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Abstract

A strong edge-colouring of a graph G is a proper edge-colouring such that every path of three edges
uses three colours. An induced matching of a graph G is a subset I of edges of G such that the
graph induced by the endpoints of I is a matching. In this paper, we prove the NP-completeness
of strong 4, 5 and 6-edge-colouring and maximum induced matching in the case of some restricted
subclasses of subcubic planar graphs. We also obtain a tight upper bound for the minimum number
of colours in a strong edge-colouring of outerplanar graphs as a function of the maximum degree.

Keywords: Strong edge-colouring, induced matching, NP-completeness, planar graphs,
outerplanar graphs.

1. Introduction

A proper edge-colouring of a graph G = (V,E) is an assignment of colours to the edges of the
graph such that no two adjacent edges use the same colour. A strong edge-colouring (called also
distance 2 edge-colouring) of a graph G is a proper edge-colouring of G, such that every path of
length 3 (uvxy) uses three different colours. We will say that two edges uv and xy are at distance
2 if these edges are not adjacent and there exists an induced path uvxy of length 3. We denote by
χ′
s(G) the strong chromatic index of G which is the smallest integer k such that G can be strong

edge-coloured with k colours. The girth of a graph is the size of its shortest cycle. We use ∆ to
denote the maximum degree of a graph. We will say that two edges uv and xy are at distance 2 if
u, v, x, y are all distinct and the graph induced by {u, v, x, y} contains at least three edges.

Strong edge-colouring seems to be introduced by Fouquet and Jolivet in [5, 6]. For a brief survey
of applications of this type of colouring and some open questions, we refer the reader to [13]. In
1985, during a seminar in Prague, Erdős and Nešetřil gave a construction of graphs having strong
chromatic index equal to 5

4
∆2 when ∆ is even and 1

4
(5∆2−2∆+1) when ∆ is odd. They conjectured

that the strong chromatic index is bounded by this values and it was verified for ∆ ≤ 3. Faudree et
al. [3] conjectured that every bipartite graph has a strong edge-colouring with ∆2 colours. In [4] the
same authors stated a new conjecture, claiming that the strong chromatic index of planar subcubic
graphs is at most 9 and proved that χ′

s(G) ≤ 4∆+ 4, for planar graphs with ∆ ≥ 3. In this paper
we improve the latter result in the case of outerplanar graphs, showing that for an outerplanar
graph G, χ′

s(G) ≤ 3∆− 3, for ∆ ≥ 3. The interest in this bound is motivated by the existence of
a class of outerplanar graphs having χ′

s(G) = 3∆− 3, for any ∆ ≥ 3.
Mahdian proved in [10] that ∀k ≥ 4 deciding whether a bipartite graph with girth g is strongly

edge k-colourable, is NP-complete. He also proved that the problem can be solved in polynomial
time for chordal graphs. In [12] Salavatipour gave a polynomial time algorithm for strong edge-
colouring of graphs of bounded tree-width. In this paper we prove the NP-completeness of the
problems of deciding whether a planar subcubic bipartite graph can be strong edge-coloured with
four, five and six colours, for some values of the girth.

A related notion to strong edge-colouring is the induced matching. An induced matching of
G is a set of non-adjacent edges (matching) such that no two of them are joined by an edge in
G. Clearly, the strong edge-colouring is a partition of the set of edges into a collection of induced
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matchings (see [3, 4]). Cameron proved [1] that finding a maximum induced matching in chordal
graphs can be done in polynomial time and that the problem is NP-complete for bipartite graphs
for every girth g. Lozin proved in [9] that recognizing whether a graph G has an induced matching
of size at least k, is an NP-complete problem even when G is bipartite and of maximum degree 3.
Duckworth et al. proved in [2] that the problem is NP-complete even when restricted to planar
cubic graphs. We strengthen these results by proving that the problem remains NP-complete even
if it is restricted to bipartite planar graphs with maximum degree 3 with girth g for any fixed g.

2. Strong edge-colouring

2.1. NP-completeness for subcubic planar graphs

The STRONG EDGE k-COLOURING problem is defined as follows:
INSTANCE: A graph G.
QUESTION: Does G have a strong edge-colouring with k colours?

The 3-COLOURING problem is defined as follows:
INSTANCE: A graph G.
QUESTION: Does G have a proper colouring with three colours?

3-COLOURING is proved to be NP-complete even when restricted to planar graphs with maximum
degree 4 [7]. We will reduce this restricted version of 3-COLOURING in order to prove the theorems
of this section.

