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Instabilities generated by friction are responsitole many noises in real life, such as squealing,
squeak or juddering. The challenge to model thigngly non-linear acoustic radiation problem
depends on the possibility to predict the interagtiontact forces with accuracy, since they entirel
govern the sound radiation and the way this soamkrceived as, squeak, squeal or juddering. A
first approach to tackle this problem consistsimedrising it and to calculate a solution around a
sliding equilibrium. The main advantage is the dioiy of this approach which consists in
calculating the perturbed solution which will exibjilf the system is unstable, complex solutions.
We only have the possibility to detect instabisti®ut we are in the impossibility to describe what
appends during the instability and for example sspgy juddering from squealing. A second
approach consists in finding the entire solutiolviag the problem in time. This second approach
is used here, in the case of two interacting beams;is pushed on the other at rest, by external
constant forces or driven at constant velocity. €geations of movement of the two beams are
solved explicitly in time. A Coulomb friction lavg iintroduced in the equations of the contact point
taking into account all the possible status: sdpdrasliding or sticking. Solutions for the contact
force, contact point trajectories and accelerationtact point are calculated at each instant o tim
for durations of one or two seconds, allowing aticugadiation simulations. We show how
different events appear depending on the beamivwelangle, friction coefficient, and how
instability occurs leading to limit cycles appearan

1.Introduction

In the real life, friction noise contributes highty the city surrounding and namely squealing
or juddering is common during breaking phases dfr@seor trains arriving in station. These situ-
ations are most of the time related to instabgitievolved in the contact area. The contact foezes
responsible for the vibrations of the bodies intérg and consequently of the noise radiated. From
the acoustical point of view, the main difficultgresists in building a model able to predict the-con
tact force reasonably, since the time behaviouhisflatter will highly influence the time patterns
of the sound radiated. Namely sound radiation patean be completely different for a system said
instable, and the perceived sound can be concedtmatthe high frequency range (squealing) or in
a different manner (juddering). These reasons Usai tackle this problem in time (see referehce
2). For the contact force we use a Coulomb law witiiction constant coefficient independent of
the velocity.

The aim of this paper is to present the modelisatiotwo beams in a friction contact, to point
out the vibrations phenomena involved at the cargamt. The same modelisation can be extended
for a beam interacting with a plate, which in twifl radiate in the surrounding fluid. For the sake
of brevity, this acoustical part of the modelisatiwill not be presented here and do not represent
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the heart of the problem and the main difficultg.torhe attention is here focussed on the ressts i
sued of the use of the Coulomb law in this intengcbeam friction problem and what is the dy-
namic beam behaviours induced. It is shown thaeuactritical coefficient the system is stable and
that above, instabilities occurs leading to squggadir juddering.

2.Presentation of the beam contact problem

We show in the figure 1, the system of two beanpasded initially by a gap e. The beam 1 is
pushed by a constant external force F at its extyefnalong its principal axis, and will enter in
contact with the beam 2 at rest. E is the othereexty of the beam 1 and in the following the mov-
ing contact point. During simulation the relativege between the two beams remains constant
since the boundary conditions of the beam 1 iskaddn rotation but free in displacement. The
other beam is simply supported at its extremiflége two beams can vibrate in flexion and longit-

udinally too. The contact force tangential compont;:r}t) and thecontact force normal component
; (t

" allow us to assure sliding, sticking or separatatlus of the contact point E and follow the cou-

lomb friction law whereﬂ is the constant friction coefficient:

A ()] = 1A, () : Sliding

A (t)] < pA () : sticking; A (t) =0: separated ; A (t) =0 @
F I
A a y
u, (%, 1)
W, (%, 1)
A AN
uz(‘X ,t) /:1T e ‘
bwx H ;(1\ X

Figure 1. Synoptic view of the two interacting beams.
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2.1Equations of the beams interacting punctually with a dry friction

P S U (X, t):ES%+ [Ay(t)cosa — A, (t)sin a] o(x, —X¢) O (1) 2
p S W (x, t)=—El w—[%(t) sin a+ A; (t)cosa] O(x, —xz) O.(t) +F O(x —X%x,) B
X1
) 0 2u(x ,t)
p S Uy(x, t)=ESW+ A (t) 0 (X=Xe(1)) & (1) (4)
) 0wy (x 1)
P S W2(X, t) =-El T+/‘N (t) 5(X _XE(t))a-c(t) (5)

The equations (2) and (3) are related to the ladgial and flexural movements of the beam
one and the equations (4) and (5) related to thbdee beam two. For simplicity the sections S and
the material characteristicg @ndp) are the same for the two beams, only the lergthgifferent.

50 is a Kronecker symbol equal to zero when the beammseparate and equal to unity when in

t

(o}

contact. Written like this the system of equatisivaluable when beams are in contact or not since

when separated the contact force vanishes. Onargrior example denotes the Dirac dis-
J(Xl - XA)

tribution convenient to describe punctual forces.

