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Abstract

A strong edge coloring of a graph G is a proper edge coloring such that every path of three edges
uses three colors. An induced matching of a graph G is a subset I of edges of G such that the
graph induced by I is a matching. In this paper, we prove the NP-completeness of strong edge
4, 5 and 6-coloring and maximum induced matching in the case of some restricted subclasses of
subcubic planar graphs. We also obtain a tight upper bound for the minimum number of colors in
a strong edge coloring of outerplanar graphs as a function of the maximum degree.

Key words: NP-complete, strong edge coloring, induced matching, planar graphs, outerplanar
graphs.

1. Introduction

A proper edge coloring of a graph G = (V,E) is an assignment of colors to the edges of the
graph such that two adjacent edges do not use the same color. A strong edge coloring (called also
distance 2 edge coloring) of a graph G is a proper edge coloring of G, such that any edge of a path
of length 3 (uvxy) uses three different colors. We denote by χ′

s(G) the strong chromatic index of
G which is the smallest integer k such that G can be strong edge colored with k colors. The girth
of a graph is the size of a shortest cycle in this graph. We denote ∆ as being the maximum degree
of a graph. We will say that two edges uv and xy are at distance 2 if there exists a path of length
3 - uvxy.

Strong edge coloring seems to be introduced by Fouquet and Jolivet in [5, 6]. For a brief survey
of applications of this type of coloring and some open questions, we refer the reader to [10, 13].
In 1985, during a seminar in Prague, Erdős and Nešetřil gave a construction of graphs having
strong chromatic index equal to 5

4∆2 when ∆ is even and 1
4 (5∆2 − 2∆ + 1) when ∆ is odd. They

conjectured that the strong chromatic index is bounded by this values and it was verified for
∆ ≤ 3. Faudree et al. [3] conjectured that every bipartite graph has a strong edge coloring with ∆2

colors. In [4] the same authors stated a new conjecture, claiming that the strong chromatic index
of planar subcubic graphs is at most 9 and proved that χ′

s(G) ≤ 4∆ + 4, for ∆ ≥ 3. In this paper
we improve the latter result in the case of outerplanar graphs, showing that for an outerplanar
graph G, χ′

s(G) ≤ 3∆− 3, for ∆ ≥ 3. The interest of this bound is motivated by the existence of
a class of outerplanar graphs having χ′

s(G) = 3∆− 3, for any ∆ ≥ 3.
Mahdian proved in [11] that deciding whether a bipartite graph with girth g is strongly edge

k-colorable, ∀k ≥ 4, is NP-complete. In this paper we prove the NP-completeness of the problems
of deciding whether a planar subcubic bipartite graph can be strong edge colored with four, five
and six colors, for some values of the girth.

A related notion to strong edge coloring is the induced matching. An induced matching of G is a
set of non-adjacent edges (matching) such that no two of them are joined by an edge in G. Clearly,
the strong edge coloring is a partition of the set of edges into a collection of induced matchings
(see [3, 4]). Cameron proved [1] that finding a maximum induced matching in chordal graphs can
be done in polynomial time and that the problem is NP-complete for bipartite graphs for every
girth g. Lozin proved in [9] that deciding whether a set of edges is a maximum induced matching
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is NP-complete for bipartite graphs of maximum degree 3. Duckworth et al. proved in [2] that the
problem is NP-complete even when restricted to planar cubic graphs. We strengthen these results
by proving that the problem remains NP-complete even if it is restricted to bipartite planar graphs
with maximum degree 3 with girth g for any fixed g.

2. Strong-edge colouring

2.1. NP-completeness for subcubic planar graphs
The STRONG EDGE k-COLORING problem is defined as follows:

INSTANCE: A graph G.
QUESTION: Does G have a strong edge coloring with k colors?

The 3-COLORING problem is defined as follows:
INSTANCE: A graph G.
QUESTION: Does G have a proper coloring with three colors?

3-COLORING is known to be NP-complete even when restricted to planar graphs with maximum
degree 4 [7].

