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RECORD PROCESS ON THE CONTINUUM RANDOM TREE

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. By considering a continuous pruning procedure on Aldous’s Brownian tree, we
construct a random variable Θ which is distributed, conditionally given the tree, according
to the probability law introduced by Janson as the limit distribution of the number of cuts
needed to isolate the root in a critical Galton-Watson tree. We also prove that this random
variable can be obtained as the a.s. limit of the number of cuts needed to cut down the
subtree of the continuum tree spanned by n leaves.

1. Introduction

The problem of randomly cutting a rooted tree arises first in Meir and Moon [28]. Given a
rooted tree Tn with n edges, select an edge uniformly at random and delete the subtree not
containing the root attached to this edge. On the remaining tree, iterate this procedure until
only the edge attached to the root is left. We denote by Xn the number of edge-removals
needed to isolate the root. The problem is then to study asymptotics of this random number
Xn, depending on the law of the initial tree Tn.

In the original paper [28], Meir and Moon considered Cayley trees and obtained asymptotics
for the first two moments of Xn. Limits in distribution were then obtained by Panholzer [30]
for some simply generated trees, by Drmota, Iksanov, Möhle and Roesler [15] for random
recursive trees, by Holmgren [24] for binary search trees, by Bertoin [11] for Cayley trees and
by Janson [26] for conditioned Galton-Watson trees. The main result of [26] states that, if
the offspring distribution of the Galton-Watson process is critical (that is with mean equal to
1) with finite variance, which we take equal to 1 for simplicity, then the following convergence
in distribution of the conditional laws (specified by their moments) holds:

(1) L(Xn/
√
n |Tn/

√
n)

(d)−−−−−→
n→+∞

L(ZT | T )

where T is the so-called continuum random tree (CRT) introduced by Aldous [8, 9] and can
be seen as the limit in distribution of Tn/

√
n (see [9]). Furthermore, the random variable ZT

has (unconditional) Rayleigh distribution with density x e−x
2/2 1{x>0}. However, there is no

constructive description of ZT conditionally on T .
The first goal of the paper is to give a continuous pruning procedure of the CRT that

leads to a random variable that is indeed distributed, conditionally given the tree, as ZT .
In order to better understand the intuitive idea of the record process on the CRT, let us
first consider the pruning of the simple tree consisting in the segment [0, 1] divided into n
segments of equal length, rooted at 0. Select an edge at random and discard what is located
on the right of this edge. Then chose again an edge at random on the remaining segments and
iterate the procedure until the segment attached to 0 is chosen. It is clear that the continuous
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2 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

analogue of this procedure (when the number n of segments tends to +∞) is the so-called
stick-breaking scheme: consider a uniform random variable U1 on [0, 1], then conditionally
given U1, consider a uniform random variable U2 on [0, U1] and so on. The sequence (Un)n≥0

corresponds to the successive cuts of the interval [0, 1] in the continuous pruning. Moreover,
this sequence can be obtained as the records of a Poisson point process. More precisely, if we
consider a Poisson point measure

∑

i∈I δ(xi,ti) on [0, 1]× [0,+∞) with intensity the Lebesgue
measure, then the sequence (Un) is distributed as the sequence of jumps of the record process

θ(x) = inf{ti, xi ∈ [0, x]}.
In our case, the limiting object is Aldous’s CRT (instead of the segment [0, 1]). More

precisely, we consider a real tree T associated with the branching mechanism ψ(u) = αu2

under the excursion measure N. This tree is coded by the height process
√

2/αBex where
Bex is a positive Brownian excursion. This tree is endowed with two measures: the length
measure ℓ(dx) which corresponds to the Lebesgue measure on the skeleton of the tree, and
the mass measure mT (dx) which is uniform on the leaves of the tree. Let σ = mT (T ) be
the total mass of T . Aldous’s CRT corresponds to the distribution of the tree T conditioned
on the total mass σ = 1, with α = 1/2. We then add cut points on T as above thanks to a
Poisson point measure on T × [0,+∞) with intensity

αℓ(dx)dθ

in the same spirit as in [10] (see also [6] for a direct construction, and [5] for the pruning of
a general Lévy tree). We denote by (xi, qi) the atoms of this point measure, xi represents
the location of the cut point and qi represents the time at which it appears. For x ∈ T , we
denote by

θ(x) = inf{qi, xi ∈ [[∅, x]]}
where [[∅, x]] ⊂ T denotes the path between x and the root. When a mark appears, we cut
the tree on this mark and discard the subtree not containing the root. Then θ(x) represents
the time at which x is separated from the root. Then we define

Θ =

∫

T
θ(x)mT (dx) and Z =

√

2α

σ
Θ.

We prove (see Theorem 3.2) that, conditionally on T , Z and ZT have indeed the same
law. The proof of this result relies on another representation of Θ in terms of the mass of
the pruned tree (a similar result also appears in Addario-Berry, Broutin and Holmgren [7]).
More precisely, if we set

σq =

∫

T
1{θ(x)≥q}m

T (dx)

the mass of the remaining tree at time q, then we have

Θ =

∫ +∞

0
σq dq.

Using this framework, we can extend in some sense Janson’s result by obtaining an a.s.
convergence in a special case. We consider, conditionally given T , n leaves uniformly chosen
(i.e. sampled according to the mass measure mT ) and we denote by Tn the sub-tree of T
spanned by these n leaves and the root. The tree Tn is distributed under N[ · | σ = 1] as
a uniform ordered binary tree with n leaves (and hence 2n − 1 edges) with random edge
lengths. We denote by T ∗

n the tree obtained by removing from Tn the edge attached to the
root, and by X∗

n the number of discontinuities of the process (θ(x), x ∈ T ∗
n). The quantity

X∗
n +1 represents the number of cuts needed to reduce the binary tree Tn to a single branch
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attached to the root. Notice that in our framework, several cuts may appear on the same
branch, so X∗

n looks like X2n−1 for uniform ordered binary trees but is not exactly the same.
Then, we prove in Theorem 4.2 that N-a.e. or N[ · | σ = 1]-a.s.:

lim
n→+∞

X∗
n√
2n

= Z.

This result can be extended by studying the fluctuations of the quantity X∗
n/

√
2n around

its limit, this is the purpose of Hoscheit [25]. In this setting the fluctuations come from the
approximation of the record process by its intensity, whereas there is no contribution from
the approximation of T by Tn.

Using the second representation of Θ and results from Abraham, Delmas and Hoscheit [4]
on the pruning of general Lévy trees, we also derive a.s. asymptotics on the sizes (σi, i ∈ I)
of the removed sub-trees during the cutting procedure. According to Propositions 4.4 and
4.5, we have N-a.e.

lim
n→+∞

1√
n

∑

i∈I
1{σi≥1/n} = lim

n→+∞
√
n
∑

i∈I
σi1{σi≤1/n} = 2

√

α

π
Θ.

This result is extended to general Lévy trees in Abraham and Delmas [1].
The paper is organized as follows. In Section 2, we introduce the frameworks of discrete

trees and real trees and define rigorously Aldous’s CRT, the mark process and the record
process on the tree. Section 3 is devoted to the identification of the law of Θ conditionally
given the tree. In Section 4, we prove the a.s. convergence of X∗

n as well as the convergence
results on the masses of the removed subtrees. Finally, we gathered in Section 5 several
technical lemmas that are needed in the proofs but are not the heart of the paper.

2. The continuum random tree and the mark process

2.1. Real trees. We recall here the definition and basic properties of real trees. We refer to
Evans’s Saint Flour lectures [20] for more details on the subject.

Definition 2.1. A real tree is a metric space (T , d) satisfying the following two properties
for every x, y ∈ T :

• (Unique geodesic) There is a unique isometric map fx,y from [0, d(x, y)] into T such
that fx,y(0) = x and fx,y(d(x, y)) = y.

• (No loop) If ϕ is a continuous injective map from [0, 1] into T such that ϕ(0) = x
and ϕ(1) = y, then

ϕ([0, 1]) = fx,y([0, d(x, y)]).

A rooted real tree is a real tree with a distinguished vertex denoted ∅ and called the root.

