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Abstract

We consider the asymptotic value of two person zero-sum repeated games with general
evaluations of the stream of stage payoffs. We show existence for incomplete information
games, splitting games and absorbing games. The technique of proof consists in embedding
the discrete repeated game into a continuous time one and to use viscosity solution tools.
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1 Introduction

We study the asymptotic value of two person zero-sum repeated games. Our aim is to show
that techniques which are typical of continuous time games (“viscosity solution”) can be used to
prove the convergence of the discounted value of such games as the discount factor tends to 0,
as well as the convergence of the value of the n−stage games as n → +∞ and to the same limit.
The originality of our approach is that it provides the same proof for both classes of problems.
It also allows to handle general decreasing evaluations of the stream of stage payoffs, as well as
situations in which the payoff varies “slowly” in time. We illlustrate our purpose through three
typical problems: repeated games with incomplete information on both sides, first analyzed by
Mertens-Zamir (1971) [11], splitting games, considered by Laraki (2001) [6] and absorbing games,
studied in particular by Kohlberg (1974) [5]. For the splitting games, we show in particular that
the value of the n−stage game has a limit, which was not known yet.

In order to better explain our approach, we first recall the definition of Shapley operator for
stochastic games, and its adaptation to games with incomplete information. Then we briefly
describe the operator approach and its link with the viscosity solution techniques used in this
paper.
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1.1 Discounted stochastic games and Shapley operator

A stochastic game is a repeated game where the state changes from stage to stage according to
a transition depending on the current state and the moves of the players. We consider the two
person zero-sum case.
The game is specified by a state space Ω, move sets I and J , a transition probability ρ from
I × J ×Ω → ∆(Ω) and a payoff function g from I × J × Ω → IR. All sets A under consideration
are finite and ∆(A) denotes the set of probabilities on A.
Inductively, at stage n = 1, ..., knowing the past history hn = (ω1, i1, j1, ...., in−1, jn−1, ωn), player
1 chooses in ∈ I, player 2 chooses jn ∈ J . The new state ωn+1 ∈ Ω is drawn according to
the probability distribution ρ(in, jn, ωn). The triplet (in, jn, ωn+1) is publicly announced and
the situation is repeated. The payoff at stage n is gn = g(in, jn, ωn) and the total payoff is the
discounted sum

∑

n λ(1− λ)n−1gn.
This discounted game has a value vλ (Shapley, 1953 [17]).
The Shapley operator T(λ, ·) associates to a function f in IRΩ the function T(λ, f) with :

T(λ, f)(ω) = val∆(I)×∆(J)[λg(x, y, ω) + (1− λ)
∑

ω̃

ρ(x, y, ω)(ω̃)f(ω̃)] (1)

where g(x, y, ω) = Ex,yg(i, j, ω) =
∑

i,j xiyjg(i, j, ω) is the multilinear extension of g(., ., ω) and
similarly for ρ(., ., ω), and val is the value operator

val∆(I)×∆(J) = max
x∈∆(I)

min
y∈∆(J)

= min
y∈∆(J)

max
x∈∆(I)

.

The Shapley operator T(λ, ·) is well defined from IRΩ to itself. Its unique fixed point is vλ
(Shapley, 1953 [17]).
We will briefly write (1) as T(λ, f)(ω) = val{λg + (1− λ)Ef}.

1.2 Extension: repeated games

A recursive structure leading to an equation similar to the previous one (1) holds in general for
repeated games described as follows:
M is a parameter space and g a function from I × J × M to IR. For each m ∈ M this defines
a two person zero-sum game with action spaces I and J for Player 1 and 2 respectively and
payoff function g(., .,m). The initial parameter m1 is chosen at random and the players receive
some initial information about it, say a1 (resp. b1) for player 1 (resp. player 2). This choice
is performed according to some initial probability π on A × B × M , where A and B are the
signal sets of both players. At each stage n, player 1 (resp. 2) chooses an action in ∈ I (resp.
jn ∈ J). This determines a stage payoff gn = g(in, jn,mn), where mn is the current value of the
parameter. Then a new value of the parameter is selected and the players get some information.
This is generated by a map ρ from I×J ×M to probabilities on A×B×M . Hence at stage n a
triple (an+1, bn+1,mn+1) is chosen according to the distribution ρ(in, jn,mn). The new parameter
is mn+1, and the signal an+1 (resp. bn+1) is transmitted to player 1 (resp. player 2). Note that
each signal may reveal some information about the previous choice of actions (in, jn) and both
the previous (mn) and the new (mn+1) values of the parameter.
Stochastic games correspond to public signals including the parameter.
Incomplete information games correspond to an absorbing transition on the parameter (which
thus remains fixed) and no further information (after the initial one) on the parameter.
Mertens, Sorin and Zamir (1994) [12] Section IV.3, associate to each such repeated game G an
auxiliary stochastic game Γ having the same values that satisfy a recursive equation of the type
(1). However the play, hence the strategies in both games differ.
More precisely, in games with incomplete information on both sides, M is a product space K×L,
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π is a product probability p⊗ q with p ∈ P = ∆(K), q ∈ Q = ∆(L) and in addition a1 = k and
b1 = ℓ. Given the parameter m = (k, ℓ), each player knows his own component and holds a prior
on the other player’s component. From stage 1 on, the parameter is fixed and the information of
the players after stage n is an+1 = bn+1 = {in, jn}.
The auxiliary stochastic game Γ corresponding to the recursive structure can be taken as follows:
the “state space” Ω is P ×Q and is interpreted as the space of beliefs on the true parameter.
X = ∆(I)K and Y = ∆(J)L are the type-dependent mixed action sets of the players; g is
extended on X×Y × P ×Q by g(x, y, p, q) =

∑

k,ℓ p
kqℓg(xk, yℓ, k, ℓ).

Given (x, y, p, q) ∈ X×Y × P ×Q, let x(i) =
∑

kx
k
i p

k be the probability of action i and p(i) be

the conditional probability on K given the action i, explicitly pk(i) =
pkxk

i

x(i) (and similarly for y

and q).
In this framework the Shapley operator is defined on the set F of continuous concave-convex
functions on P ×Q by:

T(λ, f)(p, q) = valX×Y{λg(x, y, p, q) + (1− λ)
∑

i,j

x(i)y(j)f(p(i), q(j))} (2)

which is the new formulation ofT(λ, f)(ω) = val{λg+(1−λ)Ef} and the discounted value vλ(p, q)
is the unique fixed point of T(λ, .) on F . These relations are due to Aumann and Maschler (1966)
[1] and Mertens and Zamir (1971) [11].

1.3 Extension: general evaluation

The basic formula expressing the discounted value as a fixed point of the Shapley operator

vλ = T(λ, vλ) (3)

can be extended for values of games with the same plays but alternative evaluations of the stream
of payoffs {gn}.
For example the n-stage game, with payoff defined by the Cesaro mean 1

n

∑n
m=1 gm of the stage

payoffs, has a value vn and the recursive formula for the corresponding family of values is obtained
similarly as

vn = T(
1

n
, vn−1)

with obviously v0 = 0.
Consider now an arbitrary evaluation probability µ on IN⋆. The associated payoff in the game is
∑

n µngn. Note that µ induces a partition Π = {tn} of [0, 1] with t0 = 0, tn =
∑n

m=1 µm, ... and
thus the repeated game is naturally represented as a game played between times 0 and 1, where
the actions are constant on each subinterval (tn−1, tn) which length µn is the weight of stage n
in the original game. Let vΠ be its value. The corresponding recursive equation is now

vΠ = val{t1g1 + (1− t1)EvΠt1
}

where Πt1 is the normalization on [0, 1] of the trace of the partition Π on the interval [t1, 1].
If one defines VΠ(tn) as the value of the game starting at time tn, i.e. with evaluation µn+m for
the payoff gm at stage m, one obtains the alternative recursive formula

VΠ(tn) = val{µn+1g1 + EVΠ(tn+1)}. (4)

The stationarity properties of the game form in terms of payoffs and dynamics induce time
homogeneity

VΠ(tn) = (1− tn)VΠtn
(0) (5)

where, as above, Πtn stands for the normalization of Π restricted to the interval [tn, 1].
By taking the linear extension of VΠ(tn) we define for every partition Π, a function VΠ(t) on [0, 1].
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Lemma 1 Assume that the sequence µn is decreasing. Then VΠ is C-Lipschitz in t, where C is
a uniform bound on the payoffs in the game.

