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Particles approximations of Vlasov equations with
singular forces : Propagation of chaos

Maxime Hauray∗ and Pierre-Emmanuel Jabin †

Abstract. We obtain the mean field limit and the propagation of chaos for a system of
particles interacting with a singular interaction force of the type 1/|x|α, with α < 1 in
dimension d ≥ 3. We also provides results for forces with singularity up to α < d− 1 but
with large enough cut-off. This last result thus almost includes the most interesting case
of Coulombian or gravitationnal interaction.
Key words. Derivation of kinetic equations. Particle methods. Vlasov equation. Prop-
agation of chaos.

1 Introduction

The N particles system. The starting point is the classical Newton dynamics for
point-particles. We denote by (X1, . . . , XN) the position of the particles in Rd, and by
(V1, . . . , VN) their velocities in Rd. Assuming that particles interact two by two with the
interaction kernel F (x), one finds the usual

Ẋi = Vi,

V̇i = EN(Xi) =
∑
j 6=i

1

N
F (Xi −Xj). (1.1) eq:ODE

We use the so-called mean-field scaling which consist in keeping the total mass (or charge)
of order 1 thus formally enabling us to pass to the limit. This explains the 1/N factor
in front of the force terms. This implies corresponding rescaling in position, velocity and
time.
There are many examples of physical systems following (

eq:ODE
1.1). The best known concerns

Coulombian force F (x) = C x/|x|d−1, which serves as a guiding example and reference.
Those describe a plasma, or for C < 0 gravitational interactions, in which case the system
under study may be a galaxy, a cloud of star or galaxies (and thus particles can be “stars”
or even “galaxies”). For simplicity we consider here only a basic form for the interaction.
However the same techniques would apply to more complex models, for instance with
several species (electons and ions in a plasma), 3-particles (or more) interactions, models
where the force depends also on the speed has in swarming models like the Cucker-Smale
one

CarCanBol
[CDPJ08a]...

For convenience, we also use the notation Zi = (Xi, Vi) for the solution and
Z0 = (X0

1 , V
0

1 , . . . , X
0
n, V

0
n ) for the given initial conditions.

Finally let us mention that sometimes the kernel F in fact depend on the number of
particles. This might seem quite strange from the physical point of view but is in fact
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very common for numerical simulations (to regularize the interactions). When such a
cut-off is used, we will denote by FN (some N dependent mollification of F ) the force
field.

The Jeans-Vlasov equation. At first glance, the system (
eq:ODE
1.1) might seem quite rea-

sonable However many problems arise when one tries to use it for practical applications.
But in our case, the main issue is the number of particles, i.e. the dimension of the system.
For example a plasma or a galaxy usually contains a very large number of ”particles”,
typically from 1010 to 1023, which makes solving (

eq:ODE
1.1) impossible.

As usual in this kind of situation, one would like to replace the discrete system (
eq:ODE
1.1) by

a continuous model. In that case this model is posed in the phase space, i.e. it involves
the distribution function f(t, x, v) in time, position and velocity. The evolution of that
function f(t, x, v) is given by the Jeans-Vlasov equation

∂tf + v · ∇xf + E(x) · ∇vf = 0 ,

E(x) =
∫
Rd ρ(t, y)F (x− y) dy,

ρ(t, x) =
∫
v
f(t, x, v) dv,

(1.2) eq:vlasov

where here ρ is the spatial density and the initial density f 0 is given.
Our whole concern in this article is to understand when and in which sense, Eq. (

eq:vlasov
1.2) can

be seen as a limit of system (
eq:ODE
1.1). This question is of obvious importance for theoretical

reasons, to justify the validity of the Vlasov equation for example.
It also plays a role for numerical simulation, and especially Particles in Cells methods
which introduce a large number (roughly around 106 or 108, to compare with the order
1010 to 1023 mentioned above) of “virtual” particles in order to obtain a particles system
solvable numerically. The problem in that case is to explain why it is possible to correctly
approximate the system by using much fewer particles. This would of course be ensured
by the convergence of (

eq:ODE
1.1) to (

eq:vlasov
1.2).

Formal derivation of Eq. (
eq:vlasov
1.2) from (

eq:ODE
1.1). One of the simplest way to understand

formally how to derive Eq. (
eq:vlasov
1.2) is to introduce the empirical measure

µZN(t) =
1

N

N∑
i=1

δXi(t),Vi(t).

Then if (Xi, Vi) is solution to (
eq:ODE
1.1), and if there is no self-interaction : F (0) = 0, then µZN

solves (
eq:vlasov
1.2) in the sense of distribution. Formally one may then expect that any limit of

µZN still satisfies the same equation.

The question of convergence. The previous formal argument suggests a first way of
rigorously deriving the Vlasov equation (

eq:vlasov
1.2). Take a sequence of initial conditions Z0

(to be given for every number N or a sequence of such numbers) and assume that the
corresponding empirical measures converges (in the usual weak-∗ topology)

µZN(0) −→ f 0(x, v).

One would then try to prove that the empirical measures at later times µZN(t) weakly
converges to a solution f(t, x, v) to (

eq:vlasov
1.2) with initial data f 0.
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In other words, is the following diagram commutative?

µZN(0)
cvg ///o/o/o

Npart

��

f(0)

V P
��

µZN(t)
cvg ? ///o/o/o f(t)

Note that for singular kernels F (among which Coulombian and gravitationnal interac-
tions), one does not expect to be able to do that for any initial conditions. First of all
solutions to (

eq:vlasov
1.2) do not exist in general if the initial data f 0 is only a measure. And even

if f 0 is smooth but a small amount of the particles are initially concentrated in a small
region, problems will likely occur (as the interactions blow up)
Of course it is not obvious what are admissible initial conditions or how to precise that.
The simplest way is to give some properties that the initial conditions must satisfy. For
instance one could ask the initial positions and velocities to be uniformly distributed (on
a grid for numerical simulations). However from the point of view of statistical physics,
this is too restricitve. This leads us to the notion of propagation of chaos.

Propagation of chaos. In most physical settings, one expects the initial positions and
velocities to be selected randomly and typically independently. In that case the law is
initially given by (f 0)⊗N (i.e. randomly and independently with profile f 0). Note that
the empirical measure at time 0 is then close to f 0 with large probability (in some weak
norm, See the Proposition

probaint
3 for a precise version).

The propagation of chaos was formalized by Kac’s in
Kac1956
[Kac56] and goes back to Boltzmann

and its “Stosszahl ansatz”. A standard reference is the famous famous course by Sznitman
Sznitman
[Szn91]. It is mainly use in probabilistic system, where some randomness is introduced in
the dynamics of the particle, but is also relevant in our context.
Denoting by fN(t, x1, v1, . . . , xN , vN) the image by the dynamics (

eq:ODE
1.1) of the initial law

(f 0)⊗N , one may define the k-marginals

fNk (t, z1, . . . , zk) =

∫
R2d(N−k)

fN(t, z1, . . . , zN) dzk+1 . . . dzN .

According to the general definition, the propagation of chaos means that for any fixed k,
fNk (t) will converge weakly to (f)⊗k as N →∞. In fact it is sufficient that the convergence
holds for only one k ≥ 2.
As Sznitman shows, it is also equivalent to say that the empirical measures µZN(t) converge
in law towards the constant variable f(t). In fact we will give in theorem

thm:prob
1 and

thm:probcutoff
2 a

quantified version of the convergence in probability of µZN(t) towards f(t).
Shortly, this is possible because, the marginals can be recovered from the expectations of
moments of the empirical measure

fNk = E(µZN(t, x1, v1) . . . µZN(t, xk, vK)) +O

(
k2

N

)
,

a result sometimes called Grunbaum lemma. For detailed explanations about quantifi-
cation of the equivalence between convergence of the fNk and the convergence of the law
of the empirical distributions, we refer to

HauMisch
[HM12]. This quantified equivalence was for

instance used in the recent and important work of Mischler and Mouhot about Kac’s
program in kinetic theory

MischMou
[MM11].

Of course we do not expect propagation of chaos to hold for any initial distribution f 0,
for instance if f 0 is too singular for (

eq:vlasov
1.2) to have a solution. Hence we limit ourselves here

to f 0 ∈ L∞.

3



Well posedness for System (
eq:ODE
1.1). We have not mentioned yet the most basic question

for System (
eq:ODE
1.1) with a singular force kernel, namely whether one can even expect to have

solutions to the system for a fixed number of particles. Indeed, because of the singularity,
the usual Cauchy-Lipschitz theory cannot be applied.
First of all for the type of singularity that we will handle here, the answer is relatively
easy as it would be simple to show that velocities remain bounded and that particles
cannot collide for almost all initial data. We do not give a specific proof as that result is
a simple consequence of our analysis.
However in more singular cases (especially repulsive ones), the question remains. The
classical approach to this problem uses the so-called theory of renormalized solutions
developed by DiPerna-Lions. We refer to

DipLions
[DL89] and to Hauray

Hau04
[Hau04] for this specific

problem.

Previous results with cut-off or for smooth interactions. The convergence and
the propagation of chaos are known to hold for smooth interaction forces (F ∈ C1 in
general or at least W 1,∞) since the end of the seventies and the works of Braun and Hepp
BraHep77
[BH77], Neunzert and Wick

Neun79
[NW80] and Dobrushin

Dobr79
[Dob79]. Those articles introduces

the main ideas and the formalism behind mean field limits, we also refer to the nice book
by Spohn

Spoh91
[Spo91].

Their proofs however rely on Gronwall type estimates and are connected to the fact that
Gronwall estimates are actually true for (

eq:ODE
1.1) uniformly in N if F ∈ W 1,∞. Those makes

them impossible to generalize to any case where F is singular (including Coulombian
interactions and many other physically interesting models).
Instead, by keeping the same general approach, it is possible to deal with singular inter-
actions with cut-off. For instance for Coulombian interactions, one could consider

FN(x) = C
x

(|x|+ ε(N))d
,

or other type of regularization at the scale ε(N).
The system (

eq:ODE
1.1) does not have much physical meaning but the corresponding studies are

crucial to understand the convergence of numerical methods.
For particles initially on a mesh, we refer to the works of Ganguly and Victory

Victory
[GV89],

Wollman
Wollman
[Wol00] and Batt

Batt00
[Bat01] (the later gives a simpler proof, but valid only for larger

cut-off). Unfortunately they had to impose that limN→∞ ε(N)/N−1/d = +∞, meaning
that the cut-off for convergence results is usually larger than the one used in practical
numerical simulations . Note that the scale N−1/d is the average distance between two
neighboring particles in position.
Of course propagation of chaos cannot be proved in those cases as the particles are on
a mesh initially and hence cannot be taken randomly. Moreover, we emphasize that the
two problems with particles initially on a mesh, or with particles not equally distributed
seems to be very different. In the last case, the previously mentioned results do not apply,
and Ganguly, Lee and Victory

Victory2
[GLV91] are only able to prove the convergence for a very

large cut-off ε ≈ (lnN)−1.