We denote by [[x, y]] = fx,y([0, 1]) the range of the mapping fx,y, which is the unique
continuous injective path between x and y in the tree, and [[x, y[[= [[x, y]]\{y}. A point x ∈ T
is said to be a leaf if the set T \{x} remains connected. We denote by Lf(T ) the set of leaves
of T . The skeleton of the tree is the set of non-leaves points T \ Lf(T ). As the trace of the
Borel σ-field on the skeleton of T is generated by the intervals [[x, y]], one can define a length
measure denoted by ℓ(dx) on a real tree by:

ℓ([[x, y]]) = d(x, y).

We will consider here only compact real trees and these trees can be coded by some
continuous function (see [27] or [16]). We consider a continuous function ζ : [0,+∞) →
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[0,+∞) with compact support [0, σ] and such that ζ(0) = ζ(σ) = 0. This function ζ will be
called in the following the height function. For every s, t ≥ 0, we set

mζ(s, t) = inf
r∈[s∧t,s∨t]

ζ(r),

and

d(s, t) = ζ(s) + ζ(t)−mζ(s, t).

We then define the equivalence relation s ∼ t iff d(s, t) = 0. We set T the quotient space

T = [0,+∞)/ ∼ .

The pseudo-distance d induces a distance on T and we keep notation d for this distance.
We denote by p the canonical projection from [0,+∞) onto T . The metric space (T , d) is a
compact real tree which can be viewed as a rooted real tree by setting ∅ = p(0).

On such a compact real tree, we define another measure : the mass measure mT defined
as the push-forward of the Lebesgue measure by the projection p. It is a finite measure
supported by the leaves of T and its total mass is

mT (T ) = σ.

This coding is very useful to define random real trees. For instance, Aldous’s CRT is the
random real tree coded by 2Bex where Bex denotes a normalized Brownian excursion (i.e. a
positive Brownian excursion with duration 1). Here, we will work under the σ-finite measure

N which denotes the law of a real tree coded by an excursion away from 0 of
√

2
α |B| where

|B| is a standard reflected Brownian motion. The tree T under N is then the genealogical
tree of a continuous state branching process with branching mechanism ψ(u) = αu2 under
its canonical measure. In particular, under N, σ has density on (0,+∞):

(2)
dr

2
√
απ r3/2

·

We keep parameter α in order to stay in the framework of [2], and give the result in the
setting of Aldous’s CRT (α = 1/2) or of Brownian excursion (α = 2).

Using the scaling property of the Brownian motion, there exists a regular version of the
measure N conditioned on the length of the height process ζ. We write N(r) for the probability
measure N[ · |σ = r]. In particular, we handle Aldous’s CRT if we work under N

(1) with
α = 1/2.

If x1, . . . , xn ∈ T , we denote by T (x1, . . . , xn) the subtree spanned by ∅, x1, . . . , xn, i.e.
the smallest connected subset of T that contains x1, . . . , xn and the root. In other words, we
have

T (x1, . . . , xn) =

n
⋃

i=1

[[∅, xi]].

With an abuse of notation, we write for every t1, . . . , tn ≥ 0, T (t1, . . . , tn) for the subtree
T (p(t1), . . . , p(tn)).

2.2. The mark process. We define now a mark process M on the tree T . Conditionally
given T , let M(dx, dq) be a Poisson point measure on T × [0,+∞) with intensity 2αℓ(dx)dq.
An atom (xi, qi) of this random measure represents a mark on the tree T , xi is the location
of this mark whereas qi denotes the time at which the mark appears.
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Remark 2.2. The coefficient 2α in the intensity is added to have the same intensity as in
the pruning procedures of [6, 5, 4] but, as we shall see, it does not appear in the law of the
number of records.

In fact we will sometimes work with the restriction of M to T × [0, a] for some a > 0.
To simplify the notations, we will always denote by M the mark process (even the restricted
one) and will write M

T
a for the law of M restricted to T × [0, a], conditionally given T . We

also write Na[dT dM ] = N[dT ]MT
a [dM ], and N

(r)
a [dT dM ] = N

(r)[dT ]MT
a [dM ].

We set for every q ≥ 0 and x ∈ T :

(3) θ(x) = inf{q > 0, M([[∅, x]] × [0, q]) > 0} and Tq = {x ∈ T ; θ(x) ≥ q},
respectively the first time a mark appears between the root and x, and the tree obtained by
pruning the original tree at the marks present at time q. We also define the mass of the tree
Tq:

σq = mT (Tq).
According to [5], Tq is distributed under N∞ as a Lévy tree with branching mechanism

ψq(u) = ψ(u+ q)− ψ(q) = αu2 + 2αqu.

We will denote by N
ψq the distribution of Tq under N. Moreover, thanks to Girsanov formula

([2], Lemma 6.2), we have, for every nonnegative Borel function F

(4) N
ψq [F (T )] = N[F (Tq)] = N

[

F (T ) e−αq
2σ
]

.

With the same abuse of notation as for the spanned subtree, we write for every t ∈ R+,
θ(t) instead of θ(p(t)).

2.3. Discrete trees. We recall here the definition of a discrete ordered rooted tree according
to Neveu’s formalism [29].

We consider U =

+∞
⋃

n=0

(N∗)n the set of finite sequences of positive integers. The empty

sequence ∅ belongs to U . If u, v ∈ U , we denote by uv the sequence obtained by juxtaposing
the sequences u and v.

A discrete ordered rooted tree T is a subset of U satisfying the three following properties

• ∅ ∈ T . ∅ is called the root of T .
• For every u ∈ U and i ∈ N

∗, if ui ∈ T then u ∈ T .
• For every u ∈ T , there exists an integer ku(T ) such that

ui ∈ T ⇐⇒ 1 ≤ i ≤ ku(T ).

The integer ku(T ) is the number of offsprings of the vertex u. The leaves of the tree are the
u ∈ T such that ku(T ) = 0. We will consider here only binary trees i.e, discrete trees such
that ku(T ) = 0 or 2.

We can add edge lengths to a discrete tree by considering weighted trees. A weighted tree
is defined by a discrete ordered rooted tree T and a weight hu ∈ [0,+∞) for every u ∈ T .
The elements u ∈ T must be viewed as the edges of the tree and hu is the length of the edge
u. Obviously, such a weighted tree can be viewed as a real tree and we will always make the
confusion between a discrete weighted tree and the associated real tree.
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3. Janson’s random variable

Let T be a compact real tree and let M be a mark process on T . We set

Θ =

∫

T
θ(x)mT (dx).

Remark that this can be re-written using the coding by Θ =
∫ σ
0 θ(s)ds.

Using the tree-valued process (Tq, q ≥ 0), we can give another expression for Θ. Let
(θi, i ∈ I) be the set of jumping times of (σq, q ≥ 0). We set:

(5) T i = {x ∈ T ; θ(x) = θi} and σi = mT (T i) = σθi− − σθi .

According to [2], we have that M
T
∞-a.s. T i is a real tree for all i ∈ I. Then the following

result is straightforward as by definition Θ =
∑

i∈I θiσ
i and σq =

∑

θi≥q σ
i.

Proposition 3.1. We have M
T
∞-a.s.:

Θ =

∫ +∞

0
σq dq.

The main result of this section is the following theorem that identifies Θ as Janson’s random
variable whose distribution is characterized by its moments.

Theorem 3.2. For every positive integer r, we have

M
T
∞[Θr] =

r!

(2α)r

∫

T r

mT (dx1) . . . mT (dxr)
∏r
i=1 ℓ(T (x1, . . . , xi))

·

Proof. Using the expression of Proposition 3.1 for Θ, we have

M
T
∞[Θr] = r! MT

∞

[
∫

0≤q1<q2<···<qr
dq1 . . . dqr σq1 . . . σqr

]

= r!MT
∞

[

∫

0≤q1<q2<···<qr
dq1 . . . dqr

r
∏

k=1

∫

T
mT (dxk)1{xk∈Tqk}

]

= r!

∫

T r

mT (dx1) . . . m
T (dxr)

∫

0≤q1<q2<···<qr
dq1 . . . dqrM

T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tqr ].