Proof. Given a pair of strategies (σ, τ) in the game G with evaluation Π starting at time tn in
state ω, the total payoff can be written in the form

Eω
σ,τ [µn+1g1 + ...+ µn+kgk + ...]

where gk is the payoff at stage k. Assume now that σ is optimal in the game G with evaluation Π
starting at time tn+1 in state ω, then the alternative evaluation of the stream of payoffs satisfies,
for all τ

Eω
σ,τ [µn+2g1 + ...+ µn+k+1gk + ...] ≥ VΠ(tn+1, ω).

It follows that

VΠ(tn, ω) ≥ VΠ(tn+1, ω)− |Eω
σ,τ [(µn+1 − µn+2)g1 + ...+ (µn+k − µn+k+1)gk + ...]|

hence µn being decreasing
VΠ(tn, ω) ≥ VΠ(tn+1, ω)− µn+1C.

This and the dual inequality imply that the linear interpolation VΠ(., ω) is a C Lipschitz function
in t.

1.4 Asymptotic analysis: previous results

We consider now the asymptotic behavior of vn as n goes to ∞, or of vλ as λ goes to 0.
For games with incomplete information on one side, the first proofs of the existence of

limn→∞ vn and limλ→0 vλ are due to Aumann and Maschler (1966) [1], including in addition
an identification of the limit as Cav∆(K)u. Here u(p) = val∆(I)×∆(J)

∑

k p
kg(x, y, k) is the value

of the one shot non revealing game, where the informed player does not use his information and
CavC is the concavification operator: given φ, a real bounded function defined on a convex set C,
CavC(φ) is the smallest function greater than φ and concave, on C.
Extensions of these results to games with lack of information on both sides were achieved by
Mertens and Zamir (1971) [11]. In addition they identified the limit as the only solution of the
system of implicit functional equations with unknown φ:

φ(p, q) = Cavp∈∆(K)min{φ, u}(p, q), (6)

φ(p, q) = Vexq∈∆(L)max{φ, u}(p, q) (7)

Here again u stands for the value of the non revealing game:

u(p, q) = val∆(I)×∆(J)

∑

k,ℓ

pkqℓg(x, y, k, ℓ)

and MZ will denote the corresponding operator

φ = MZ(u). (8)

As for stochastic games, the existence of limλ→0 vλ is due to Bewley and Kohlberg (1976)
[3] using algebraic arguments: the Shapley fixed point equation can be written as a finite set
of polynomial inequalities involving the variables {λ, xλ(ω), yλ(ω), vλ(ω);ω ∈ Ω} thus it defines
a semi-algebraic set in some Euclidean space IRN , hence by projection vλ has an expansion in
Puiseux series of λ.
The existence of limn→∞ vn is obtained by an algebraic comparison argument, Bewley and
Kohlberg (1976) [4].
The asymptotic values for specific classes of absorbing games with incomplete information are
studied in Sorin (1984), [18], (1985) [19], see also Mertens, Sorin and Zamir (1994) [12].
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1.5 Asymptotic analysis: operator approach and comparison criteria

Starting with Rosenberg and Sorin (2001) [15] several existence results for the asymptotic value
have been obtained, based on the Shapley operator: continuous moves absorbing and recursive
games, games with incomplete information on both sides, and for absorbing games with incom-
plete information on one side, Rosenberg (2000) [14].
We describe here an approach that was initially introduced by Laraki (2001) [6] for the discounted
case. The analysis of the asymptotic behavior for the discounted games is simpler because of its
stationarity: vλ is a fixed point of (3). Various discounted game models have been solved using
a variational approach (see Laraki [6], [7] and [10]).
Our work is the natural extension of this analysis to more general evaluations of the stream of
stage payoffs including the Cesaro mean and its limit. Recall that each such evaluation can be in-
terpreted as a discretization of an underlying continuous time game. We prove for several classes
of games (incomplete information, splitting, absorbing) the existence of a (uniform) limit of the
values of the discretized continuous time game as the mesh of the discretization goes to zero. The
basic recursive structure is used to formulate variational inequalities that have to be satisfied by
any accumulation point of the sequences of values. Then an ad-hoc comparison principle allows
to prove uniqueness, hence convergence. Note that this technique is a transposition to discrete
games of the numerical schemes used to approximate the value function of differential games via
viscosity solution arguments, as developed in Barles-Souganidis [2]. The difference is that: in dif-
ferential games the dynamics is given in continuous time, hence the limit game is well defined and
the question is the existence of its value while here we consider accumulation points of sequences
of functions satisfying an adapted recursive equation which is not available in continuous time.
Another main difference is that, in our case, the limit equation is singular and does not satisfy
the conditions usually required to apply the comparison principles.
To sum up, the paper unifies tools used in discrete and continuous time approaches by dealing
with functions defined on the product state × time space, in the spirit of Vieille (1992) [22] for
weak approachability or Laraki (2002) [8] for the dual game of a repeated game with lack of
information on one side, see also Sorin (2005) [21].

2 Repeated Games with Incomplete Information

Let us briefly recall the structure of repeated games with incomplete information: at the beginning
of the game, the pair (k, ℓ) is chosen at random according to some product probability p⊗q where
p ∈ P = ∆(K) and q ∈ Q = ∆(L). Player 1 knows k while player 2 knows ℓ. At each stage
n of the game, player 1 (resp. player 2) chooses a mixed strategy xn ∈ X = (∆(I))K (resp.
yn ∈ Y = (∆(J))K). This determines an expected payoff g(xn, yn, p, q).

2.1 The discounted game

We now describe the analysis in the discounted case. The total payoff is given by the expectation
of

∑

n λ(1 − λ)ng(xn, yn, p, q) and the corresponding value vλ(p, q) is the unique fixed point of
T(λ, .) (2) on F ([1], [11]). In particular, vλ is concave in p and convex in q.
We follow here Laraki (2001) [6].
Note that the family of functions {vλ(p, q)} is C−Lipschitz continuous, where C is an uniform
bound on the payoffs, hence relatively compact. To prove convergence it is enough to show that
there is only one accumulation point (for the uniform convergence on P ×Q).
Remark that by (3) any accumulation point w of the family {vλ} will satisfy

w = T(0, w)
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i.e. is a fixed point of the projective operator, see Sorin [20], appendix C.
Explicitly here: T(0, w) = valX×Y{

∑

i,j x(i)y(j)w(p(i), q(j))} = valX×YEx,y,p,qw(p̃, q̃), where

p̃ = (pk(i)) and q̃ = (ql(j)).
Let S be the set of fixed points of T(0, ·) and S0 ⊂ S the set of accumulation points of the family
{vλ} . Given w ∈ S0, we denote by X(p, q, w) ⊆ X the set of optimal strategies for player 1 (resp.
Y(p, q, w) ⊆ Y for player 2) in the projective game with value T(0, w) at (p, q). A strategy x ∈ X

of player 1 is called non-revealing at p, x ∈ NRX(p) if p̃ = p a.s. (i.e. p(i) = p for all i ∈ I with
x(i) > 0) and similarly for y ∈ Y. The value of the non revealing game satisfies

u(p, q) = valNRX(p)×NRY(q)g(x, y, p, q) . (9)

A subset of strategies is non-revealing if all its elements are non-revealing.

Lemma 2 Let w ∈ S0 and X(p, q, w) ⊂ NRX(p) then

w(p, q) ≤ u(p, q).

Proof. Consider a family {vλn
} converging to w and xn ∈ X optimal for T(λn, vλn

)(p, q), see
(2). Jensen’s inequality applied to (2) leads to

vλn
(p, q) ≤ λng(xn, j, p, q) + (1− λn)vλn

(p, q), ∀j ∈ J .

Thus
vλn

(p, q) ≤ g(xn, j, p, q).

If x̄ ∈ X is an accumulation point of the family {xn}, then x̄ is still optimal in T(0, w)(p, q).
Since, by assumption X(p, q, w) ⊂ NRX(p), x̄ is non revealing and therefore one obtains as λn

goes to 0:
w(p, q) ≤ g(x̄, j, p, q), ∀j ∈ J .

So, by (9),
w(p, q) ≤ max

x∈NRX(p)
min
j∈J

g(x, j, p, q) = u(p, q) .

Consider now w1 and w2 in S and let (p0, q0) be an extreme point of the (convex hull of) the
compact set in P ×Q where the difference (w1 − w2)(p, q) is maximal (this argument goes back
to Mertens-Zamir (1971) [11]).

Lemma 3

X(p0, q0, w1) ⊂ NRX(p0), Y(p0, q0, w2) ⊂ NRY(q0).