Previous results for 2d Euler or other macroscopic equations. A well known
case, very similar at first sight with the question here, is the vortices system for the 2d
incompressible Euler equation. One replaces (

eq:ODE
1.1) by

Ẋi =
1

N

∑
j 6=i

αi αj F (Xi −Xj), (1.3) vortex
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where F is still the Coulombian kernel (in 2 dimensions here) and αi = ±1. One expects
this system to converge to the Euler equation in vorticity formulation

∂tω + div (uω) = 0, divu = 0, curlu = ω. (1.4) Euler

The same questions of convergence and propagation of chaos can be asked in this setting.
Two results without regularization for the true kernel are already known. The work of
Goodman, Hou and Lowengrub,

GooHouLow90
[GHL90] and

Goodman91
[GH91], has a numerical point of view but

use the true singular kernel in a interesting way. The work of Schochet
Scho96
[Sch96] uses the

weak formulation of Delort of the Euler equation and prove that empirical measure with
bounded energy converges towards weak measures solution to (

Euler
1.4). Unfortunately, the

possible lack of uniqueness of Euler equation in the class of measures do not allows to
deduce the propagation of chaos.
As equations like (

Euler
1.4) are notoriously harder to deal with than kinetic equations like (

eq:vlasov
1.2),

one could expect similar results for our problem. Unfortunately, the mean field limits are
more difficult in the phase space. There are several reasons for that, in particular the fact
that system (

eq:ODE
1.1) is second order while (

vortex
1.3) is first order. This implies that collisions or

near collisions (in physical space) between particles are very common for (
eq:ODE
1.1) even for

repulsive interactions and rare for (
vortex
1.3) (at least for vortices of the same sign).

For example, the references mentioned above use the symmetry of the forces in the vortex
case, a symmetry which does not exist in our kinetic problem. The force is still symmetric
with respect to the space variable, but there is now a velocity variable (second order again)
which breaks the argument used in the vortices case. For a more complete description
of the vortices system, we refer to the references already quoted or to

Hau09
[Hau09], which

introduces in that case techniques somewhat similar to the one used here.

Previous results in singular cases without cut-off. Let us first mention that the
equation (

eq:vlasov
1.2) at the limit is now well understood, even when the interaction F is singular,

including the Coulombian case. The existence of weak solutions goes back to
Dobr79
[Dob79] or

Arse75
[Ars75]. Existence of global classical solutions is proved in

Pfaf
[Pfa92],

Scha91
[Sch91] (see also

Hor93
[Hor93]) and at the same time in

LioPer91
[LP91]. Of course those results require some smoothness

on the initial data f 0 (for instance compactly support and bounded).
To our knowledge however, the only mean field limit result available up to now is

HauJab07
[HJ07].

This proves the convergence (not the propagation of chaos) provided that

• The interaction kernel F behaves like |x|−α with α < 1.

• The particles are initially well distributed, meaning that their minimal distance
in phase space is of the same order as the average distance between neighboring
particles N−1/2d.

The second assumption is all right for numerical purposes but does not allow to consider
physically realistic initial conditions (as per the propagation of chaos property). This
assumption is indeed not generic for empirical measures chosen with law (f 0)⊗N (i.e. it
is satisfied with probability going to 0 in the large N limit).

Our result without cut-off. In the present article, we keep the same conditions on
the inteaction kernel, but require only a much weaker assumption on the minimal distance
between particles. This allows us to prove the propagation of chaos, for forces satisfying
a (Sα)-condition :

(Sα) ∀x ∈ Rd, |F (x)| ≤ C

|x|α
, |∇F (x)| ≤ C

|x|α+1
, (1.5) eq:Calpha
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with α < 1. Our precise result without cut-off is the following

thm:prob Theorem 1. Assume that d ≥ 3 and that F satisfies a (Sα)-condition with α < 1 .
Choose any initial condition f 0 ∈ L∞ with compact support and total mass one for the
Vlasov equation (

eq:vlasov
1.2). For each N ∈ N∗, consider at the particles system (

eq:ODE
1.1) with initial

positions (Xi, Vi)i≤N chosen randomly according to the probability (f 0)⊗N . Then for all
T ≥ 0, all

2 + 2α

d+ α
< γ < 1 and 0 < s <

γd− (2− γ)α− 2

2(1 + α)
,

there exists positive constants C0(f, F ), Cs(γ, s, f, F ) such that for N large enough (lnN &
T )

P
(
∃t ∈ [0, T ], W1(µN(t), f(t)) ≥ 3eC0t

Nγ/(2d)

)
≤ Cs
N s

, (1.6) eq:thmprob

where f(t) is the unique strong solution of the Vlasov equation (
eq:vlasov
1.2) with initial condition

f 0, (the constant Cs blows up when s approaches its maximum value) and W1 denotes the
1 Monge-Kantorovitch-Wasserstein distance.

The notation C(f) means that the constant depends on the function f (essentially via
conserved quantities like ‖f‖∞ and also the size of its support) on the whole interval of
time under consideration, here [0, T ].
The conditions on γ and s are not completely obvious, but it can be checked that if α < 1
and d ≥ 3, 2+2α

d+α
< 1 so that admissible γ exists. And for an admissible γ, the quantity

γd−(2−γ)α−2
2(1+α)

is also positive, so that admissible s also exists.
Roughly speaking, under the assumption of Theorem

thm:prob
1, the probability of finding a devi-

ation strictly larger than the average inter-particle distance N−1/2d is small.

Remark 1. Unfortunately, we are not able to provide a similar result for d = 2, even if
α is very small. It can be seen that the condition on γ in theorem

thm:prob
1 is empty in that case.

Even if the theorem is stated probabilistically in terms of propagation of chaos, the core of
the proof is a deterministic theorem (See the Theorem

thm:deter
3 stated in the second section) which

has generic assumptions with respect to the law (f 0)⊗N . Thanks to the deterministic result
we can also construct explicit sequences of initial conditions for which the convergence
towards the Vlasov equation will holds (for instance, particles well choosen on a mesh,
but not only).

The improvements with respect to
HauJab07
[HJ07]. The major improvement is of course

the much weaker condition on the inital distribution of positions and velocities. We are
hence able to show the propagation of chaos, which is again the crucial property for
applications to physics.
We managed to simplify the proof with respect to the previous article

HauJab07
[HJ07], considerably

so in the long time case which was quite intricate before and does not require any special
treatment here.
Finally our new result is almost quantitative. For large enough N , it actually tells how
close, in Wasserstein distance, the empirical measure is from the limit. In fact if one does
not use random initial conditions (and hence we do not need the large deviation result
mentioned above), Theorem

thm:deter
3 gives a precise rate of convergence, which is of course quite

useful from the point of view of numerical analysis.
Unfortunately, the condition on the kernel F is still the same and does not allow to treat
Coulombian interactions. There are some physical reasons for this condition; for instance
if F = −∇φ then it guarantees that the potential is bounded. We refer to

BaHaJa
[BHJ10] for

some ideas in how to go beyond this threshold.
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The result with cut-off. The result with cut-off presented here is in one sense slighty
weaker than the previously known result

Victory
[GV89], since we just miss the critical case

α = d − 1. But it has also some major advantages, especially if we are not interested
by numerical simulation. First of all, it is valid for random initial configurations with
propagation of chaos and not only for well distributed initial positions and velocities (on
a mesh). Secondly, for α larger but close to one it is valid for smaller cut-offs, much
smaller than average (and also minimal) distance between particles.
The result is stated for forces depending on N and satisfying the following condition

(Sαm)
i) F satisfy a (Sα)− condition
ii) ∀ |x| ≥ N−m, FN(x) = F (x)
iii) ∀ |x| ≤ N−m, |FN(x)| ≤ N−mα,

(1.7) eq:Ckappa

which essentially means that the interaction kernel is regularized at scales lower than
N−m.
Note that in fact we would not need any estimate on the gradient of FN for very small
x. The result would still be true if FN only converges to F for large enough x, with an
error satisfying ‖FN − F‖1 ≤ N−1/2d. The proof could be adapted to that case, but for
simplicity we choose this presentation. We also point out that one would like to take m
as large as possible if we want to be close to the dynamics without cut-off.

thm:probcutoff Theorem 2. Assume that d ≥ 3, γ ∈ (0, 1) and that FN satisfies a (Sαm)-condition for
some 1 ≤ α < d− 1 with a cut-off order m such that

m < m∗ :=
γ

2d
min

(
d− 2

α− 1
,
2d− 1

α

)
.

Choose any initial condition f 0 ∈ L∞ with compact support and total mass one for the
Vlasov equation (

eq:vlasov
1.2). For each N ∈ N∗, look at the particles system (

eq:ODE
1.1) with initial

positions (Xi, Vi)n≤N chosen randomly according to the probability (f 0)⊗N . Then for all
T there exists positive constants C0(f, F ), C1(γ,m, f, F ) and C2(f) such that for N large
enough (lnN & T )

P
(
∃t ∈ [0, T ], W1(µN(t), f(t)) ≥ 4eC0t

Nγ/2d

)
≤ C2N

γ e−C1Nλ

,

where λ = min
(
1− γ, d−α

2d

)
and f(t) is the unique strong solution of the Vlasov equation.

(
eq:vlasov
1.2) with initial condition f 0.

In dimension d = 3, the minimal cut-off is given by the order of m∗ = γ
6

min((α −
1)−1, 5α−1). As γ can be chosen very close to one, for α larger but close to one, the
previous bound tells us that we can choose cut-off of order almost N−5/6, i.e. much
smaller than the likely minimal inter-particles distance in position space ( of order N−2/3,
see the third section).
With such a small cut-off, one could hope that it is almost never used when we calculate
the interaction forces between particles. Only a negligible number of particles will become
so close to each others during the time T . This suggests that there should be some way
to extend the result of convergence without cut-off at least to some α > 1.
Unfortunately, we do not know how to make rigorous the previous probabilistic argument
on the close encounters. First it is highly difficult to translate for particles system that are
highly correlated. To state it properly we need infinite bounds on the 2 particles marginal.
But obtaining such a bound for singular interaction seems difficult. Moreover, it remains

7



to neglect the influence of particles that have had a close encounters (its trajectory after
a encounter is not well controlled) on the other particles.
Let us also mention that astro-physicists doing gravitational simulations (α = d−1) with
tree codes usually use small cut-off parameters, lower than N−1/d by some order. See
Dehn00
[Deh00] for a physical oriented discussion about the optimal length of this parameter.