2.2Method of resolution

The set of equation (1-5) are then solved expjicititime. Moreover at each instant of time
the position of the beam point extremity E is cldted without the contact force. If the point E has
not penetrated the beam 2, the calculation camgdf aot, a penetration occurred, meaning that the
contact force must assure the continuity displacgnmebetween E and a poigt(t) belonging to the

beam 2:

A (©)] < pA (t) : Sticking ; A (t) =0 and
X(E) = X(Q(t)); Y(E)=Y(Q(t))

or
Ar (0) = Ay (1) diding Y(E) =Y(Q(t)) only; ©)

If the sticking condition is acceptable, displaceimeontinuity constraint is fully verified in
both direction. If sticking condition is not accaple, the displacement constraint condition is-veri
fied only along the normal direction of contactpaling a sliding movement in the tangential direc-
tion of contact. In the following the beam 1 is chésed using a finite element schema. On contrary,
for the beam 2, the modal method is used to sdlyarid (5), using the modal basis of the beam 2,
simply supported in flexion and clamped in tractadrboth extremities.
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3.Numerical simulation results

3.1A sliding stable case

We present in the following figures (2-3) and (4-&)stable case where the incident angle is
45° and the friction coefficient is 0.5. The comstéorce is not applied along the principal axis of
the beam 1, but perpendicular to at point A. Wevktiaat all friction coefficient under unity (smal-
ler than tan (45°)), lead to stable sliding movetserThis is shown by the sliding trajectory of the
contact point E and by the contact point statusclvinapidly equals 2. The beam 1 slides continu-
ously on the beam 2 from 0.25 s, except at the begynning of the simulation, the normal and tan-
gential contact component forces follows a timeguatwithout any discontinuities.
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Figure 2-3: Contact point trajectory and contact point statua stable case.
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Figure 4-5: Contact point normal and tangential componentsstable case.

3.2A first unstable case: a squealing case

We present in the following figures (6-7) and (8-8) unstable case where the incident angle
is still 45° and for the same external force amplieA, but the friction coefficient is raised 10b.
As it can be seen the contact point trajectoryl@shperiodic stops of roughly 0.07 seconds, cerres
ponding to sticking phases followed by a mixedisltidseparate phase shorter. The contact force

4



18" International Congress on Sound and Vibration,Ridaneiro, Brazil, 10-14 July 2011

patterns show periodic limit cycles correspondimghie appearance of an unstable mode. This limit
cycle corresponds roughly to 900 Hz, what showsztheam of the figure 10, where it can be seen
how this unstable mode appears and disappearsdmeadiy, during roughly 0.02s. Consequently,
this force will generate a non continuous squgatnise around 900 Hz, since the separation in
between the apparition of theses instabilitiesifigently long (0.1 second) .
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Figure 6-7: Contact point trajectory and contact point statua squealing case.
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Figure 8-9: Contact point normal and tangential componentssguealing case.
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Figure 10: Appearance and disappearance of squealing noisach89)0Hz.
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3.3A second unstable case: a juddering case

To present a case of juddering, it consists inyapglthe constant force along the beam 1
principal axis as presented in figure (1). If thetfon coefficient is smaller than unity, for ange
unchanged of 45°, the situation is stable andrglidis already shown in the figures (2-5). To render
the system unstable the friction coefficient iseal to 1.1. As it can be seen, the system becomes

unstable (figures (11-14)).
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Figure 11-12: Contact point trajectory and contact point statua juddering case.
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Figure 13-14: Contact point normal and tangential componentsjuddering case.

The contact point status (figure (12)) varies aalotl never stabilizes. The contact forces are
particular irregular and their values are highlyesja (figure (13-14)). Namely separation are quite
continuous (zero force value), and the peak vatidbe contact force are well higher than those
encountered in the previous unstable case, me#maghis juddering unstable movement will gen-
erate a lot of vibration and radiated sound.

3.4Excitation with an imposed velocity under constant pressure

Most of the time in a contact problem, a relatietoeity in between the bodies interacting is
known and a constant pressure is applied by extareehanical systems. The following figures are
related to this problem where a constant velodity om/s is imposed to the beam 1 in the direction
paralleled to the beam 2. Moreover a constantcadrfiressure normal to the beam 2 is imposed to
the beam 1 at the point A. To cases of frictionsaneulated: the case of a weak pressure (2N) ap-
plied and a case of high pressure (50N). The cohs$tition coefficient is 1.2 and the relative
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angle is -45°. As can be seen, an unstable situatiours in the case of the weak pressure (figures
15-16) looking like the juddering case already emtered. In figure 17, the central acceleration of
the beam 2 at rest is presented, showing timerpatgmilar to the one of the normal contact force.
This means that, as already mentioned, the tim&cbforce patterns are sufficient to have an idea
of the induced vibrations and consequently of thend radiated.
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Figure 15-16: Contact point normal force and contact point tgey for imposed velocity (1cm/s)
and under weak constant pressure (2N).

When the pressure is high (50N) (figures (18-2B)§ juddering situation is transformed into
a squealing situation since the contact force paitare totally changed into squealing patterns.
Namely, sticking phases appears clearly and rataxghases too. During these relaxation phases a
high frequency unstable time pattern occurs at B20Consequently the acceleration of the beam
2 exhibits the same time pattern and a correspgrgtjnealing noise will be generated at 2500Hz.
The contact point status shows that during thexagiian phases, that is to say when the beam 1 is
not stocked to the beam 2, the contact point s@tutshes rapidly from sliding to separate. It abul
also be shown that the higher the pressure theehtble squealing noise frequency.
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Figure 17-18: Beam2 central point acceleration for imposed v&ol cm/s) under weak pressure
(2N) (left) and Contact point normal force for ingeal velocity (1 cm/s) under high pressure (50N
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Figure 19-20: Contact point trajectory and beam 2 central pocteteration for imposed velocity
(1cm/s) and under high pressure (50N).
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Figure 21: Contact point Status for imposed velocity (1cmfs) ander high pressure (50N)
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4.Conclusion

We have shown that the use of a time modelisatidhefriction noise allows us to predict
reasonably the mains time pattern induced duristabilities. Depending on the friction coefficient
value, the system becomes unstable and judderisguzaling appears. In the case where the velo-
city is imposed, the external pressure is a semgihfameter which, when raised, leads the system
to change its instability mode: juddering for relatweak pressure and squealing for higher pres-
sure.
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