of an
actor to participate in multiple sessions with separate roles (e.g. A2 and A4).

In the following subsections, we present the structure of each concept and how
they relate. We also explain how session parts and their related roles are created
and activated during the actor life-cycle.

3.1 Session and Role

In our programming model, sessions are defined independently of actors. A ses-
sion definition is a kind of module construct containing declarations of interacting
roles types that are intended to be played by participating actors. There are two
ways to achieve the declaration of roles types inside the session definition : by
nesting a role type definition or by importing a role type. This second way en-
ables reusing role types existing in libraries. Role types of a particular session are
declared independently of other sessions. Indeed, it is possible for two sessions
to rely on a same imported role type if they need the same slice of behaviour.

Code 1 gives, with a Java-like syntax, the definition of CallingSession, a session
from our example that defines role types for dialog establishment and user mes-
sage exchange. We can see that this session definition declares three roles types,
the first two (Callee and Caller) by nesting and the third (MessageHandler) by
importing thanks to the ‘includerole’ keyword.

A role type describes one behaviour involved in a session. Such a behaviour
consists in handling incoming and outgoing SIP messages from and to the other
roles while realizing the relevant logic. We provide three fixed kinds of role type
to specify their capacities in terms of received and sent messages and help the
analysis and the correlation of role types :
– Client role represents an asymmetric role type that sends requests and re-
ceives related responses.
– Server role represents an asymmetric role that receives request and sends
related responses.
– Client Server role represents a symmetric role that sends and receives both
requests and responses.



Session-Based Role Programming 83

// CallingSession session

CallingSession {

clientserver role Callee {
onInvite(Request r) { ...}
onBye(Request r) {...}
sendBye() { ...}
...

}

clientserver role Caller {
sendBye() { ...}
sendInvite() { ...}
onOk(Response r) {...}
onRinging(Response r) {...}
onBye(Request r) {...}
...

}

includerole library.MessageHandler

}

// RegisterSession session

RegisterSession {

server role RegAcceptor {
Timer timer;
String contactName;

InetAddress currentAddress;
onRegister(Request r) { ...}
...

}

client role RegRequestor {
Timer timer;

InetAddress currentAddress;
sendRegister() {...}
onOk(Response r) {...}
...

}
}

Code 1. Two examples of session definition

The definition of a role type is quite similar to a class in the sense that it may
include attributes, operations and may inherit from another role type. Beside
operations, a role type may also contain message handlers that are special opera-
tions designed to handle an incoming SIP request or response. These operations
have a specific signature that matches the type of the SIP message.

In the example above, the RegRequestor role type of RegisterSession session
is a ‘client’ role that registers current user’s address sending the REGISTER
request and handles its related OK responses. It owns a sendRegister operation
and a onOK response handler for that purpose. The RegAcceptor role type is
a dual ‘server’ role that has only a message handler to respond to REGISTER
request. From sessions, it is possible to define actors that interact by playing the
related roles.

3.2 Actor and Session Part

Actors are described using actor type. An actor type usually includes one or
several session parts. Like a class, an actor type may also contain declaration of
attributes and methods that can serve to share some common data or operations
between session parts. Furthermore, to specify which session parts are created
on the basis of a particular request, an actor type may also have a special block
containing rules which specify a condition coupled with a reference to a session
part. The meaning of a rule is that an instance of the corresponding session part
will be created if the condition is verified for the current state of the actor and
the received request.

Code 2 illustrates the actor type for presence-enabled user agents (Alice’s one)
discussed in Section 2. This actor type includes attributes for managing the his-
tory of callers. It also contains declaration of session parts for the three sessions
this actor type takes part: RegisterSession, PublishSession, and CallingSession.
Preceding the session parts, we find a ‘sessionControl’ block containing a rule



84 G. Vanwormhoudt and A. Flissi

/* PresenceEnabledUserAgent actor type */
actor PresenceEnabledUserAgent{

String contactName;
List<SipAddress> callerHistory;
void clearHistory() ...

sessionControl {
when (isINVITE(req) &&

!hasSession(CallingSession))
activate SPM

default activate Error
}

sessionPart SPR:RegisterSession {
play (RegRequestor)

}

sessionPart SPP:PublishSession {
play (PresencePublisher)

}

/* Continued here */
sessionPart SPI:CallingSession {
String callerName;
String getCallerName() { ... }

play (Callee, MessageHandler)
extension Callee {

onInvite (Request req) {
callHistory.add(req.getFromAddr());
callerName = req.getCallerName();
getRole(PublishSession,PresencePublisher).

setNewState(State.available);
super(req);

}
onBye (Request req) { ... }

}

roleControl {
when (isINVITE(req)) activate Callee
when (isMESSAGE(req)) activate MessageHandler

}
} ... } /* End of actor type */

Code 2. Example of an actor type

to specify that the SPI:CallingSession session part should be created when an
INVITE request is received. Other session parts are intended to be created ex-
plicitly as they only contain client roles.

