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Automatic Differentiation Applied for Optimization of Dynamical Systems

Petre Enciu, Laurent Gerbaud, and Frederic Wurtz

Grenoble Electrical Engineering Lab. (G2ELab), UMRS5269, CNRS/UJF/INPGENSE3, Domaine Universitaire, BP 46, F-38402
Saint Martin d’Heres Cedex, France

Simulation is ubiquitous in many scientific areas. Applied for dynamic systems usually by employing differential equations, it gives
the time evolution of system states. In order to solve such problems, numerical integration algorithms are often required. Automatic
differentiation (AD) is introduced as a powerful technique to compute derivatives of functions given in the form of computer programs
in a high-level programming language such as FORTRAN, C, or C++. Such technique fits perfectly in combination with gradient-based
optimization algorithms, provided that the derivatives are evaluated with no truncation or cancellation error. This paper intends to
use AD employed for numerical integration schemes of dynamic systems simulating electromechanical actuators. Then, the resulting

derivatives are used for sizing such devices by means of gradient-based constrained optimization.

Index Terms—Automatic differentiation (AD), dynamic systems, gradient constrained optimization.

1. INTRODUCTION

IZING by optimization is today of major interest since it
S provides a fast and reliable way to achieve, with low man-
ufacturing costs, desired performances for suboptimal products
usually by means of minimizing a cost function.

We are particularly interested by constrained gradient-based
optimization using sequential quadratic programming (SQP)
algorithms [1]. Such algorithms require error-free derivatives of
the objective function and constraints. This may be at the origin
of serious problems provided that often such functions may
result from complex numerical algorithms. In this paper, we
are particularly interested by those objective and constrained
functions resulting from numerical integration of initial value
problems (IVPs) of ordinary differential equations (ODEs)
simulating the motion of an active body actuated by the electro-
magnetic force in the context of electromechanical actuators.

A good compromise in the optimization context is automatic
differentiation (AD) that is a term applied for a technique able
to compute derivatives of functions described by computer pro-
grams. This paper only uses AD for sizing dynamical actuators
by means of gradient-based constrained optimization. In partic-
ular, AD will be applied using ADOL-C tool [2].

II. OPTIMIZATION PROBLEM

This paper considers the particular design optimization
problem dealing with actuators rapidity. The paper defines the
response time £,. as the instant when a specified state variable z;
reaches a prescribed threshold state value 2. So the response
time is implicitly defined, as stated in

LL’i(tr> Z:ﬁf. (1)

The optimization problem is formulated by means of min-
imizing an objective function .J by respecting additional in-
equality (g) or equality (k) constraints. The purpose is to find
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the value of design parameters set P € RP that satisfies such
problem. Generally, such parameters determine the device ge-
ometry and shape.

The optimization problem is then formulated as

min J (z(t.), P) together with
g(z(tr), P) 20
h(z(t;),P) =0

The difficulty in this paper is that the objective function .J
depends on the reached final states (¢, ) solved from the ODE
system modeling the device dynamics.

In this paper, two formulations of the state system are in-
tentionally specified. The formulation in (3) represents an au-
tonomous system, meaning that the time variable ¢ does not ap-
pear in the differential equation, while the formulation in (4)
refers to a nonautonomous system. The initial values x( are
stated in (5)
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The gradient-based optimization algorithms applied for the
optimization problem in (2) require the gradients of the objec-
tive function. The difficulty is to evaluate them like in (6) pro-
vided that the final states depend also on parameters
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Another necessity is to compute the partial derivatives of the

response time with respect to parameter set. So, the response

time may be carried out in optimization as a constrained param-
eter in addition to (2)

ty < trmax- @)

Indeed, our goal could be formulated by means of finding
the fastest optimal device using gradient-based constrained
optimization.

0018-9464/$26.00 © 2010 IEEE
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III. AUTOMATIC DIFFERENTIATION

Currently, several techniques may be considered to deal with
functions differentiation. Among them, the symbolic differen-
tiation can evaluate error-free derivatives. The impossibility
to differentiate more sophisticated algorithms implemented in
codes rather than mathematical explicit expressions represents
the major drawback of this method. Another traditional ap-
proach is the finite-differences method. Its major drawback is
the setting of the derivative step that may carry out to a bad
approximation of the partial derivative values. Note that the
efficiency of gradient-based algorithms decreases strongly if
errors are introduced in the derivatives values.