A short sketch of the proof. As mentioned above, the Vlasov equation (
eq:vlasov
1.2) is sat-

isfied by the empirical distribution µN of the interacting particle system provided that
F (0) is set to 0. Hence the problem of convergence can be reformulated into a problem
of stability of the empirical measures - seen initially as a measure valued perturbation of
the smooth profile f 0 - around the solution f(t) of the Vlasov equation.
Our proof uses 3 ingredients to obtain this stability

• Show that with large probability the empirical measure at the initial time µZN(0) is
very close to f 0 and that the particles are not too badly distributed in the phase
space.

• Compare the solution f(t) to (
eq:vlasov
1.2) with f 0 as initial data to the solution fN to

(
eq:vlasov
1.2) with a regularization of µZN(0) as initial data ((Dirac masses are replaced by

“blobs”).

• Control the distance (in some appropriate Monge-Kantorovitch-Wasserstein dis-
tance) between µZN(t) and fN(t).

The first two steps are not overly complicated because they rely on previous known results
(the second is a standard stability result for Vlasov-Poisson for example) and rather simple
probabilistic estimates. The difficulties are hence concentrated in the third step.
This uses a deterministic result that has to be more precise than the one in

HauJab07
[HJ07]. First

of all it has to allow for a much smaller minimal distance in phase space between the
particles at the initial time (and thus as well at later times). Notice that in some average
sense the particles are still reasonably well distributed: For instance, the regularization
fN(0) of µZN(0) at a small scale is bounded in L∞.
The other complication comes from that we want an explicit bound on the distance
between fN(t) and µZN(t) in the W∞ distance as we will need it to control the distribution
of particles at time t. This is necessary to control the difference between the force terms
and hence the evolution of the distance between fN(t) and µZN(t).
We remark that the use of the infinite MKW distance is important. We were not able to
perform it with other MKW distance of order p < +∞. It may seem strange to propagate
a stronger norm for a problem with low regularity but in fact it turns out to be the only
MKW distance with which we can handle a localized singularity in the force and Dirac
masses in the distribution.
In essence controlling the distance between fN(t) and µZN(t) requires to prove that the
difference between the force terms acting on fN and on µZN(t) is bounded by this distance
plus a small correction; then one may conclude by a Gronwall-like argument. There are
several major complications in the proof.
First of all one has to deal with large oscillations in the discrete force term. This is due to
particles that may come very close one to another in physical space or even collide, while
remaining at a reasonable distance in phase space. The force term may become very large
in that case but only for a very short time as the particles do not remain close. To solve
this problem, we have to average those oscillations over a short time interval.
Then when one compares the force terms it is necessary to distinguish between 3 domains
of interacting particles:

8



• Interaction between particles far enough in the physical space and that remain far
enough over the short time interval where we average. This is the simplest case as
one does not see the discrete nature of the problem at that level. The estimates
need to be adapted to the distance used here but are otherwise very similar in spirit
to the continuous problem or other previous works for mean field limits.

• Interaction between particles close enough in the physical space, far enough in the
phase space over the short time interval where we average. Here we start to see the
discrete level of the problem and in fact we cannot compare anymore the force term
for the continuous Vlasov equation with the one for the particles’ system. Instead
we just show that both are small. This is simple for the continuous term as the size
of the domain is itself quite small. For the discrete force term, it is considerably
more complicated. First of all one has to bound the average over the short time
interval of the interaction term between any two particles in that situation. Roughly
speaking if those have a relative velocity of order v one expects the interaction to
behave like ∫ t+τ

t

ds

|δ + sv|α
,

where τ is the size of the average in time and δ is the minimum distance between
the two particles over [t, t+ τ ]. This is where the condition α < 1 first comes into
play as it allows to bound the previous integral independently of δ, provided that
v is large enough. To conclude this part it is finally necessary to sum the previous
bound over all particles in the corresponding domain. In

HauJab07
[HJ07], we could directly

bound the number of particles there; here as we do not have the same lower bound
on the minimal distance in phase space, we have to use the distance between fN
and µzN (which is why we need the W∞ distance).

• Interaction between particles close enough in phase space over the short time interval
where we average. In

HauJab07
[HJ07] this case was relatively simple as the diameter of the

corresponding domain in phase space was of the same order as the lower bound on
the minimal distance (still in phase space) that we were propagating. Here this
lower bound is much smaller (of the order of the square of the diameter). This is
where the main technical improvement lies with respect to

HauJab07
[HJ07].

Organization of the paper. In the next section, we introduce the notations, and state
the deterministic results on which the propagation of chaos relies. In the third section,
we explain how to obtain the propagation of chaos from the deterministic results. The
fourth section is devoted to the proof of the two deterministic theorems.

2 Notations and other important theorems
sec:main

2.1 Notations and useful results

We first need to introduce some notations and to define different quantities in order to
state the result.

• Empirical distribution µN and minimal inter-particle distance dN
Given a configuration Z = (Xi, VI)i≤N of the particles in the phase space R2dN , the
associated empirical distribution is the measure

µZN =
1

N

∑
δXi,Vi .
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An important remark is that if (Xi(t, ), Vi(t))i≤N is a solution of the system of ODE (
eq:ODE
1.1),

then the measure µZN(t) is a solution of the Vlasov equation (
eq:vlasov
1.2), provided that the

interaction force satisfies F (0) = 0. This condition is necessary to avoid self-interaction of
Dirac masses. It means that the interaction force is defined everywhere, but discontinuous
and has a singularity at 0. In that conditions, the previously known results

BraHep77
[BH77],

Neun79
[NW80] cannot be applied.
For every empirical measure, we define the minimal distance dZN between particles in
phase-space:

dZN(µN) = min
i 6=j

(|Xi −Xj|+ |Vi − Vj|). (2.1) eq:dmin

This is a non physical quantity, but it is crucial to control the possible concentrations of
particles and we will need to bound that quantity from below.
In the following we often omit the Z superscript Before going on, in order to keep ”simple”
notations.

• Infinite MKW distance
First, we use many times the Monge-Kantorovitch-Wasserstein distance of order one and
infinite. The order one distance, denoted by W1, is classical and we refer to the very clear
book of Villani for definition and properties

Vill03
[Vil03]. The second one denoted W∞ is not

widely used, so we recall its definition :

def:Winf Definition 1. For two probability measures µ and ν on X, a polish space, with Π(µ, ν)
the set of transference plan from µ to ν:

W∞(µ, ν) = inf{λ− esssup |x− y| |λ ∈ Π}.

In one of the few works on the subject
ChaDePJuu08
[CDPJ08b] Champion, De Pascale and Juutineen

prove that if µ is absolutely continuous with respect to the Lebesgue measure L, then at
least one optimal transference plane is given by a optimal transport map. In other words
there exists a measurable map T : Suppµ → X such that (Id, T )#µ ∈ Π (it implies in
particular that T#µ = ν) and

W∞(µ, ν) = µ− esssupx |Tx− x|.

Although that is not mandatory (we could also work with optimal transference planes),
we will use this result that will greatly simplify the proof.
Optimal transport is useful to compare the discrete sum of the N particles dynamics to the
integrals of the continuous Vlasov system. For instance, if f is a continuous distribution
and µN an empirical distribution we may rewrite the interaction force of µN using a
transport map T = (Tx, Tv) of f onto µN

1

N

∑
i 6=j

F (X0
i −X0

j ) =

∫
F (X0

i − Tx(y, w))f(y, w) dydw.

Note that in the equality above, the function F is singular at x = 0. Using infinite MKW
distance, the singularity is still localized “in a ball“ after the transport. The term under
the integral in the right-hand-side has no singularity out of a ball of radius W∞(f, νN)
in x. Others MKV distance of order p < +∞ destroys that simple localization after the
transport, which is why it seems more difficult to use them.

• The scale ε. We also introduce a scale

ε(N) = N−γ/2d , (2.2) eps

10



for some γ ∈ (0, 1) to be fixed later but close enough from 1. Remark that this scale is
larger than the average distance between a particle and its closest neighbor, which is of
order N−1/2d. We shall do a wide use of that scale in the sequel, and will often define
quantities directly in term of ε rather than N . For instance, the cut-off order m used in
the (Sαm)-condition may be rewritten in term of ε, with m̄ := 2d

γ
m.

(Sαm)
i) F satisfy a (Sα)− condition
ii) ∀ |x| ≥ εm̄, FN(x) = F (x)
iii) ∀ |x| ≤ εm̄, |FN(x)| ≤ ε−m̄α,

(2.3) eq:Ckappa’

• The solution fN of Vlasov equation with blob initial condition.
Now we defined a smoothing of µN at the scale ε(N). For this, we choose a kernel
φ : R2d → R with compact support in [−1

2
, 1

2
]2d and total mass one, and denote φε(·) =

ε−2dφ(·/ε). The precise choice of φ is not very relevant, and the simplest one is maybe
φ = 1[− 1

2
, 1
2

]2d . We use this to smooth µN and define

f 0
N = µ0

N ∗ φε(N), (2.4) eq:deffN

and denote by fN(t, x, v) the solution to the Vlasov Eq. (
eq:vlasov
1.2) for the initial condition f 0

N .
The interest of fN is that we may assume that it belongs to L∞ (see the deviations
estimates of the Proposition

prop:largedev
5 in the Appendix). It allows to use standard stability

estimates to control its W1 distance to another solution of the Vlasov equation (See
Loeper result

Loep06
[Loe06]).

2.2 Statement of the deterministic result without cut-off

As mentioned in the introduction, the dynamic is entirely deterministic. In theorem
thm:prob
1

the randomness comes only from the choice of the starting initial data. Precisely, the
probability on the initial conditions is used to ensure that some conditions on minimal
inter-particle distances and MKV distances are satisfied with large probability. But, once
that conditions are fulfilled, we are able to propagate them with deterministic estimates.
The following theorem shows that the particles system may be approximated by the
solution of the Vlasov equation with the ”blob“ distribution f 0

N as initial conditions,
provided that two conditions on the minimal inter-particle distance dN(0) and the infinite
norm of f 0

N are satisfied.

thm:deter Theorem 3. Assume that d ≥ 2 and that the interaction force F satisfies a (Sα) condi-
tion, for some α < 1 and let 0 < γ < 1. Assume also that the initial empirical distribution
µ0
N of the particles and its ε-enlargement f 0

N satisfy :

i) d0
N := dN(µN(0)) ≥ ε1+r = N−γ(1+r)/2d for some r ∈ (1, r∗) where r∗ := d−1

1+α
,

ii) ‖f 0
N‖∞ ≤ C∞, a constant independent of N ,

iii) For some R > 0, ∀N ∈ N, Suppµ0
N ⊂ B(0, R), the ball of radius R and center 0 of

R2d.