Proof. By definition, if x ∈ X(p0, q0, w1) and y ∈ Y(p0, q0, w2),

w1(p0, q0) ≤ Ex,y,p0,q0w1(p̃, q̃)

and
w2(p0, q0) ≥ Ex,y,p0,q0w2(p̃, q̃).

Hence (p̃, q̃) belongs a.s. to the argmax of w1 −w2 and the result follows from the extremality of
(p0, q0).

Proposition 4 limλ→0 vλ exists.
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Proof. Let w1 and w2 be two different elements in S0 and suppose that maxw1 − w2 > 0. Let
(p0, q0) be an extreme point of the (convex hull of) the compact set in P ×Q where the difference
(w1 − w2)(p, q) is maximal. Then Lemmas 2 and 3 imply w1(p0, q0) ≤ u(p0, q0) ≤ w2(p0, q0),
hence a contradiction. The convergence of the family {vλ} follows.

Given w ∈ S let Ew(., q) be the set of p ∈ P such that (p,w(p, q)) is an extreme point of the
epigraph of w(., q).

Lemma 5 Let w ∈ S. Then p ∈ Ew(., q) implies X(p, q, w) ⊂ NRX(p).

Proof. Use the fact that if x ∈ X(p, q, w) and y ∈ NRY(q)

w(p, q) ≤ Ex,y,p,qw(p̃, q̃) = Ex,pw(p̃, q).

Hence one recovers the characterization through the variational inequalities of Mertens and Zamir
(1971) [11] and one identifies the limit as MZ (u).

Proposition 6 limλ→0 vλ = MZ(u)

Proof. Use Lemma 5 and the characterization of Laraki (2001) [7] or Rosenberg and Sorin (2001)
[15].

2.2 The finitely repeated game

We now turn to the study of the finitely repeated game: recall that the payoff of the n-stage
game is given by 1

n

∑n
k=1 g(xk, yk, p, q) and that vn denotes its value. The recursive formula in

this framework is:

vn (p, q) = max
x∈X

min
y∈Y





1

n
g(x, y, p, q) + (1−

1

n
)
∑

i,j

x(i)y(j)vn−1(p(i), q(j))



 = T(
1

n
, vn−1). (10)

Given an integer n ≥ 1, let Π be the uniform partition of [0, 1] with mesh 1
n
and write simply

Wn for the associate function VΠ. Hence Wn(1, p, q) := 0 and for m = 0, ..., n − 1, Wn(
m
n
, p, q)

satisfies:

Wn

(m

n
, p, q

)

= max
x∈∆(I)K

min
y∈∆(J)L





1

n
g(x, y, p, q) +

∑

i,j

x(i)y(j)Wn(
m+ 1

n
, p(i), q(j))



 (11)

Note that Wn(
m
n
, p, q, ω) =

(

1− m
n

)

vn−m(p, q, ω) and if Wn converges uniformly to W, vn con-
verges uniformly to some function v, with W (t, p, q) = (1− t) v(p, q).
Let T be the set of real continuous functionsW on [0, 1]×P×Q such that for all t ∈ [0, 1],W (t, ., .) ∈
S. X(t, p, q,W ) is the set of optimal strategies for Player 1 in T(0,W (t, ., .)) and Y(t, p, q,W ) is
defined accordingly.
Let T0 be the set of accumulation points of the family {Wn} for the uniform convergence.

Lemma 7 T0 6= ∅ and T0 ⊂ T .

Proof. Wn(t, ., .) is C−Lipschitz continuous in (p, q) for the L1 norm since the payoff, given
the strategies (σ, τ) of the players, is of the form

∑

k,ℓ p
kqℓAkℓ(σ, τ). Using Lemma 1 it follows

that the family {Wn} is uniformly Lipschitz on [0, 1]×P ×Q hence is relatively compact for the
uniform norm. Note finally using (10) that T0 ⊂ T .

We now define two properties for a function W ∈ T and a C1 test function φ : [0, 1] → IR.
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• P1: If t ∈ [0, 1) is such that X(t, p, q,W ) is non-revealing and W (·, p, q)− φ(·) has a global
maximum at t, then u(p, q) + φ′(t) ≥ 0.

• P2: If t ∈ [0, 1) is such that Y(t, p, q,W ) is non-revealing and W (·, p, q)− φ(·) has a global
minimum at t then u(p, q) + φ′(t) ≤ 0.

Lemma 8 Any W ∈ T0 satisfies P1 and P2.

Note that this result is the variational counterpart of Lemma 2.
Proof. Let t ∈ [0, 1), p and q be such that X(t, p, q,W ) is non-revealing and W (·, p, q)− φ(·)

admits a global maximum at t. Adding the function s 7→ (s− t)2 to φ if necessary, we can assume
that this global maximum is strict.
LetWnk

be a subsequence converging uniformly toW . Putm = nk and define θ(m) ∈ {0, . . . ,m−

1} such that θ(m)
m

is a global maximum of Wm(·, p, q) − φ(·) on the set {0, . . . ,m− 1}. Since t is

a strict maximum, one has θ(m)
m

→ t, as m → ∞. From (11):

Wm

(

θ(m)

m
, p, q

)

= max
x∈X

min
y∈Y





1

m
g(x, y, p, q) +

∑

i,j

x(i)y(j)Wm(
θ(m) + 1

m
, p(i), q(j))



 .

Let xm ∈ X be optimal for player 1 in the above formula and let j ∈ J be any (non-revealing)
pure action of player 2. Then:

Wm

(

θ(m)

m
, p, q

)

≤
1

m
g(xm, j, p, q) +

∑

i

xm(i)Wm

(

θ(m) + 1

m
, pm(i), q

)

.

By concavity of Wm with respect to p, we have

∑

i∈I

xm(i)Wm

(

θ(m) + 1

m
, pm(i), q

)

≤ Wm

(

θ(m) + 1

m
, p, q

)

hence:

0 ≤ g(xm, j, p, q) +m

[

Wm

(

θ(m) + 1

m
, p, q

)

−Wm

(

θ(m)

m
, p, q

)]

.

Since θ(m)
m

is a global maximum of W(m)(·, p, q)− φ(·) on {0, . . . ,m− 1} one has:

Wm

(

θ(m) + 1

m
, p, q

)

−Wm

(

θ(m)

m
, p, q

)

≤ φ

(

θ(m) + 1

m

)

− φ

(

θ(m)

m

)

so that:

0 ≤ g(xm, j, p, q) +m

[

φ

(

θ(m) + 1

m

)

− φ

(

θ(m)

m

)]

.

Since X is compact, one can assume without loss of generality that {xm} converges to some x.
Note that x belongs to X(t, p, q,W ) by upper semicontinuity using the uniform convergence of
Wm to W . Hence x is non-revealing. Thus, passing to the limit one obtains:

0 ≤ g(x, j, p, q) + φ′(t).

Since this inequality holds true for every j ∈ J , we also have:

min
j∈J

g(x, j, p, q) + φ′(t) ≥ 0 .

8



Taking the maximum with respect to x ∈ NRX(p) gives the desired result:

u(p, q) + φ′(t) ≥ 0 .

The comparison principle in this case is given by the next result.

Lemma 9 Let W1 and W2 in T satisfying P1, P2 and

• P3: W1(1, p, q) ≤ W2(1, p, q) for any (p, q) ∈ ∆(K)×∆(L).

Then W1 ≤ W2 on [0, 1] ×∆(K)×∆(L).

Proof. We argue by contradiction, assuming that

max
t∈[0,1],p∈P,q∈Q

[W1(t, p, q)−W2(t, p, q)] = δ > 0 .

Then, for ε > 0 sufficiently small,

δ(ε) := max
t∈[0,1],s∈[0,1],p∈P,q∈Q

[W1(t, p, q)−W2(s, p, q)−
(t− s)2

2ε
+ εs] > 0 . (12)

Moreover δ(ε) → δ as ε → 0.
We claim that there is (tε, sε, pε, qε), point of maximum in (12), such that X(tε, pε, qε,W1) is
non-revealing for player 1 and Y(sε, pε, qε,W2) is non-revealing for player 2. The proof of this
claim is like Lemma 3 and follows again Mertens Zamir (1971) [11]. Let (tε, sε, p

′
ε, q

′
ε) be a

maximum point of (12) and C(ε) be the set of maximum points in P × Q of the function:
(p, q) 7→ W1(tε, p, q) − W2(sε, p, q). This is a compact set. Let (pε, qε) be an extreme point
of the convex hull of C(ε). By Caratheodory’s theorem, this is also an element of C(ε). Let
xε ∈ X(tε, pε, qε,W1) and yε ∈ Y(sε, pε, qε,W2). Since W1 and W2 are in T , we have:

W1(tε, pε, qε)−W2(sε, pε, qε) ≤
∑

i,j

xε(i)yε(j) [W1(tε, pε(i), qε(j)) −W2(sε, pε(i), qε(j))] .

