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Particles approximations of Vlasov equations with
singular forces : Part. 2

Maxime Hauray* and Pierre-Emmanuel Jabin |

Abstract. We obtain the mean field limit and the propagation of chaos for a system of
particles interacting with a singular interaction force of the type 1/|z|%, with @ < 1 in
dimension d > 3. We also recover previous results, with a sharper propagation of chaos
property, for forces with singularity up to a < d — 1 but with large enough cut-off. This
last result thus almost includes the most interesting case of Coulombian or gravitationnal
interaction.

Key words. Derivation of kinetic equations. Particle methods. Vlasov equation. Prop-
agation of chaos.

1 Introduction

The N particle system. We study the evolution of system of N particles in interaction
on the whole space R?, which is described by the system of ODEs below. The vectors
(X1,..., Xn) denote the position of the particles in R?, (V1, ..., Vy) denote their velocities
in R? and F(z) the interaction kernel :

Xi = V;la

. 1

Vi= B(X;) =)+ F(Xi - X)), (1.1)
JFi

We us the so-called mean-field scaling which consist in keeping the total mass (or charge)
of order 1, in order to recover in the limit a “mean-field” equation. This actually im-
plies corresponding rescaling in position, velocity and time. When we will use a cut-off,
the force-field F' will also depend on N and will be denoted Fy (some N dependent
mollification of F).

We also use the notation Z; = (X, V;) for the solution and Z° = (X9, V0, ..., X% V?) for
the given initial conditions.

A case of particular interest is the Coulombian force F'(z) = C x/|x|*~!, which is used to
describe a plasma, or for C' < 0 gravitational interactions, in which case the system under
study may be a galaxy, a cloud of star or galaxies (and thus particles are “stars” or even
“galaxies”). Of course other forces are also of physical interest.

The Jeans-Vlasov equation. As a plasma or a galaxy usually contains a very large
number of ”particles”, the system (1.1) is not very convenient. Instead one usually uses
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the distribution function in time, position and speed. The evolution of that distribution
fonction f (¢, x,v) is given by the Jeans-Vlasov equation

Of +v-Vaof + E(z)-Vof =0,
E(x) = [zap(t,y) F(z —y) dy, (1.2)
p(t,x) = [ f(t,z,v)dv.

Here p is the spatial density and the initial density f° is given.

The question of convergence. The question of the convergence of the N particles
system towards the (mean field) Vlasov equation is important for theoretical reasons, to
justify the validity of the Vlasov equation. It also plays a role for numerical simulation,
and especially Particles in Cells methods which introduce a large number (roughly around
10, to compare with the order 10'° to 10% of the number of particles in physical systems)
of “virtual” particles in order to obtain a particles system solvable on a computer.

One way of precisely formulating the question is the following: Choosing the intial posi-
tions and speeds of the particles so that the empirical distribution

N
i 1
pn(t) =+ > oxmvi;
=1

converges (weakly) towards f° at time 0, does the empirical distribution uy(#) still con-
verges towards f(t) (the solution of the Vlasov equation with initial condition f°) at time
t? In other words, is the following diagram commutative?

13 (0) ~ £(0)

Npart l \L vpP

cvg

pi(t) ~~= f(t)

Propagation of chaos. As it may be difficult to prove convergence for a particular
sequence of initial condition, the problem may be restated in term of propagation of
chaos. If the initial positions and speeds of the particles are choosen randomly with the
law (f°)®" (i.e. randomly and independently with profile f°), then the empirical measure
at time 0 is close to f° with large probability. But can we say that for any time ¢ > 0,
pir(t) is close to f(t) with large probability?

The convergence and the propagation of chaos are known to hold for smooth interaction
forces (of class C'') since the end of the seventies and the works of Braun and Hepp [BHT77],
Neunzert and Wick [NW80] and Dobrushin [Dob79].

Previous results with cut-off or for Euler system. The convergence was proved to
hold in the case of Coulombian or gravitational force with cut-off, for particles initially
on a mesh. The cut-off parameter £(N) depends of the number of particles and goes to
zero as the number of particles increases. But it cannot be too small, in the sense that
it should be larger than the average distance between particles in position. Precisely,
it should satisfy limy o e(N)/N~Y/4 = +0o0. Reference on that subject are the work
of Ganguly and Victory [GV89], Wollman [Wol00] and Batt [Bat01] (the later gives a
simpler proof, but valid only for larger cut-off). We also mention a result of Ganguly, Lee
and Victory [GLV91] where the initial conditions are not equally distributed. However in
that work the cut-off is not the same and converges very slowly to zero.

The vortices system is a numerical approximation of the 2D Euler equation (which is
a mean-field equation when written in vorticity formulation), and is also similar to our
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problem since the kernel as a singularity of the type 1/|x|. Two results of convergence
without regularization are already known for that system. The work of Goodman, Hou
and Lowengrub, [GHLI0] and [GH91], has a numerical point of view but use the true sin-
gular kernel in a interesting way. The work of Schochet [Sch96] uses the weak formulation
of Delort of the Euler equation and prove the propagation of chaos for the true kernel.
Unfortunately, both use the symmetry of the forces in the vortex case, a symmetry which
does not exist in our kinetic problem. The force is still symmetric with respect to the
space variable, but there is now a velocity variable which break the argument used in
the vortices case. For a more complete description of the vortices system, we refer to the
references already quoted or to [Hau09].

Our result without cut-off. Without regularization, there were not (at least to our
knowledge) any results known before our previous article [HJ07] for singular force terms.
This article gave a positive answer to the question of convergence in the case of forces
with singularity of order 1/|x|%, with o < 1, but with a very restrictive assumption on
the minimal distance (in phase space) on the particles at time 0. More precisely that
minimal distance had of the order the average distance between a particle and its closest
neighboor.
That restrictive condition did not allow a result of propagation of chaos, because it was
not generic for empirical measures chosen with law (f°)®V (i.e. it was satisfied with
probability 0).
In the present article, we require only a much weaker assumption on the minimal distance
between particles. This allows us to prove the propagation of chaos, for forces satisfying
a (S%)-condition :

(5% VreR: |F@)|< ", |VF@)< o

]

(1.3)

Our precise result without cut-off is the following

Theorem 1. Assume that d > 3 and that F satisfies a (S*)-condition with « < 1 . Choose
any initial condition f° € L> with compact support for the Viasov equation (1.2). For
each N € N*, look at the particles system (1.1) with initial positions (X;,V;)i<n chosen
randomly according to the probability (f°)*N. Then for all T > 0, all

2+ 2 yd— (2 —7y)a—2
<y<land 0<s<
dta 7 o ° 2(1+ «) ’

there exists positive constants Co(f, F'), Cs(7, s, f, F) such that for N large enough

P (3t e0.T], Wy(un(t t>3600t < 5
6[’ ]7 1(#N()af())—m _ﬁa

where f(t) is the unique strong solution of the Vlasov equation (1.2) with initial condition
12, (the constant C, blows up when s approaches its mazimum value) and Wy denotes the
1 Monge-Kantorovitch-Wasserstein distance.