Then for any T > 0, there exists two constants C0(R,C∞, F, T ) and C1(R,C∞, F, γ, r, T )
such that for N ≥ eC1T the following estimate is true

∀t ∈ [0, T ], W∞(µN(t), fN(t)) ≤ eC0t

Nγ/2d
. (2.5) eq:thm1

11



Remarks. This is a inequality of the type W∞(t) ≤ W∞(0)eCt, where the value of W∞(0)
has been bounded by N−γ/2d. But that last bound is true since f 0

N is a blob approximation
of µ0

N , with blob contained in balls of radius N−γ/2d around the Dirac of µ0
N .

The previous theorem is valid in dimension 2. But unfortunately, its conditions are not
generic in that case if the initial conditions are choosen independantly. This is why we
cannot conclude to propagation of chaos for d = 2.

2.3 Statement of the deterministic result with cut-off

As in the case without cut-off, the probabilistic result
thm:probcutoff
2 relies on a deterministic result,

much simpler with cut-off since it does not need any control on the minimal inter-particles
distance. The result is the following

thm:cutoff Theorem 4. Assume that d ≥ 2 and that the interaction force F = FN satisfies a (Sαm),
for some 1 < α < d− 1, with a cut-off order satisfying

m < m∗ :=
γ

2d
min

(
d− 2

α− 1
,
2d− 1

α

)
.

Assume also that the initial empirical distribution of the particles µ0
N and its ε enlargement

fN satisfy :

i) ‖f 0
N‖∞ ≤ C∞, a constant independent of N ,

ii) For some R > 0, ∀N ∈ N, Suppµ0
N ⊂ B(0, R), the ball of radius R and center 0 of

R2d.

Then for any T > 0, there exists two constants C0(R,C∞, F, T ) and C1(R,C∞, F, γ, r, T )
such that for N ≥ eC1T the following estimate is true

∀t ∈ [0, T ], W∞(µN(t), fN(t)) ≤ eC0t

Nγ/2d
. (2.6) eq:thm3

Theorem
thm:cutoff
4 result has also an interest for numerical simulation because one obvious way

to fulfill the hypothesis on the infinite norm of f 0
N is is to put particles initially on a mesh

(with a grid length of N−1/2d in R2d). In that case, the result is even valid with γ = 1.

3 From deterministic results (Theorem
thm:deter

3 and
thm:cutoff

4) to

propagation of chaos.

The assumptions made in Theorem
thm:deter
3 may seem a little bit strange, but they are in some

sense generic, when the initial positions and speed are choosen with the law (f 0)⊗N .
Therefore, to prove Theorem

thm:prob
1 form Theorem

thm:deter
3, we need to

• Obtain a bound on the W1 distance between f(t) and fN(t), which are two solutions
of the Vlasov equation.

• Estimate the probability that empirical measure chosen with the law (f 0)⊗N , do not
satisfy the conditions i) and ii) of the deterministic theorem

thm:deter
3, and are far away

from f 0 in W1 distance (the last conditions is important for the previous point on
the distance between f and fN).

For these two points, we will use known results detailed in the next two sections. After
that, a good choice of the parameter γ and r will allow us to conclude the proof.
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3.1 Stability around solution of the Vlasov equation.

The following result is proved in
Loep06
[Loe06] for α = d− 1, but its proof may be adapted to

our less singular case (The adaptation is done in
Hau09
[Hau09] in the Vortex case)

Loeper Proposition 1 (From Loeper). If f1 and f2 are two solutions of Vlasov Poisson equa-
tions with different kernel K1 and K2 both satisfying a (Sα)-condition, with α < d − 1,
then

d

dt
W1(f1(t), f2(t)) ≤ C max(‖ρ1‖∞, ‖ρ2‖∞)W1(f1(t), f2(t)) + C‖ρ1‖∞‖K1 −K2‖1

The bound on the density may be obtained in our case with the argument of Pfaffelmoser
for solution with compact support

Pfaf
[Pfa92]. It is even simpler for α < 1 as it is explained

in the appendix of
HauJab07
[HJ07].

Using that theorem in the case without cut-off (K1 = K2 = F ), with α < 1 (for d ≥ 3)
and a ‖f 0

N‖ compactly supported, we obtain that there exists a constant C0 depending
on F , an uniform bounds on the infinite norms of the fN and the size of their supports
(denoted C∞ and R in Theorem

thm:deter
3), such that

W1(f(t), fN(t)) ≤ eC0tW1(f 0, f 0
N) ≤ eC0t

(
W1(f 0, µ0

N) +N−γ/2d
)
, (3.1) eq:Loeper

.

3.2 Estimates in probability on the initial distribution.

Deviations on the infinite norm of the smoothed empirical distribution fN .
The precise result we need is given by the proposition

prop:largedev
5 in the Appendix. It tells us that

if the approximating kernel is φ = 1[− 1
2
, 1
2

]2d , then

P
(
‖fZN‖∞ ≥ 21+2d‖f‖∞

)
≤ C2N

γe−C1N1−γ
.

with C2 = (2R0 + 2)d, R0 the size of the support of f , and C1 = (2 ln 2− 1) 2n‖f‖∞.

We would like to mention that we were first aware of the possibility of getting such
estimates in a paper of Bolley, Guillin and Villani

BolGuiVil07
[BGV07], where the authors obtain

quantitative concentration inequality for ‖fN−f‖∞ in infinite norm under the additionnal
assumption that f 0 and φ are Lipschitz. Unfortunately, they cannot be used in our setting
because they would require a too large smoothing paramater. Gao obtain in

Gao03
[Gao03]

precise large deviations estimates for ‖fN − f‖∞, but as usual with large deviations
estimates, they are only asymptotics and therefore less convenient for our problem, which
is why we reworked them here.

Deviations for the minimal inter-particle distance. It may be proved with simple
arguments that the scale ηm is almost surely larger than N−1/d when f 0 ∈ L∞. A precise
result is stated in the Proposition below, proved in

Hau09
[Hau09]:

Proposition 2. There exists a constant c2d depending only on the dimension such that
if f 0 ∈ L∞(R2d), then

P
(
dN(Z) ≥ l

N1/d

)
≥ e−c2d‖f

0‖∞ld .
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We point out that this is not a large deviation result (the inequalities are in the wrong
direction). It is that condition that prevents us from obtaining a “large deviation” type
result in Theorem

thm:prob
1 (contrarily to the cut-off case of Theorem

thm:probcutoff
2). In fact, the only bound

it provides on the “bad” set is

P
(
dN(Z) ≤ l

N1/d

)
≤ 1− e−c2d‖f0‖∞ld ≤ c2d‖f 0‖∞ld.

With the notation of Theorem
thm:deter
3 it comes that if s = γ 1+r

2
− 1 > 0 then

P
(
dN(Z) ≤ ε1+r

)
= P

(
dN(Z) ≤ N−s/d

N1/d

)
≤ c2d‖f 0‖∞N−s. (3.2) dN

Deviations for the W1 MKW distance. Peyre has obtained in
Peyr07
[Pey] the following

result

probaint Proposition 3 (Peyre). Assume that f 0 is a compactly supported measure on R2d. If
d ≥ 2, and the empirical measures µ0

N are chosen according to the law (f 0)⊗N , then there
exists an explicit constant Ld, depending only on the size of the support, such that

P
(
W1(µ0

N , f
0) ≥ L

N1/(2d)

)
≤ eLd−LN

d−1
2d . (3.3)

It is of particular interest to us when L = N
1−γ
2d , in which case it maybe rewritten

P
(
W1(µ0

N , f
0) ≥ ε

)
≤ Ce−N

d−γ
2d , with C = eLd . (3.4)

3.3 Conclusion

Now take the assumptions of Theorem
thm:prob
1. It means that we assume that F satisfies a (Sα)

condition for α < 1 and f 0 ∈ L∞ for d > 3. We chose

γ ∈
(

2 + 2α

d+ α
, 1

)
, and r ∈

(
2

γ
− 1, r∗ =

d− 1

1 + α

)
,

the condition on γ ensuring that the second interval is non empty. We also define

s := γ
1 + r

2
− 1 > 0, λ = min

(
1− γ, d− γ

2d

)
Denote by ω1, ω2 the sets of initial conditions s.t. respectively (i), and (ii) (with the
constant C∞ = 21+2d‖f 0‖∞) of Theorem

thm:deter
3 hold and ω3 s.t. W1(µN , f

0) ≤ 1
Nγ/(2d) .

ω1 := {Z s.t. dN(Z) ≥ ε1+r}, ω2 := {Z s.t. ‖f 0
N‖∞ ≤ 21+2d‖f 0‖∞}

ω3 := {Z s.t. W1(µ0
N , f

0) ≤ ε}

By the results stated in the previous section, one knows that

P(ωc1) ≤ C N−s, P(ωc2) ≤ CNγe−C1N1−γ
, P(ωc3) ≤ Ce−N

d−γ
2d .

Denote ω = ω1 ∩ ω2 ∩ ω3. Hence |ωc| ≤ |ωc1|+ |ωc2|+ |ωc3| and for N large enough

P(ωc) ≤ C N−s + C Nγ e−min(1,C1)N−λ ≤ C N−s (3.5) boundomega
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If the initial conditions belong to ω then one may apply Theorem
thm:deter
3 and get on [0, T ]

W1(fN , µN) ≤ W∞(fN , µN) ≤ eC0t

Nγ/(2d)
.

Now apply the stability around solution of Vlasov equation given by (
eq:Loeper
3.1) and get

W1(f, fN) ≤ W1(f 0, f 0
N) eC0t ≤ 2

Nγ/(2d)
eC0t.

The factor 2 comes from the fact that W1(f 0, f 0
N) ≤ W1(f 0, µ0

N) + W1(µ0
N , f

0
N). We

conclude that

W1(f, µN) ≤ 3

Nγ/2d
eC0t,

which proves that

P(ω) ≤ P
(
∀t ∈ [0, T ], W1(f, fN) ≤ 3eC0t

Nγ/d

)
.

The bound
boundomega
3.5 then gives Theorem

thm:prob
1.

3.4 From Theorem
thm:cutoff

4 to Theorem
thm:probcutoff

2

In the cut-off case, one can derive Theorem
thm:probcutoff
2 from Theorem

thm:cutoff
4 in the same manner. As

we do not use the minimal distance in that case, the proof is simpler in the case α < d−1
and we get a stronger convergence result. The only difference is that we shall use the
Theorem

Loeper
1 with K1 = F and K2 = FN , so that an error term appears. But that error

term is bounded by
C‖ρf‖∞‖F − FN‖1 ≤ Cεd−α ≤ CW∞(t)

for any t so that the proof is unchanged. In fact, with the same λ, we obtain since the
set ω1 is now useless that

P
(
∃t ∈ [0, T ], W1(µN(t), f(t)) ≥ 4eC0t

Nγ/(2d)

)
≤ CNγe−C1Nλ

.