Theorem 1. STRONG EDGE 4-COLORING is NP-complete for planar bipartite graphs with
maximum degree 3 and any fixed girth.

Proof
The problem is in NP since we can check in polynomial time whether a given edge coloring is a
strong edge coloring. We will prove the theorem by reduction from 3-COLORING of planar graphs
of degree 4.

1 1

(a) odd number of claws

1 1 1

(b) even number of claws

Figure 1: Transportation of a color

First, observe that by using the graphs in Figures 1(a) and 1(b), we can force the edges at
arbitrarily large distance to have the same color if we put a sufficient number of claws between
them (the dotted part of the figures). Moreover, depending on the parity of the number of claws
between the edges having the same color in a strong edge coloring, we can force vertices incident
to these edges to be in the same part or in distinct parts of the bipartition. As an illustration in
the Figures 1(a) and 1(b), the bipartition is given by small and big vertices.

Given a planar graph G with maximum degree 4, we construct a graph G′ as follows. Every
vertex v in G is replaced by a copy Qv of the graph Q depicted in Figure 2(b) which contains three
copies of the graph M shown in Figure 2(a). Note that M is bipartite (the bipartition is given in
the picture by the big and small vertices) and of arbitrarily large girth. Therefore Q is bipartite
and of arbitrarily large girth.

For every edge uv in G, we connect xi of Qu with xj of Qv and one of the vertices y1i , y2i with
one of the vertices y1j , y2j such that the obtained graph is planar. These connections are done using
an arbitrarily large number of claws as depicted in Figure 3. It is easy to see that choosing the
parity of the number of claws connecting these vertices, the obtained graph G′ is bipartite and
with an arbitrarily large girth. Moreover, all these connections can be done such that G′ is planar.

Up to permutation of colors, the strong edge 4-coloring of M given in Figure 2(a) is unique.
We say that the color of Q is the color of the edges incident to the vertices xi in Q (color 2 in
Figure 2(a)). Also, the forbidden color of Q is the color of the edges incident to y1i and y2i (color 3
in Figure 2(a)).

Figure 3 shows that for every edge uv ∈ G, Qu and Qv have distinct colors and the same
forbidden color. Since G is connected, all copies of Q have same forbidden color, say 3, and thus
no copy of Q is colored 3.
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(b) Graph Q

Figure 2: Vertex gadget for Theorem 1
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y2j

y1j

Figure 3: Edge gadget for Theorem 1

If G is 3-colorable, then for every vertex v ∈ G, we can assign the color of v to Qv and extend
this to a strong edge 4-coloring of G′. Conversely, given a strong edge 4-coloring of G′, we obtain
a 3-coloring of G by assigning the color of Qv to the vertex v. So G′ is strong edge 4-colorable if
and only if G is 3-colorable, which completes the proof.

�

Theorem 2. STRONG EDGE 5-COLORING is NP-complete for planar bipartite graphs with
maximum degree 3 and girth 8, and for planar graphs with maximum degree 3 and girth 9.

Proof
In the following we will give the proof for the case of girth 8 since the same argument applies for
the case of girth 9.

The problem is clearly in NP since it can be checked in polynomial time whether a given edge
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(a) Vertex gadget for a vertex of degree 2
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yuj
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4

(b) Edge gadget

Figure 4: Vertex and edge gadgets for the case of girth 8 of Theorem 2

coloring is a strong edge coloring. As in the case of Theorem 1, we will reduce 3-COLORING of
planar graphs of degree 4 to STRONG EDGE 5-COLORING.