A similar result is also true for d = 2, but only for forces satisfying a (S®)-condition, with
a<1/2.

The conditions on v and s are not completely obvious, but it can be checked that if & < 1

and d > 3, Qdfof“ < 1 so that admissible v exists. And for an admissible v, the quantity

% is also positive, so that admissible s also exists.
Roughly speaking, under the assumption of Theorem 1, the probability of finding a devi-

ation strictly larger than the average inter-particle distance N~'/2? is small.




The notation C(f) means that the constant depends on the function f (essentially via
conserved quantities like || f||o and also the size of its support) on the whole interval of
time under consideration, here [0, 7).

Unfortunately, we cannot precise the rank N after which the bound is satisfied. In fact,
as we shall see later, the proof uses somewhere a large deviation results which is only
asymptotic.

Remark 1. This is the first result (to our knowledge) that provides propagation of chaos
for a particle system with a singular force without cut-off. Unfortunately, the singularity
1s still not very large, because with o < 1 the potential is continuous at the origin. But it
may be a first step for the understanding of more singular potential. We refer to [BHJ10]
for some ideas in that direction.

Even if the theorem is stated probabilistically in terms of propagation of chaos, the core of
the proof is a deterministic theorem (See the Theorem 3 stated in the second section) which
has generic assumptions with respect to the law (f°)®~. Thanks to the deterministic result
we can also construct explicit sequences of initial conditions for which the convergence
towards the Vlasov equation will holds (for instance, particles well choosen on a mesh,
but not only).

The result with cut-off. The result with cut-off presented here is in one sense weaker
than the previously known result [GV89], since we do not cover the critical case a =
d — 1. But it has also some advantages, especially if we are not interested by numerical
simulation. First of all, it is valid for random initial configurations and not only for well
distributed initial positions and speeds (on a mesh). Secondly, for « larger but close to
one it is valid for smaller cut-offs, much smaller than average (and also minimal) distance
between particles.

The result is stated for forces depending on N and satisfying a (S )-condition

i)  F satisfy a (S%) — condition
(Se) it) Yl|z| >N Fn(x) = F(z) (1.4)
ii) Vx| < N7, [Fy(z)] < N7™,

Note that in fact we would not need any estimate on the gradient of F for very small
x. The result would still be true if Fy only converges to F' for large enough x, with an
error satisfying || Fy — F||; < N~Y24. The proof could be adapted to that case, but for
simplicity we choose this simplified presentation. We also point out that one would like
to take m as large as possible if we want to be close to the dynamics without cut-off.

Theorem 2. Assume that d > 3, v € (0,1) and that Fy satisfies a (S5, )-condition for
some 1 < a < d—1 with a cut-off order m such that

o2 (d=2 2d-1
m<m*:=—min| —— L — .
2d a—1" «

Choose any initial condition f° € L with compact support for the Viasov equation (1.2).
For each N € N*, look at the particles system (1.1) with initial positions (X;, Vi)n<n
chosen randomly according to the probability (fO)®N. Then for all T there exists positive
constants Co(f, F'), and C1(y,m, f, F) such that

. 1 4€COt
hmsupmlnﬂ” (Elt € [0,7], Wilun(t), f(t)) > W) < -0y,

N—+o0

where A = min (1 -, d;—da) and f(t) is the unique strong solution of the Vlasov equation.

(1.2) with initial condition f°.



In dimension d = 3, the minimal cut-off is given by the order of m* = I min((a —
1)7',5a7!). As 7 can be chosen very close to one, for « larger but close to one, the
previous bound tells us that we can choose cut-off of order almost N~°/6 ie. much
smaller than the likely minimal inter-particles distance in position space ( of order N—2/3,
see the third section).

With such a small cut-off, one could hope that it is almost never used when we calculate
the interaction forces between particles. Only a negligible number of particles will become
so close to each others during the time 7. This suggests that there should be some way
to extend the result of convergence without cut-off at least to some o > 1.
Unfortunately, we do not know how to make rigorous the previous probabilistic argument
on the close encounters. First it is highly difficult to translate for particles system that are
highly correlated. To state it properly we need infinite bounds on the 2 particles marginal.
But obtaining such a bound for singular interaction seems difficult. Moreover, it remains
to neglect the influence of particles that have had a close encounters (its trajectory after
a encounter is not well controlled) on the other particles.

Let us also mention that astro-physicists doing gravitational simulations (aw = d — 1) with
tree codes usually use small cut-off parameters, lower than N~%¢ by some order. But
their scaling is usually different from ours, since they mainly work close to the vacuum.
See [Deh00] for a physical oriented discussion about the optimal length of this parameter.

About the proof. The Vlasov equation (1.2) is satisfied by the empirical distribution gy
of the interacting particle system provided that F'(0) is set to 0 (in the case of singular
forces, it imposes a discontinuity at 0 but we nevertheless can do this hypothesis that
simplify the presentation). Hence the problem of convergence can be reformulated into
a problem of stability of the empirical measures - seen initially as perturbation of the
smooth profile f° - around the solution f(t) of the Vlasov equation.

The stability result is proved thanks to Gronwall estimates involving Monge-Kantorovitch-
Wasserstein distances (precisely W7 and W,). The estimates use as pivot a distribution
fn(t) which is the solution of the Vlasov equation with a small enlargement of py (Dirac
masses are replaced by “blobs”) as initial conditions. The distance between f(t) and fx(t)
is controlled in W; distance using a standard stability result for Vlasov equation. The
distance between pn(t) and fy(t) is controlled in W, distance thanks to careful estimates
: we separate particles that are far away, particles close from each other but with large
relative velocity, and finally close particles with small relative speed. We remark that the
use of the infinite MKW distance is important. We were not able to perform it with other
MKW distance of order p < +o00. It may seem strange to propagate a stronger norm
for a problem with low regularity but in fact it turns out to be the only MKW distance
with which we can handle a localized singularity in the force and Dirac masses in the
distribution. The ”strong” distance help us to localize the singularity.

To conclude the propagation of chaos, we need some hypothesis on the initial conditions
that are quite common, and also one more which is uncommon and as no physical interest
: the minimal inter-particle distance in phase space.

Organization of the paper. In the next section, we introduce the notations, and state
the deterministic results on which the propagation of chaos relies. In the third section,
we explain how to obtain the propagation of chaos from the deterministic results. The
fourth section is devoted to the proof of the two deterministic theorems.