4 Proof of Theorem
thm:deter

3 and
thm:cutoff

4

4.1 Definition of the transport

We try now to compare the the dynamics of µN and fN , two distributions which have a
compact support. For that, we choose an optimal transport T 0(= T 0

N) from f 0
N to µ0

N for
the infinite MKW distance (See the remark after Definition

def:Winf
1). The existence of such a

transport is ensured by
ChaDePJuu08
[CDPJ08b]. T 0 is defined on the support of f 0

N , which is included
in {|z| ≤ R0} (the size of the support). Since f 0

N is an ε-enlargement of µ0
N , it is clear

that W∞(f 0
N , µ

0
N) ≤ ε.

We also denote by Zf = (Xf , V f ) the smooth flow associated to fN and by ZN =
(XN , V N) the flow of the N particles system (with the convention Z(t, s) transport from
time s to time t). A simple way to get a transport of fN(t) on µN(t) is to transport along
the flows the map T 0, i.e. to define

T t = ZN(t, 0) ◦ T 0 ◦ Zf (0, t), and T t = (T tx, T
t
v)
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We use the following notation, for a test-”particle” of the continuous system at the position
zt = (xt, vt) at time t, zs = (xs, vs) will be its position at time s for s ∈ [t− τ, t]. Precisely

zs = Zf (s, t, zt)

Since fN is the solution of a transport equation, we have fN(t, zt) = fN(s, zs). And since
the vector-field of that transport equation is divergence free∫

Φ(z) fN(s, z) dz =

∫
Φ(Zf (s, t, z)) fN(t, z) dz =

∫
Φ(zs) fN(t, zt) dzt.

Finally let us remark that the fN are solutions to the (continuous) Vlasov equations
with an initial L∞ norm and support that are uniformly bounded in N . Therefore this
remains true uniformly in N for any finite time. In particular there exists a constant C
independent of N such that for any t ∈ [0, T ]

‖fN(t, ., .)‖∞ ≤ C, ‖fN(t, ., .)‖L1 = 1,

|E|∞(t) := ‖E(t, ·)‖∞ ≤ sup
x

∫
|F (x− y)| fN(t, y, w) dy dw ≤ C

|∇E(t, x)| ≤
∫
|∇F (x− y)| fN(t, y, w) dy dw| ≤ C

supp fN(t, ., .) ∈ B(0, R(t)), R(t) ≤ C,

(4.1) boundfN

as of course R(t) ≤ R0 +
∫ t

0
‖E(s, .)‖∞ ds. This is always true for α < 1. In dimension

d ≤ 3 it remains true for α < d − 1 and even α = d − 1. In fact, all that estimates
where central in the work of see Pfaffelmöser

Pfaf
[Pfa92] about existence and uniqueness of

compactly supported solution of Vlasov-Poisson equation (See also
Hor93
[Hor93] for a result

with improved bounds). The proofs can be adapted to our simpler cases (See the Appendix
of

HauJab07
[HJ07] for the case α < 1).

In dimension d > 3 and for attractive forces with 1 < α < d−1, there can be a blow-up in
finite time (for α larger than a critical value depending on the dimension). In that case,
we simply restrict ourselves to a time interval on which this does not occur.

In what follows, the final time T is fixed and independent of N . For simplicity, C will
denote a generic universal constant, which may actually depend on T , the size of the initial
support, the infinite norms of the fN ... But those constants are always independent of N
as in (

boundfN
4.1).

4.2 The quantities to control

We will not be able to control the infinite norm of the field (and its derivative) created by
the empirical distribution, but only a small temporal average of this norm. For this, we
introduce in the case without cut-off a small time step τ = εr

′
for some r′ > r and close

to r (the precise condition will appear later).
In the case with cut-off where r and r′ are useless, the time step will by τ = ε.

Before going on, we define some important notations.

• The MKW infinite distance between µN(t) and f(t).

We of course wish to bound W∞(t) := sup0≤s≤tW∞(µN(s), fN(s)) (note that W∞ is
hence automatically non decreasing). For the transport introduced before, one has

W∞(t) ≤ sup
s≤t

sup
(xs,vs)∈supp fN (s,.,.)

|T s(xs, vs)− (xs, vs)|.
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In fact, we will provide bound for the quantity of the right hand side. Our result
maybe stated for that quantity, rather than the infinite MKW distance. It is a little
stronger, since it means that rearrangement in the transport are not necessary to
keep the MKW distance bounded. The transport chosen at time t = 0 is preserved
during the time.

• The support of µN

We shall also need a uniform control on the support in position and velocity of the
empirical distributions :

RN(t) = max
i
|(Xi(t), Vi(t))|.

• The infinite norm |EN |∞ of the time averaged discrete force field.

We also define the average of the discrete force field over small time intervals of
length τ (the dependence on t is implicit)

|EN |∞ = sup
i

1

τ

∫ t

t−τ
|EN(Xi(s))| ds.

• The infinite norm |∇NE|∞ of the time averaged discrete derivative of the
force field.

We also define a version of the infinite norm of its averaged derivative

|∇NE|∞ = sup
i 6=j

1

τ

∫ t

t−τ

|EN(Xi(s))− EN(Xj(s))| ds
|Xi(s)−Xj(s)|+ ε(1+r′)

ds.

For both EN and ∇NE, we use the convention that when the interval of integration
contain 0 (for t < τ), the integrand is null on the left side. The control on that term
is useless in the cut-off case.

• The minimal distance in phase space dN

which has already be defined by the equation (
eq:dmin
2.1) in the Section

sec:main
2.

• Two useful integrals Iα(t, zt) and Jα+1(t, zt)

Finally the technical computations involve

Iα(t, z̄t, zt) =
1

τ

∫ t

t−τ
|F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)| ds,

which controls the difference of the two force fields at two point related by the
“optimal” transport. Defining a second kernel as

Kε = min

(
1

|x|1+α
,

1

ε1+r′ |x|α

)
,

we define a second useful quantity

Jα+1(t, z̄t, zt) =
1

τ

∫ t

t−τ
Kε(|T sx(z̄s)− T sx(zs)| ds

=
1

τ

∫ t

t−τ
Kε(|Xi(s)−Xj(s)| ds,

if i and j is the indices such that Zi(t) = T t(z̄t) and Zj(t) = T t(zt). Jα+1 will be
useful to control the discrete derivative of the field, and is thus useless in the cut-off
case.
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All previous quantities are relatively easily bounded by Iα and Jα+1. Those last two will
not be bounded by direct calculation on the discrete system, but we will compare them to
similar ones for the continuous system, paying for that in terms of the distance between
µN(t) and f(t). That strategy is interesting because the integrals are easier to manipulate
than the discrete sums.
We summarize the first easy bounds in the following

Proposition 4. Under the assumptions of Theorem
thm:deter
3, one has for some constant C

uniform in N

(i) RN(t) ≤ W∞(t) +R(t) ≤ W∞(t) + C,

(ii) W∞(t) ≤ W∞(t− τ) + C τ sup
z̄t

∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt,

(iii) |∇NE|∞ ≤ C sup
z̄t

∫
|zt|≤R(t)

Jα+1(t, z̄t, zt) dzt.

(iv) dN(t) + ε1+r′ ≥ [dN(t− τ) + ε1+r′ ]e−τ(1+|∇NE|∞(t)).
propeasy

Note that the control on RN(t) is simple enough that it will actually be used implicitly
in the rest many times, and that the iv) is a simple consequence of the iii). In fact, in
that proposition the crucial estimates are the ii) and iii).
Remark also that in the case of very singular interaction force (α ≥ 1) with cut-off - in
short (Sαm) conditions - the control on minimal distance dN and therefore the control on
|∇NE|∞ are useless, so that the only interesting inequality is the second one.

4.3 Proof of Prop.
propeasy

4

Let us start with (i). Simply write

RN(t) = sup
zt∈supp fN (t,·)

|T t(zt)| ≤ sup
zt∈supp fN (t,·)

|T t(zt)− zt|+ sup
zt∈supp fN (t,·)

|zt|,

So indeed by (
boundfN
4.1)

RN(t) ≤ W∞(t) +R(t) ≤ W∞(t) + C.

As for (ii), simply differentiate in time W∞ to find

W∞(t)−W∞(t− τ)

τ
≤ sup

z̄t

∫ ∣∣∣∣1τ
∫ t

t−τ
[F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)] ds

∣∣∣∣ fN(zt) dzt.

Since fN is uniformly bounded in L∞ and compactly supported in B(0, R(t)), one gets
by the definition of Iα

W∞(t)−W∞(t− τ)

τ
≤ ‖f 0‖∞ sup

z̄t

∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt,

which is exactly (ii).

Concerning |∇NE|∞ in (iii), noting that∫ t

t−τ

|EN(Xi(s))− EN(Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

=
1

N

∑
k 6=i,j

∫ t

t−τ

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

ds.

+
1

N

∫ t

t−τ

|F (Xi(s)−Xj(s))− F (Xj(s)−Xi(s))|
|Xi(s)−Xj(s)|+ ε1+r′

ds

18



By the assumption (
eq:Calpha
1.5), one has that

|F (x)− F (y)| ≤ C

(
1

|x|α+1
+

1

|y|α+1

)
|x− y|.

So

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

≤ C

|Xi(s)−Xk(s)|1+α
+

C

|Xj(s)−Xk(s)|1+α
,

and that bound is also true for the remaining term where k = i or j, if we delete the
undefined term in the sum. One also obviously has, still by (

eq:Calpha
1.5)

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

≤ C

ε1+r′ |Xi(s)−Xk(s)|α

+
C

ε1+r′ |Xj(s)−Xk(s)|α
.

Therefore by the definition of Kε

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

≤ Kε(Xi(s)−Xk(s)) +Kε(Xj(s)−Xk(s)).

Summing up, this implies that

|∇NE|∞ ≤ C max
i 6=j

(1

τ

∫ t

t−τ

1

N

∑
k 6=i

Kε(Xi(s)−Xk(s)) ds

+
1

τ

∫ t

t−τ

1

N

∑
k 6=j

Kε(Xj(s)−Xk(s))ds
)
.

Transforming the sum into integral thank to the transport, we get exactly the bound (iii)
involving Jα+1.

Finally for dN(t), consider any i 6= j, then obviously

d

ds
|(Xi(s)−Xj(s), Vi(s)− Vj(s))| ≥ −|Vi(s)− Vj(s)| − |EN(Xi(s))− EN(Xj(s))|.

Simply write

|EN(Xi(s))− EN(Xj(s))| ≤
|EN(Xi(s))− EN(Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

(|Xi(s)−Xj(s)|+ ε1+r′)

to obtain that

d

ds
|(Xi(s)−Xj(s), Vi(s)− Vj(s))| ≥ −

(
1 +
|EN(Xi(s))− EN(Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

)
(|(Xi(s)−Xj(s), Vi(s)− Vj(s))|+ ε1+r′).