To evaluate the probability that appears in the last equation, let us remark that, if y ∈ Tq,
then y ∈ Tq′ for every q′ < q. Therefore, we have

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tqr ]

= M
T
∞[x2 ∈ Tq2, . . . , xr ∈ Tqr

∣

∣ x1 ∈ Tq1, . . . , xr ∈ Tq1 ]MT
∞[x1 ∈ Tq1 , . . . , xr ∈ Tq1].

On one hand, we have

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tq1] = M

T
∞ [M(T (x1, . . . , xr)× [0, q1]) = 0]

= exp
(

−2αq1ℓ(T (x1, . . . , xr))
)

.

On the other hand, by standard properties of Poisson point measures, we have

M
T
∞[x2 ∈ Tq2 , . . . , xr ∈ Tqr

∣

∣ x1 ∈ Tq1 , . . . , xr ∈ Tq1 ] = M
T
∞[x2 ∈ Tq2−q1 , . . . , xr ∈ Tqr−q1 ].

We finally obtain by induction, with the convention q0 = 0:

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tqr ] =

r
∏

k=1

e−2α(qk−qk−1)ℓ(T (xk,...,xr)) .
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Plugging this expression in the integral gives, after an obvious change of variables

M
T
∞[Θr] = r!

∫

T r

mT (dx1) . . . m
T (dxr)

∫

0≤q1<···<qr
dq1 . . . dqr

r
∏

k=1

e−2α(qk−qk−1)ℓ(T (xk,...,xr))

= r!

∫

T r

mT (dx1) . . . m
T (dxr)

r
∏

k=1

∫ +∞

0
dak e

−2αakℓ(T (xk,...,xr))

=
r!

(2α)r

∫

T r

mT (dx1) . . . mT (dxr)
∏r
k=1 ℓ(T (xk, . . . , xr))

·

�

We can then deduce from the results of [26], that for α = 2, under N
(1)
∞ , Θ has Rayleigh dis-

tribution. Using then scaling argument in r and α or directly Corollary 5.3 in the Appendix,
we get the following result.

Corollary 3.3. For all r > 0, the random variable Z =
√

2α
r Θ is distributed under N

(r)
∞

according to a Rayleigh distribution with density x e−x
2/2 1{x≥0}.

In particular, we have easily the first moments of Θ:

(6) N
(r)
∞ [Θ] =

1

2

√

πr

α
and N

(r)
∞
[

Θ2
]

=
r

α
·

4. A.s. convergence

4.1. Statement of the main result. Let r ≥ 0 and let T be a tree distributed according
to N

(r). Let (U1, . . . , Un) be n points uniformly chosen at random on [0, r], independent of
T . We denote by Tn the random tree spanned by these n points i.e.

Tn = T (U1, . . . , Un)

viewed as a discrete ordered weighted tree. Notice that Tn has 2n−1 edges. Let (h1, . . . , h2n−1)
be the lengths of the edges given in lexicographic order. We consider the total length of Tn:

Ln = ℓ(Tn) =

2n−1
∑

k=1

hk.

We define mn as the first branching point of Tn, i.e.

(7)

n
⋂

k=1

[[∅, p(Uk)]] = [[∅,mn]]

and we consider the length of the edge of Tn attached to the root

(8) h∅,n := d(∅,mn) = ℓ([[∅,mn]]) = h1.

Let T ∗
n be the sub-tree of Tn where we remove the edge [[∅,mn[[:

T ∗
n = Tn \ [[∅,mn[[,

and L∗
n its total length i.e. L∗

n = Ln − h∅,n.
We set θ(x−) = inf{θ(y), y ∈ [[∅, x[[} and X∗

n the number of records on the tree T ∗
n :

X∗
n =

∑

x∈T ∗
n

1{θ(x−)>θ(x)},



8 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Remark 4.1. The introduction of the tree T ∗
n is motivated by the fact that the number

∑

x∈Tn
1{θ(x−)>θ(x)}

of records on the whole tree is N∞-a.e. infinite. Moreover, X∗
n + 1 represents the number of

cuts that appears on the reduced tree Tn until a mark appears on the branch attached to
the root which reduces the tree to a trivial one consisting of the root and a single branch
attached to it. Hence it is the analogue of the discrete quantity Xn and is the right quantity
to be studied.

We can then state the main result of this section which will be proven in Section 4.5.

Theorem 4.2. We have that, for all r > 0, N
(r)
∞ -a.s.:

lim
n→+∞

X∗
n√
2n

=

√

α

2r
Θ = Z.

Remark 4.3. Notice that the binary tree Tn has 2n − 1 vertices; and it corresponds to a
critical Galton-Watson tree with reproduction law taking values in {0, 2} and with variance 1
conditionally on its number of edges being 2n− 1. This and Theorem 1.6 in [26] for α = 1/2
and r = 1, imply that the number of edges with more than one cut is of order less that

√
n.

We deduce from Theorem 4.2 and Corollary 4.9 that for all r > 0, N
(r)
∞ -a.s.:

lim
n→+∞

X∗
n

Ln
= α

Θ

σ
·

In the left hand-side, we have the average of the number of records on T ∗
n (as ℓ(T ∗

n) is of the
same order as Ln) and in the right hand-side, the ratio Θ/σ appears as the value of θ(U) for
a leaf chosen uniformly according to the normalized mass measure mT /σ and α is a constant
related to the branching mechanism. This result is then natural as intuitively the normalized
mass measure is the weak limit of the normalized length measure on Tn.

4.2. Other a.s. convergence results. Recall the definition (3) of the pruned sub-tree Tq.
Let T be the set of trees with their mass measure (see [3]). We define the backward filtration
G = (Gq, q ≥ 0) with Gq = σ(Tr, r ≥ q). Following [4], we get that the random measure:

N (dT ′, dq) =
∑

i∈I
δT i,θi(dT ′, dq)

is under N∞ a point measure on T× R with intensity:

1{q>0}2ασq N
q
[

dT ′] dq.

This means that for every non-negative predictable process (Y (T ′, q), q ∈ R+,T ′ ∈ T) with
respect to the backward filtration G,

(9) N∞

[
∫

Y (T ′, q)N (dT ′, dq)
]

= N∞

[
∫

Yq 1{q>0}2ασq dq
]

,

where (Yq =
∫

Y (T ′, q)Nq[dT ′], q ∈ R+) is predictable with respect to the backward filtration
G. We refer to [13, 14] for the general theory of random point measures.

Recall σi = mT (T i).

Proposition 4.4. We have N∞-a.e.:

lim
n→+∞

1√
n

∑

i∈I
1{σi≥1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.
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Proof. Let K > 0 be large. We consider the G-stopping time τK = inf{q;σq < K/2α}. We
define for every θ > 0 and every positive integer n,

Qn(θ) =
∑

i∈I
1{σi≥1/n}1{θi>θ}.

We have Qn(τK) =
∑

i∈I 1{σi≥1/n}1{σθi+<K/2α} so that:

N∞ [Qn(τK)] = N∞

[
∫ +∞

τK

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

]

≤ N∞

[
∫ +∞

0
dq min

(

σq,
K

2α

)

N

[

1{σ≥1/n} e
−αq2σ

]

]

=

∫ +∞

0
dq N

[

min

(

σ,
K

2α

)

e−αq
2σ

]

N

[

1{σ≥1/n} e
−αq2σ

]

=
1

4απ

∫ +∞

0
dq

∫ +∞

0

du

u3/2
min

(

u,
K

2α

)

e−αq
2u

∫ +∞

1/n

dr

r3/2
e−αq

2r

=
1

8α3/2
√
π

∫

R2
+

du

u3/2
dr

r3/2
min

(

u,
K

2α

)

1√
u+ r

1{r>1/n},

where we used (9) for the first equality, Girsanov formula (4), and the density (2) of the
distribution of σ under N. Elementary computations yields there exists a finite constant c
which depends on K but not on n such that:

(10) N∞ [Qn(τK)] = N∞

[
∫ +∞

τK

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

]

≤ c
√
n(1 + log(n)).