A session part defines the participation of an actor type to a specific session
in terms of played roles. In a session part, this participation is specified by ref-
erencing the targeted session and declaring which roles defined in the session is
played by actors of this type. If we take a look at the actor type given above,
we can see that the session part named SPI is connected to the CallingSession
defined previously. For this session part, two roles are specified using the ‘play’
keyword : Callee and MessageHandler. As illustrated by this example, introduc-
tion of attributes (caller) and methods to share common data and operations
between played roles is also possible.

Similarly to actor type, each session part may include a special block con-
taining rules for determining the roles to create on a particular request and
the current actor state. Rule conditions can use predefined boolean functions
to query the roles of the session. In Code 2, we have an example of this block
introduced by the ‘roleControl’ keyword. This block contains two rules to state
that the Callee (resp. MessageHandler) role should be played on reception of an
INVITE (resp. MESSAGE) request.

In addition to the previous elements, a session part may also introduce ex-
tension of roles defined for the referenced session and played by the actors. A
role extension enables refining its behaviour. Such extension may be needed to
add interactions between sessions inside a role or between roles of a session. This
capacity is used in the SPI session part to extend the behaviour defined in Call-
ingSession for the Callee role. Here, this extension introduced by the ‘extension’
keyword is required to update the status of the user when he enters or leaves a



Session-Based Role Programming 85

dialog. It is achieved by redefining the handlers attached to INVITE and BYE
messages with operations to interact with PresencePublisher role.

3.3 From Concept to Runtime Entities

In our programming model, actor type, session parts and role types are instan-
tiated to form the state and behaviour of an actor. At runtime, a session part
must be considered as the reification of a session from an actor’s point of view.

Actors are created from actor type and represents SIP entity at runtime. Dur-
ing the lifetime of an actor, session parts are instantiated to reflect its partici-
pation in real SIP sessions. This instantiation can be done explicitly on demand
by means of a new-like construct or occurs implicitly on the basis of received
request. For a receiving request, the decision to create a session part instance
depends if there already exists a session part matching the session-id included in
the request. If none exists, rules attached to the actor for session parts are evalu-
ated to create a matching session. A session part may be instantiated more than
once per actor. This corresponds to the situation when an actor participates to
several sessions of the same kind during its lifetime.

At runtime, each session part instance representing a real session aggregates
roles that are played by the actor. The creation of roles attached to a session can
be done in two ways, like session part instantiation: either explicitly by means
of a new-like construct or implicitly on the basis of a received request. In the
latter case, rules attached to the session part are evaluated to determine if a
corresponding role must be created.

Message handlers provided by roles are automatically executed on the basis
of incoming messages through a forwarding process from actor. When an actor
is requested to handle an incoming SIP message, the forwarding process is based
first on a selection of the session part instance matching the session-id of the
request4. After that, the processing continues by choosing a role attached to the
selected session or by creating a new one if necessary. At last, the message is
forwarded to the role by triggering its corresponding message handler.

4 Revisiting the Example

To illustrate our approach, we propose to revisit our example in terms of Ac-
tors, Sessions, Session parts and Roles. Figure 3 shows the resulting architecture
which is composed of three actor types: PresenceEnabledUA, RedirectServer and
UserAgent. These actors are involved in four sessions which are represented by
horizontal boxes crossing actors. The first session, named RegisterSession, takes
place when a PresenceEnableUA actor registers its current address to the server.
PublishSession is the session to update the user status. The LocateSession is
initiated when an external UserAgent actor communicates with the Redirect-
Server to locate a registered user agent (PresenceEnabledUserAgent). Finally,

4 As explained before, the incoming message may entail a creation of session instance.



86 G. Vanwormhoudt and A. Flissi

PresenceEnabledUA<<actor>>

sendREGISTERReq()
onOK(Response)

RegRequestor <<cltrole>> 

sendPUBLISHReq()
onOK(Response)

PresencePublisher <<cltrole>> 

onINVITE(Request)
onBYE(Request)
sendBYEReq()

Callee <<csrole>> 

sendMESSAGEReq()
onMESSAGE(Req)