2 Notations and other important theorems

2.1 Notations and useful results

We first need to introduce some notations and to define different quantities in order to
state the result.

e Empirical distribution ;y and minimal inter-particle distance dy
Given a configuration (X;, V;);<n of the particles in the phase space R?*, the associated
empirical distribution is the measure

BN = % > oxv

An important remark is that if (X;(¢,), Vi(t))i<n is a solution of the system of ODE (1.1),
then the measure py(t) is a solution of the Vlasov equation (1.2), provided that the
interaction force satisfies F'(0) = 0. This condition is necessary to avoid self-interaction of
Dirac masses. It means that the interaction force is defined everywhere, but discontinuous
and has a singularity at 0. In that conditions, the previously known results [BH77],
[NW80] cannot be applied.
For every empirical measure, we define the minimal distance dy between particles in
phase-space:

() = min(1X: = X1 + Vi = V). (2.1

This is a non physical quantity, but it is crucial to control the possible concentrations of
particles and we will need to bound that quantity from below.

o Infinite MKW distance

First, we use many times the Monge-Kantorovitch-Wasserstein distance of order one and
infinite. The order one distance, denoted by W1, is classical and we refer to the very clear
book of Villani for definition and properties [Vil03]. The second one denoted W, is not
widely used, so we recall its definition :

Definition 1. For two probability measures p and v on X, a polish space, with 11(u,v)
the set of transference plan from p to v:

Weo(pt, v) = inf{\ — esssup |z — y| |\ € I1}.

In one of the few works on the subject [CDPJ08] Champion, De Pascale and Juutineen
prove that if p is absolutely continuous with respect to the Lebesgue measure £, then
at least one optimal transference plane is given by a optimal transport map. In other
words there exists a measurable map 7' : X — X such that (Id,T").L € II (it implies in
particular that Ty = v) and

Weo(t, v) = esssup, | Tz — x|.

Although that is not mandatory, we will use this result that will greatly simplify the
proof.

Optimal transport is useful to compare the discrete sum of the N particles dynamics to the
integrals of the continuous Vlasov system. For instance, if f is a continuous distribution
and py an empirical distribution we may rewrite the interaction force of uy using a
transport map 17" = (1, T,) of f onto uy

% > FX? - X)) = / F(X] = Toly, w)) f(y, w) dyduw.
i#j



Note that in the equality above, the function F' is singular at = 0. Using infinite MKW
distance, the singularity is still localized “in a ball“ after the transport. The term under
the integral in the right-hand-side has no singularity out of a ball of radius W (f, vx) in
x. Others MKV distance of order p destroys that simple localization after the transport,
which is why it seems more difficult to use them.

e The scale . We also introduce a scale
e(N) = N2 (2.2)

for some v € (0,1) to be fixed later but close enough from 1. Remark that this scale is
larger than the average distance between a particle and its closest neighbor, which is of
order N=1/2¢. We shall do a wide use of that scale in the sequel, and will often define
quantities directly in term of ¢ rather than N. For instance, the cut-off order m used in
the (S )-condition may be rewritten in term of e, with m := %dm.

i)  F satisfy a (S*) — condition
(Sm) i) V|| =e™ Fy(z) = F(z) (2.3)
i) Vx| <e™ |Fy(z)| < e ™

e The solution fy of Vlasov equation with blob initial condition.

Now we defined a smoothing of uy at the scale £(NN). For this, we choose a radial and
decreasing kernel ¢ : R?*¢ — R with compact support in By x B; (B; denoting the ball of
center 0 and radius 1 of R?), and denote ¢.(-) = e24¢(-/¢). We use this to smooth sy
and define

I =ty * vy, (2.4)

and denote by fx(¢,z,v) the solution to the Vlasov Eq. (1.2) for the initial condition f¥.
The interest of fy is that we may assume that it belongs to L> (see the density kernel
estimates of Gao [Gao03] introduced in the next subsection). It allows to use standard

stability estimates to control its W) distance to another solution of the Vlasov equation
(See Loeper result [Loe06]).

2.2 Statement of the deterministic result without cut-off

As mentioned in the introduction, the dynamic is entirely deterministic. In theorem 1
the randomness comes only from the choice of the starting initial data. Precisely, the
probability on the initial conditions is used to ensure that some conditions on minimal
inter-particle distances and MKV distances are satisfied with large probability. But, once
that conditions are fulfilled, we are able to propagate them with deterministic estimates.
The following theorem shows that the particles system may be approximated by the
solution of the Vlasov equation with the "blob“ distribution f% as initial conditions,
provided that two conditions on the minimal inter-particle distance dy(0) and the infinite
norm of f% are satisfied.

Theorem 3. Assume that the interaction force F satisfies a (S*) condition, for some
a<1andlet 0 <~y <1. Assume also that the empirical distribution uy of the particles
and its e-enlargement fxn satisfy :

i) dYy == dn(un(0)) > et = N2 for some v € (1,7%) where r* = 42,

i) || f¥|loo < Coo, a constant independent of N,



ii) For some R >0, VN € N, Suppu®, C B(0, R), the ball of radius R and center 0 of
R,
Then for any T > 0, there ezists two constants Co(R, Coo, F, T) and C1(R,Cs, F,v,7,T)
such that for N > e“T the following estimate is true
eCot

Vte [0, T], Wul(un(t), fn(t) < N2 (2.5)

Remark. This is a inequality of the type W, (t) < W (0)e!, where the value of W, (0)
has been bounded by N~7/2¢, But that last bound is true since f% is a blob approximation
of yun, with blob contained in balls of radius N~?/2¢ around the Dirac of u$;.

2.3 Statement of the deterministic result with cut-off

As in the case without cut-off, the probabilistic result 2 relies on a deterministic result,
much simpler with cut-off since it does not need any control on the minimal inter-particles
distance. The result is the following

Theorem 4. Assume that d > 3 and that the interaction force F' = Fy satisfies a (S2),
for some 1 < a < d—1, with a cut-off order satisfying

. 7. (d—2 2d—1>
m<m = -—min| ——-— .

a—1" «

Assume also that the initial empirical distribution of the particles u%, and its ¢ enlargement
fn satisfy :

i) | f]loe < Coo, a constant independent of N,

ii) For some R > 0, VN € N, Suppu®, C B(0, R), the ball of radius R and center 0 of
R,
Then for any T > 0, there exists two constants Co(R, Co, F,T) and C1(R,Cw, F,7y,r,T)
such that for N > €T the following estimate is true
€COt

Vte [0, T], Waulun(t), fn(t)) < N7 (2.6)

Theorem 4 result has also an interest for numerical simulation because one obvious way
to fulfill the hypothesis on the infinite norm of f¥ is is to put particles initially on a mesh
(with a grid length of N='/2¢ in R??). In that case, the result is even valid with v = 1.