Theorem 1. STRONG 4-EDGE-COLOURING is NP-complete for planar graphs with maximum
degree 3 and any fixed girth and also for planar bipartite graphs with maximum degree 3 and any
fixed even girth.

Proof
The problem is in NP since it can be checked in polynomial time whether a given edge-colouring
is a strong edge-colouring. We reduce 3-COLOURING of planar graphs with maximum degree 4.

1 1

(a) odd number of claws

1 1 1

(b) even number of claws

Figure 1: Transportation of a colour

First, observe that by using the graphs in Figures 1a and 1b, we can force the edges at arbitrarily
large distance to have the same colour if we put a sufficient number of claws between them (the
dotted part of the figures). Moreover, depending on the parity of the number of claws between
the edges having the same colour in a strong 4-edge-colouring, we can force vertices incident to
these edges to be in the same part or in distinct parts of the bipartition. As an illustration in the
Figures 1a and 1b, the bipartition is given by small and big vertices.

Given a planar graph G with maximum degree 4, we construct a graph G′ as follows. Every
vertex v in G is replaced by a copy Qv of the graph Q depicted in Figure 3a which contains three
copies of the graph M shown in Figure 2. Note that M is bipartite (the bipartition is given in the
picture by the big and small vertices) and of arbitrarily large girth. Therefore Q is bipartite and
of arbitrarily large girth.

For every edge uv in G, if u is the ith (respectively jth) edge incident to u (respectively v)
in the same cyclic ordering, then we connect xi of Qu with xj of Qv and one of the vertices y1i ,
y2i with one of the vertices y1j , y

2

j such that the obtained graph is planar. These connections are
done using an arbitrarily large number of claws as depicted in Figure 3b. The obtained graph G′

is of maximum degree 3 and by the choice of the number of claws connecting the vertices, it is also
bipartite and with an arbitrarily large girth. Finally, this graph can be built in polynomial time.

Up to a permutation of colours, the strong 4-edge-colouring of M given in Figure 2 is unique.
We say that the colour of Q is the colour of the edges incident to the vertices xi in Q (colour 2 in
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(a) Vertex gadget Q
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(b) Connecting two vertex gadgets in G′

Figure 3: Vertex and edge gadgets for Theorem 1

Figure 3a). Also, the forbidden colour of Q is the colour of the edges incident to y1i and y2i (colour
3 in Figure 3a).

Figure 3b shows that for every edge uv ∈ G, Qu and Qv have distinct colours and the same
forbidden colour. Since G is connected, all copies of Q have same forbidden colour, say 3, and thus
no copy of Q is coloured 3.

If G is 3-colourable, then for every vertex v ∈ G, we can assign the colour of v to Qv and
extend this to a strong 4-edge-colouring of G′. Conversely, given a strong 4-edge-colouring of G′,
we obtain a 3-COLOURING of G by assigning the colour of Qv to the vertex v. So G′ is strong
4-edge-colourable if and only if G is 3-colourable, which completes the proof.

�

Theorem 2. STRONG 5-EDGE-COLOURING is NP-complete for planar bipartite graphs with
maximum degree 3 and girth 8, and for planar graphs with maximum degree 3 and girth 9.

Proof
In the following we will give the proof for the case of girth 8 since the same argument applies for
the case of girth 9.

Similarly to the proof of Theorem 1, the problem is clearly in NP.
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Figure 4: Vertex gadget for the case of girth 8 of Theorem 2

Given a planar graph G with maximum degree 4 of an instance of 3-COLOURING of planar
graphs of maximum degree 4, we construct a graph G′ as follows. Every vertex v in G is replaced
by a copy Qv of the vertex gadget Q depicted in Figure 4. For every edge uv in G, we identify
a vertex xi of Qu with a vertex xj of Qv and add a vertex of degree 3 adjacent to the common
vertex of Qu and Qv, as depicted in Figure 6. We identify these vertices in such a way that the
obtained graph G′ is planar. Small and big vertices in Figure 4 show that Q is bipartite and thus
G′ is bipartite too. Moreover, G′ has no cycle of size strictly less than 8, hence G′ has girth 8.
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Figure 5: Two possible 5-edge-
precolourings of the graph of Figure 4
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Figure 6: Edge gadget for the case of girth 8 of
Theorem 2

We claim that up to permutation of colours, the strong 5-edge-colouring of Q given in Figure 4 is
unique. To see this, first observe that the strong 5-edge-precolouring of the subgraph of Q depicted
in Figure 5a, cannot be extended to the whole subgraph without using a sixth colour. Therefore,
if it is possible to give a strong 5-edge-colouring of Q, the only way to do it is using the strong
5-edge-precolouring of this subgraph of Q as depicted in Figure 5b. Now, using this observation, it
is easy to prove that up to permutation of colours the strong 5-edge-colouring of Q is unique and
is the one given in Figure 4.