Integrating this inequality and taking the minimum, we get

dN(t) + ε1+r′ ≥ (dN(t− τ) + ε1+r′) inf
i 6=j

exp

(
−τ −

∫ t

t−τ

|EN(Xi(s))− EN(Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

ds

)
≥ [dN(t− τ) + ε1+r′ ] exp−τ(1+|∇NE|∞(t)) .
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4.4 The bound for Iα and Jα+1

To close the the system of inequality of the Proposition
propeasy
4, it remains to bound the two

integrals involving Iα and Jα. It is done with the following lemmas

lem:boundI Lemma 1. Assume that F satisfies an (Sα)-condition with α < 1, and that τ is small
enough such that

C τ (1 + |∇NE|∞(t)) (W∞(t) + τ) ≤ dN(t). (4.2) cond:lem1

Then one has the following bounds, uniform in z̄t∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt ≤ C
[
W∞(t) + (W∞(t) + τ)dτ−α + (W∞(t) + τ)2d(dN(t))−ατ−α

]
.

∫
|zt≤R(t)

Jα+1(t, z̄t, zt) dzt ≤ C
(
1 + (W∞(t) + τ)dε−(1+r′) τ−α

+ (W∞(t) + τ)2dε−(1+r′) τ−α (dN(t))−α
)
.

boundIK

In the cut-off case where the interaction force satisfy a (Sαm) condition (we recall that it
means that the cut-off is of size N−m = εm̄ with m̄ = 2d

γ
m), we only need to bound the

integral of Iα, with the result

boundIcut Lemma 2. Assume that 1 ≤ α < d− 1, and that F satisfies a (Sαm) condition, one as the
following bound, uniform in z̄t∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt ≤ C
(
W∞(t)+(W∞(t)+τ)dτ−1εm̄(1−α)+(W∞(t)+τ)2dε−m̄α

)
. (4.3) boundIKcut

with the convention (if α = 1) that (εm̄)0 = | ln(εm̄)| 1.

The proofs with or without cut-off follow the same line and we will prove the above
lemmas at the same time. We begin by an explanation of the sketch of the proof, and
then perform the technical calculation.

4.4.1 Rough sketch of the proof

The point z̄t = (x̄t, v̄t) is considered fixed through all this subsection (as the integration
is carried over zt = (xt, vt)). Accordingly we decompose the integration in zt over several
domains. First

At = {zt | |x̄t − xt| ≥ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t)) }.

This set consist of points zt such that xs and T sx(zs) are sufficiently far away from x̄s on
the whole interval [t − τ, t], so that they will not see the singularity of the force. The
bound over this domain will be obtained using traditional estimates for convolutions.
One part of the integral can be estimated easily on Act (the part corresponding to the flow
of the regular solution fN to the Vlasov equation). For the other part it is necessary to
decompose further. The next domain is

Bt = Act
⋂
{zt | |v̄t − vt| ≥ 4W∞(t) + 4 τ |E|∞|(t)}.

1That convention may be justified by the fact that it implies a very simple algebra (x1−α)′ ≈ x−α

even if α = 1. It allows us to give an unique formula rather than three different cases.
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This contains all particles zt that are close to z̄t in position (i.e. xt close to x̄t), but with
enough relative velocity not to interact too much. The small average in time will be useful
in that part, as the two particles remains close only a small amount of time.
The last part is of course the remainder

Ct = (At ∪Bt)
c.

This is a small set, but where the particles remains close together a relatively long time.
Here, we are forced to deal with the corresponding term at the discrete level of the
particles. This is the only term which requires the minimal distance in phase space; and
the only term for which we need a time step τ small enough as per the assumption in
Lemma

boundIK
1.

Figure 1: The partition of the phase space.

4.4.2 Step 1: Estimate over At

If zt ∈ At, we have for s ∈ [t− τ, t]

|x̄s − xs| ≥ |x̄t − xt| − (t− s)|v̄t − vt| − (t− s)2|E|∞(t) ≥ |x̄t − xt|
2

(4.4)

|T sx(z̄s)− T sx(zs)| ≥ |x̄s − xs| − 2W∞(s) ≥ |x̄t − xt|
2

. (4.5)

For Iα, we use the direct bound for z̄t ∈ At

|F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)| ≤
C

|x̄t − xt|1+α
(|T sx(z̄s)− x̄s|+ |T sx(zs)− xs|)

≤ C

|x̄t − xt|1+α
W∞(s) ≤ C

|x̄t − xt|1+α
W∞(t),

and obtain by integration on [t− τ, t]

I(t, z̄t, zt) ≤
C

|x̄t − xt|1+α
W∞(t).
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Then integrating in zt we may get since α + 1 < 2 ≤ d∫
At

Iα(t, z̄t, zt) dzt ≤ CW∞(t)

∫
At

dzt
|x̄t − xt|1+α

≤ C R(t)2d−1−αW∞(t) ≤ CW∞(t).

(4.6) At

For Jα+1, we have used (
eq:FAR
4.5) on the set At the bound

|Kε(T
s
x(z̄t)− T sx(zt))| ≤

C

|x̄t − xt|1+α
.

Integrating with respect to time and zt we get since 1 + α < d.∫
At

Jα+1(t, z̄t, zt) dzt ≤ C

∫
At

dzt
|x̄t − xt|1+α

≤ C R(t)d−1−α ≤ C.

(4.7) At2

For the cut-off case, the estimation on Iα for this step is unchanged.

4.4.3 Step 1’ : Estimate over Act for the continuous part of Iα and Jα+1.

For the remaining term in Iα, we use the rude bound

|F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)| ≤ |F (T sx(z̄s)− T sx(zs))|+ |F (x̄s − xs)|.

The term involving T s is complicated and requires the additional decompositions. It will
be treated in the next sections. The other term is simply bounded by∫

zt∈Act

1

τ

∫ t

t−τ
|F (x̄s − xs)|ds dzt ≤

1

τ

∫ t

t−τ

∫
zt∈Act

C dzt
|x̄s − xs|α

ds

≤ 1

τ

∫ t

t−τ

∫
zs∈Zf (s,t,Act )

C dzs
|x̄s − xs|α

ds.

From the bound R(t) and |E|∞(t) we see that

|Act | ≤ CR(t)d(W∞(t) + τ)d ≤ C(W∞(t) + τ)d,

where | · | denote the Lebesgue measure. Since the flow Zf is measure preserving, the
measure of the set Zf (s, t, Act) satisfies the same bound. This set is also included in
[−R(t), R(t)]2d (if R is increasing, a property that we may assume). We use the above
lemma which implies that above all the set Z(s, t, Act), the integral reaches is maximum
when the set is a cylinder

Lemma 3. Let Ω ⊂ B(0, R) ⊂ Rn. Let P be a projection from Rn to Rm with m ≤ n.
Then for any a < m ∫

Ω

dx

|Px|a
≤ CaR

a(n−m)/m |Ω|1−a/m.

cylinder

Proof of Lemma
cylinder
3. We can freely assume that Px = (x1, . . . , xm). Now maximize the

integral ∫
ω

|Px|−adx
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over all sets ω ⊂ Rn satisfying ω ⊂ B(0, R) and |ω| = |Ω|. It is clear that the maximum
is obtained by concentrating as much as possible ω near Px = 0, i.e. with a cylinder of
the form Bm(0, r)×Bn−m(0, R) where Bk denotes the k-dimensional ball. Since |ω| = |Ω|
we have r = |Ω|1/mR1−n/m. The integral can now be computed explicitly and gives the
lemma.

Applying the lemma, we get∫
zt∈Act

1

τ

∫ t

t−τ
|F (x̄s − xs)| dztds ≤ C(W∞(t) + τ)d−α. (4.8) Ic

That term do not appear in Lemma
lem:boundI
1 since it is strictly smaller than the bound of the

remaining term (involving T ), as we shall see in the next section.
The same bound is valid for Jα+1 since α + 1 < d.
For the cut-off case, the same bound is valid for Iα since α ≤ d−1 < d (The cut-off cannot
in fact help to provide a better bound for this term), and we do not need the estimate on
Jα+1.

At this point, the remaining term to bound in Iα is only∫
zt∈Act

1

τ

∫ t

t−τ
|F (T sx(z̄s)− T sx(zs))| ds ≤ C

∫
zt∈Act

1

τ

∫ t

t−τ

dzt
|T sx(z̄s)− T sx(zs)|α

ds. (4.9) eq:remain

For Jα+1 one may bound the integral of the continuous part on Act in a similar manner.
As Kε ≤ 1

ε1+r′ |x|α , the remainder can be controlled by (
eq:remain
4.9)∫

Act

Jα+1(t, z̄t, zt) dzt ≤ C (W∞(t) + τ)d−α +
C

ε1+r′

∫
zt∈Act

1

τ

∫ t

t−τ

dzt
|T sx(z̄s)− T sx(zs)|α

ds.

(4.10) remainderJalp

Therefore in the next sections we focus on giving a bound for (
eq:remain
4.9).

4.4.4 Step 2: Estimate over Bt

We recall the definition of Bt

Bt =

{
zt s.t.

|x̄t − xt| ≤ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t))
|v̄t − vt| ≥ 4W∞(t) + 4 τ |E|∞|(t)

}
.

If zt ∈ Bt, we have, as for At, for s ∈ [t− τ, t]

|v̄s − vs − v̄t + vt| ≤ 2τ |E∞|(t) ≤
|v̄t − vt|

2
, (4.11)

|T sv (z̄s)− T sv (zs)− v̄t + vt| ≤ |v̄s − vs − v̄t + vt|+ 2W∞(s)| ≤ |v̄t − vt|
2

. (4.12)

This means that the particles involved are close to each others (in the positions variables),
but with a sufficiently large relative velocity, so that they do not interact a lot on the
interval [t− τ, t].
First we introduce a notation for the term of (

eq:remain
4.9)∫

zt∈Bt
Ibc(t, z̄t, zt) dzt, with Ibc(t, z̄t, zt) = Ibc(t, i, j) :=

1

τ

∫ t

t−τ

1

|T sx(z̄s)− T sx(zs)|α
ds,

(4.13) eq:Ibc

where (i, j) are s.t. T sx(z̄s) = Xi(s), T
s
x(zs) = Xj(s).
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For zt ∈ Bt, define for s ∈ [t− τ, t]

φ(s) = (T sx(z̄s)− T sx(zs)) ·
v̄t − vt
|v̄t − vt|

.