Classical results on random point measures imply that the process (Nn(θ∨ τK), θ ≥ 0), with:

Nn(θ) = Qn(θ)− 2α

∫ +∞

θ
dq σqN

[

1{σ≥1/n} e
−αq2σ

]

is a backward martingale with respect to G. Moreover, since (Qn(θ), θ ≥ 0) is a pure jump
process with jumps of size 1, the process (Mn(θ ∨ τK), θ ≥ 0), with:

Mn(θ) = Nn(θ)
2 − 2α

∫ +∞

θ
dq σqN

[

1{σ≥1/n} e
−αq2σ

]

is also a backward martingale with respect to G. Using (10), we get that N∞
[

(

Nn4(τK)/n
2
)2
]

is less than a constant times n−3/2; therefore

+∞
∑

n=1

(

Nn4(τK)

n2

)2

is finite in L1(N∞) and thus is N∞-a.e. finite. This implies that N∞-a.e.:

lim
n→+∞

Nn4(τK)

n2
= 0.
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Moreover, we have by monotone convergence:

2α√
n

∫ +∞

τK

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

= 2α

∫ +∞

τK

dq σq

∫ +∞

1

dr

2
√
απr3/2

e−αq
2 r
n

N∞-a.e.−−−−−→
n→∞

2

√

α

π

∫ +∞

τK

dqσq.

We get that the sequence (Qn4(τK)/n
2, n ≥ 1) converges N∞-a.e. toward 2

√

α
π

∫ +∞
τK

dq σq.

Since (Qn(θ), n ≥ 1) is non-decreasing, we deduce that N∞-a.e.:

lim
n→+∞

Qn(τK)√
n

= 2

√

α

π

∫ +∞

τK

dq σq.

Since σ is finite N∞-a.e., we get that N∞-a.e. τK = 0 for K large enough. This gives the
result. �

Proposition 4.5. We have N∞-a.e.:

lim
n→+∞

√
n
∑

i∈I
σi1{σi≤1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.

Proof. The proof is very similar to the proof of Proposition 4.4. We set:

Qn(θ) =
∑

i∈I
σi1{σi≤1/n}1{θi≥θ}.

Mimicking the proof of Proposition 4.4, we have for some finite constant c which depends on
K but not on n:

N∞ [Qn(τK)] = N∞

[
∫ +∞

τK

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

]

≤ 1

8α3/2
√
π

∫

R2
+

du

u3/2
dr

r3/2
min

(

u,
K

2α

)

1√
u+ r

r1{r≤1/n}

≤ cn−1/2(1 + log(n)) < +∞,

as well as:

N∞

[
∫ +∞

τK

dq σqN
[

σ21{σ≤1/n} e
−αq2σ

]

]

≤ 1

8α3/2
√
π

∫

R2
+

du

u3/2
dr

r3/2
min

(

u,
K

2α

)

1√
u+ r

r21{r≤1/n}

≤ cn−3/2(1 + log(n)).

Classical results on random point measures imply that the processes (Nn(θ∨ τK), θ ≥ 0) and
(Mn(θ ∨ τK), θ ≥ 0), with:

Nn(θ) = Qn(θ)− 2α

∫ +∞

θ
dq σqN

[

σ1{σ≤1/n} e
−αq2σ

]

Mn(θ) = Nn(θ)
2 − 2α

∫ +∞

θ
dq σqN

[

σ21{σ≤1/n} e
−αq2σ

]
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are backward martingales with respect to G. We get that N∞
[

(

n2Nn4(τK)
)2
]

is less than

a constant times n−3/2. Following the proof of Proposition 4.4, we deduce that N∞-a.e.
limn→+∞ n2Nn4(τK) = 0. Furthermore, we have:

2α
√
n

∫ +∞

τK

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

= 2α
√
n

∫ +∞

τK

dq σq

∫ 1

n

0

dr

2
√
απr

e−αq
2r

= 2α

∫ +∞

τK

dq σq

∫ 1

0

dr

2
√
απr

e−αq
2 r
n

→ 2

√

α

π

∫ +∞

τK

dq σq.

We conclude the proof as in the proof of Proposition 4.4. �

4.3. The record process on the real half-line. We consider here the half-line [0,+∞)
instead of a real-tree T (the half-line is in fact a real tree that we supposed rooted at 0).
We define the mark process M under Ma (we omit the T = [0,+∞) in the notation), it is a
Poisson point measure on [0,+∞)2 with intensity 2α1{x≥0, 0≤q≤a}dx dq and we set for every
x ≥ 0

θ(x) = min(a, inf{qi;xi ≤ x}) and X(x) = X(0) +
∑

0<y≤x
1{θ(y−)>θ(y)}.

Remark 4.6. Let us denote by 1 ≥ x1 > x2 > · · · the jumping times of the process (θ(x), 0 ≤
x ≤ 1) under M∞. By standard arguments on Poisson point measure, the random variable x1
is uniformly distributed on [0, 1]. Conditionally given x1, the random variable x2 is uniformly
distributed on [0, x1] and so on. We are thus considering the standard stick breaking scheme
and the random vector (1− x1, x1 − x2, . . .) is distributed according to the Poisson-Dirichlet
distribution with parameter (0, 1).

For fixed x, θ(x) represents the first time a mark arrives between x and 0 (if it arrives
before time a that is if θ(x) < a); and X(x) − X(0) denotes the number of (decreasing)
records of the process (θ(u), u ∈ [0, x]). It is also the number of cuts that appear between x
and 0 in the stick-breaking scheme before time a.

By construction θ and (θ,X) are Markov processes. Notice that θ is non-increasing and
X is non-decreasing, and M∞-a.s. X(x) = +∞ for every x > 0.

As most of our further proofs will be based on martingale arguments, let us first compute
the infinitesimal generator of the former Markov processes. Notice first that inf{qi;xi ≤ x}
is distributed under M∞ as an exponential random variable with parameter 2αx. Let g be a
bounded measurable function defined on [0,+∞]. For every q ∈ [0,+∞] and x > 0, we have

Mq[g(θ(x))] = M∞[g(min(q, Yx))] = e−2αqx g(q) +

∫ q

0
g(u) 2αx e−2αxu du,

where Yx is exponentially distributed with parameter 2αx. Notice that if g belongs to C1(R+)
with g′ bounded on R+, we have by an obvious integration by parts that, for q ∈ [0,+∞] and
x > 0,

Mq[g(θ(x))] = g(0) +

∫ q

0
g′(u) e−2αxu du.

We can then compute the infinitesimal generator of θ denoted by L. Let g be a bounded
measurable function defined on [0,+∞] such that g − g(+∞) is integrable with respect to
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the Lebesgue measure on R
+. For q ∈ [0,+∞], we have:

L(g)(q) = lim
x→0

Mq[g(θ(x))] − g(q)

x

= lim
x→0

−g(q)1− e−2αqx

x
+

∫ q

0
2αg(u) e−2αxu du

= 2α

∫ q

0
(g(u) − g(q)) du.

Therefore, we get that the process Mg = (Mg
x , x ≥ 0) is a martingale under Mq, where M

g

is defined by:

(11) Mg
x = g(θ(x)) + 2α

∫ x

0
dy

∫ θ(y)

0

(

g(θ(u))− g(y)
)

du.

Remark 4.7. If furthermore g belongs to C1(R+) and if x 7→ xg′(x) is integrable with respect
to the Lebesgue measure on R

+, then we have for q ∈ [0,+∞]:

L(g)(q) = −2α

∫ q

0
xg′(x) dx.

Similarly, we can also compute the infinitesimal generator of (θ,X), which we still denote
by L. This quantity is of interest only for θ(0) finite. Let g be a bounded measurable function
defined on R

+ × N. For (q, k) ∈ R
+ × N, we denote by M(q,k) the law of the process (θ,X)

starting from (q, k). Standard computations on birth and death processes yield that for
(q, k) ∈ R

+ × N:

L(g)(q, k) = lim
x→0

M(q,k)[g(θ(x),X(x))] − g(q, k)

x

= lim
x→0

−g(q, k)1 − e−2αqx

x
+

∫ q

0
2αg(u, k + 1) e−2αxu du+ o(1)

= 2α

∫ q

0
(g(u, k + 1)− g(q, k)) du.