AD is introduced as a powerful technique that computes
error-free derivatives, up to machine precision, of functions
described as computer programs in high-level languages such
FORTRAN or C/C++. In [3], a rich list of tools implementing
AD is provided. Therefore, an AD tool could be a library that
instruments a user program in order to be differentiated. Such
tools require minor modifications on the initial source and
they are using the operator overloading capabilities of certain
programming languages such as C++ and FORTRAND9S5. Note
that AD is not limited only to first-order derivatives. Some AD
tools may efficiently compute high-order derivatives, Taylor
coefficients, or other useful differential calculations (see, for
instance, ADOL-C [2]).

In a previous paper [4], AD was already applied to differen-
tiate sizing models of electromagnetic devices dealing only with
analytical explicit expressions. The difference in this paper is
that AD is applied to differentiate ODE solvers.

IV. AD OF ODE NUMERICAL INTEGRATION SCHEMES

In order to evaluate the partial derivatives in (6), one may
use an AD tool over a numerical scheme integrating the ODE
system in (3) or (4). The paper is then subject to two numerical
integration strategies.

A. AD of Runge—Kutta Solvers

In this section, we propose to apply AD over an adaptive time
step Runge—Kutta (RK) scheme as in
(P) = x4,(P) + hiy(P) - x (8)

Lty
where 7 is a slope estimation, x;, = x(t;) are the states previ-
ously computed at ¢; instant, and h; is the adaptive integration
step which depends on design parameters. Recent studies [5]
were carried out to differentiate such schemes. The difference
in [5] is that the response time is prescribed in advance at a fixed
value. Our approach intends to make use of it as a constrained
design variable, carried out further in optimization, so, its cor-
responding derivatives are to be evaluated as explained before.

Differentiating such integration schemes is rather simple with
AD. The RK scheme may be considered as an input program to
the AD tool. Fig. 2 shows the entire procedure.

The considered AD tool outputs the user desired derivatives.
We are particularly interested by those partial derivatives of the
dynamic system response z(t,.) with respect to design parame-
ters. These partial derivatives are then exploited in (6) in order
to compute the objective function gradient.
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Fig. 2. AD of RK solvers.

Note that if a variable time step scheme is used, it is highly
recommended to force the AD tool to avoid taking into account
the partial derivatives of the time step, provided that h;41 in
Fig. 2 is also depending on parameters. Depending how the step
size is computed, its partial derivatives may give different and
wrong values for the total gradient of z(¢,.). For this aspect, [6]
is a strong reference. However, we report that the time step dif-
ferentiation deactivation is not representing a complicated task.
It could be accomplished with minimal user knowledge about
the used AD tool.

B. AD for Taylor Series Expansion Schemes

Here, truncated Taylor series (TS), as in [7], are applied to
advance the solution of the ODE system in (3) or (4) over a time
interval as in (9), supposing that f in (3) or (4) is sufficiently
smooth
1 dnxti n

1 diﬂt.
*h _
+ + din

P) = 1 dt nl

(P) +

&)

Lt; oty ( i
where (1/i!)(d*z/dt') denotes the ith-order Taylor coefficient.
In order to compute such coefficients, a high-order differenti-
ation AD tool is required. For this reason, the paper considers
ADOL-C tool. A better reason is that ADOL-C provides special
drivers to deal directly with ODEs in its natural fashion.

Barrio [7] provides numerical solutions for adaptive time step
schemes for ODE solvers using Taylor expansion. Interesting
here is that AD is used to solve the dynamic system. The differ-
entiation of such integration schemes is made by using special
drivers implemented in ADOL-C.
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Fig. 3 shows the entire procedure applied in order to deal with
the ODE system solving using TS expansion. Note that this pro-
cedure is ADOL-C specific. The Taylor coefficients are evalu-
ated up to a user specified degree using the ADOL-C special
driver, namely, forode. In its initial state, this driver deals only
with autonomous system (3). However, in the nonautonomous
case, like in (4), a special version of forode driver, implemented
by the authors, is applied for Taylor coefficients evaluation.

Interesting here is that the input ODE system is described in
its natural fashion as in (3) or (4) which is usually preferable for
modeling dynamic systems. We are reporting no major difficul-
ties in order to deal with high-order Taylor coefficients evalua-
tion using ADOL-C tool.

The partial derivatives of the intermediate states dz/0P
have to be propagated starting from the initial values until the
threshold is reached. In order to do this, the partial derivatives
of the Taylor coefficients have to be evaluated. For this purpose,
ADOL-C tool proposes a second driver, namely, accode helpful
to evaluate cheaply these partial derivatives. The initial version
of this driver is capable to compute the partial derivatives of
the intermediate states (x¢,) only with respect to initial values
(o). However, the authors have implemented a special version
capable to deal also with user defined design parameters.

The entire procedure that computes the desired derivatives as
in the RK scheme case is shown in Fig. 4.