By optimality of (pε, qε), one deduces that, for every i and j with xε(i) > 0 and yε(j) > 0,
(pε(i), qε(j)) ∈ C(ε). Since (pε, qε) =

∑

i,j xε(i)yε(j)(pε(i), qε(j)) and (pε, qε) is an extreme point
of the convex hull of C(ε) one concludes that (pε(i), qε(j)) = (pε, qε) for all i and j: xε and yε are
non-revealing. Therefore we have constructed (tε, sε, pε, qε) as claimed.
Finally we note that tε < 1 and sε < 1 for ε sufficiently small, because δ(ε) > 0 and W1(1, p, q) ≤
W2(1, p, q) for any (p, q) ∈ P ×Q by P3.

Since the map t 7→ W1(t, pε, qε) −
(t−sε)2

2ε has a global maximum at tε and since X(tε, pε, qε,W1)
is non-revealing for player 1, condition P1 implies that

u(pε, qε) +
tε − sε

ε
≥ 0 . (13)

In the same way, since the map s 7→ W2(s, pε, qε) +
(tε−s)2

2ε − εs has a global minimum at sε and
since Y(sε, pε, qε,W2) is non-revealing for player 2, we have by condition P2 that

u(pε, qε) +
tε − sε

ε
+ ε ≤ 0 .

This latter inequality contradicts (13).

We are now ready to prove the convergence result for limn→∞ vn.
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Proposition 10 Wn converges uniformly to the unique point W ∈ T that satisfies the variational
inequalities P1 and P2 and the terminal condition W (0, p, q) = 0.
Consequently, vn(p, q) converges uniformly to v(p, q) = W (0, p, q) and W (t, p, q) = (1− t)v(p, q),
where v = MZ(u).

Proof. Let W ∈ T0. From Lemma 8, W satisfies the variational inequalities P1 and P2.
Moreover, W (1, p, q) = 0. Since, from Lemma 9, there is at most one function fulfilling these
conditions, we obtain convergence of the family {Wn}.
Consequently, vn(p, q) converges uniformly to v(p, q) = W (0, p, q) and W (t, p, q) = (1− t)v(p, q).
In particular if one considers φ(t) = W (t, p, q) as test function, then φ′(t) = −v(p, q). Now P1

and P2 reduce to Lemma 2 hence via Lemma 5 to the variational characterization of MZ(u).

2.3 General evaluation

Consider now an arbitrarily evaluation probability µ on IN∗, with µn ≥ µn+1, inducing a partition
Π. Let VΠ(tk, p, q) be the value of the game starting at time tk. One has VΠ(1, p, q) := 0 and

VΠ(tn, p, q) = max
x∈X

min
y∈Y



µn+1g(x, y, p, q) +
∑

i,j

x(i)y(j)VΠ(tn+1, p(i), q(j))



 . (14)

Moreover VΠ belongs to F and is C Lipschitz in (p, q).
Lemma 1 then implies that any family of values VΠ(m) associated to partitions Π(m) with

µ1(m) → 0 as m → ∞ has an accumulation point. Denote by T1 the set of those functions. Then
T1 ⊂ T by (14) and lemma 8 extends in a natural way: let V ∈ T1 and VΠ(m) → V uniformly.
Let tmn be a global maximum of VΠ(m)(., p, q)− φ(.) on Π(m). Then tmn → t and one has

0 ≤ g(xn, j, p, q) +
1

µn(m)

[

VΠ(m)

(

tmn+1, p, q
)

− VΠ(m) (t
m
n , p, q)

]

hence

0 ≤ g(xn, j, p, q) +
1

µn(m)

[

φ(tmn+1)− φ (tmn )
]

and letting n → ∞ the result follows.
Using Lemma 9 this implies the convergence. Thus:

Proposition 11 VΠ(m) converges uniformly to the unique point V ∈ T that satisfies the varia-
tional inequalities P1 and P2 and the terminal condition V (0, p, q) = 0.
Consequently, vΠ(m)(p, q) converges uniformly to v(p, q) = V (0, p, q) and V (t, p, q) = (1−t)v(p, q).
Moreover v = MZ(u).

In particular the convergence of {VΠ(m)} to the same limit for any family of decreasing par-
titions allows to use limλ→0 vλ to characterize the limit.

3 Splitting games

We consider now the framework of splitting games, Sorin (2002) [20], p. 78. Let P and Q be
two simplexes (or product of simplexes) of some finite dimensional spaces, and H a C-Lipschitz
function from P ×Q to IR. The corresponding Shapley operator is defined on continuous saddle
(concave-convex) real functions f on P ×Q by

T(λ, f)(p, q) = val
µ∈MP

p ×ν∈MQ
q

∫

P×Q

[(λH(p′, q′) + (1− λ)f(p′, q′)]µ(dp′)ν(dq′)

10



where MP
p stands for the set of Borel probabilities on P with expectation p (and similarly for

MQ
q ).

The associated repeated game is played as follows: at stage n+1 knowing the state (pn, qn) player
1 (resp. player 2) chooses µn+1 ∈ MP

pn
(resp. ν ∈ MQ

qn). A new state (pn+1, qn+1) is selected
according to these distributions and the stage payoff is H(pn+1, qn+1). We denote by Vλ the value
of the discounted game and by vn the value of the n-stage game.
A procedure analogous to the previous study of discounted games with incomplete information
has been developed by Laraki [6], [7], [9].

3.1 The discounted game

The next properties are established in Laraki (2001) [7].
Let G be the set of C-Lipschitz saddle functions on P ×Q.

Lemma 12 The Shapley operator T(λ, ·) maps G to itself and Vλ(p, q) is the only fixed point of
T (λ, .) in G.

The corresponding projective operator is the splitting operator Ψ:

Ψ(f)(p, q) = val
MP

p ×νM
Q
q

∫

P×Q

f(p′, q′)µ(dp′)ν(dq′) (15)

and we denote again by S its set of fixed points. Given W ∈ S, P(p, q,W ) ⊂ MP
p denotes

the set of optimal strategies of player 1 in (15) for Ψ(W )(p, q). We say that P(p, q,W ) is non-
revealing if it is reduced to δp, the Dirac mass at p. We use the symmetric notation Q(p, q,W )
and terminology for player 2.
We define two properties for functions in S.

• A1: If P(p, q,W ) is non-revealing, then W (p, q) ≤ H(p, q).

• A2: If Q(p, q,W ) is non-revealing, then W (p, q) ≥ H(p, q).

Proposition 13 Vλ converges uniformly to the unique point V ∈ S that satisfies the variational
inequalities A1 and A2.

The link with the MZ operator is as follows: as in Lemma 5 one defines:

• B1: If p ∈ EW (., q), then W (p, q) ≤ H(p, q).

• B2: If q ∈ EW (p, .), then W (p, q) ≥ H(p, q)

(where, as before, EV denotes the set of extreme points of a convex or concave map V ). Then
one has Ai implies Bi, i = 1,2 and

Proposition 14 Let G ∈ G. Then G satisfies B1 and B2 iff G = MZ(H).

3.2 The finitely repeated game

Recall the recursive formula defining by induction the value of the n stage game vn ∈ G, using
Lemma 12:

vn (p, q) = val
MP

p ×M
Q
q

∫

P×Q

[
1

n
H(p′, q′) + (1−

1

n
)vn−1(p

′, q′)]µ(dp′)ν(dq′) = T(
1

n
, Vn−1). (16)

11



For each integer n ≥ 1, let Wn(1, p, q) := 0 and for m = 0, ..., n− 1 define Wn(
m
n
, p, q) inductively

as follows:

Wn

(m

n
, p, q

)

= val
MP

p ×M
Q
q

∫

P×Q

[
1

n
H(p′, q′) +Wn(

m+ 1

n
, p′, q′)]µ(dp′)ν(dq′) . (17)

By induction we have Wn(
m
n
, p, q) =

(

1− m
n

)

vn−m(p, q). Note that Wn is the function on [0, 1]×
P ×Q associated to the uniform partition of mesh 1

n
.

Lemma 15 Wn is Lipschitz continuous uniformly in n on {m
n
, m ∈ {0, . . . , n}} × P ×Q.