3 From deterministic results (Theorem 3 and 4) to
propagation of chaos.

The assumptions made in Theorem 3 may seem a little bit strange, but they are in some
sense generic, when the initial positions and speed are choosen with the law (f0)®V.
Therefore, to prove Theorem 1 form Theorem 3, we need to

e Obtain a bound on the W; distance between f(t) and fy(t), which are two solutions
of the Vlasov equation.



e Estimate the probability that empirical measure chosen with the law (f°)®", do not
satisfy the conditions 7) and i) of the deterministic theorem 3, and are far away
from f° in W, distance (the last conditions is important for the previous point on
the distance between f and fy).

For these two points, we will use known results detailed in the next two sections. After
that, a good choice of the parameter v and r will allow us to conclude the proof.

3.1 Stability around solution of the Vlasov equation.

The following result is proved in [Loe06] for & = d — 1, but its proof may be adapted to
our less singular case (The adaptation is done in [Hau09] in the Vortex case)

Proposition 1 (From Loeper). If f; and fy are two solutions of Viasov Poisson equations
with different kernel K1 and Ky both satisfying a (S®)-condition, with o < d — 1, then

d

5 Wilf1(0), (1)) < Cmax([[piflec, llprlloe) Wi f1(E), f2(t)) + Clloallooll K1 — Koy

The bound on the density may be obtained in our case with the argument of Pfaffelmoser
for solution with compact support [Pfa92] (It is even simpler for o < 1 as it is explained
in the appendix of [HJ07]).

Using that theorem in the case without cut-off (K; = Ky = F'), with o < 1 (for d > 3)
and a || fY|| compactly supported, we obtain that there exists a constant Cy depending
on F', an uniform bounds on the infinite norms of the fy and the size of their supports
(denoted Cy and R in Theorem 3), such that

Wi(f (1), fn(t) < e“W(f0, ) < e (WA (f0, ) + N 7720 (3.1)

3.2 Estimates in probability on the initial distribution.

The bound ii) of the deterministic theorem 3. A result in the theory of density
kernel estimates by Gao [Gao03] shows that this bound is satisfied almost surely in the
limit of large N, if the positions and velocities of the initial particles distribution u3; are
chosen randomly and independently according to the law f°. As we shall only use a small
part of the Gao’s results, we present in the the following proposition only what we need
(with our notations) and explain in the appendix how to obtain it from Gao’s results.

Proposition 2 (From Gao). Assume that ¢ is bounded, radial, decreasing. Then, with
the previous notations

. 1
Jim P (1 > L) = £l Fo(E)

with I5(L) = supyep { Lt + [pa[l — @] dz} > 0.

Remark 2. To get a quantitative version of Theorem 1 (in which we can at least precise
the rank N after which the inequality is true), one would need a quantitative version of the
previous proposition 2. Unfortunately, this is not available (at least to our knowledge), and
seems more difficult than the asymptotic result. This is why we cannot precise the rank
N after which the estimate of Theorem 1 becomes true. However, under the additionnal
assumption that f° and ¢ are Lipschitz, Bolley, Guillin and Villani obtained in [BGV07]
quantitative concentration inequality for f in infinite norm. But unfortunately, they can
be used in our setting because they requires to large smoothing paramater in order to give
precise results.



Deviations for the minimal inter-particle distance. It may be proved with simple
arguments that the scale n,, is almost surely larger than N~/¢ when f° € L. A precise
result is stated in the Proposition below, proved in [Hau09]:

Proposition 3. There exists a constant coq depending only on the dimension such that
if fO € L®(R?), then

P (dN(Z) >

el £l
= Nl/d> =e '

Be careful that the inequalities are in the bad sense and that this is not a large deviation
result. It is that condition that prevent us to obtain a “large deviation” result in Theorem
1 (contrarily to the cut-off case of Theorem 2). In fact, the only bound it provides on the
“bad” set is

N1/d
With the notation of Theorem 3 it comes that if s = ’yl2i — 1> 0 then

¥ (dN<Z> < ) < 1= el <o 0] 1

—s/d
P(dy(Z2) <) =P (dN(Z) < ]X[—l/d) < codl| [l N 5. (3.2)

Deviations for the W, MKW distance. Peyre has obtained in [Pey] the following
result

Proposition 4 (Peyre). If d > 2, and the empirical measures % are chosen according
to the law (f°)®N, then there exists an explicit constant Lq such that

I a-1
0 0 Lgq—LN 2d
P (Wl(MNaf ) > m) <e™ : (3.3)
It will particularly interests us when L = N 12;;, in which case it maybe rewritten
m
P (Wi, f0) >¢e) <Ce™™™ | with C=e". (3.4)

3.3 Conclusion

Now take the assumptions of Theorem 1. It means that we assume that F satisfies a (S)
condition for o < 1 and f° € L™ for d > 3. We chose

c 2+2a1 d c 2 1L d—1
_— and r ——1,r" = .
’7 d—I—O{? ) 'Y ) ]_+O[

(The condition on ~y ensures that the second interval is non empty). We also define

I+r d—r

—1>0, )\:min<1—7,—>

s 2d

Denote by wy, we the sets of initial conditions s.t. respectively (i), and (i) (with Cy =
2[| f°||sc) of Theorem 3 hold and ws s.t. Wi(un, f°) < w7z

wy i ={Z st. dy(Z) > Y, wo = {Z st || fulloe < 201 ls0
ws = {Z st. Wi(u%, f°) < ¢}

10



By the results stated in the previous section, one knows that

d—y
c —s c —N 2d :
P(wl) S CN s IP)((A)?)) S Ce N ]\}LH;O m

InP(ws) = —C4 1= 14(2) < 0.
Denote w = w; Nws Nws. Hence |w°| < |wf| + |ws| + |w§| and for N large enough
P(w) < C N~ 4 C e mnCON < 0 N (3.5)

If the initial conditions belong to w then one may apply Theorem 3 and get on [0, T

eC()t
Wl(fNa,uN) < Woo(meN) < W-

Now apply the stability around solution of Vlasov equation given by (3.1) and get

2
Wi(f, fn) < Wi(f°, ) et < WeCOt'

The factor 2 comes from the fact that Wi(f°, %) < Wi(f°u%) + Wai(p%, ). We

conclude that

3
Wi(fsun) < Wecot,

which proves that

eCOt
o) < P (W€ 0.7] Walff) < 3 )

The bound 3.5 then gives Theorem 1.