Given a planar graph G with maximum degree 4, we construct a graph G′ as follows. Every
vertex v in G is replaced by a copy Qv of the vertex gadget Q depicted in Figure 4(a). For every
edge uv in G, we identify a vertex xi of Qu with a vertex xj of Qv and add a vertex of degree
adjacent to the common vertex of Qu and Qv, as depicted in Figure 4(b). We identify vertices in
such a way that the obtained graph G′ is planar. Small and big vertices in Figures 4(a) and 4(b)
show that G′ is bipartite. Moreover, G′ has no cycle of size strictly less than eight, hence G′ has
girth eight.

x1

y1

x2

y2

1 1

2 23 3

Figure 5: Vertex gadget for the case of girth 9 of Theorem 2

Up to permutation of colors, the strong edge 5-coloring of Q given in Figure 4(a) is unique.
We say that the color of Q is the color of the edges xiyi in Q (color 1 in Figure 4(a)). Also, the
forbidden colors of Q are the colors of the edges incident to yj in Q, different from xiyi (colors 1
and 2 in Figure 4(a)). Figure 4(b) shows that for every edge uv ∈ G, Qu and Qv have distinct
colors and same forbidden colors. Since G is connected, all copies of Q have same forbidden colors,
1 and 2, and thus no copy of Q is colored 1 or 2.

If G is 3-colorable, then for every vertex v ∈ G, we can assign the color of v to Qv and extend
this to a strong edge 5-coloring of G′. Conversely, given a strong edge 5-coloring of G′, we obtain
a 3-coloring of G by assigning the color of Qv to the vertex v. So G′ is strong edge 5-colorable if
and only if G is 3-colorable, which completes the proof.

For the case of girth 9 the same argument applies by using as a vertex gadget the graph of
Figure 5, the edge gadget being the same. However, checking the strong edge colouring of this
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gadget is much more tedious than in the case of the vertex gadget of girth 8.
�

Theorem 3. STRONG EDGE 6-COLORING is NP-complete for planar bipartite graphs with
maximum degree 3.

Proof
The problem is clearly in NP since it can be checked in polynomial time whether a given edge
coloring is a strong edge coloring. Again, we prove the theorem by reduction from 3-COLORING
of planar graphs with maximum degree 4. For a graph G of instance of 3-COLORING of planar
graphs with maximum degree 4 we will give a construction of a graph G′ such that G is 3-colorable
if and only if G′ is strong edge 6-colorable.

1 1

2

2

1 1

(a) Colors 1 and 2 are forced

1

2

11

2

2

(b) Replacing crossing edges

We first want to point out two easy but very useful observations.

Observation 1. In any strong edge coloring with six colors of the graphs of Figure 6(a), the colors
of the edges at distance 3 have to be the same (colors 1 and 2 are forced).

Observation 2. For any strong edge 6-colorable subcubic graph with an embedding such that two
edges cross each other in the plane, there exists a strong edge 6-colorable subcubic planar graph
obtained by replacing each crossing by a cycle of length four as depicted in Figure 6(b).

1 2 1

1 2 1

· · ·

Figure 6: Graph P

Following Observation 1, in the graph P of Figure 6, up to a permutation, in any strong edge
6-coloring the colors 1 and 2 are forced. We call pendant edges the edges of P incident to a vertex
of degree one and colored 1 and 2 in the figure. Note that P is bipartite.

Next, we construct the graph vertex-gadget as depicted in Figure 7. Note that the colors
x, y, z, t in the figure are the colors which must be the same in any strong edge 6-coloring. Take
two copies of graph P with six pairs of pendant edges (colored {x, y} and {z, t} respectively) and
connect them such that the colors x, y, z, t are all different and the obtained graph has eight pairs
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Figure 7: Vertex gadget Q for Theorem 3

of pendant edges. It is easy to see that the obtained graph Q is planar, bipartite, subcubic, and
such that χ′

s(Q) = 6.
Now, we build the vertex gadget i.e. the graph Gv that will replace a vertex v of G in G′.

Take a copy of the graph Q and choose an embedding such that there are four quadruples of edges
colored x, y, z and t in this order. Note that each crossing of edges is replaced by a cycle of length
4 following the Observation 2 such that the obtained graph is planar. Consider four pendant edges
(one for each quadruple) of the obtained graph having the same color, say color x. For every of
these edges, label its incident vertex of degree 1, xvk (1 ≤ k ≤ 4).