Proof. By Lemma 12 Wn(t, ., .) belongs to G for any t. As for Lipschitz continuity with respect
to t, we have, if µ is optimal in (17) and by Jensen’s inequality:

Wn(
m

n
, p, q) ≤

∫

P×Q

1

n
H(p′, q) +Wn(

m+ 1

n
, p′, q)dµ(p′)

≤
‖H‖∞

n
+Wn(

m+ 1

n
, p, q) .

One gets the reverse inequality Wn(
m
n
, p, q) ≥ −‖H‖∞

n
+Wn(

m+1
n

, p, q) with the symmetric argu-
ments. Therefore Wn(·, p, q) is ‖H‖∞−Lipschitz continuous.

Let T be the set of real continuous functions W on [0, 1] × P × Q such that for all t ∈
[0, 1],W (t, ., .) ∈ S. P(t, p, q,W ) is defined asP(p, q,W (t, ., .)) andQ(t, p, q,W ) asQ(p, q,W (t, ., .)).
Let T0 be the set of accumulation points of the family Wn. Using (17), we have that T0 ⊂ T .
We introduce two properties for a function W ∈ T and any C1 test function φ : [0, 1] → IR.

• PS1: If, for some t ∈ [0, 1), P(t, p, q,W ) is non-revealing and W (·, p, q)− φ(·) has a global
maximum at t, then H(p, q) + φ′(t) ≥ 0.

• PS2: If, for some t ∈ [0, 1), Q(t, p, q,W ) is non-revealing and W (·, p, q)− φ(·) has a global
minimum at t then H(p, q) + φ′(t) ≤ 0.

Lemma 16 Any W ∈ T0 satisfies PS1 and PS2.

Proof. The proof is very similar to the proof of Lemma 8.
Let t ∈ [0, 1), p and q be such that P(t, p, q,W ) is non-revealing and W (·, p, q) − φ(·) admits a
global maximum at t. Adding (·− t)2 to φ if necessary, we can assume that this global maximum
is strict.
LetWnk

be a sequence converging uniformly toW . Writem = nk and define θ(m) ∈ {0, . . . ,m−1}

such that θ(m)
m

is a global maximum of Wm(·, p, q) − φ(·) on {0, . . . ,m − 1}. Since t is a strict

maximum, we have θ(m)
m

→ t. By (17) we have that:

Wm

(

θ(m)

m
, p, q

)

= val
MP

p ×M
Q
q

∫

P×Q

[
1

m
H(p′, q′) +Wm(

θ(m) + 1

m
, p′, q′)]µ(dp′)ν(dq′).

Let µm be optimal for player 1 in the above formula and let ν = δq be the Dirac mass at q. Then:

Wm

(

θ(m)

m
, p, q

)

≤

∫

P

1

m
H(p′, q)µm(dp′) +

∫

P

Wm(
θ(m) + 1

m
, p′, q)µm(dp′).

By concavity of Wm with respect to p, we have
∫

P

Wm(
θ(m) + 1

m
, p′, q)µm(dp′) ≤ Wm(

θ(m) + 1

m
, p, q)

12



Hence:

0 ≤

∫

P

H(p′, q)µm(dp′) +m

[

Wm

(

θ(m) + 1

m
, p, q

)

−Wm

(

θ(m)

m
, p, q

)]

.

Since θ(m)
m

is a global maximum of Wm(·, p, q)− φ(·) on {0, . . . ,m− 1} one has:

Wm

(

θ(m) + 1

m
, p, q

)

−Wm

(

θ(m)

m
, p, q

)

≤ φ

(

θ(m) + 1

m

)

− φ

(

θ(m)

m

)

So that

0 ≤

∫

P

H(p′, q)µm(dp′) +m

[

φ

(

θ(m) + 1

m

)

− φ

(

θ(m)

m

)]

(18)

Since MP
p is compact, one can assume without loss of generality that {µm} converges to some µ.

Note that µ belongs to P(t, p, q,W ) by upper semicontinuity and uniform convergence of Wm to
W . Hence µ is non-revealing: µ = δp. Thus, passing to the limit in (18) one obtains:

0 ≤ H(p, q) + φ′(t).

The comparison principle in this case is given by the next result.

Lemma 17 Let W1 and W2 in T satisfying PS1, PS2 and

• PS3: W1(1, p, q) ≤ W2(1, p, q) for any (p, q) ∈ ∆(K)×∆(L).

Then W1 ≤ W2 on [0, 1] ×∆(K)×∆(L).

The proof is exactly similar to the proof of Lemma 9.

We are now ready to prove the convergence result for limn→∞ vn:

Proposition 18 Wn converges uniformly to the unique point W ∈ T that satisfies the variational
inequalities PS1 and PS2 and the terminal condition W (1, p, q) = 0.
Consequently, vn(p, q) converges uniformly to v(p, q) = W (0, p, q) and W (t, p, q) = (1− t)v(p, q).
Moreover v = MZ(H).

Proof. Let W be any limit point of the relatively compact family Wn. Then, from Lemma 16,
W ∈ T0 satisfies the variational inequalities PS1 and PS2. Moreover, W (1, p, q) = 0. Since, from
Lemma 17, there is at most one map fulfilling these conditions, we obtain convergence.
Consequently, vn(p, q) converges uniformly to V (p, q) = W (0, p, q) and W (t, p, q) = (1− t)V (p, q).
In particular if one choose as test function φ(t) = W (t, p, q), then φ′(t) = −V (p, q), so that PS1

and PS2 reduce to A1 and A2. On concludes by using the variational characterization of MZ(u)
in Proposition 14.

3.3 General evaluation

The same results extend to the general evaluation case defined by a partition Π with µn decreasing.
The existence of VΠ is obtained in two steps. We first let V n

Π to be 0 on [tn, 1] and define inductively
V n
Π (tm, ., .) for m < n by

V n
Π (tm, p, q) = val

MP
p ×M

Q
q

∫

P×Q

[µm+1H(p′, q′) + V n
Π (tm+1, p

′, q′)]µ(dp′)ν(dq′). (19)

It follows that V n
Π ∈ G by Lemma 12 and converges uniformly to VΠ. Then the proof follows

exactly the same steps than in Part 2.
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3.4 Time dependent case

We consider here the case where the function H may depend on the stage.
To be able to study the asymptotic behavior one has to define H directly in the limit game: the
map H is a continuous real function on [0, 1] × P ×Q.

For each integer n, let Zn(1, p, q) := 0 and for m = 0, ..., n − 1 define Zn(
m
n
, p, q) inductively

as follows:

Zn

(m

n
, p, q

)

= val
MP

p ×M
Q
q

∫

P×Q

[
1

n
H(

m

n
, p′, q′) + Zn(

m+ 1

n
, p′, q′)]µ(dp′)ν(dq′). (20)

By induction each function Zn(
m
n
, ., .) is in G and one can show as in Lemma 15 that Zn is

uniformly Lipschitz continuous on {m
n
, m ∈ {0, . . . , n}} × P ×Q.

Remark : An alternative choice is to replace 1
n
H(m

n
, p′, q′) by

∫

m+1

n
m
n

H(t, p′, q′)dt.

Note that the projective operator is the same than in the autonomous case. Let T be the set of
real functions Z on [0, 1] × P ×Q such that for all t ∈ [0, 1], Z(t, ., .) ∈ S. We define P(t, p, q, Z)
and Q(t, p, q, Z) as before and denote by Z0 the set of accumulation points of the family Zn. We
note that Z0 ⊂ T .
We define two properties for a function Z ∈ T and all C1 test function φ : [0, 1] → IR.

• PST1: If, for some t ∈ [0, 1), P(t, p, q, Z) is non-revealing and Z(·, p, q)− φ(·) has a global
maximum at t, then H(t, p, q) + φ′(t) ≥ 0.

• PST2: If, for some t ∈ [0, 1), Q(t, p, q, Z) is non-revealing and Z(·, p, q)− φ(·) has a global
minimum at t then H(t, p, q) + φ′(t) ≤ 0.

Lemma 19 Any Z ∈ Z0 satisfies PST1 and PST2.

Proof. Let t ∈ [0, 1), p and q be such that P(t, p, q, Z) is non-revealing and Z(·, p, q) − φ(·)
admits a global maximum at t. Adding (· − t)2 to φ if necessary, we can assume that this global
maximum is strict.
Let Znk

be a sequence converging uniformly to Z. Write m = nk and define θ(m) ∈ {0, . . . ,m−1}

such that θ(m)
m

is a global maximum of Zm(·, p, q)−φ(·) on {0, . . . ,m−1}. t being a strict maximum
θ(m)
m

→ t. By (20) we have that:

Zm

(

θ(m)

m
, p, q

)

= sup
µ∈MP

p

inf
ν∈MQ

q

∫

P×Q

[
1

m
H(

θ(m)

m
, p′, q′) + Zm(

θ(m) + 1

m
, p′, q′)]µ(dp′)µ(dq′).