In that case, we get that the process Mg = (Mg
x , x ≥ 0) defined by:

(12) Mg
x = g(θ(x),X(x)) − 2α

∫ x

0
dy

∫ θ(y)

0

(

g(u,X(y) + 1)− g(θ(y),X(y))

)

du,

is a bounded martingale under M(q,k).
Finally, let us exhibit some martingales associated with the process X which show that this

process can be viewed as a Poisson process with stochastic intensity 2αθ(u)du. Let n ∈ N.

Taking g(q, k) = k ∧ n in (12), we deduce that the process N (n) = (N
(n)
x , x ≥ 0) defined for

x ≥ 0 by:

N (n)
x = X(x) ∧ n− 2α

∫ x

0
θ(u)1{X(u)<n} du



RECORD PROCESS ON THE CONTINUUM RANDOM TREE 13

is a bounded martingale under M(q,k) (for q < +∞). Notice that for (q, k) ∈ R
+ × N, we

have:

M(q,k)[|N (n)
x |] ≤ M(q,k)[X(x) ∧ n] + 2α

∫ x

0
E(q,k)[θ(u)] du

= k ∧ n+ 2α

∫ x

0
E(q,k)[θ(u)1{X(u)<n}] du+ 2α

∫ x

0
E(q,k)[θ(u)] du

≤ k + 4αqx,

where we used that X is non-negative in the first equality, that N (n) is a martingale in the
second one, and that θ is non-increasing in the last one. As (N (n), n ∈ N) converges a.s. to
the process N = (Nx, x ≥ 0) defined for x ∈ R

+ by:

(13) Nx = X(x)− 2α

∫ x

0
θ(u) du,

we deduce that N is a martingale under M(q,k) for every (q, k) ∈ R
+ × N.

By taking g(q, k) = k2 in (12) and using elementary stochastic calculus and similar argu-
ments as above, we also get that the process M = (Mx, x ≥ 0) defined for x ≥ 0 by:

(14) Mx = N2
x − 2α

∫ x

0
θ(u) du

is a martingale under M(q,k) for every (q, k) ∈ R
+ × N.

4.4. Sub-tree spanned by n leaves. We recall here some properties of the sub-tree spanned
by n leaves uniformly chosen.

We first recall the density of (h1, . . . , h2n−1) under N
(r), see [9] or [32] (Theorem 7.9), see

also [18]. We denote by Ln the total length of Tn:

Ln =

2n−1
∑

k=1

hk.

Lemma 4.8. Under N
(r), (h1, . . . , h2n−1) has density:

f (r)n (h1, . . . , h2n−1) = 2
(2n− 2)!

(n− 1)!

αn

rn
Ln e

−αL2
n/r 1{h1>0,...,h2n−1>0}.

The random variable L2
n, is distributed under N

(r) as rΓn/α where Γn is a γ(1, n) random
variable with density 1{x>0} x

n−1 e−x /(n − 1)!.

Corollary 4.9. We have that N(r)-a.s.

lim
n→+∞

Ln/
√
n =

√

r/α.

Proof. Using Lemma 4.8, we compute

N
(r)

[

+∞
∑

n=1

(

L2
n

n
− r

α

)4
]

=
r

α

+∞
∑

n=1

E

[

(

Γn
n

− 1

)4
]

=
r

α

+∞
∑

n=1

1

n2

(

3 +
1

n

)

< +∞.

This implies that N(r)-a.s.
∑+∞

n=1

(

L2
n
n − r

α

)4
is finite which proves the corollary. �

We end this section by studying the edge attached to the root defined in (7) whose length
is denoted h∅,n, see (8).
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Proposition 4.10. The sequence (
√
nh∅,n, n ≥ 1) converges in distribution under N

(r) to
√

r/α E1/2, where E1 is an exponential random variable with mean 1.

Proof. Let k ∈ (−1,+∞). We set Hk = (α/r)k/2N(r)[hk∅,n]. We have using Lemma 4.8,

Hk = 2
(2n − 2)!

(n− 1)!

αn+k/2

rn+k/2

∫

R
2n−1

+

dh1 . . . dh2n−1h
k
1 Ln e

−αL2
n/r .

Consider the change of variables:

u1 =

√

α

r
h1, · · · , u2n−2 =

√

α

r
h2n−2, x =

√

α

r
Ln,

with Jacobian equal to
(

α
r

)n− 1

2 .We get:

Hk = 2
(2n − 2)!

(n− 1)!

αn+k/2

rn+k/2

∫

R
2n−1
+

( r

α

)k/2
uk1

( r

α

)1/2
x e−αx

2/r

1{u1+···+u2n−2≤x}
( r

α

)n− 1

2

du1 · · · du2n−2 dx

= 2
(2n − 2)!

(n− 1)!

∫ ∫

R2
+

du1 dx1{u1≤x} u
k
1x e

−x2
∫ ∫

R
2n−3

+

du2 . . . du2n−21{u2+···+u2n−2≤x−u1}

= 2
(2n − 2)!

(n− 1)!

1

(2n − 3)!

∫ +∞

0
dxx e−x

2

∫ x

0
dhhk(x− h)2n−3.

Set y = x2, to get:

Hk = 2
(2n− 2)!

(n − 1)!

1

(2n − 3)!
β(k + 1, 2n − 2)

∫ +∞

0
dx x2n+k−1 e−x

2

=
(2n − 2)!

(n− 1)!

1

(2n− 3)!
β(k + 1, 2n − 2)

∫ +∞

0
dy yn+

k
2
−1 e−r

=
(2n − 2)!

(n− 1)!

1

(2n− 3)!

Γ(k + 1)(2n − 3)!

Γ(2n + k − 1)
Γ(n+

k

2
)

=
Γ(k + 1)

2k
Γ(n− 1

2)

Γ(n+ k
2 − 1

2)
,

where, for the last equality, we used twice the duplication formula:

(15)
Γ(2n − 1)

Γ(n)
=

22n−2Γ(n− 1/2)√
π

·

We observe that limn→+∞N
(r)[nk/2hk∅,n] =

k!
2k

(

r
α

)k/2
= E[(

√
rE1/(2

√
α))k]. This gives the

result, as the exponential distribution is characterized by its moments. �

From the proof of Proposition 4.10, we also get the following result.

Lemma 4.11. For all k ∈ (−1,+∞), we have, when n goes to infinity:

N
(r)[hk∅,n] =

( r

α

)k/2 Γ(k + 1)

2k
Γ(n− 1

2 )

Γ(n+ k
2 − 1

2)
∼ (r/α)k/2n−k/22−kΓ(k + 1).
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4.5. Proof of Theorem 4.2. We first want to show that, as for a standard Poisson process,
the record counting process on each branch behaves like its (stochastic) intensity when the
number of jumps tends to +∞.

In other words, we set:

∆n =
X∗
n√
n
− 2α√

n

∫

T ∗
n

θ(x) ℓ(dx)

and we want to prove that ∆n tends a.s. to 0 (at least along some subsequence).
Using the martingale of Equation (14), we have that:

(16) N
(r)
∞
[

∆2
n

∣

∣

∣
Tn

]

=
2α√
n
N
(r)
∞

[

1√
n

∫

T ∗
n

θ(x) ℓ(dx)
∣

∣

∣
Tn

]

.

Then we use the following lemma whose proof is postponed to Section 4.6.

Lemma 4.12. Let r > 0. There exists a non-negative sequence (R′
n, n ≥ 1) of random

variables adapted to the the filtration (σ(Tn), n ≥ 1) and which converges N
(r)
∞ -a.s. to 0 such

that, for all n ≥ 1, N(r)-a.s.:

(17) rN(r)
∞

[

1√
n

∫

T ∗
n

θ(x) ℓ(dx)
∣

∣

∣
Tn

]

≤ Ln√
n
N
(r)
∞
[

Θ
∣

∣

∣
Tn

]

+R′
n.