Note that |φ(s)| ≤ |T sx(z̄s)− T sx(zs)| and that

φ′(s) = (T sv (z̄s)− T sv (zs)) ·
v̄t − vt
|v̄t − vt|

= |v̄t − vt|+ (T sv (z̄s)− T sv (zs)− (v̄t − vt)) ·
v̄t − vt
|v̄t − vt|

≥ |v̄t − vt|
2

,

where we have used (
eq:CBF
4.11). Therefore if φ attains its minimum on [t− τ, t] at s0, then

|T sx(z̄s)− T sx(zs)| ≥ |t− s0|
|v̄t − vt|

2
. (4.14) eq:dispB

Using this directly gives, as α < 1

|Ibc(t, z̄t, zt)| ≤
C

τ
|v̄t − vt|−α

∫ t

t−τ

ds

|s− s0|α
≤ C τ−α |v̄t − vt|−α. (4.15) vtrick

Now integrating ∫
zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C τ−α
∫
Act

dzt
|v̄t − vt|−α

≤ C τ−α (W∞(t) + τ)d (R(t))d−α,

by using the fact that Bt ⊂ B(0, C[W∞(t) + τ ])×B(0, R(t)). In conclusion∫
zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C τ−α (W∞(t) + τ)d. (4.16) Bt

With the cut-off where α > 1, the reasoning follows the same line up to the bound (
vtrick
4.15)

which relies on the hypothesis α < 1. (
vtrick
4.15) is replaced by

|Ibc(t, z̄t, zt)| ≤
C

τ

∫ t

t−τ

ds

(|s− s0||v̄t − vt|+ 4εm̄)α

≤ C

τ

∫ τ
2|v̄t−vt|

0

ds

(s+ 4εm̄)α
≤ Cεm̄(1−α)

τ
.

When α = 1, the previous calculation gives

|Ibc(t, z̄t, zt)| ≤
C

τ
ln

(
1 +

τ

2|v̄t − vt|εm̄

)
≤ C

τ
ln
(
1 + ε−m̄

)
≤ C ln(ε−m̄)

τ
=
C(ε−m̄)0

τ

In the first line, we used the bound τ
|v̄t−vt| ≤

1
|E|∞(t))

which is implied by the definition

of Bt and then we assumed that |E|∞(t) ≥ 1. In the second line, we use the convention
(εm̄)0 = | ln(εm̄)|.
In both cases, integrating that bound (which do not depend on vt) over Bt, we get the
estimate ∫

zt∈Bt
|Ibc(t, z̄t, zt)| dzt ≤ C (W∞(t) + τ)d τ−1 εm̄(1−α) . (4.17) Btcutoff
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4.4.5 Step 3: Estimate over Ct

We recall the definition of Ct

Ct =

{
zt s.t.

|x̄t − xt| ≤ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t))
|v̄t − vt| ≤ 4W∞(t) + 4 τ |E|∞|(t)

}
.

First remark that Ct ⊂ {|zt| ≤ C(W∞(t) + τ)}, so that its volume is bounded by
C(W∞(t) + τ)2d. From the previous steps, it only remains to bound∫

zt∈Ct
Ibc(t, z̄t, zt) dzt.

We begin by the cut-off case, which is the simpler one. In that case, one simply bounded
Ibc ≤ C ε−m̄α which implies∫

zt∈Ct
Ibc(t, z̄t, zt) dzt ≤ C(W∞(t) + τ)2dε−m̄α. (4.18) Ctcutoff

It remains the case without cut-off. We denote C̃t = {j | ∃zt ∈ Ct, s.t. Zj(t) = T t(zt)},
and transform the integral on Ct in a discrete sum∫
zt∈Ct

Ibc(t, z̄t, zt) dzt =
∑
j∈C̃t

aijINc(t, i, j) with INc(t, i, j) =
1

τ

∫ t

t−τ

dzt
|Xi(s)−Xj(s)|α

ds,

where i is the number of the particle associated to z̄t (T t(z̄t) = Zi(t)) and

aij = |{zt ∈ Ct, T t(zt) = Zj(t)}|, so that
∑
j∈C̃t

aij = |Ct|.

To bound INc over C̃t, we do another decomposition in j. Define

JXt =

{
j ∈ C̃t , |Xj(t)−Xi(t)| ≥

dN(t)

2

}
,

JVt =

{
j ∈ C̃t , |Xj(t)−Xi(t)| ≤ |Vj(t)− Vi(t)| and |Vj(t)− Vi(t)| ≥

dN(t)

2

}
.

By the definition of the minimal distance in phase space dN(t), one has that C̃t = JXt ∪
JVt. Since

|T t(zt)− zt| ≤ W∞(t),

one has by the definition of C̃t and Ct that for all j ∈ C̃t, |Zj(t)−Zi(t)| ≤ C (W∞(t)+ τ).

Let us start with the bound over JXt. If j ∈ JXt, one has that

|Xj(s)−Xi(s)| ≥ |Xj(t)−Xi(t)| −
∫ t

s

|Vj(u)− Vi(u)| du.

On the other hand, for u ∈ [s, t],

|Vj(u)− Vi(u)| ≤ 2W∞(t) + |v̄u − vu| ≤ 2(W∞(t) + τ |E|∞) + |v̄t − vt| ≤ C(W∞(t) + τ).

Therefore assuming that with that constant C

C τ(W∞(t) + τ) ≤ dN(t)/4, (4.19) assJX
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we have that for any s ∈ [t − τ, t], |Xj(s) − Xi(s)| ≥ dN(t)/4. Consequently for any
j ∈ JXt

INc(t, i, j) ≤ C [dN(t)]−α. (4.20) boundJX

For j ∈ JVt, we write

|(Vj(s)− Vi(s))− (Vj(t)− Vi(t))| ≤
∫ t

s

|EN(Xj(u))− EN(Xi(u))| du.

Note that

|Xj(s)−Xi(s)| ≤ |Xj(t)−Xi(t)|+
∫ t

s

|Vj(u)− Vi(u)| du

≤ C(W∞(t) + τ) + 2

∫ t

s

(W∞(u) +R(u)) du

≤ C(W∞(t) + τ).

(4.21) xclose

Hence we get for s ∈ [t− τ, t]∫ t

s

|EN(Xj(u))− EN(Xi(u))| du ≤ C τ |∇NE|∞ (W∞(t) + τ + ε1+r′).

Note that the constant C still does not depend on τ = ε1+r′ . Therefore provided that
with the previous constant C

C τ |∇NE|∞ (W∞(t) + τ) ≤ dN(t)/4, (4.22) assJV

one has that

|Vj(s)− Vi(s)− (Vj(t)− Vi(t))| ≤ dN(t)/4 and also |Vi(s)− Vj(s)| ≥
dN(t)

4
.

As in the step for Bt (See equation (
eq:dispB
4.14)) this implies the dispersion estimate

|Xj(s)−Xi(s)| ≥ |s− s0| dN(t)/4 for some s0 ∈ [t− τ, t]. As a consequence for j ∈ JVt,

INc(t, i, j) ≤
C

τ
(dN(t))−α

∫ t

t−τ

ds

|s− s0|α
≤ C τ−α (dN(t))−α. (4.23) boundJV

Summing (
boundJX
4.20) and (

boundJV
4.23), one gets∑

j∈C̃t

aijINc(t, i, j) ≤ C |Ct|
(
(dN(t))−α + τ−α (dN(t))−α

)
.

Coming back to Ibc, using the bound on the volume of |Ct| and keeping only the largest
term of the sum ∫

Ct

Ibc(t, z̄t, zt) dzt ≤ C (W∞(t) + τ)2dτ−α (dN(t))−α. (4.24) Ct

4.4.6 Conclusion of the proof of Lemmas
boundIK
1,

boundIcut
2

Assumptions (
assJX
4.19) and (

assJV
4.22) are ensured by the hypothesis of the lemma. Summing up

(
At
4.6) for Iα or (

At2
4.7) for Jα+1, with (

Ic
4.8), (

Bt
4.16) and (

Ct
4.24), we indeed find the conclusion

of the first lemma.
In the Sαm case, no assumption is needed, and summing up the bounds (

At
4.6), (

Ic
4.8), (

Btcutoff
4.17),

(
Ctcutoff
4.18), we obtain the second lemma.
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4.5 Conclusion of the proof of Theorem
thm:deter

3 (without cut-off)

In this subsection, in order to make the argument clearer, we number explicitly the con-
stants. Let us summarize the important information of Prop.

propeasy
4 and Lemma

boundIK
1. Let us

also rescale the interested quantities s.t. all may be of order 1

ε W̃∞(t) = W∞(t), ε1+r d̃N(t) = dN(t).

We also assume that W̃∞ and |∇NE|∞ are non decreasing functions of t, and that d̃N
is a non increasing function of t. In fact the bound proved before are also valid for
sups≤t W̃∞, sups≤t |∇NE|∞, and infs≤t d̃N(s). With that convention W̃∞(t) ≥ W̃∞(0) ≥ 1.

By assumption (i) in Theorem
thm:deter
3, also note that d̃N(0) ≥ 1.

Recalling τ = εr
′

(with r′ > r > 1), the condition of Lemma
lem:boundI
1 after rescaling reads

C1 ε
r′−r (1 + |∇NE|∞(t)) W̃∞(t) ≤ d̃N(t), ∀ t ∈ [0, t0]. (4.25) assumption

In Lemma
lem:boundI
1, we proved that there exists some constants C0 and C1 independent of N

(and hence ε), such that if (
assumption
4.25) is satisfied, then for any t ∈ [0, t0]

W̃∞(t) ≤ W̃∞(t− τ) + C0 ε
r′
(
W̃∞(t) + ελ1 W̃ d

∞(t) + ελ2 W̃ 2d
∞ (t) d̃−αN (t)

)
,

|∇NE|∞(t) ≤ C2

(
1 + ελ3 W̃ d

∞(t) + ελ4 W̃ 2d
∞ (t) d̃−αN (t))

)
d̃N(t) + εr

′−r ≥ [d̃N(t− τ) + εr
′−r]e−τ(1+|∇NE|∞(t)),

where ε appear four times with four different exponents λi, i = 1, . . . , 4 defined by

λ1 = d− 1− α r′, λ2 = 2d− 1− α(1 + r′ + r),

λ3 = d− 1− r′ − α r′, λ4 = 2d− 1− r′ − α(1 + r′ + r).

To propagate uniform bounds as ε → 0 and N → ∞, we need all λi to be positive. As
r, r′ > 0, it is clear that λ1 > λ3 and λ2 > λ4. Thus we need only check λ3 > 0 and
λ4 > 0. As r′ > r, it is sufficient to have

r′ <
d− 1

1 + α
, and r′ <

2d− 1− α
1 + 2α

.

Note that a straightforward calculation shows that

d− 1

1 + α
− 2d− 1− α

1 + 2α
=

α2 − d
(1 + α)(1 + 2α)

< 0,

so that the first inequality is the stronger one. Thanks to the condition given in Theorem
thm:deter
3, r < r∗ := d−1

1+α
, so that if we choose any r′ ∈ (r, r∗), the corresponding λi are all positive.