Obviously, as for RK-based integration schemes, it is also
recommended to cancel the variable time step differentiation.

C. The Response Time

The response time is computed in this paper by solving the
implicit relation

LL’i(tr> = :ﬁf. (10)

The major drawback to determine the response time is to find

exactly the last step size necessary to satisfy this implicit for-

mulation, provided that usually a variable time step scheme is

preferred. The idea is to let the ODE solver naturally iterate until
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Fig. 5. Studied benchmark—electromechanical actuator.

it slightly exceeds the imposed user specified value 7. A reg-
ular implicit solver method may be then employed to determine
with high accuracy the last step size. Note that in the paper we
use the secant method, which converges in two-maximum three
iterations, provided that the implicit equation (10) is quite linear
in the region [t,.—1,t,41].

The partial derivatives of the response time can be simply
computed by considering the implicit function theorem dis-
cussed in [8]. Thanks to this theorem, the partial derivatives
can be formulated as in

Vi, [aﬂ 1 [axi(tr)} |

opP ii(t,) | OP (an

V. ELECTROMECHANICAL ACTUATOR SIZING

A. The Studied Benchmark

The benchmark in [9] (Fig. 5) of an electromechanical actu-
ator modeling a circuit breaker is proposed for a sizing by gra-
dient constrained optimization. In [9], Atienza et al. consider an
optimization done by adjusting the design parameters by hand
of the dynamic model in addition with a full SQP optimization
of the static model. Obviously, this could be an error-prone and
time-consuming approach. Our paper deals with SQP optimiza-
tion of the dynamic part in a completely automatic fashion and
with minimal user differentiation effort.

When the feeding circuit switch is turned off, the vacuum
force produced by the magnet equilibrates the spring force. The
simulation starts when the switch turns on. The electromagnetic
force created by the coil cancels partially the magnet force. Con-
sequently, the plunger will move, starting from initial position
2, toward the upper bound 2.

The dynamic system of the proposed device combines both
equations of the electrical circuit feeding the coil and the move-
ment equations. The states are the coil current (¢) and its time
derivative (di/dt), the plunger position (z), and its speed ()

(. di
ST
jo Bdi i
 Ldt L-C
L0 ifF<0 (12)
| s, oterwise

0, ifF<O0
s§=q F .
—, oterwise.
\ m

F denotes the force acting on the mobile plunger, R, L, C are
the coil parameters, and m is the total device mass. Note that
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TABLE 1
OPTIMIZATION SPECIFICATIONS

Variable Constraint Formula
Percussion energy at 7, [0.12...10] []] ms’/2
Response time ¢, [0...3.5] [s] Implicity defined
Total force at z, 15 [N]
Shock resistance at z, [2000...10000] [m/s”] (F_..-F,.)m

Total mass minimize [kg]
—6— RK4 solver —&—RK4 solver + diff
—A—TS solver —8—TS solver + diff
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Fig. 6. CPU time performance of TS versus RK4.

the simulation is restricted only upward by imposing the condi-
tions for the force. The residual force is evaluated in this paper
by modeling the electromagnetic device by the equivalent reluc-
tance circuit as in [9].

The response time is implicitly defined by the simulation stop
criterion in (13), satisfied when the mobile plunger is bounded
at Zmax

z2(tr) = Zf = Zmax- (13)

B. Optimization Goal

A single objective optimization problem with three interval
constraints and one imposed value rises from this particular
case. These objectives are given in Table L.

The design parameters are represented by all geometrical and
electrical parameters of the studied benchmark.

C. Integration Schemes Performances

In Fig. 6, the performances of TS expansion of various orders
are compared to a regular RK scheme of fourth order, for solving
the ODE system in (12). It results that the Taylor expansion
is acceptable up to the fifth degree in terms of CPU time. We
observed that its memory requirements are rather higher even at
the second degree.
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Before optimization After optimization

Fig. 7. Device configuration before and after optimization.

D. Optimization Results

The third-order TS expansion proved to be accurate enough
for this particular problem. Its associated optimization results
were identical with a fourth-order RK scheme. The gradient-
based optimization made possible a reduction of 42% of total
device mass and of 18% for the response time. The initial and
final configuration of the studied device is given in Fig. 7.

VI. CONCLUSION

This paper presents a particular optimization problem on a
benchmark dealing with state variables in ODEs. RK and Taylor
expansion integration schemes are used to approximate these
states. Both schemes are differentiated by employing AD in
order to evaluate the highly accurate gradients needed by SQP
algorithms. Identical results were obtained for TS starting from
the third degree compared to RK of fourth order.
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