We say that the colour of Q is the colour of the edges xiyi in Q (colour 1 in Figure 4. Also, the
forbidden colours of Q are the colours of the edges incident to yi in Q, different from xiyi (colours
2 and 3 in Figure 4). Figure 6 shows that for every edge uv ∈ G, Qu and Qv have distinct colours
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and same forbidden colours. Since G is connected, all copies of Q have same forbidden colours, 2
and 3, and thus no copy of Q is coloured 2 or 3.

If G is 3-colourable, then for every vertex v ∈ G, we can assign the colour of v to Qv and
extend this to a strong 5-edge-colouring of G′. Conversely, given a strong 5-edge-colouring of G′,
we obtain a 3-COLOURING of G by assigning the colour of Qv to the vertex v. So G′ is strong
5-edge-colourable if and only if G is 3-colourable, which completes the proof.
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Figure 7: Vertex gadget for the case of girth 9 of Theorem 2

For the case of girth 9 the same argument applies by using as a vertex gadget the graph of
Figure 7, while the edge gadget is the same. However, checking that the strong 5-edge-colouring
of this gadget is unique (as given in the figure) is much more tedious than for the vertex gadget of
girth 8. For the detailed proof we refer the reader to the Ph.D. thesis of one of the authors [13].

�

Theorem 3. STRONG 6-EDGE-COLOURING is NP-complete for planar bipartite graphs with
maximum degree 3.

Proof
Again, same argument as in the proof of Theorem 1 shows that the problem is in NP.

For a graph G of an instance of 3-COLOURING of planar graphs with maximum degree 4 we
construct a graph G′ such that G is 3-colourable if and only if G′ is strong 6-edge-colourable.

1 1

2

2

1 1

(a) colours 1 and 2 are forced

1

2

1 1

2

2

(b) Replacing crossing edges

Figure 8: Transporting a colour in a strong 6-edge-colouring

We first want to point out two easy but very useful observations.

Observation 1. In any strong 6-edge-colouring of the graphs of Figure 8a, the colours of the edges
at distance 3 have to be the same (colours 1 and 2 are forced).

Observation 2. For any strong 6-edge-colourable subcubic graph with an embedding such that
two edges coloured distinctly cross each other in the plane, there exists a strong 6-edge-colourable
subcubic planar graph obtained by replacing each crossing by five cycles of length 4 as depicted in
Figure 8b.
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Figure 9: Graph P
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Figure 10: Vertex and edge gadgets for Theorem 3

Following Observation 1, in the graph P of Figure 9, up to a permutation, in any strong 6-
edge-colouring the colours 1 and 2 are forced. We call pendant edges the edges of P incident to a
vertex of degree one and coloured 1 and 2 in the figure. Note that P is bipartite.

Next, we construct the vertex gadget as depicted in Figure 10a. Note that the colours a, b, c, d

in the figure are the colours which must be the same in any strong 6-edge-colouring. Take two
copies of graph P with six pairs of pendant edges (coloured {a, b} and {c, d} respectively) and
connect them such that the colours a, b, c, d are all distinct and the obtained graph has eight pairs
of pendant edges. It is easy to see that the obtained graph Q is planar, bipartite, subcubic, and
such that χ′

s(Q) = 6.
Now, we build the vertex gadget i.e., the graph Gv that will replace a vertex v of G in G′.

Take a copy of the graph Q and choose an embedding such that there are four quadruples of edges
coloured a, b, c and d in this order. Note that each crossing of edges is replaced by a cycle of length
4 following the Observation 2 such that the obtained graph is planar. Consider four pendant edges
(one for each quadruple) of the obtained graph having the same colour, say colour a. For every of
these edges, label its incident vertex of degree 1, xv

k (1 ≤ k ≤ 4).
For an edge uv of G, in G′ we identify the vertices xu

i et xv
j and connect the other three pairs

of edges as shown in Figure 10b. Note that if G′ is connected, in any strong 6-edge-colouring of G′

the colours 4, 5 and 6 used in Figure 10b are not used to colour any edge incident to some vertex
labelled xv

i . Observe, that the construction of G′ can be done in polynomial time.
We claim that the obtained graph G′ is strong 6-edge-colourable if and only if G is 3-colourable.