With this lemma, we have:

N
(r)
∞





∑

n≥1

∆2
n41{R′

n4
≤1}



 =
∑

n≥1

N
(r)
∞
[

N
(r)
∞
[

∆2
n4 | Tn4

]

1{R′
n4

≤1}
]

≤
∑

n≥1

2α

n2r
N
(r)
∞

[(

Ln4

n2
N
(r)
∞
[

Θ
∣

∣

∣
Tn4

]

+R′
n4

)

1{R′
n4

≤1}

]

≤
∑

n≥1

2α

n2r

(

1

n2
N
(r)
∞
[

L2
n4

]1/2
N
(r)
∞
[

Θ2
]1/2

+ 1

)

< +∞,

where we used (16) and (17) for the first inequality, Cauchy-Schwartz inequality for the

second one, and Lemma 4.8 as well as (6) for the last one. This result implies that N
(r)
∞ -a.s.

limn→+∞∆n41{R′
n4

≤1} = 0 and thus N
(r)
∞ -a.s. limn→+∞∆n4 = 0 as the sequence (R′

n, n ≥ 1)

converges N
(r)-a.s. to 0.

In order to conclude, it remains to study the asymptotic behavior of

1√
n

∫

T ∗
n

θ(x) ℓ(dx)

which is the purpose of the next proposition which will also be proven in Section 4.6.

Proposition 4.13. We have that, for all r > 0, N
(r)
∞ -a.s.:

(18) lim
n→+∞

1√
n

∫

T ∗
n

θ(x) ℓ(dx) =
1√
rα

Θ.
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We deduce from (18), that N
(r)
∞ -a.s. the sequence (X∗

n4/n
2, n ≥ 1) converges to 2

√

r
αΘ.

Then using that (X∗
n, n ≥ 1) is increasing, we get for k ∈ N, such that n4 < k ≤ (n + 1)4,

that:
n2

(n+ 1)2
X∗
n4

n2
≤ X∗

k√
k
≤ (n + 1)2

n2

X∗
(n+1)4

(n+ 1)2
·

Thus, we get that N
(r)
∞ -a.s. the sequence (X∗

k/
√
k, k ≥ 1) converges to 2

√

α
rΘ.

4.6. Proof of Proposition 4.13 and Lemma 4.12. First, let us remark that, as Ln/
√
n

tends N
(r)
∞ -a.s. to

√

r/α by Corollary 4.9 and is σ(Tn)-measurable, it suffices to study the
limit of

1

Ln

∫

T ∗
n

θ(x) ℓ(dx).

Let us exhibit a martingale that converges to Θ. Let Fn be the σ-field generated by Tn
and (θ(x), x ∈ Tn). The filtration (Fn, n ≥ 1) is increasing towards ∨n≥1Fn = F , the σ-field
generated by T and (θ(s), s ∈ [0, σ]) = (θ(x), x ∈ T ).

We consider the process (Mn, n ≥ 1) defined by, for q ∈ [0,+∞]:

Mn = N
(r)
q

[

Θ
∣

∣

∣
Fn
]

.

Thanks to (6), we get that:

N
(r)
q [M2

n] ≤ N
(r)
q

[

Θ2
]

≤ N
(r)
∞
[

Θ2
]

=
r

α
·

Therefore (Mn, n ≥ 1) is (a well defined) square integrable non-negative martingale. In

particular it converges N
(r)
q -a.s. (and in L2(N

(r)
q )) to Θ as the increasing σ-fields Fn increase

to F .
In the next lemma whose proof is given in Section 4.7, we compare 1

Ln

∫

T ∗
n
θ(x) ℓ(dx) to

Mn.

Lemma 4.14. We have, for n ≥ 1,

(19) −Rn ≤Mn −
r

Ln

∫

T ∗
n

θ(x) ℓ(dx) ≤ Vn,

where (Rn, n ≥ 1) and (Vn, n ≥ 1) are non-negative sequences which converge N
(r)
∞ -a.s. to 0.

Furthermore the non-negative sequence (R′
n, n ≥ 1), with R′

n = N
(r)
∞ [Rn|Tn] Ln/

√
n, converges

N
(r)
∞ -a.s. to 0.

This lemma ends the proof of Proposition 4.13. Moreover, as N
(r)
∞ [Mn | Tn] = N

(r)
∞ [Θ | Tn],

it also proves Lemma 4.12.

4.7. Proof of Lemma 4.14. In order to first give a description of the marked tree condi-
tionally on Fn, we consider the sub-trees that are grafted on Tn. For x, y ∈ T , we define an
equivalence relation by setting

x ∼Tn y ⇐⇒ [[∅, x]] ∩ Tn = [[∅, y]] ∩ Tn
and we set (Ti, i ∈ In) for the different equivalent classes. The set Ti can be viewed as a
rooted real tree with root xi = Ti ∩ Tn. Notice that xi represents the point of Tn at which
the tree Ti is grafted on Tn. Finally, we set θi = θ(xi) and σi = mT (Ti) which corresponds
to the length of the height process of Ti.

Using Theorem 3 of [23] (combined with the spatial motion θ), we get the following result.
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Lemma 4.15. Under Nq conditionally on Fn, the point measure
∑

i∈In
δ(Ti,θi,xi)(dT , dq′, dx)

is a Poisson point measure with intensity

2α1Tn(x)ℓ(dx) N[dT ] δθ(x)(dq
′).

We deduce from that Lemma the next result.

Lemma 4.16. Under N
(r)
q and conditionally on Fn, the point measure

Nn(dσ, dq
′, dx) =

∑

i∈In
δ(σi,θi,xi)(dσ, dq

′, dx)

is distributed as a Poisson point measure:

Ñ (dσ, dq′, dx) =
∑

j∈J
δ(σ̃j ,θj ,xj)(dσ, dq

′, dx)

with intensity 2α1Tn(x)ℓ(dx)
dσ

2
√
απ σ3/2

1{σ>0} δθ(x)(dq′) conditioned on {∑j∈J σ̃j = r}.

We can compute some elementary functionals of Nn.

Lemma 4.17. Under N
(r)
q and conditionally on Fn, the point measure Nn has intensity:

2α1Tn(x)ℓ(dx) E
(r),Ln [dσ] δθ(x)(dq),

where E
(r),Ln satisfies, for any non-negative measurable function F :

2α

∫

Tn

ℓ(dx) E(r),Ln [F (x, σ)] = E





∑

j∈J
F (sj , σ̃j)

∣

∣

∣

∑

j∈J
σ̃j = r



 .

We also have:

(20) E
(r),Ln [σ] =

r

2αLn
and E

(r),Ln [σ3/2] ≤ 2√
απ

1

Ln
r2 e−αL

2
n/r .

Proof. The first part of the Lemma is a consequence of the exchangeability of (σi, i ∈ In).
With F (q, r′) = r′, we get:

2αLnE
(r),Ln [σ] = 2α

∫

Tn

ℓ(dx) E(r),Ln [σ] = E





∑

j∈J
σ̃j |

∑

j∈J
σ̃j = r



 = r.

This gives the first equality of (20). Recall that:

N
[

1− e−µσ
]

=

∫ ∞

0

dr

2
√
απ r3/2

(

1− e−µr
)

=
√

µ/α.

We have, using the Palm formula for Poisson point measures, for a > 1/2:

E





∑

j∈J
σ̃aj e

−µ∑

i∈J σ̃i



 = E





∑

j∈J
σ̃aj e

−µσ̃j e−µ
∑

i∈J,i6=j σ̃i





= 2αLnN
[

σa e−µσ
]

exp
(

−2αLnN
[

1− e−µσ
])

= 2αLnN
[

σa e−µσ
]

e−2Ln
√
αµ .
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Moreover, we have:

N
[

σa e−µσ
]

=

∫ ∞

0

dr

2
√
απ r3/2

ra e−µr =
1

2
√
απ

Γ(a− 1/2)µ1/2−a.

We deduce that:

E





∑

j∈J

(

2
√
αLnσ̃

3/2
j +

1

Γ(3/2)
σ̃2j

)

e−µ
∑

i∈J σ̃i





= 2αLn e
−2Ln

√
αµ

(

2
√
αLnN[σ

3/2 e−µσ ] +
1

Γ(3/2)
N[σ2 e−µσ ]

)

= 2αLn e
−2Ln

√
αµ 1

2
√
απ

(

2
√
αLn
µ

+
1

µ3/2

)

=
2√
π

∂2

∂µ2
e−2Ln

√
µα .