Let µm be optimal for player I in the above formula and let ν = δq be the Dirac mass at q. Then:

Zm

(

θ(m)

m
, p, q

)

≤

∫

P

1

m
H(

θ(m)

m
, p′, q′)µm(dp′) +

∫

P

Zn(
θ(m) + 1

m
, p′, q)µm(dp′).

By concavity of Zm with respect to p, we have

∫

P

Zm(
θ(m) + 1

m
, p′, q)µm(dp′) ≤ Zm(

θ(m) + 1

m
, p, q).

Hence:

0 ≤

∫

P

H(
θ(m)

m
, p′, q′)µm(dp′) +m

[

Zm

(

θ(m) + 1

m
, p, q

)

− Zm

(

θ(m)

m
, p, q

)]

.
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Since θ(m)
m

is a global maximum of Zϕ(m)(·, p, q)− φ(·) on {0, . . . ,m− 1} one has:

Zm

(

θ(m) + 1

m
, p, q

)

− Zm

(

θ(m)

m
, p, q

)

≤ φ

(

θ(m) + 1

m

)

− φ

(

θ(m)

m

)

.

MP
p being compact, one can assume without loss of generality that {µm} converges to some µ.

Note that µ belongs to P(t, p, q, Z) by upper semicontinuity and uniform convergence of Zn to
Z. Hence µ = δp is non-revealing. Thus, passing to the limit one obtains:

0 ≤ H(t, p, q) + φ′(t).

The comparison principle in this case is given by the next result.

Lemma 20 Let Z1 and Z2 in T satisfying PS1, PS2 and

• PS3: Z1(1, p, q) ≤ Z2(1, p, q) for any (p, q) ∈ ∆(K)×∆(L).

Then Z1 ≤ Z2 on [0, 1] ×∆(K)×∆(L).

Proof. We argue by contradiction, assuming that, for some γ > 0 small,

max
t∈[0,1],p∈P,q∈Q

[Z1(t, p, q)− Z2(t, p, q)− γ(1− t)] = δ > 0 .

Then, for ε > 0 sufficiently small,

δ(ε) := max
t∈[0,1],s∈[0,1],p∈P,q∈Q

[Z1(t, p, q) − Z2(s, p, q)−
(t− s)2

2ε
+−γ(1− s)] > 0 . (21)

Moreover δ(ε) → δ as ε → 0.
Hence as before there is (tε, sε, pε, qε), point of maximum in (12), such that P(tε, pε, qε,W1) is
non-revealing for player I and Q(sε, pε, qε,W2) is non-revealing for player J.
Finally we note that tε < 1 and sε < 1 for ε sufficiently small, because δ(ε) > 0 and Z1(1, p, q) ≤
Z2(1, p, q) for any p, q by P3.

Since the map t 7→ Z1(t, pε, qε)−
(t−sε)2

2ε has a global maximum at tε and since P(tε, pε, qε,W1) is
non-revealing for player I, condition PST1 implies that

H(tε, pε, qε) +
tε − sε

ε
≥ 0 . (22)

In the same way, since the map s 7→ W2(s, pε, qε) +
(tε−s)2

2ε + γ(1− s) has a global minimum at sε
and since Q(sε, pε, qε,W2) is non-revealing for player J, we have by condition PST2 that

H(sε, pε, qε) +
tε − sε

ε
+ γ ≤ 0 .

Combining (22) with the previous inequality implies that

H(sε, pε, qε)−H(tε, pε, qε) + γ ≤ 0 .

Letting ε → 0, we get a contradiction because sε and tε converge (up to some subsequence) to
the same limit t̄.

We are now ready to prove the convergence result for Zn.

Proposition 21 Zn converges uniformly to the unique point Z ∈ T that satisfies the variational
inequalities PST1 and PST2 and the terminal condition Z(1, p, q) = 0.

Remark: the same result obviously holds for any sequence of decreasing evaluation.
Proof. Let Z be any limit point of the relatively compact family Zn. Then, from Lemma 19,
W ∈ T0 satisfies the variational inequalities PST1 and PST2. Moreover, Z(1, p, q) = 0. Since,
from Lemma 20, there is at most one map fulfilling these conditions, we obtain convergence.
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4 Absorbing games

An absorbing game is a stochastic game where only one state is non absorbing. In the other
states one can assume that the payoff is constant (equal to the value) thus the game is defined by
the following elements: two finite sets I and J , two (payoff) functions f , g from I × J to [−1, 1]
and a function π from I × J to [0, 1] .
The repeated game with absorbing states is played in discrete time as usual. At stage m = 1, 2, ...
(if absorbtion has not yet occurred) player 1 chooses im ∈ I and, simultaneously, player 2 chooses
jm ∈ J :
(i) the payoff at stage m is f (im, jm)
(ii) with probability 1−π (im, jm) absorbtion is reached and the payoff in all future stages n > m
is g (im, jm) and
(iii) with probability π (im, jm) the situation is repeated at stage m+ 1.
Recall that the asymptotic analysis for these games is due to Kohlberg (1974) [5] who also proved
the existence of a uniform value in case of standard signaling.

4.1 The discounted game

While the spirit of the proof is the same in the general case we first present the discounted case
where the argument is more transparent.
Define π∗(i, j) = 1− π(i, j), f∗(i, j) = π∗(i, j) × g(i, j) and extend bilinearly any ϕ : I × J → R

to RI ×RJ as follows: ϕ(α, β) =
∑

i∈I,j∈J α
iβjϕ(i, j).

Theorem 22 As λ → 0, vλ converges to v given by

v = val((x,α),(y,β))∈(∆(I)×RI
+
)×(∆(J)×RJ

+
)

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
. (23)

Remark : The existence of a value is a part of the Theorem. This formula is simpler than the
one established in Laraki [10].
Proof. Consider v1 an accumulation point of the family {vλ} and let vλn

converges to v1.
We will show that

v1 ≤ sup
(x,α)∈∆(I)×RI

+

inf
(y,β)∈∆(J)×RJ

+

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
. (24)

A dual argument proves at the same time that the family {vλ} converges and that the auxiliary
game has a value.
Let rλ(x, y) be the discounted payoff induced by a pair of stationary strategies (x, y) ∈ ∆(I) ×
∆(J). Then

rλ(x, y) =
λf(x, y) + (1− λ)f∗(x, y)

λ+ (1− λ)π∗(x, y)
.

In particular for any xλ optimal for Player 1 one obtains:

vλ ≤
λf(xλ, j) + (1− λ)f∗(xλ, j)

λ+ (1− λ)π∗(xλ, j)
, ∀j ∈ J. (25)

that one can write

vλ ≤
f(xλ, j) + f∗( (1−λ)xλ

λ
, j)

1 + π∗( (1−λ)xλ

λ
, j)

= cj(λ), ∀j ∈ J. (26)

Note that the ratio f∗( (1−λ)xλ

λ
, j)/π∗( (1−λ)xλ

λ
, j) is bounded, hence cj(λ) too. Thus any accumu-

lation point of cj(λn) is greater than v1 . Hence by taking an appropriate subsequence in (26) for
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each j ∈ J , we obtain :

∃ x ∈ ∆(I) accumulation point of {xλn
} s.t. ∀ε > 0,∃ α =

(1−λ)x
λ

λ
∈ RI

+ such that

v1 ≤
f(x, j) + f∗(α, j)

1 + π∗(α, j)
+ ε, ∀j ∈ J. (27)

Note that by linearity the same inequality holds for any y ∈ ∆(J).
On the other hand, v1 is a fixed point of the projective operator and x is optimal there, hence

v1 ≤ π(x, y) v + f∗(x, y), ∀y ∈ ∆(J). (28)

Inequality (28) is linear thus extends to

π∗(x, β) v1 ≤ f∗(x, β), ∀β ∈ RJ
+. (29)

We multiply (27) by the denominator 1 + π∗(α, y) and we add to (29) to obtain the property:
∀ε > 0,∃ x ∈ ∆(I) and α ∈ RI

+ such that

v1 ≤
f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
+ ε, ∀y ∈ ∆(J), β ∈ RJ

+ (30)

which implies (24), hence the result.