Similar to the proof of Theorem 1, the forbidden colours in a strong 6-edge-colouring of the graph
G′ are the colours of edges not incident to some vertex labelled xv

i . Hence, in G′ there are three
forbidden colours. If G is 3-colourable then we can assign the colour of a vertex v of G to the
pendant edge Gv incident to xv

i in G′ and extend this colouring to a valid strong 6-edge-colouring
of G′. Conversely, given a strong 6-edge-colouring of G′, since there are three forbidden colours for
G′, we can use the colour of the edge incident to xv

i in the graph Gv to colour v in G.
�
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2.2. Outerplanar graphs

Theorem 4. For every outerplanar graph G with maximum degree ∆ ≥ 3, χ′
s(G) ≤ 3∆− 3.

Proof
We define the partial order � on graphs such that G1 ≺ G2 if and only if

• |E(G1)| < |E(G2)| or

• |E(G1)| = |E(G2)| and G1 contains strictly more pendant edges than G2.

Let k ≥ 3 be an integer and G be an outerplanar graph with maximum degree k such that
χ′
s(G) > 3k − 3 and that is minimal with respect to �.

We first show that G does not contain Configuration 1 depicted in Figure 11a. That is, two
adjacent vertices x and y, such that the graph G′ obtained from G by removing the set S of edges
incident to x or y contains two edges in distinct connected components.

Suppose that G contains Configuration 1. Let G1, · · · , Gk be the connected components of G′.
Since they contain fewer edges than G, by minimality of G with respect to �, the graphs induced
by the edges of Gi∪S admit a strong edge-colouring with at most 3k−3 colours. Since the colours
of the edges of S are distinct, we can permute the colours in the colouring of Gi ∪ S so that the
colouring of S is the same in every Gi ∪ S. By gluing up the graphs Gi ∪ S, we obtain a valid
strong edge-colouring of G since the distance between an edge in Gi and an edge in Gi′ for i 6= i′

is at least 3. This is a contradiction.
Configuration 2 depicted in Figure 11b consists of a vertex u adjacent to at most one vertex x

with degree at least 2 and to at least one vertex v of degree 1. This configuration cannot exist in
G, as otherwise we could obtain a colouring of G by extending a colouring of G \ {uv}.

x y

(a) Configuration 1

ux

v

··
· ∆− 1

(b) Configuration 2

Figure 11: Forbidden configurations

· · ·
∆− 2

··
·

∆− 2

··
· ∆− 2

Figure 12: Example of outerplanar
graph such that χ′

s(G) = 3∆− 3.

Let G′ be the graph induced by the vertices of G of degree at least 2. Since Configuration 2 is
forbidden in G, G′ has minimum degree 2.

We claim that G′ is 2-connected. Suppose the contrary and let v be a vertex of G′ such that
G′ − v is disconnected. Let G′

1, . . . , G
′
l be the connected components of G′ − v. Observe that each

of the graphs G′
i ∪N [v] with i ∈ {1, . . . , l} is smaller than G with respect to � and thus for each

of them there exists a strong edge-colouring φi using at most 3∆i − 3 colours, where ∆i ≤ k is the
maximum degree of G′

i ∪ N [v]. One can permute the colours of the edges incident to v for every
φi such that the colouring of the edges of N [v] is the same in every G′

i ∪ N [v]. The colourings
φ1, . . . , φk provide a valid strong edge-colouring of G′ and this is a contradiction.

Let C be the cycle of the outer-face. Since Configuration 1 is forbidden in G, the chords of C
join vertices at distance 2 in the cyclic order. One can check that if C contains at most 4 vertices
then the theorem holds. So C contains n vertices (n ≥ 5) v1, · · · , vn in cyclic order and G is the
graph induced by the vertices of the cycle C which can be adjacent to some vertices of degree 1.