3.4 From Theorem 4 to Theorem 2

In the cut-off case, one can derive Theorem 2 from Theorem 4 in the same manner. As
we do not use the minimal distance in that case, the proof is simpler in the case a < d—1
and we get a stronger convergence result. The only difference is that we shall use the
Theorem 1 with K; = F and Ky = Fl, so that an error term appears. But that error
term is bounded by

CliosllcllF = Exlli < Ce™™* < CWo(t)

for any t so that the proof is unchanged. In fact, with the same )\, we obtain that

. ]_ 4600t
i (3 € 0] Wiluv(0), S0) 2 7 ) = =C

4 Proof of Theorem 3

4.1 Definition of the transport

We try now to compare the the dynamics of uy and fy, two distributions which have
a compact support. For that, we choose an optimal transport 7° from f¥ to uQ for
the infinite MKW distance (See the remark after Definition 1). The existence of such a
transport is ensured by [CDPJO08]. Since both f% and u% are compactly supported, note
that T°(z) is defined for |z| < RY (the size of the support). Since f% is an e-enlargement
of 1%, it is clear that W (fS, u%) < e.

11



We also denote by Z/ = (X7 V/) the smooth flow associated to fy and by ZV¥ =
(XN VM) the flow of the N particles system (with the convention Z(t,s) transport from
time s to time ¢). A simple way to get a transport of fy(t) on puy(t) is to transport along
the flows the map 77, i.e. to define

T =ZN(t,0)0T° 0 Z7(0,t),  and T'=(T! T

We use the following notation, for a test-" particle” of the continuous system at the position
2 = (xy,vy) at time ¢, z, = (x4, vs) will be its position at time s for s € [t — 7, t]. Precisely

2s = Z1(s,t, %)

Since fy is the solution of a transport equation, we have fy(t, z:) = fa (s, z5). And since
the vector-field of that transport equation is divergence free

/@(z) Fr(s ) dz = /cb(zf(s,t,z))fN(t, 2)ds = /q)(zs)fN(t,zt) i

Finally let us remark that fy is a solution to the continuous Vlasov equations with an
initial L* norm and support that are uniformly bounded in N. Therefore this remains
true uniformly in N for any finite time. In particular there exists a constant C independent
of N such that for any t € [0, T

||fN(t7" )”oo <, ||fN(ta '7')||L1 =1,

B(t,z)| < / F(a — )| fult.y,w) dydw < C -
4.1

VE(t, 7)) < / VF(x — )| f(t,y,w) dydu] < C
supp fn(t,.,.) € B(0,R(t)), R(t) <C,

as of course R(t) < R® + fot |E(s,.)|lo ds. This is always true for & < 1. In dimension
d < 3 it remains true for « < d — 1 and even @« = d — 1. In fact, all that estimates
where central in the work of see Pfaffelmdser [Pfa92] about existence and uniqueness of
compactly supported solution of Vlasov-Poisson equation (See also [Hor93] for a result
with improved bounds). The proofs can be adapted to our simpler cases (See the Appendix
of [HJO7] for the case o < 1).

In dimension d > 3 and for attractive forces with 1 < o < d—1, there can be a blow-up in
finite time (for o larger than a critical value depending on the dimension). In that case,
we simply restrict ourselves to a time interval on which this does not occur.

In what follows, the final time T is fixed and independent of N. For simplicity, C' will
denote a generic universal constant, which may actually depend on 7', the size of the initial

support, the infinite norms of the fy... But those constants are always independent of N
as in (4.1).

4.2 The quantities to control

We will not be able to control the infinite norm of the field (and its derivative) created by
the empirical distribution, but only a small temporal average of this norm. For this, we
introduce in the case without cut-off a small time step 7 = &” for some 7’ > r and close
to r (the precise condition will appear later).

In the case with cut-off where r and 7’ are useless, the time step will by 7 = ¢.

12



e The MKW infinite distance between uy(t) and f(t).
We of course wish to bound W (1) := supgc,<; Woo (i (), fn(s)) (note that W is

hence automatically non decreasing). For the transport introduced before, one has

Weo(t) < sup sup |T°% (x5, vs) — (x5, V5)].
s<t (zs,vs)Esupp fN(S,.,.)

In fact, we will provide bound for the quantity of the right hand side. Our result
maybe stated for that quantity, rather than the infinite MKW distance. It is a little
stronger, since it means that rearrangement in the transport are not necessary to
keep the MKW distance bounded. The transport chosen at time ¢ = 0 is preserved
during the time.

e The support of uy

We shall also need a uniform control on the support in position and velocity of the
empirical distributions :

RY(t) = max |(X;(t), Vi(1))].

)

But using the infinite MKW distance, it is clear that RV (t) < R(t) + W (t). We
will do a wide use of this control in the following.

e The infinite norm |E™ |, of the time averaged discrete force field.

We also define the average of the discrete force field over small time intervals of
length 7 (the dependence on ¢ is implicit)

1 t
|EN|oo = sup ;/ |En(X;(s))| ds.
? t—1

e The infinite norm |VVE|,, of the time averaged discrete derivative of the
force field.

We also define a version of the infinite norm of its averaged derivative

1 (" |BEn(Xi(s) — Ex(X;(s))| ds
VNE oo — 8 _/ . J 7 d
| | 511;5) T Jir | Xi(s) = Xj(s)| + 0+ 5

For both Ey and VYV E, we use the convention that when the interval of integration
contain 0 (for ¢ < 7), the integrand is null on the left side.

e The minimal distance in phase space dy

which has already be defined by the equation (2.1) in the Section 2.

e Two useful integrals [,(t,z) and J, (¢, )

Finally the technical computations involve

Lt o) = - [ 1P(I3() = T3(e0) = Fla = o)l ds

Defining a second kernel as

. 1 1
fte = min (|:c|1+a’ \xra> ’
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we define a second useful quantity

Tor(t 50, 20) = © / KT (2,) — T5(24)| ds

_;/t_ K.(1X:(s) — X;(s)| ds,

if ¢ and j is the indices such that Z;(t) = T"(z;) and Z;(t) = T"(z).

All previous quantities are relatively easily bounded by I, and J,,1. Those last two will
not be bounded by direct calculation on the discrete system, but we compare them to
similar ones for the continuous system, paying for that in terms of the distance between
pn(t) and f(t). That strategy is interesting because the integrals are easier to manipulate
than the discrete sums.

We summarize the first easy bounds in the following

Proposition 5. Under the assumptions of Theorem 3, one has for some constant C'
uniform in N

(i) Rult) < Walt) + R(t) < We(t) + C.
(i1) Waelt) < Wit —7) + C rsup / La(t, 50, 20) d2,
|2¢|<R(t)

(iii) |VNE|s < C sup Jor1(t, 2, 2¢) dzy.
Zt J|z|<R(t)

(i) du(t) + €7 > [dy(t — ) + £ e OHTY P

Note that the control on Ry(t) is simple enough that it will actually be used implicitly
in the rest many times, and that the iv) is a simple consequence of the #ii). In fact, in
that proposition the crucial estimates are the i) and ii).

Remark also that in the case of very singular interaction force (o > 1) with cut-off - in
short (59) conditions - the control on minimal distance dy and therefore the control on
VN E| are useless, so that the only interesting inequality is the second one.