4.2 General evaluation

In this section we consider general evaluation probabilities µ = (µm) on IN⋆ such that (µm) is
non increasing: this later assumption is implicit in all the result below. The payoff corresponding
to an evaluation µ is

∑

m µmhm, where hm is the payoff at stage m described above. We denote
by vµ the value of this game. Our aim is to show that the vµ have a limit as the “size” of the
evaluation probability, i.e., π(µ) := µ1 = supm µm, tends to 0.

Theorem 23 As π(µ) → 0, vµ converges to v given by

v = val((x,α),(y,β))∈(∆(I)×RI
+
)×(∆(J)×RJ

+
)

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
(31)

The proof requires several steps. The main idea is, as before, to embed the original problem
into a game on [0, 1]. Recall that µ induces a partition Π = {tm} of [0, 1] with t0 = 0 and
tm =

∑m
k=1 µk for m ≥ 1. Let us denote by Wµ(tm) the value of the game starting at time tm, i.e.

with evaluation µm+k for the payoff hk at stage k. Note that Wµ is actually given by Wµ(1) = 0
and the recursive formula:

Wµ(tm) = val(x,y)∈∆(I)×∆(J) [µm+1f(x, y) + π(x, y)Wµ(tm+1) + (1− tm+1)f
∗(x, y)] . (32)

Recall that, under our assumption on the monotonicity of the (µm), the (linear interpolation of)
Wµ is C−Lipschitz continuous in [0, 1], where C only depends on the bounds on the payoff (see
Lemma 1). Let us set, for any (t, a, b, x, α, y, β) ∈ [0, 1] ×R×R×∆(I)×RI

+ ×∆(J)×RJ
+,

h(t, a, b, x, α, y, β) =
f(x, y) + (1− t)[f∗(α, y) + f∗(x, β)]− [π∗(α, y) + π∗(x, β)] a+ b

1 + π∗(α, y) + π∗(x, β)

We define the lower and upper Hamiltonian of the game as

H−(t, a, b) = sup
(x,α)∈∆(I)×RI

+

inf
(y,β)∈∆(J)×RJ

+

h(t, a, b, x, α, y, β)
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and
H+(t, a, b) = inf

(y,β)∈∆(J)×RJ
+

sup
(x,α)∈∆(I)×RI

+

h(t, a, b, x, α, y, β)

The variational characterization of any cluster point U of the family Wµ as π(µ) → 0 uses the
following properties: for all t ∈ [0, 1) and any C1 function φ : [0, 1] → R :

• R1: If U(·)− φ(·) admits a global maximum at t ∈ [0, 1) then H−(t, U(t), φ′(t)) ≥ 0.

• R2: If U(·)− φ(·) admits a global minimum at t ∈ [0, 1) then H+(t, U(t), φ′(t)) ≤ 0.

Lemma 24 Any accumulation point U(·) of Wµ(·) satisfies R1 and R2.

Proof. Let us prove the first variational inequality, the second being obtained by symmetry.
Let t be such that U(·) − φ(·) admits a global maximum at t ∈ [0, 1). Adding (· − t)2 to φ if
necessary, we can assume that this global maximum is strict.
Let µn = {µn

m} be a sequence of evaluation probabilities on IN⋆ such that π(µn) → 0 and
Wn := Wµn converges to U . Let tn

θ(n) be a global maximum of Wn(·) − φ(·) over the set {tnm}.

Then, tn
θ(n) → t. Since t < 1, for n large enough θ(n) + 1 is well defined and from (32) we have

Wn(t
n
θ(n)) = max

x∈∆(I)
min
y∈∆J)

[

µn
θ(n)+1f(x, y) + π(x, y)Wn(t

n
θ(n)+1) + (1− tnθ(n)+1)f

∗(x, y)
]

.

Let xn be optimal for player 1 in the above formula. By compactness one can assume that xn
converges to some x (up to a subsequence).
To simplify the notations, we set:

νn = µn
θ(n)+1, sn = tnθ(n), s

′
n = tnθ(n)+1 = sn + νn, αn =

xn
νn

Given j ∈ J we have:

Wn(sn) ≤ νnf(xn, j) + π(xn, j)Wn(s
′
n) + (1− s′n)f

∗(xn, j)

Using the fact that Wn(·)−φ(·) has a global maximum at sn the above inequality can be rephrased
as

0 ≤ f(xn, j) +
φ(s′n)− φ(sn)

νn
− π∗(αn, j)Wn(s

′
n) + (1− s′n)f

∗(αn, j). (33)

We divide this inequality by 1 + π∗(αn, j) so that the quotient is uniformly bounded. Hence,
going to the limit and taking subsequences for each j one after the other, we obtain that: for any
ε > 0 there exists α such that:

0 ≤
f(x, j) + φ′(t)− π∗(α, j)U(t) + (1− t)f∗(α, j)

1 + π∗(α, j)
+ ε,∀j ∈ J. (34)

The same inequality holds for any y ∈ ∆(J) instead of j by linearity.
Now x is optimal for U(t) leading to

0 ≤ (1− t)f∗(x, y)− π∗(x, y)U(t), ∀y ∈ ∆(J) (35)

and by linearity the same inequality holds for any β ∈ RJ
+.

We multiply (34) by (1 + π∗(α, y)) and we add (35) to obtain, ∀y ∈ ∆(J),∀β ∈ RJ
+

0 ≤
f(x, y) + φ′(t)− (π∗(α, y) + π∗(x, β))U(t) + (1− t)(f∗(α, y) + f∗(x, β))

1 + π∗(α, y) + π∗(x, β)
+ ε. (36)
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Hence for any ε > 0, there exists x ∈ ∆(I), α ∈ RI
+ such that ∀y ∈ ∆(J),∀β ∈ RJ

+

h(t, U(t), φ′(t), x, α, y, β) + ε ≥ 0

which implies H−(t, U(t), φ′(t)) ≥ 0.

Next we show a comparison principle:

Lemma 25 Let U1 and U2 be two continuous functions satisfying R1-R2 and U1(1) ≤ U2(1).
Then U1 ≤ U2 on [0, 1].

Proof. By contradiction, suppose that there is some t ∈ [0, 1] such that U1(t) > U2(t). Then,
for γ > 0 sufficiently small,

max
t∈[0,1]

[U1(t)− U2(t) + γ(t− 1)] = δ > 0 .

Let ε > 0 and set

δ(ε) = max
(t,s)∈[0,1]×[0,1]

[U1(t)− U2(s)−
(t− s)2

2ε
+ γ(s− 1)] .

Let (tε, sε) be a maximum point in the above expression. Then, δ(ε) → δ as ε → 0 and, for ε
sufficiently small, tε < 1 and sε < 1 because U1(1) ≤ U2(1). From standard arguments, tε−sε → 0
as ε → 0.
Since the map U1(t)−

(t−sε)2

2ε has a global maximum at tε ∈ [0, 1), we have by condition R1 that

H−

(

tε, U1(tε),
tε − sε

ε

)

≥ 0 . (37)

In the same way, since the map s → U2(s) +
(tε−s)2

2ε − γ(s − 1) has a global minimum at sε, we
have by condition R2 that

H+

(

sε, U2(sε),
tε − sε

ε
+ γ

)

≤ 0 . (38)

To simplify the expressions, let us set U ε
1 = U1(tε), U

ε
2 = U2(sε) and bε =

tε−sε
ε

. From (37) and
(38) there exists (xε, αε) ∈ ∆(I)×RI

+ such that:

0 ≤ ε2 + inf
(y,β)

h (tε, U
ε
1 , bε, xε, αε, y, β)

and (yε, βε) ∈ ∆(J)×RJ
+ such that

0 ≥ −ε2 + sup
(x,α)

h (sε, U
ε
2 , bε + γ, x, α, yε, βε) .

Then, in view of the definition of h, we have

2ε2 ≥ h (sε, U
ε
2 , bε + γ, xε, αε, yε, βε)− h (tε, U

ε
1 , bε, xε, αε, yε, βε)

≥
(tε − sε)[f

∗(αε, yε) + f∗(xε, βε)]− [π∗(αε, yε) + π∗(xε, βε)] (U
2
ε − U1

ε ) + γ

1 + π∗(αε, yε) + π∗(xε, βε)
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Now we use U1
ε − U2

ε ≥ δ(ε) to obtain

2ε2 ≥
(tε − sε)[f

∗(αε, yε) + f∗(xε, βε)] + [π∗(αε, yε) + π∗(xε, βε)] δ(ε) + γ

1 + π∗(αε, yε) + π∗(xε, βε)

≥
(tε − sε)[f

∗(αε, yε) + f∗(xε, βε)]

1 + π∗(αε, yε) + π∗(xε, βε)
+ min{δ(ε), γ}

Since tε − sε → 0 and the quotient f∗(αε,yε)+f∗(xε,βε)
1+π∗(αε,yε)+π∗(xε,βε)

remains bounded as ε → 0, we get

0 ≥ min{δ, γ}, which is impossible.