We fix a r′ as above and denote λ = mini(λi). Then by a rough estimate,

W̃∞(t) ≤ W̃∞(t− τ) + C0 τ
(
W̃∞(t) + 2 ελ W̃ 2d

∞ (t) d−αN (t)
)
,

|∇NE|∞(t) ≤ C2

(
1 + 2 ελ W̃ 2d

∞ (t) d̃−αN (t)
)
,

d̃N(t) ≥ [ d̃N(0) + εr
′−r]e−t(1+|∇NE|∞(t)) − εr′−r.

(4.26) roughestimate

If one has (
assumption
4.25) and

2 ελ W̃ 2d
∞ (t) d̃−αN (t) ≤ 1, (4.27) assumption2
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then using W∞ ≥ 1, we get W̃∞(t) ≤ W̃∞(t− τ) + 2C0τW̃∞(t) so that

W̃∞(t) ≤ W̃∞(t− τ)(1− 2C0τ)−1,

|∇NE|∞(t) ≤ 2C2,

d̃N(t) ≥ e−(1+2C2) t − εr′−r.
(4.28) presquegronwall

The last inequality implies d̃N(t) ≥ 1
2
e−(1+2C2) t if 2εr−r

′
e(1+2C2)T < 1. That condition is

fulfilled for ε small enough, i.e. N large enough (lnN ≤ T ).
The first inequality in (

presquegronwall
4.28), iterated gives W∞(t) ≤ W∞(0)(1 − 2C0τ)−

t
τ . If C0τ ≤ 1

4
,

then we can use − ln(1− x) ≥ 2x for x ∈ [0, 1
2
], and get

W̃∞(t) ≤ W̃∞(0)e4C0t

To summarize

W̃∞(t) ≤ e4C0t,

|∇NE|∞(t) ≤ 2C2,

d̃N(t) ≥ 1

2
e−(1+2C2) t.

(4.29) result

At the discrete level of the particles, the dynamics is continuous in time, at least for initial
conditions not leading to collisions. That set is of full measure for α < 1, and d ≥ 2 (See
Hau04
[Hau04]). So as long as (

assumption
4.25) and (

assumption2
4.27) are satisfied at t = 0, there exists a maximal

time t0 ∈]0, T ] (possibly t0 = T ) such that they are satisfied on [0, t0].
We show that for N large enough, i.e. ε small enough, then one necessarily has t0 = T .
Then we will have (

result
4.29) on [0, T ] which is the desired result. This is simple enough. By

contradiction if t0 < T then

C1 ε
(r−r′) (1 + |∇NE|∞(t0)) W̃∞(t0) = d̃N(t0), or 4 ελ W̃ 2d

∞ (t0) d̃−αN (t0) = 1.

Until t0, (
result
4.29) holds. Therefore

ελ W̃ 2d
∞ (t0) d̃−αN (t0) ≤ ελ 2α e(α+ (4d+2α) max(C0,C2)) t0 < 1,

for ε small enough with respect to T and the Ci. This is the same for (
assumption
4.25),

C1 ε
(r−r′) (1 + |∇NE|∞(t0)) W̃∞(t0)d̃−1

N (t0) ≤ 2ε(r−r′)C1(1 + 2C2)e(1+6 max(C0,C2))t0 < 1.

Hence we obtain a contradiction and prove Theorem
thm:deter
3.

4.6 Conclusion of the proof of Theorem
thm:cutoff

4 (cut-off case)

In the cut-off case, using Lemma
boundIcut
2 together with the inequality ii) of the Proposition

propeasy
4,

we may obtain

W∞(t) ≤ W∞(t−τ)+C0W∞(t)
[
1 + (W∞(t) + τ)d−1τ−1εm̄(1−α) + (W∞(t) + τ)2d−1ε−m̄α

]
.

We again rescale the quantity W∞(t) = εW̃∞(t) and replace W̃∞(t) by W̃∞(t)+1. Choos-
ing in that case τ = ε, it comes for 1 ≤ α < d− 1,

W̃∞(t) ≤ W̃∞(t− τ) + C0W̃∞(t)
[
1 + εd−2−m̄(α−1) W̃ d−1

∞ (t) + ε2d−1−m̄α W̃ 2d−1
∞ (t)

]
.
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As in the previous section, we will get a good bound provided that the power of ε appearing
in parenthesis are positive. The two conditions read

m̄ < m̄∗ := min

(
d− 2

α− 1
,
2d− 1

α

)
.

In that case, for N large enough (with respect to eCt), we get a control of the type

d

dt
W̃∞(t) ≤ 4C0W̃∞(t),

(but discrete in time) which gives the desired result.

Remark 2. In the cut-off case (and also in the case without cut-off), it seems important
to be able to say that the initial configurations Z we choose have a total energy close
from the one of f 0. Because, if the empirical distribution µZN is close form f 0, but has
a different total energy, we would not expect that they do not remains close a very long
time.
Fortunately, such a result is true and under the assumptions of Theorem

thm:deter
3 and

thm:cutoff
4, the

total energy of the empirical distributions are close from the total energy of f 0.
Unfortunately, we do not have a simple proof of this fact. But, it can be done using the
argument for the proof of the deterministic theorems. First, the difference between the
kinetic energy is easily controlled because our solutions are compactly supported and that
there is no singularity there. Next, performing calculations very similar to the ones done
in the proofs, we can control the difference between a small average in time of the potential
energies, on the small interval of time [0, τ ]. Then, we control the average of the total
energy, which is constant.

A Appendix : Large deviation on the infinite norm

of fN .

prop:largedev Proposition 5. Assume that ρ is a probability on Rn with support included in [−R0, R0]n

and and bounded density f(x) dx. Let φ be a bounded cut-off function, with support in
[−L

2
, L

2
]n and total mass one, and define the usual φε := 1

εn
φ( ·

ε
). For any configuration

ZN = (Zi)i≤N we define
fZN := µZN ∗ φε(N).

If ε(N) = N
γ
n and the ZN are distributed according to f⊗N , then we have the explicit

“large deviations” bound with cφ = (2L)n‖φ‖∞ and c0 = (2R0 + 2)dL−n.

P (‖fZN‖∞ ≥ βcφ‖f‖∞) ≤ c0N
γe−(β lnβ−β+1)(2L)n‖f‖∞N1−γ

. (A.1) eq:largedev

In particular, for φ = 1[−1/2,1/2]n and β = 2, we get

P
(
‖fZN‖∞ ≥ 21+n‖f‖∞

)
≤ (2R0 + 2)dNγe−(2 ln 2−1)2n‖f‖∞N1−γ

. (A.2) eq:largedev2

Proof. For any Z ∈ RnN and z ∈ Rn, we have

fZN(z) =
1

N

N∑
i=1

φε(z − Zi) =
1

N εn

N∑
i=1

φ

(
z − Zi
ε

)
≤ ‖φ‖∞

N εn
#{i s.t. |z − Zi|∞ ≤ Lε

2
}

‖fZN‖∞ ≤ ‖φ‖∞
N εn

sup
z∈Rn

#{i s.t. |z − Zi|∞ ≤ Lε
2
},
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where # stands for the cardinal (of a finite set). It remains to bound the supremum on all
the cardinals. The first step will be to replace the sup on all the z ∈ Rn by a supremum
on a finite number of point. For this, we cover [−R0, R0]n by M cubes Ck of size Lε,
centered at the points (ck)k≤M . The number M of square needed depends on N via ε,
and is bounded by

M ≤
[

2(R0 + 1)

Lε

]n
.

Next, for any z ∈ Rd, there exists a k ≤M such that |z − ck| ≤ Lε
2

. This implies that

sup
z∈Rn

#{i s.t. |z − Zi|∞ ≤ Lε
2
} ≤ sup

k≤M
#{i s.t. |ck − Zi|∞ ≤ Lε}

Now we denote by HN
k := #{i s.t. |ck−Zi|∞ ≤ Lε}. HN

k follows a binomial law B(N, pk)
with pk =

∫
2Ck

f(z) dz, where 2Ck denotes the square with center ck, but size 2Lε. Remark
that

pk ≤ p̄ := (2Lε)n‖f‖∞.

For any λ, the exponential moments of HN
k are therefore given and bounded by

E(eλH
N
k ) =

[
1 + (eλ − 1)pk

]N
≤

[
1 + (eλ − 1)(2Lε)n‖f‖∞

]N
≤ e(eλ−1)N(2Lε)n‖f‖∞ .

Now for the supremum of the HN
k

E(eλ supkH
N
k ) ≤ E(eλH

N
1 ) + · · ·+ (eλH

N
M )

≤ Me(eλ−1)N(2Lε)n‖f‖∞

≤
[

2(R0 + 1)

Lε

]n
e(eλ−1)N(2Lε)n‖f‖∞

Using finally Chebyshev’s inequality, we get for any β > 0

P (‖fZN‖∞ ≥ β(2L)n‖φ‖∞‖f‖∞) ≤ P
(

sup
k
HN
k ≥ β‖f‖∞N(2Lε)n

)
≤ E(eλ supkH

N
k )e−λβ‖f‖∞N(2Lε)n

≤
[

2(R0 + 1)

Lε

]n
e(e

λ−1−λβ)N(2Lε)n‖f‖∞ .

For β > 1, the optimal λ is ln β and we get with cφ = (2L)n‖φ‖∞

P (‖fZN‖∞ ≥ βcφ‖f‖∞) ≤
[

2(R0 + 1)

Lε

]n
e−(β lnβ−β+1)N(2Lε)n‖f‖∞ .

With the scaling ε(N) = N−
γ
n , we get

P (‖fZN‖∞ ≥ βcφ‖f‖∞) ≤ cfN
γe−(β lnβ−β+1)(2L)n‖f‖∞N1−γ

.

Remark finally that the choice of scale ε(N) = (lnN)N−
1
n is also sufficient to get a

probability vanishing faster than any inverse power.
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Peyr07 [Pey] Rémi Peyre. Moyennes déviations des mesures empiriques. Available upon
request at the author.

Pfaf [Pfa92] K. Pfaffelmoser. Global classical solutions of the Vlasov-Poisson system in
three dimensions for general initial data. J. Differential Equations, 95(2):281–
303, 1992.

Scha91 [Sch91] Jack Schaeffer. Global existence of smooth solutions to the Vlasov-Poisson
system in three dimensions. Comm. Partial Differential Equations, 16(8-
9):1313–1335, 1991.

Scho96 [Sch96] Steven Schochet. The point-vortex method for periodic weak solutions of the
2-D Euler equations. Comm. Pure Appl. Math., 49(9):911–965, 1996.

Spoh91 [Spo91] Herbert Spohn. Large scale dynamics of interacting particles. Springer Verlag,
New York, 1991.

Sznitman [Szn91] Alain-Sol Sznitman. Topics in propagation of chaos. In École d’Été de Prob-
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