4.3 Proof of Prop. 5
Let us start with (7). Simply write

RN(t) = sup  |T%(z)] < sup  |T"(z) — 2|+ sup |z,
z¢€supp fn (t,7) z¢€supp fn (t,7) zi€supp fn (t,7)

So indeed by (4.1)
RN(t) < Wo(t) + R(t) < Wao(t) + C.

As for (i7), simply differentiate in time W, to find

Woo(t>_1j/00(t_7-) < Sgp/'%/t [F(T:(Z5) — T2 (25) — F(Ts — xs)| ds| fn(2e) dz.

Since fy is uniformly bounded in L* and compactly supported in B(0, R(t)), one gets
by the definition of I,

Weo(t) =W (t — 7)

S HfOHOOSllp/ [a(t72t>zt) dzta
|z¢| <R(t)

Zt
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which is exactly (i7).

Concerning |VVE|, in (m) noting that

BN (Xi(s )) En(X; — Xi(s)) = F(X;(s) = X(s))]
LR e~ x ;/ X - Xl e
41 |F(Xz'(8) — X)) = F(X(5) = Xals))]
N [ Xi(s) = X;(s)[ + et
By the assumption (1.3), one has that
1 1
F) = P <€ ([ + s ) ool
So
[F(Xi(5) = Xi(s)) = F(Xi(s) = X)) _ ¢ n ¢
[ Xi(s) = Xj(s)| + e+ ~Xi(s) = Xa(s)['re T [XG(s) — Xi(s)]M e

and that bound is also true for the remaining term where £ = ¢ or j. One also obviously
has, still by (1.3)

[E(Xils) = Xi(s)) = F(X;(s) = Xi(s))] _ ¢
| Xi(s) = X;(s)] + et —etXa(s) = Xi(s)l®

+ ; :
e X (s) — X(s)[®
Therefore by the definition of K.

[F'(Xi(s) = Xi(s)) = F(X;(s) = Xi(s))]
[ Xi(s) = X;j(s)] + et

Summing up, this implies that

\VNE‘OongaX< / NZK Xy (s)) ds

k;ﬁz
+ %/ N > K(X(s) - Xk(s))d5>'
T ke

Transforming the sum into integral thank to the transport, we get exactly the bound (i)
involving J,41.

< Ke(Xi(s) — Xi(s)) + Ke(X;(s) — Xi(s)).

Finally for dy(t), consider any i # j, then obviously

d%l(Xz'(S) — Xj(s), Vi(s) = Vj(s))| = =[Vils) = Vj(s)| = |En(Xi(s)) — En(X;(s))]-

Simply write

|En(Xi(s)) — Ex(X;(s))|
[ Xi(s) = X;(s)[ + et

|En(Xi(s)) = En(X;(s))] < (1Xi(s) = X;(s)| +7)

to obtain that

L|(Xi(s) = X,(5), Vils) = Vi(s))] = — (1 " |]f§fi§(i)))<;<iﬁ§@)l)

ds
(1(Xi(s) = X;(s), Vi(s) = V;(s))| +&"7).
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Integrating this inequality and taking the minimum, we get
t
, o En(Xi(s)) — Ex(X;(s))]
dy(t) + e > (dy(t —7) + 7)) inf e (— —/ | 12~ ds
M 2 =D e T TR ) - X e

> [dn(t — 7) 4+ e exp TV El(®)

4.4 The bound for I, and J, 1

To close the the system of inequality of the Proposition 5, it remains to bound the two
integrals involving I, and J,. It is done with the following lemmas

Lemma 1. Assume that F satisfies an (S®)-condition with oo < 1, and that T is small
enough such that
CT(14+|VVE|o(t) Wa(t) +7) < dn(t).

Then one has the following bounds, uniform in z

/ Lot 22, 20) dz < C [Waolt) + (Waolt) + 7)1 + (Wa(£) + 7)2(dw (£) 777,
|z¢|<R(t)

/ Ja1(t, 2, 2) dzy < C (14 (Wao(t) +7)%e ) 770
|z¢ <R(t)

+ (Wao(t) + 7)™ 772 (dy (1)) 7).

In the cut-off case where the interaction force satisfy a (S%) condition (we recall that it
means that the cut-off is of size N™™ = &™), we only need to bound the integral of I,
with the result

Lemma 2. Assume that 1 < o < d—1, and that F' satisfies a (SS) condition, one as the
following bound, uniform in z

/ Lo(t, 2, 2) dzy < C (Woo () + (Wao () +7) 7 L™ 1 (Wi (8) +7) 2% 7™). (4.2)
|z¢|<R(t)

with the convention (if « = 1) that (€™)" = |In(e™)| .

The proofs with or without cut-off follow the same line and we will prove the above
lemmas at the same time. We begin by an explanation of the sketch of the proof, and
then perform the technical calculation.

4.4.1 Rough sketch of the proof

The point z; = (Zy, ;) is considered fixed through all this subsection (as the integration
is carried over z; = (x4, v;)). Accordingly we decompose the integration in z; over several
domains. First

Ay =A{z| |7 — 2] > AW (t) + 27(|0y — vy| + T|E|oo(t)) }-

!That convention may be justified by the fact that it implies a very simple algebra (z!~%)" ~ x=¢
even if a« = 1. It allows us to give an unique formula rather than three different cases.
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This set consist of points z; such that z; and T3(z,) are sufficiently far away from z, on
the whole interval [t — 7,t], so that they will not see the singularity of the force. The
bound over this domain will be obtained using traditional estimates for convolutions.
One part of the integral can be estimated easily on A{ (the part corresponding to the flow
of the regular solution fy to the Vlasov equation). For the other part it is necessary to
decompose further. The next domain is

By = A7 [ [z | [0 — v = 4Wo(t) + 47| El| (1)}

This contains all particles z; that are close to Z; in position (i.e. z; close to z;), but with
enough relative velocity not to interact too much. The small average in time will be useful
in that part, as the two particles remains close only a small amount of time.

The last part is of course the remainder

Ct - (At U Bt)c.

This is a small set, but where the particles remains close together a relatively long time.
Here, we are forced to deal with the corresponding term at the discrete level of the
particles. This is the only term which requires the minimal distance in phase space; and
the only term for which we need a time step 7 small enough as per the assumption in
Lemma 1.

Figure 1: The partition of the phase space.

4.4.2 Step 1: Estimate over A,

If z, € Ay, we have for s € [t — 7, 1]

ol 2 [l = (= )l —ul — (¢~ 1 Bl() 2 2
‘ft_flft’

|T$S(28) - T5(28)| > |2 — x| = 2Weo(s)] > 5

For I, we use the direct bound for z; € A;

= s = ¢ S(% = s
\F(T3(zs) — To(2s)) — F(Zs — zg)| < WUTx(zs) — T| + |T3(25) — 4])
C C

Wi(s) < ————————W (1),

— |j:t_xt|1+a o0 — ‘jt_xt|1+a
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and obtain by integration on [t — 7, ]

C

I(t, 2z, %) < m

W (t).