MessageHandler <<csrole>> 

UserAgent <<actor>>

sendINVITEReq()
onOK(Response)
onBusy(Response)

Lookup <<cltrole>> 

sendINVITEReq()
sendBYEReq()
onOK(Response)
onRINGING(Response)

Caller <<csrole>> 

sendMESSAGEReq()
onMESSAGE(Req)

MessageHandler <<csrole>> 

Locate

Session

Calling
Session

contactName: String
callerHistory:List

callerName: String

Redirect Server <<actor>>
registredUsers: List
availableUser:List

onREGISTER(Request)
 

RegAcceptor <<srvrole>> 

onPUBLISH(Request)
PresenceHandler <<svrrole>> 

onINVITE(Request)
Locator <<svrrole>> 

Register

Session

Publish

Session

Fig. 3. Architecture of our example with Actors, Sessions and Roles Types

CallingSession is the session for handling the dialog between PresenceEnable-
dUA and UserAgent actors types. For the above sessions, we can see that the
involved actors play separate roles which are figured by class-like box (session
parts are not shown but just indicated by dotted lines).

Figure 4 shows the relationships between the flow of SIP messages and in-
stances of session parts and roles for a dialog setup between Alice and Bob.
After receiving the response containing Alice’s address from the server, the
Lookup role instance played by Bob’s UserAgent actor explicitly creates a new
CallingSession-related session part and an associated Caller role. Next, this role
is invoked to send the INVITE message establishing the real session. When the
Alice’s PresenceEnabledUA actor receives the message, it detects that there is
no matching session, so it evaluates its rules for determining the session part
to create and activate. In the current case, it is a CallingSession-related session
part which is instantiated. Then, this session part instance evaluates its own
rules for determining which role must be played by the actor from the current
message and this kind of session. The result is the creation of a Callee role which
is finally invoked for processing the message. When playing the Callee role, the
PresenceEnabledUA actor returns an OK response to the UserAgent actor for
the same session. Because the UserAgent actor is already active in this session
and already has a Caller role to handle OK response, no new role is created and
this role is selected to process the responses and confirm the dialog establish-
ment with an ACK request. After dialog establishment is complete, both actors
can play the MessageHandler role that deals with sending and reception of user
messages inside the session.

Through this example, we have illustrated how our model supports the decom-
position of behaviour into multiple sessions parts with their respective roles and
accomplishes some properties to cope with the issues and requirements identified
in section 2. This model also offers the following advantages :

– It raises the level of abstraction as the developer can think about the be-
haviour of its actor at a higher level thanks to session part and role. This



Session-Based Role Programming 87

BobUA: UserAgent <<actor>>

Lookup <<role>>

AliceUA : PresenceEnabledUA <<actor>>

LocateSession 
<<sessionpart>>

Server : RedirectServer <<actor>>

LocateSession 
<<sessionpart>>

Locator <<role>>

CallingSession 
<<sessionpart>>

CallingSession 
<<sessionpart>>

Callee <<role>>

MessageHandler 
<<role>>

Caller <<role>>

MessageHandler 
<<role>>

UserDB 

LocateSession

CallingSession

sendInvite()
INVITE

onInvite(req)

302 Moved

INVITE

200 OK

ACK

MESSAGE

200 OK

sendInvite()
createRole(Caller) createSession(CallingSession)

sendMessage()

getAdress(user)

onMoved(resp)

onInvite(req)onOk(resp)

onAck(req)

onMessage(req)

onOk(resp)

createRole

createRole

Fig. 4. Relationships between SIP messages and actor components

contrasts with conventional SIP frameworks which require to examine imple-
mentation code in detail to get a similar view.

– The encapsulation of behaviour and state into multiple session parts and
role components with delimited scope contributes to increase the modularity of
actors. As a result of this enhanced modularity, maintenance and evolution of
SIP entities and services are made easier. This modularity allows, for instance, to
change the server with a proxy behaviour by just replacing its Locator role with
two coordinated forwarder roles supporting multi-branches communications.

– Automatic selection of sessions and roles as well as automatic messages
forwarding to roles allow to reduce the coding effort since number of controls
and extra-state to ensure execution of the appropriate behaviour is minimized
compared to SIP frameworks.

– Finally, our approach gives the ability to capture some recurrent behaviour
into reusable role types and reuse them by inclusion into sessions. This is an
main advantage over existing DSLs for SIP where the question of reusability is
generally eluded and over SIP frameworks where reusability is limited by the
hardwiring of session-related parts into methods.