To summarize, we now know that the family (Wµ) has a unique accumulation point U and
that this accumulation point is the unique continuous map satisfying R1-R2 and U(1) = 0. The
next Lemma, which characterizes the limit function U , completes the proof of Theorem 23:

Lemma 26 Let U(·) be the unique continuous solution to R1-R2 with U(1) = 0. Then U(t) =
(1− t)v where v is given by (31).

Proof. Let us first show that U is homogeneous in time. This could be obtained by the
fact that U is the limit of the Wπ, but we give here a direct argument. For this we prove that
Uλ(t) :=

1
λ
U(λt + (1 − λ)) equals U(t) for any t ∈ [0, 1] and any λ ∈ (0, 1) by showing that Uλ

satisfies R1-R2 and Uλ(1) = 0. The last point being obvious, let us check for instance that R1

holds for Uλ. Since U satisfies R1 for H−, Uλ satisfies R1 for H−
λ given by

H−
λ (t, a, b) = H−(λt+ (1− λ), λa, b)

So we just have to show that H−
λ (t, a, b) ≥ 0 implies H−(t, a, b) ≥ 0. Assume that H−

λ (t, a, b) ≥ 0.
Then, for any ε > 0, there exists (x, α) ∈ ∆(I)×RI

+ such that, for all (y, β) ∈ ∆(J)×RJ
+,

−ε ≤
f(x, y) + (1− (λt+ (1− λ)))[f∗(α, y) + f∗(x, β)] − [π∗(α, y) + π∗(x, β)]λa+ b

1 + π∗(α, y) + π∗(x, β)

Setting α′ = λα and β′ = λβ we get

−
ε

λ
≤

f(x, y) + (1− t)[f∗(α′, y) + f∗(x, β′)]− [π∗(α′, y) + π∗(x, β′)]λa+ b

1 + π∗(α′, y) + π∗(x, β′)

because

−
ε(1 + π∗(α, y) + π∗(x, β)

1 + π∗(α′, y) + π∗(x, β′)
≥ −

ε

λ

Therefore there exists (x, α′) ∈ ∆(I) × RI
+ such that, for all (y, β′) ∈ ∆(J) × RJ

+, one has
h(t, a, b, x, α, y, β) ≥ −ε/λ, i.e., H−(t, a, b) ≥ 0.

Next we identify v := U(0). From the equation satisfied by U(t) = (1 − t)v we have, using
φ(t) = U(t):

H−(t, (1− t)v,−v) ≥ 0 and H+(t, (1 − t)v,−v) ≤ 0 ∀t ∈ [0, 1] .

Let us choose t = 0. Let ε > 0 and (x, α) be such that for any (y, β)

−ε ≤
f(x, y) + [f∗(α, y) + f∗(x, β)] − [π∗(α, y) + π∗(x, β)] v − v

1 + π∗(α, y) + π∗(x, β)

Then

v − ε ≤
f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
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so that

v − ε ≤ sup
(x,α)

inf
(y,β)

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)

The opposite inequality

v + ε ≥ inf
(y,β)

sup
(x,α)

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)

can be established in a symmetric way, which completes the proof of the Lemma.

5 Extensions and comments

5.1 Non decreasing evaluations

In stochastic games whith general evaluation, to obtain the same asymptotic limit as the mesh of
the partition tends to zero, it is necessary to assume the sequence of evaluation probabilities µn on
IN∗ to be decreasing: µn

m ≥ µn
m+1. For example, if the stochastic game oscillates deterministically

between state 1 and state 2, the asymptotic occupation measure depends strongly on µn. For
example, if µn is decreasing, then asymptotically, both states have a total weight of 1/2. However,
if {µn

2m+1} is decreasing in m and if µn
2m = (µn

2m+1)
2, then the asymptotic occupation measure

puts a total weight of 1 on the state at stage 1.
However, in all games analyzed in this paper, the monotonicity assumption on µm is not

necessary: the asymptotic value exists and is the same for all evaluation measures. This is due
to the irreversibility of these games. In incomplete information repeated games, the results hold
because of two reasons: (1) a player is always better off having a private information (which
implies concavity of the value function in p and convexity in q), and (2) a player has always
the possibility to play a non-revealing strategy. Then VΠ is C-Lipschitz continuous: this is the
content of Lemma 15.
Consequently, the same proof as for decreasing evaluations applies and so the asymptotic value
exists in a strong sense and is characterized as the unique solution of the variational inequalities
P1 and P2. A similar argument shows that the same conclusion holds for splitting games.

In absorbing games, this conclusion holds because once the state changes, it is absorbing. The
proof is however more tricky. Let Wµn(tk) be the value of the game starting at time tk. Then:

Wµn(tk) = val(x,y)∈∆(I)×∆(J)

[

µn
k+1f(x, y) + π(x, y)Wµn(tk+1) + (1− tk+1)f

∗(x, y)
]

. (39)

As shown in Lemma 1, monotonicity of (µn
m) inm guarantees thatWµn is C−Lipschitz continuous.

Without this assumption, it is not clear how to show uniform Lipschitz continuity.
We prove uniform convergence but using different techniques, standard in differential game theory.
Namely, consider the Barles-Perthame lower and upper half-relaxed limits. Explicitly, for every t,
define W+(t) = lim suptn→tWµn(tn), and similarly W−(t) = lim inftn→tWµn(tn). Then, W+(t)
is upper-semi-continuous and W−(t) is lower-semi-continuous. A proof similar to the one given
for the decreasing case (with only small modifications) shows that: (1) W+ satisfies R1, (2)
W− satisfies R2, and (3) any upper-semi-continuous function satisfying R1 is smaller than any
lower-semi-continuous function satisfying R2 (whenever they agree on the terminal condition).
This implies uniform convergence and uniqueness of the limit.

Observe also that in the three classes of games analyzed in this paper, the existence of the
asymptotic value in a strong sense (for all evaluations not necessarily decreasing) is new. Actually,
the existence of the uniform value (as in absorbing games, Kohlberg (1974) [5] ) only implies the
same asymptotic value for all decreasing evaluations.
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A natural question arises: what are the other classes of repeated games for which the asymp-
totic value is the same for all evaluations? Clearly, this is quite different from the existence of
a uniform value. In the example above (stochastic game alternating between states 1 and 2), a
uniform value exists but the asymptotic value depends on the sequence of evaluations. In incom-
plete information repeated games and in splitting games, the uniform value does not exist while
there is a “strong” asymptotic value.

5.2 Other extensions

More general splitting games. Upper- and lower half-relaxed limits have been used in Laraki
[6] to show the existence of the asymptotic value in discounted splitting games when P and Q
are not product of simplexes. Without this assumption, the equi-continuity of the family of
discounted values with respect to p and q is not guaranteed. Combining the technique in Laraki
[6] and the continuous time approach allow to show the existence of the asymptotic value for all
evaluations under the same general assumptions as the one in Laraki [6].

Repeated games with public random duration. Neyman and Sorin [13] studied repeated games
with random duration. Those are games in which the weight µm of period m follows a stochastic
process. In our model, this weight is deterministic. Neyman and Sorin [13] show that when the
uniform value exists, then the asymptotic value exists for all random duration. It is plausible
to prove existence of an asymptotic value in repeated games with random duration using similar
tools. The difference would be in the recursive equation: an additional expectation should be
added since the time tk+1 at which the continuation game will start is random and not determin-
istic.

Repeated games with incomplete information: the dependent case. The result of Mertens and
Zamir [11] holds in a more general framework in which the private information of the players on
k ∈ K may be correlated. However one can write a recursive equation on the state space ∆(K).
Consequently, the same proof as in the independent case allows to prove existence, uniqueness
and characterization of the asymptotic value, for all evaluation coefficients µ.

5.3 Conclusion

The main contribution of this approach is to provide a unified treatment of the asymptotic analysis
of the value of repeated games:
- it applies to all evaluations and shows the interest of the limiting game played on [0, 1]. Further
research will be devoted to a formal construction and to the analysis of optimal strategies,
- it allows to treat incomplete information games as well as absorbing games. We strongly believe
that similar tools will allow to analyze more general classes,
- it shows that technics introduced in differential games where the dynamics on the state are
smooth can be used in a repeated game framework. On the other hand, the stationary aspect of
the payoff functions in repeated games is no longer necessary to obtain asymptotic properties.
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