Then integrating in z; we may get since o +1 <2 <d

dZt
Lo(t, %, 2) doe < W () | — 28
/A otz d 0 ] .

< C R Woo(t) < CWa(t).
For J,y1, we have using (4.4) on the set A; the bound
C

K (T (z) — T2 < —.
‘ ( x(zt) x(zt))’ = |ft _ xt|1+a
Integrating with respect to time and z; we get since 1 + o < d.

dZt
Joi(t, 2, 2)dsn < C | ——2
/At +1( t t) t 4, |xt _ $t|1+a (46)

< CR(t) ' < C.

For the cut-off case, the estimation on I, for this step is unchanged.

4.4.3 Step 1’ : Estimate over Aj for the continuous part of I,.

For the remaining term in /,, we use the rude bound

|F(T8(2) — T2 (%)) — F(Zs — x)| < |F(T2(25) — TS(2))| + | F (s — x4)].

xT

The term involving 7 is complicated and requires the additional decompositions. It will
be treated in the next sections. The other term is simply bounded by

1 [ Ccd
/ —/ |F(Z, — z,)|ds dz < / / s
2t €AS T Jt—r t—1 J 2t €AY Ts — xs‘a
Cdz,
< —/ / ,—Zads.
T Jt—r Jzs€Z(s,t,A9) |Ts — l’s‘

¢ From the bound R(t) and |F|(t) we see that

|AS| < CR() (W (t) + 1) < C(Wao(t) + 7).

Since the flow Z; is measure preserving, the measure of the set Z7(s,t, A¢) satisfies the
same bound. This set is also included in [—R(t), R(¢)]* (if R is increasing, a property
that we may assume). We use the above lemma which implies that above all the set
Z(s,t, AY), the integral reaches is maximum when the set is a cylinder

Lemma 3. Let Q C B(0,R) C R". Let P be a projection from R™ to R™ with m < n.

Then for any a < m
dz

CRan m)/m Ql a/m
q |Pzl* — it

18



Proof of Lemma 3. We can freely assume that Pz = (z1,...,2,). Now maximize the

integral
/ |Px|™%dx

over all sets w C R" satisfying w C B(0, R) and |w| = |Q]. It is clear that the maximum
is obtained by concentrating as much as possible w near Pz = 0, i.e. with a cylinder of
the form B,,(0,7) X B,_,(0, R) where By denotes the k-dimensional ball. Since |w| = |Q]
we have 7 = |Q['/™ R'="/™_ The integral can now be computed explicitly and gives the
lemma.

Applying the lemma, we get

That term do not appear in Lemma 1 since it is strictly smaller than the bound of the
remaining term (involving T'), as we shall see in the next section.

For the cut-off case, we do not need the estimate on J,4; and the bound in this case is
similar since & < d —1 < d. The cut-off cannot in fact help to provide a better bound for
this term.

At this point, the remaining term to bound in I, is only

S(zs) ds<C/ / ds. 4.8
// ) B e e e

For J,.1 one may bound the integral of the continuous part on Af in a similar manner.

As K. < 5 — P the remainder can be controlled by (4.8)
Joi1(t, Z, 2) dzy < C (W yi—e ds.
/f +1(t, 2, 2z) dze < C (Weo(t) + 7) /ZteAc 7_/t T2z, TS(ZS)|
(4.9)
Therefore in the next sections we focus on giving a bound for (4.8).
4.4.4 Step 2: Estimate over B,
If z; € By, we have, as for Ay, for s € [t — 7, 1]
5, —vs =+ w| < 27|En|(t) < m;”t', (4.10)
THE) = THe) = B vl < [0 — v — 4 o] + 2 ()] < =2 gy

This means that the particles involved are close to each others (in the positions variables),
but with a sufficiently large relative velocity, so that they do not interact a lot on the
interval [t — T,¢].

First we introduce a notation for the term of (4.8)

1 [ 1
Loo(t, 2, 2) dz, with Lno(t, 5, 21) = Le(t, i, ds,
/ZtEBt b( 2t Zt) Zt W1 b( 2 Zt) b( 7’.7) /tT|T (Zs) T(ZS)|O‘ S

T 412)
where (i, j) are s.t. T5(Z5) = Xi(s), T3 (zs) = X, (s).
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For z; € By, define for s € [t — T, ]

S(= s U — U
¢(S) = (Ta: (ZS) - Tx(ZS)) ’ |7_]t _ Ut| :
Note that |p(s)| < |T2(zs) — T2(zs)| and that
QY — (Ts(5 Y _ sy Ut T U
09 = (T3(z) = To(en) - et
Uy — U Uy — vy

= 0p — ve| + (T;)(25) = T (25) — (0 — vy))

Y

.|@t_vt|_ 2

where we have used (4.10). Therefore if ¢ attains its minimum on [t — 7, t] at so, then

T2(5) = T2 = [t — sol 222,
Using this directly gives, as av < 1
= ¢ — —a ! ds —a |5 —a
’]bc(t, 2ty Zt)’ S — "Ut - 'Ut| / T o la S Cr |’Ut - 'Ut| . (413)
T t—1 |S - Sol

Now integrating

dz
/ | Tpe(t, 2ty 2¢) | d2y < CT_a/ ,—tfa
2zt EB¢ AS |Ut - Ut|

< O (Wao(t) + 1) (R()T,

by using again Lemma 3. In conclusion
/ [ Toe(t, 2, 2) | dzy < C 77 (Wao(t) + 7)% (4.14)
2tE€B

With the cut-off where a > 1, the reasoning follows the same line up to the bound (4.13)
which relies on the hypothesis a < 1. (4.13) is replaced by

c [t ds
Ipe(t, Zs, 2)| <— — -
I B rerr e
. ) (4.15)
C /2|17tvt ds Cgm(l—a)
<= < ,
-7 J (s 4 dem)e — T
with the convention (¢™)° = |In(e™)| for @ = 1. Integrating that bound (which do not
depend on v;) over By, we get the estimate
/ (. 50, 20)| dzn < C (Wi (£) + 1) 71 gm0 (4.16)
zt€DB

4.4.5 Step 3: Estimate over C}

First remark that C; C {|z] < C(W(t) + 7)}, so that its volume is bounded by
C(Wy(t) + 7)*. ;From the previous steps, it only remains to bound

/ Lye(t, 2, 2) dz.
2t€Ct
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We begin by the cut-off case, which is the simpler one. In that case, one simply bounded
I < C'e~™* which implies

/ Telt, 21, 22) dz < C(Wo () + 7). (4.17)
zt€Cy

It remains the case without cut-off. Denote C; = {j| 3z € C;, s.t. Z;(t) = T'(%)}, and
bound