Let us recall the Laplace transform for the density of a stable subordinator of index 1/2: for
a > 0 and µ ≥ 0,

a

∫ +∞

0

dr√
2πr3

e−µr−a
2/(2r) = e−a

√
2µ .

¿From that formula, we have

∂2

∂µ2
e−2Ln

√
µα =

∂2

∂µ2
1√
π

∫ +∞

0

dx

x3/2
e−1/x e−αL

2
nµx

=
1√
π

(

αL2
n

)2
∫ +∞

0
dx

√
x e−1/x e−αL

2
nµx

=
Ln

√
α√
π

∫ +∞

0
dr

√
r e−αL

2
n/r e−µr

= 2αLn

∫ +∞

0

dr

2
√
απ r3/2

r2 e−αL
2
n/r e−µr .

We deduce that:

E





∑

j∈J

(

2
√
αLnσ̃

3/2
j +

1

Γ(3/2)
σ̃2j

)

∣

∣

∣

∑

i∈J
σ̃i = r



 =
4αLn√
π
r2 e−αL

2
n/r .

Then, using the first part of Lemma 4.17 with F (s, σ) = 2
√
αLnσ

3/2 + 1
Γ(3/2) σ

2, we get the

second inequality of (20). �

Now we prove Lemma 4.14.
We consider the set I∗n = {i ∈ In, xi ≥ mn} of indexes such that Ti is not grafted on the

edge [[∅,mn]]. We set:

An = {s ≥ 0; [[∅, s]]∩ T ∗
n 6= ∅} =

⋃

i∈I∗n
T i, M∗

n = N
(r)
q

[
∫

An

θ(s) ds
∣

∣

∣
Fn
]

and Vn =Mn−M∗
n.
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Notice that the sequence (An, n ∈ N
∗) is non-decreasing and that

⋂

n∈N∗ Acn = ∅, as there is

no tree grafted on the root. By dominated convergence, this implies that N
(r)
q -a.s.:

lim
n→+∞

∫

Ac
n

θ(s) ds = 0.

As:

Vn+m = N
(r)
q

[

∫

Ac
n+m

θ(s) ds
∣

∣

∣
Fn+m

]

≤ N
(r)
q

[

∫

Ac
n

θ(s) ds
∣

∣

∣
Fn+m

]

,

and as Fn+m increases to F , we get that lim supm→+∞ Vn+m ≤
∫

Ac
n
θ(s) ds and thus N

(r)
q -a.s.

(21) lim
n→+∞

Vn = 0.

We define the function Hq (see Proposition 5.5 for a closed formula) by:

Hq(r) = N
(r)
q [Θ].

We have, with Θi = Θ(Ti) =
∫

Ti θ(x) m
T (dx):

M∗
n = N

(r)
q

[
∫

An

θ(s) ds
∣

∣

∣
Fn
]

= N
(r)
q





∑

i∈I∗n
Θi

∣

∣

∣
Fn



 = N
(r)
q





∑

i∈I∗n
N
(σi)
θ(xi)

[Θ]
∣

∣

∣
Fn





= N
(r)
q





∑

i∈I∗n
Hθ(xi)(σi)

∣

∣

∣
Fn



 .

Since Hq(r) ≤ qr, see (37) in Proposition 5.5, we get using the first equality of (20) in Lemma
4.17:

M∗
n = 2α

∫

T ∗
n

ℓ(dx) E(r),Ln [Hθ(x)(σ)] ≤ 2α

∫

T ∗
n

ℓ(dx) θ(x)E(r),Ln [σ] = r
1

Ln

∫

T ∗
n

ℓ(dx) θ(x).

This gives the upper bound of (19).

We shall now prove the lower bound of (19). Since Hq(r) ≥ qr− 1
2

√
απ q2r3/2, see (37) in

Proposition 5.5, we also get using the second equality of (20) in Lemma 4.17:

Mn ≥M∗
n ≥ r

1

Ln

∫

T ∗
n

ℓ(dx) θ(x)− 1

2

√
απ E

(r),Ln [σ3/2]

∫

T ∗
n

ℓ(dx) θ(x)2

≥ r
1

Ln

∫

T ∗
n

ℓ(dx) θ(x)− 1

2
r2 e−αL

2
n/r θ2∅,n

where θ∅,n = θ(mn). This proves the lower bound of (19) with:

(22) Rn =
1

2
r2 e−αL

2
n/r θ2∅,n.

It remains to prove that this quantity tends to 0. First, we have:

N
(r)
∞ [h2∅,nθ

2
∅,n] = N

(r)
∞ [h2∅,nN

(r)
∞ [θ2∅,n |h∅,n]] =

1

(2α)2
,

where we used that θ∅,n is exponentially distributed conditionally given h∅,n for the second
equality. We deduce that:

N
(r)
∞

[

+∞
∑

n=1

h2∅,nθ
2
∅,n

n2

]

<∞
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and hence N
(r)
∞ -a.s.:

+∞
∑

n=1

h2∅,nθ
2
∅,n

n2
<∞.

This implies that, N
(r)
∞ -a.s., for some finite Fn-measurable random variable C1:

h2∅,nθ
2
∅,n ≤ C1n

2.

Using Lemma 4.11, we have N
(r)
∞ [h

−1/2
∅,n ] ∼ n1/4

√

απ/2r, which implies by similar arguments

that, N
(r)
∞ -a.s., for some finite σ(Tn)-measurable random variable C2:

(23) h
−1/2
∅,n ≤ C2n

3/2.

Finally, using Formula (22) for Rn, we have N
(r)
∞ -a.s.:

Rn ≤ C1C
4
2 n

8r2 e−αL
2
n/r .

As N
(r)
∞ -a.s. limn→+∞Ln/

√
n =

√

r/α, we deduce that limn→+∞Rn = 0.
Using (23), we deduce that:

R′
n =

Ln√
n
N
(r)
∞ [Rn | Tn] =

Ln√
n

r2

2
e−αL

2
n/r

1

4α2

1

h2∅,n
≤ C4

2

r2

8α2
n11/2Ln e

−αL2
n/r .

Thus, we get that the non-negative sequence (R′
n, n ≥ 1), converges N

(r)
∞ -a.s. to 0, which

ends the proof.

5. Appendix

5.1. Computations on Rayleigh distributions. Let Z be a Rayleigh random variable.

Lemma 5.1. Let µ > 0, c ≥ 0. We have:

(24)
1√
π

∫ +∞

0

dr√
r

e−µr E
[

e−
√
2r cZ′

]

=
1

c+
√
µ
·

Proof. We set

J =

√

µ

2

∫ ∞

0

dr√
r

e−µr
∫ ∞

0
dx x e−x

2/2 e−c
√
2r x .

With the change of variable t2 = 2µr and with ρ = c/
√
µ, we get:

J =

∫

[0,+∞)2
dtdx x exp(−(t2 + x2 + 2ρtx)/2)

=

∫

[0,+∞)2
dtdx (x+ ρt) e−(t2+x2+2ρtx)/2 −ρ

∫

[0,+∞)2
dtdx t e−(t2+x2+2ρtx)/2

=

∫ ∞

0
dt
[

− exp(−(t2 + x2 + 2ρtx)/2)
]x=+∞
x=0

− ρJ

=

∫ ∞

0
dt e−t

2/2 −ρJ

=
√

π/2 − ρJ.

This implies that J =

√

π/2

ρ+ 1
=

√

µ

2

√
π

c+
√
µ
, which is exactly what we needed. �
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5.2. Joint law of (Θ, σ). Notice that the joint law of (Θ, σ) under N∞ is given in Corollary
3.3. However, we shall need the joint distribution under Nq. For this reason, we compute the
Laplace transform of (Θ, σ) using the theory of super-process.

Let λ > 0, µ ≥ 0. We set for q ∈ [0,+∞]:

(25) F (q) = Nq

[

1− e−λΘ−µσ
]

.

We define the function:

(26) G(x) =

(
√

µ

α
+

λ

2α

)

e
2α
λ

(

x−
√
µ/α

)

−x− λ

2α
·

The function G is one-to-one from [
√

µ/α,+∞) to [0,+∞), is increasing and is of class C∞.