Let us suppose that C contains a chord, say the edge v1v3. Notice that since Configuration 1
is forbidden, v2 is only adjacent to v1 and v3. The graph G′ is obtained from G by splitting the
vertex v2 into v′

2
, which is only adjacent to v1, and v′′

2
, which is only adjacent to v3. Notice that G′

and G have the same number of edges but G′ has two more pendant edges than G, so G′ ≺ G. The
graph G′ thus admits a valid strong edge-colouring using 3k− 3 colours and this colouring remains
valid if we identify v′

2
and v′′

2
to form G (no edges at distance at least 3 in G′ are at distance at

most 2 in G). This shows that vertices of degree at least 2 in G form a chordless cycle.
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To finish the proof, we have to consider only the worst case of graphs of this form, where every
vertex on the chordless cycle is incident to ∆(G) − 2 pendant edges. It is easy to check that if
∆(G) = k = 3, then we can colour G using at most 3k − 3 = 6 colours. We iteratively construct
a suitable colouring for larger values of k: when k is incremented by 1, there is at most one new
pendant edge for each vertex on the cycle and three more available colours. We use the three new
colours to colour the new edges such that two new edges incident to adjacent vertices get distinct
colours. The graph of Figure 12 is the one for which at each step we need to add exactly three
colours, thus reaching the bound of 3k − 3 colours.

�

3. Induced Matchings

The NP-complete problem PLANAR (3,≤ 4)-SAT is defined as follows [8]:
INSTANCE: A collection C of clauses over a set X of boolean variables, where each clause

contains exactly three distinct literals (a variable xi or its negation xi) and each variable appears
at most four times, such that the variable-clause incidence graph is planar.

QUESTION: Can C be satisfied, i.e., is there a truth assignment of the variables of X such that
each clause contains at least one true literal?

The INDUCED MATCHING problem is defined as follows:
INSTANCE: A graph G and an integer k.
QUESTION: Is there an induced matching of size k in G?

Theorem 5. INDUCED MATCHING is NP-complete for planar bipartite graphs with maximum
degree 3 and any fixed girth.

Proof
The problem is clearly in NP: given a subset of edges of G, one can check in polynomial time
whether it is an induced matching of G by checking the distance in G between each pair of edges
of this subset.

We reduce PLANAR (3,≤ 4)-SAT to INDUCED MATCHING. We first prove the result for
planar graphs with maximum degree 3 and girth at most 12 and then explain how to restrict
further the proof to bipartite graphs with any fixed girth.

x

x

x

x

x

x

x

x

(a) Variable gadget Gx

x1

x2

x3

mi

(b) Clause gadget GCi
for Ci = {x1, x2, x3}

Figure 13: Variable and Clause gadgets

For an instance of PLANAR (3,≤ 4)-SAT with a collection of clauses C and a set X of boolean
variables, we build the graph G as follows. For each variable, make a copy of the graph depicted in
Figure 13a. For each clause Ci, make a copy of the graph GCi

by connecting each variable gadget
as shown in Figure 13b such that G is planar (this can be done since the variable-clause incidence
graph is planar). The construction of G can be done in polynomial time in terms of the size of C.

We show that C is satisfiable if and only if G contains an induced matching I of size k =
4|X |+ |C|.

8



Suppose C is satisfiable. We build the induced matching I of G as follows. For every variable
subgraph Gx, we put in I the four edges belonging to the cycle that are not incident to a vertex
corresponding to a literal with boolean value TRUE.

For every clause subgraph GCi
, we put in I an edge incident to mi and pointing in the direction

of a literal with boolean value TRUE. Such a literal exists since the clause is satisfied. Clearly, I
is an induced matching and is of size k.

Suppose now that G has an induced matching I of size k. We will show a truth assignment of
the variables of X such that C is satisfiable.

For each variable gadget at most four of its edges belong to I. If exactly four edges of a variable
gadget Gx belong to I, then no edge outside Gx and incident to one of the vertices of Gx can belong
to I. Hence, for every subgraph GCi

, I contains at least one of the edges incident to mi. Then,
I contains exactly one of the edges incident to mi (say ei). Let lj be the edge of a vertex gadget
adjacent to ei and therefore corresponding to a literal lj . We build a set of edges I ′ in the following
way: for every clause gadget GCi

, ei ∈ I ′, and for every vertex gadget of GCi
, add to I ′ all the

edges adjacent to lj and not adjacent to lj. Clearly, I ′ is an induced matching and |I ′| = |I|. For
every clause gadget GCi

, assign the value TRUE to the literal represented by the edge adjacent to
ei . Hence every clause of C has a TRUE literal and therefore C is satisfiable.

In the proof above, the constructed graph is planar with maximum degree 3, but it is not
bipartite and the girth is bounded (by 12). It is easy to see that it is possible to use cycles of
size 6s for the variable gadgets and to branch the clause gadgets on them in such a way that the
resulting graph is bipartite and has any given fixed girth. The reduction then uses k = 2s|X |+ |C|.

�
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