Gu

Gv

1

2

4

4

5

5

6

6

xui xvj

Figure 8: Edge gadget for Theorem 3 and its forced coloring

For an edge uv of G, in G′ we identify the vertices xui et xvj and connect the other three pairs
of edges as shown in Figure 8. Note that if G′ is connected, in any strong edge 6-coloring of G′ the
colors 4, 5 and 6 used in Figure 8 are not used to color any edge incident to some vertex labelled
xvi .

We claim that the obtained graph G′ is strong edge 6-colorable if and only if G is 3-colorable.
Similar to the proof of Theorem 1, the forbidden colors in a strong edge 6-coloring of the graph
G′ are the colors of edges not incident to some vertex labelled xvi . Hence, in G′ there are three
forbidden colors. If G is 3-colorable then we can assign the color of a vertex v of G to the pendant
edge Gv incident to xvi in G′ and extend this coloring to a valid strong edge 6-coloring of G′.
Conversely, given a strong edge 6-coloring of G′, since there are three forbidden colors for G′, we
can use the color of the edge incident to xvi in the graph Gv to color v in G.

�

2.2. Outerplanar graphs
Theorem 4. For every outerplanar graph G with maximum degree ∆ ≥ 3, χ′

s(G) ≤ 3∆− 3.

Proof
We define the partial order � on graphs such that G1 ≺ G2 if and only if

• |E(G1)| < |E(G2)| or

• |E(G1)| = |E(G2)| and G1 contains strictly more pendant edges than G2.

Let k ≥ 3 be an integer and G be an outerplanar graph with maximum degree k such that
χ′
s(G) > 3k − 3 and that is minimal with respect to �.
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(a) Configuration 1

ux

v

··
· ∆− 1

(b) Configuration 2

Figure 9: Forbbiden configurations

We first show that G does not contain Configuration 1 depicted in Figure 9(a). That is, two
adjacent vertices x and y, such that the graph G′ obtained from G by removing the set S of edges
incident to x or y contains two edges in distinct connected components.

Suppose that G contains Configuration 1. Let G1, · · · , Gk be the connected components of G′.
Since they contain fewer edges than G, by minimality of G with respect to �, the graphs induced
by the edges of Gi ∪S admit a strong edge coloring with at most 3k− 3 colors. Since the colors of
the edges of S are distinct, we can permute the colors in the coloring of Gi ∪S so that the coloring
of S is the same in every Gi ∪ S. By gluing up the graphs Gi ∪ S, we obtain a valid strong edge
coloring of G since the distance between an edge in Gi and an edge in Gi′ for i 6= i′ is at least
three. This is a contradiction.

Configuration 2 depicted in Figure 9(b) consists of a vertex u adjacent to at most one vertex x
with degree at least two and to at least one vertex v of degree one. The graph G does not contain
Configuration 2 since otherwise we could obtain a coloring of G by extending a coloring of G\{uv}.

· · ·
∆− 2

··
·

∆− 2

··
· ∆− 2

Figure 10: Example of outerplanar graph such that χ′
s(G) = 3∆− 3.

Let G′ be the graph induced by the vertices of G of degree at least 2. Since Configuration
2 is forbidden in G, G′ has minimum degree 2. Since Configuration 1 is forbidden in G, G′ is
2-connected and thus consists of a cycle C. Again, since Configuration 1 is forbidden in G, the
chords of C join vertices at distance two in the cyclic order. It is easy to check that if C contains
at most 4 vertices then the theorem holds. So C contains n vertices (n ≥ 5) v1, · · · , vn in cyclic
order and G is the cycle C having possibly some chords and with vertices adjacent to some vertices
of degree 1 or not.

Let us suppose that C contains a chord, say the edge v1v3. Notice that since Configuration 1
is forbidden, v2 is only adjacent to v1 and v3. The graph G′ is obtained from G by splitting the
vertex of degree 2 v2 into v′2, which is only adjacent to v1, and v′′2 , which is only adjacent to v3.
Notice that G′ and G have the same number of edges but G′ has two more pendant edges than
G, so G′ ≺ G. The graph G′ thus admits a valid strong edge coloring using 3k − 3 colors and this
coloring remains valid if we identify v′2 and v′′2 to form G. This shows that the vertices of degree
at least two in G form a chordless cycle.