5 A Coding Framework above JAIN-SIP

We have implemented our approach in Java through a coding framework which
is presented at Figure 5. Actor-annotated Java code is transformed to produce
executable actors, that is to say Java classes that specialize an actor frame-
work. The main classes of the actor framework are SipActor, SipSessionPart,
SipClientRole, SipServerRole and SipClientServerRole. These classes implement
the proposed concepts and a runtime engine above JAIN-SIP.

To leverage building of SIP applications using our framework, a set of annota-
tions presented in Table 1 has been defined. A class with the @actor annotation



88 G. Vanwormhoudt and A. Flissi

Fig. 5. Coding framework architecture

Table 1. Annotations for programming SIP Actors in Java

Annotation Attributes Description

@actor - Declare an Actor class
@session - Declare an abstract Session class
@sessionPart type::Class Declare a Session part class
@clientserverRole - Declare a symetric role class
@clientRole - Declare an asymetric role class
@serverRole - Declare an asymetric role class
@useSessionPart type::Class, method::String,

condition::String
Specify an activation clause for session
part

@useRole type::Class, method::String,
condition::String

Specify an activation clause for role

@includeRole type::Class Import an existing role in a session class

will inherit from the SipActor class of the framework, whereas a class annotated
with @sessionPart will inherit from SipSessionPart class. The @session anno-
tation is used with an abstract class to define a session. Such a class can declare
inner role classes to define the related role types or use the @includeRole(type)
annotation to import existing role classes from a library. The three kinds of
role types provided by the model are declined in corresponding annotations for
classes: @clientRole, @serverRole, @clientserverRole.

An actor declares its sessions part with @useSessionPart(type, method, con-
dition) annotation on its class. The mandatory type attribute determines the
session part class that has to be imported and activated. The mandatory method
attribute provides the type of SIP request method (e.g. INVITE message) that
triggers the activation of the session part. The optional condition attribute is a
string that refers to the name of a boolean method that describes some partic-
ular conditions for the activation of the session part. The principle is similar
for declaring roles of a session part, thanks to @useRole annotations, except
that it is used with a session part class. Code 3 gives the annotated version of
CallingSession session and PresenceEnableUserAgent actor type.

A preliminary study on performance was conducted using the SIPp traffic
generator and a JAIN-SIP and framework version of the same user agent server.
Results were produced for 1000 calling sessions with a rate of 5/sec. These results
show that the framework overhead is about 10 percent compared to JAIN-SIP
which is relatively low given that the framework is not yet optimized.



Session-Based Role Programming 89

@session // Declaration of session
public abstract class CallingSession {

@clientserverRole // Declaration of role class
public class Callee {

public void onInvite (Request req, ServerTransaction tx) { ... }
public void sendBye () {...}

} ...
}

@sessionPart // Declaration of session part
@useRole(type=ExtCallee.class,method="INVITE")
@useRole(type=MessageHandler.class,method="MESSAGE")
public class CallingSessionPartPUA {

@extension(Callee.class) // Extension of role class
public class ExtCallee {

public void onInvite (Request req, ServerTransaction tx) { ... } ...
}

}

@actor // Declaration of actor class
@useSessionPart(type=RegisteringSessionPartPUA.class)
@useSessionPart(type=PublishingSessionPartPUA.class)
@useSessionPart(type=CallingSessionPartPUA.class,method="INVITE",condition="hasNoCallingSsn"))
public class PresenceEnableUA {

public boolean hasNoCallingSsn() { ... }
}

Code 3. Example of annotations use to code the presence server example

6 Related Works

In earlier role-based programming approaches, roles are meant to capture the
dynamic and temporal aspects of real worlds objects and the view adopted for
roles is object-centric: roles are defined as being independent from the interac-
tion. From an object-centric view, our role model have similarities with some
earlier approaches and their variants [10,4] : it enables multiple role instances
for a player and it links the roles to its player using aggregation relationships.
However, some features like the distinction between client and server roles, the
event-based triggering of roles and the capacity to have roles running in parallel
threads are also unique to our role model.

A few works combine roles with a notion of context to express the fact that
the interaction possibilities change according to the properties of the interacting
objects. In powerJava [1], roles represent the possibilities offered by an object
to interact with it. For a client, the interaction with such an object is made by
acquiring one of its offered role. Similar ideas have been proposed in ActorFrame
[2], a Java-based framework for the design of distributed services with actors and
roles. The work described in [6] presents a programming model with context-
dependent roles for actors. Roles represents adaptations of an actor that are
automatically selected for each message based on the context of the message
sender and receiver. In our approach, contexts for roles are provided by sessions.
This make our approach different by two main points: selection of a role is not
controlled by an interacting entity but only by the owner (actor) and our notion
of context is long-lived, i.e persistently activated between messages.