Lemma 5.2. Let λ > 0, µ ≥ 0. The function F is of class C1 on [0,+∞) and solves the
following equation on [0,+∞):

(27) αF (q)2 + 2α

∫ q

0
xF ′(x) dx = λq + µ.

Furthermore, we have F = G−1.

Proof. The first part of the Lemma is a well known result from Laplace transform of su-
perprocess [19] (Theorem 1.8) or equivalently of Brownian snake [21] (Theorem 4). We set
f(x) = λx+ µ. We introduce the function ut(q) defined for t ≥ 0 and q ≥ 0 by:

ut(q) = Nq

[

1− e−
∫ σ
0
f(θ̂s)1{ζs≤t} ds

]

.

We deduce from Theorem II.5.11 of [31] that u is the unique non-negative solution of:

ut(q) + Eq

[
∫ t

0
αut−s(θ(s))2 ds

]

= Eq

[
∫ t

0
f(θ(s)) ds

]

.

Using the Markov property of θ, we get that for t ≥ r ≥ 0:

(28) ut(q) + Eq

[
∫ r

0
αut−s(θ(s))2 ds

]

= Eq

[
∫ r

0
f(θ(s)) ds

]

+ Eq[ut−r(θ(r))].

Notice that limt→+∞ ut(q) = F (q). And we have:

ut(q) ≤ F (q) ≤ N

[

1− e−(q+µ)σ
]

=
√

(q + µ)/α.

By monotone convergence, we deduce from (28) that:

F (q) + Eq

[
∫ r

0
αF (θ(s))2 ds

]

= Eq

[
∫ r

0
f(θ(s)) ds

]

+ Eq[F (θ(r))].

This implies that the process N = (Nt, t ≥ 0) defined by:

Nt = F (θ(t)) +

∫ t

0

(

f(θ(s))− αF (θ(s))2
)

ds,

is a martingale under Eq, for q < +∞. We deduce from (11) (with g = F ) that:
∫ t

0

(

f(θ(s))− αF (θ(s))2 − 2α

∫ θ(s)

0
(F (x) − F (q)) dx

)

ds

is a martingale. Since it is predictable, it is a.s. constant. We get that a.e. for q ≥ 0:

f(q)− αF (q)2 + 2αqF (q) − 2α

∫ q

0
F (x) dx = 0,



22 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

that is a.e.:

F (q) =

√

q2 − 2

∫ q

0
F (x) dx+ (f(q)/α) + q.

Since by construction F is non-decreasing, we get that F is continuous and then of class C1.
An obvious integration by parts gives (27).

We now prove the second part of the Lemma. Notice that F (0) = N0 [1− e−µσ ] =
√

µ/α.
By differentiating (27) we have:

(29) 2αF ′(q)(F (q) + q) = λ.

This implies that F ′ > 0 and thus F is one-to-one from [0,+∞) to [
√

µ/α,+∞). Moreover,
F−1 solves the differential equation

(30) g′(x) =
2α

λ
(g(x) + x).

Elementary computations give that the unique solution to (30) with the initial condition

g(
√

µ/α) = 0 is G. Thus, we get by uniqueness F−1 = G. �

Notice that F (+∞) = +∞ which doesn’t able us to compute directly the Laplace transform
of (Θ, σ). However, we deduce easily the following result, which gives an alternative proof of
Corollary 3.3.

Corollary 5.3. Let λ > 0, µ ≥ 0. We have:

(31) N∞
[

σ e−µσ−λΘ
]

=
1

2
√
αµ + λ

·

In particular, under N∞, conditionally on σ,
√

2α
σ Θ is distributed as a Rayleigh random

variable Z independent of σ.

Proof. We have for q ∈ [0,+∞):

(32) ∂µF (q) = Nq

[

σ e−λΘ−µσ
]

.

Since G(F (q)) = q we get:

(∂µG)(F (q)) +G′(F (q)) ∂µF (q) = 0.

We have:

∂µG(x) = − 1

λ
e

2α
λ
(x−

√
µ/α) = − 1

λ

1

2
√
αµ+ λ

(2αG(x) + 2αx+ λ).

Notice that G′(F (q)) = 1/F ′(q). We deduce from (29) that:

∂µF (q) =
1

2α(F (q) + q)

1

2
√
αµ+ λ

(2αq + 2αF (q) + λ)

=
1

2
√
αµ+ λ

(

1 +
λ

2α(F (q) + q)

)

.

Letting q go to infinity gives the first part of the Corollary.
For the last part, use Lemma 5.1 and the distribution of σ under N given in (2) to conclude.

�
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The last part of the Section is devoted to the computation of the first moment of Θ under

N
(r)
q , with q < +∞. We first give the asymptotic expansion of F with respect to small

λ. We write O(λk) for any function g of q, µ and λ such that for any q > 0, µ > 0 and
ε > 0 there exists a finite constant C (depending on q, µ and ε) such that for all λ ∈ [0, ε],
|g(q, µ, λ)| ≤ Cλk. Notice that O(λk) is not uniform in q or µ.

Lemma 5.4. Let q ∈ (0,+∞). We set z = q
√

α
µ . We have:

(33) F (q) =

√

µ

α
+

λ

2α
log(1 + z)− λ2

4α3/2µ1/2
z − log(1 + z)

1 + z
+O(λ3).

In particular, we deduce that:

(34) ∂λF (q)|λ=0 =
1

2α
log(1 + z) and ∂2λF (q)|λ=0 = − 1

2α3/2µ1/2
z − log(1 + z)

1 + z
·

Proof. Using the second part of Lemma 5.2 and (26), we get:

(35) F (q) =

√

µ

α
+

λ

2α
log

(

2αq + 2αF (q) + λ

2
√
αµ + λ

)

.

Using (25), we get that F (q) decreases to
√

µ/α when λ goes down to 0, that is F (q) =
√

µ/α+O(1). Plugging this in the right-hand side of (35), we get:

F (q) =

√

µ

α
+O(λ).

Plugging this in the right-hand side of (35), we get:

F (q) =

√

µ

α
+

λ

2α
log(1 + z) +O(λ2).

Plugging this again in the right-hand side of (35), we get (33). This readily implies (34). �

We can then compute the first moment of Θ under N
(r)
q .

Proposition 5.5. Let Hq(r) = N
(r)
q [Θ]. We have, for r > 0 and q ∈ [0,+∞):

(36) Hq(r) =

√

r

2α

∫ q
√
2αr

0
dy E

[

e−yZ
]

.

and

(37) 0 ≤ qr −Hq(r) ≤
1

2

√
πα q2r3/2.

Proof. By the change of variable y = q
√
2αz, we have

Hq(r) =
q
√
r

2

∫ r

0

dz√
z

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

.
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Then we compute for µ > 0,
∫ +∞

0

dr

2
√
απr

e−µrHq(r) =
q

4
√
πα

∫ +∞

0
dr e−µr

∫ r

0

dz√
z

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
πα

∫ +∞

0

dz√
z

∫ +∞

z
dr e−µr

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
πα

1

µ

∫ +∞

0

dz√
z
e−µz

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
α

1

µ

1√
µ+ q

√
α
,

where we used equality (24) for the last equality.
On the other hand, we have:

∫ +∞

0

dr

2
√
απr

e−µr N(r)
q [Θ] = −∂µ

∫ +∞

0

dr

2
√
απ r3/2

e−µr N(r)
q [Θ]

= −∂µNq
[

e−µσ Θ
]

= −∂µ
[

∂λF (q)|λ=0

]

= − 1

2α
∂µ log

(

1 + q

√

α

µ

)

=
q

4
√
α

1

µ

1√
µ+ q

√
α
,

where we used Definition (25) of F for the third equality and (34) for the fourth one. There-

fore, we have that dr-a.e. N
(r)
q [Θ] = Hq(r). Then the equality holds for all r > 0 by continuity

(using again a scaling argument).
Then, use 0 ≤ 1− e−z ≤ z for z ≥ 0, to get (37). �
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XXXII, Lecture Notes in Math. Springer, 2002.
[33] G. VOISIN. Dislocation measure of the fragmentation of a general Lévy tree. ESAIM:P&S, 15:372–3899,
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