To finish the proof, we have to consider only the worst case of graphs of this form, where every
vertex on the chordless cycle is incident to ∆(G) − 2 pendant edges. It is easy to check that if
∆(G) = k = 3, then we can color G using at most 3k − 3 = 6 colors. We iteratively construct
a suitable coloring for larger values of k: when k is incremented by 1, there is at most one new
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pendant edge for each vertex on the cycle and three more available colors. We use the three new
colors to color the new edges such that two new edges incident to adjacent vertices get distinct
colors.

�

3. Induced Matchings

The NP-complete problem PLANAR (3,≤ 4)-SAT is defined as follows [8]:
INSTANCE: A collection C of clauses over a set X of boolean variables, where each clause

contains exactly three distinct literals (a variable xi or its negation xi) and each variable appears
at most four times, such that the variable-clause incidence graph is planar.

QUESTION: Can C be satisfied, i.e., is there a truth assignment of the variables of X such that
each clause contains at least one true literal?

The INDUCED MATCHING problem is defined as follows:
INSTANCE: A graph G and an integer k.
QUESTION: Is there an induced matching of size k in G?

Theorem 5. INDUCED MATCHING is NP-complete for planar bipartite graphs with maximum
degree 3 and any fixed girth.

Proof
The problem is clearly in NP: given a subset of edges of G, one can check in polynomial time
whether it is an induced matching of G by checking the distance in G between each pair of edges
of this subset.

We reduce PLANAR (3,≤ 4)-SAT to INDUCED MATCHING. We first prove the result for
planar graphs with maximum degree 3 and girth 12 and then explain how to restrict further the
proof to bipartite graphs with any fixed girth.

x

x

x

x

x

x

x

x

(a) Variable gadget Gx

x1

x2

x3

mi

(b) Clause gadget GCi
for Ci = {x1, x2, x3}

Figure 11: Variable and Clause gadgets

For an instance of PLANAR (3,≤ 4)-SAT with a collection of clauses C and a set X of boolean
variables, we build the graph G as follows. For each variable, make a copy of the graph depicted in
Figure 11(a). For each clause Ci, make a copy of the graph GCi

by connecting each variable gadget
as shown in Figure 11(b). It is easy to see that the construction of G can be done in polynomial
in terms of the size of C.

We show that C is satisfiable if and only if G contains an induced matching I of size k =
4|X|+ |C|.
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Suppose C is satisfiable. We build the induced matching I of G as follows. For every variable
subgraph Gx, we put in I the four edges belonging to the cycle that are not incident to a vertex
corresponding to a literal with boolean value TRUE.

For every clause subgraph GCi
, we put in I an edge incident to mi and pointing in the direction

of a literal with boolean value TRUE. Such a literal exists since the clause is satisfied. Clearly, I
is an induced matching and is of size k.

Suppose now that G has an induced matching I of size k. We will show a truth assignment of
the variables of X such that C is satisfiable.

For each variable gadget, at most four edges belong to an induced matching of G. Hence, for
every subgraph GCi

, I contains at least one of the edges incident to mi. Then, I contains exactly
one of the edges incident to mi (say ei). Let lj be the edge of a vertex gadget adjacent to ei and
therefore corresponding to a literal lj . We build a set of edges I ′ in the following way: for every
clause gadget GCi , ei ∈ I ′, and for every vertex gadget of GCi , add to I ′ all the edges adjacent
to lj and not adjacent to lj . Clearly, I ′ is an induced matching and |I ′| = |I|. For every clause
gadget GCi

, assign the value TRUE to the literal represented by the edge adjacent to ei . Hence
every clause of C has a TRUE literal and therefore C is satisfiable.

In the proof above, the constructed graph is planar with maximum degree 3, but it is not
bipartite and the girth is bounded (by 12). It is easy to see that it is possible to use cycles of
size 6s for the variable gadgets and to branch the clause gadgets on them in such a way that the
resulting graph is bipartite and has any given fixed girth. The reduction then uses k = 2s|X|+ |C|.

�
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