90 G. Vanwormhoudt and A. Flissi

The notion of role is also related to the concept of collaboration that aims
to describe the interactions among different objects in a given context. Object-
Team/J [5] and EpsilonJ [7] are extensions of Java that group roles which interact
into collaboration modules. Roles inside a collaboration module are played by
objects of base classes either explicitly or implicitly, enabling them to interact.
In our approach, sessions and session parts provide similar capacities with the
main difference that they are supported in a distributed context.

Finally, authors of [3] have proposed the notion of session type as a language
construct to support description and type-checking of protocols between parallels
threads. A session type is implemented in dual operations of interacting com-
ponents using a correlated sequence of receive and send instructions. Compared
to the use of one or more role for describing the behaviour of a component re-
lated to a session, an operation implementing a session-type is more fine-grained
and offers a concise and clearer view of the interaction structure but they also
provide less capacities for reuse and flexible composition of behaviour.

7 Conclusion

To tackle some issues arising from the design of advanced telephony applications
based on SIP, we have proposed an approach that enables involved entities to be
constructed as actors playing roles in multiples sessions. Proposed approach and
its implementation have been experimented through the development of various
SIP entities such as user-agents, third-party agents as well as presence and proxy
servers. Currently, we are working on elaborating a library of reusable roles from
these experiments. In future works, we plan to enhance the programming model
with inheritance for sessions and actor types and event-based mechanisms to
support coordination between roles and between session parts. We also plan to
explore the extensibility of SIP for typing exchanged messages with sessions and
roles to enable dynamic roles alignment and synchronization between actors. A
last perspective is to better integrate our concepts with the host programming
language by using capabilities of some languages for embedding DSL.

References

[1] Baldoni, M., Boella, G., van der Torre, L.: Interaction among objects via roles:
sessions and affordances in java. In: 4th Int. Symp. on Principles of Programming
in Java (2006)

[2] Bræk, R., Melby, G.: Model-Driven Service Engineering. In: Model-Driven Soft-
ware Development. Springer, Heidelberg (2005)

[3] Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Gairing, M.: Session Types
for Object-Oriented Languages. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

[4] Graversen, K.B.: The nature of roles. A taxonomic analysis of roles as a language
constructs. In Phd Thesis, IT University of Copenhagen (2006)

[5] Herrmann, S.: A Precise Model for Contextual Roles: The Programming Language
ObjectTeams/Java. In: Applied Ontology, vol. 2. IOS Press, Amsterdam (2007)



Session-Based Role Programming 91

[6] Vallejos, J., Ebraert, P., Desmet, B., Van Cutsem, T., Mostinckx, S., Costanza, P.:
The Context-Dependent Role Model. In: Indulska, J., Raymond, K. (eds.) DAIS
2007. LNCS, vol. 4531, pp. 1–16. Springer, Heidelberg (2007)

[7] Monpratarnchai, S., Tetsuo, T.: The Implementation and Execution Framework
of a Role Model Based Language, EpsilonJ. In: Proceedings of SNPD 2008 (2008)

[8] Palix, N., Consel, C., Reveillere, L., Lawall, J.: A stepwise approach to developing
languages for SIP telephony service creation. In: Proceedings of IPTComm 2007
(2007)

[9] Zave, P., Cheung, E., Bond, G., Smith, T.: Abstractions for Programming SIP
Back-to-Back User Agents. In: Proceedings of IPTComm 2009 (2009)

[10] Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data Knowledge Engineering 35 (2000)

[11] Smith, T., Gregory, G., Bond, W.: ECharts for SIP Servlets: a state-machine
programming environment for VoIP applications. In: Proceedings of IPTComm
2007 (2007)

[12] Wu, X., Schulzrinne, H.: Handling feature interactions in the Language for End
System Services. In: Feature Interactions in Telecommunications and Software
Systems VIII (2005)


	Session-Based Role Programming for the Design of Advanced Telephony Applications
	Introduction
	Issues in SIP-Based Applications Design
	Programming Model with Actor, Session and Role
	Session and Role
	Actor and Session Part
	From Concept to Runtime Entities

	Revisiting the Example
	A Coding Framework above JAIN-SIP
	Related Works
	Conclusion