Qi 1 [t dz
Delt, 2, 20) dzy <Y —LIne(t i, ith In.(t,,7) = — ! d
/Ztect b(7zt7’zt) 2t > 5 N N(727j) w1 N(alvj) T/t—T |XZ‘(S)—XJ'(S)|O‘ S,
jeCy

where 4 is the number of the particle associated to z; (T'(z;) = Z;(t)) and
1

ai; = N|{z € G, T'(z) = Z;()}],  so that — > ay =1l

jeCt

To bound Iy, over é’t, we do another decomposition in j. Define

JX; = {j c Gy, |1X;() — Xi(t)] > dNZ(t) },

and

TV = {j € Cy, [X;(t) = Xu()] < |Vi(t) = Vi(D)] and |V;(t) = Vi(t)] > dNT<t)} '

By the definition of the minimal distance in phase space dy(t), one has that C,=JX,U
JV,. Since
T (21) — 2] < Wio(t),

one has by the definition of C; and of C; that for all j € C;, |Z;(t)—Zi(t)| < C (Weo(t)+7).
Let us start with the bound over JX;. If j € JX,, one has that

1X,(5) — Xi(s)| > 1X(0) — X,(1)] — / V(1) — Vi(u)| du.
On the other hand

Vi) = Vi(u)| < 2Weo(t) + [0u — vu| < 2(Weo(t) + 7| Elso) + [0 — s < C(Wao(t) + 7).

Therefore assuming that
CT(Wao(t) + 1) < dn(t)/4, (4.18)

we have that for any s € [t — 7, t], |X;(s) — Xi(s)| > dn(t)/4. Consequently for any
Jj e JX;
Ine(t,i, ) < C (dn (1) (4.19)

For 5 € JV;, we write

[(Vi(s) = Vi(s)) = (V3(t) = Vi) = — /t |En(X(u)) = En(Xi(u))] du.
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Note that

X0 = )] < 10 = X0+ [ W3 = Vit du

< (Wt )+T>+2/ (Wa(u) + R(u)) du (4.20)

s

< C(Wa(t) + 7).

Hence we get for s € [t — 7, 1]
/ | En(X;(w) = Bn(Xi(w)| du < C7[VVE|o (Wee(t) + 7 +7).

Note that the constant C' still does not depend on 7 = ¢'*"". Therefore provided that
C7 VBl (Wee(t) +7) < dn(t)/4, (4.21)

one has that

Vi(s) = Vi(s) = (V;(t) = Vi(t))| = dn(t) /4 and also  [Vi(s) — Vj(s)| =

As in the step for B; this implies the dispersion estimate | X;(s) —X;(s)| > |s—so| dn(t)/4
for some sy € [t — 7, t]. As a consequence for j € JV,

95— o (). (4.22)

T |S—So‘a N

C t
Ino(t.i.d) < 5 (aw() ™ [
T t
Summing (4.19) and (4.22), one gets
a/i' . —« —x —«
> S Ive(ti,3) < CIG ((Ax(8)™" 477 (dn () ™) -
jEC't

Coming back to I, and keeping only the largest term of the sum

/Clbc(t 5. 2) da < C (W (£) + )2 (de(£))~. (4.23)

4.4.6 Conclusion of the proof of Lemmas 1, 2

Assumptions (4.18) and (4.21) are ensured by the hypothesis of the lemma. Summing up
(4.5) for I, or (4.6) for J,41, with (4.7), (4.14) and (4.23), we indeed find the conclusion
of the first lemma.

In the S case, no assumption is needed, and summing up the bounds (4.5), (4.7), (4.16),
(4.17), we obtain the second lemma.

4.5 Conclusion of the proof of Theorem 3 (without cut-off)

In this subsection, in order to make the argument clearer, we number explicitly the con-
stants. Let us summarize the important information of Prop. 5 and Lemma 1.
Note that Wy (t) > W, (0) > 7 so we freely replace C'(Wy, +7) by 2CW,, in the inequal-
ities of lemma 1. Let us also rescale the interested quantities s.t. all may be of order
1

eWoolt) = Wa(t), €77 dn(t) = dn(t).
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We also assume that W, and |VNE|. are non decreasing functions of ¢, and that dy
is a non increasing function of . In fact the bound proved before are also valid for
SUPy<y W, sup,<; VN E|s, and inf,<, dy(s). With that convention W (t) > W (0) > 1.
By assumption (i) in Theorem 3, also note that dy(0) > 1.

Recalling 7 = €”, the condition of Lemma 1 after rescaling reads

CrLe" ™ (14 |VVNE|o(t) Wa(t) < dn(t), Vitel0, to]. (4.24)

We have that for some constants C; independent of N (and hence ¢), such that if (4.24)
is satisfied, then for any ¢ € [0, (]

Waolt) < Waolt = 7) + Coe” (Waolt) + ™ WE(1) + £ W2(1) dy (1))
VVEl(t) < Co (14 WL + MW () dy (1))
dN( )+ g’ [ Nt —T)+ e r]6—7(1+\VNE|oo(t))’
where ¢ appear four times with four different exponents \;,2 = 1,...,4 defined by
M=d—1—ar, AN=2d—1—a(l+7+7),
M=d—1—7"—ar, M=2d—1—7r"—a(l+r"+7r).

To propagate uniform bounds as € — 0 and N — oo, we need all )\; to be positive. As
r,r’ > 0, it is clear that Ay > A3 and Ay > A;. Thus we need only check \y > 0 and
A4 > 0. Now, simply note that if

d—1 2d—1—«

, and r< —mM,
1+« 1+2«

r<

then for any ’ > r close enough to r, one has Ay > 0 and A4 > 0.

As a? < 1 < d, the first inequality is the stronger one. As it is the condition given in
Theorem 3, and 7’ is close to r, we have that all \ are positive and we denote A = min;(\;).
Then by a rough estimate,

W (t) < Wi (t—T)+COT<WOO(t)+25’\Wfod(t) d]‘\,“(t)),
<0,

VN E|o(t) < (1 2N () chVO‘(t)) : (4.25)

dN(t) > [JN(O) + 5r/—r]e—1&(1+|V1\7E\oo(t)) _ e
If one has (4.24) and )
2¢ 30 (t)dy*(t) <1, (4.26)

then using W > 1, we get Wi ( Wao(t — 7) + 2ComWao(t) so that

) <

Wao(t)
|VNE oo (t)

dn(t)

The last inequality implies dy(t) > 1= (H260)t jf 9er—r'e(14+2C2) T < 1. That condition is
fulfilled for € small enough, i.e. N large enough.

The first inequality in (4.27), iterated gives Wi (t) < Wao(0)(1 — 2Cy7) 7. If Cor <
then we can use —In(1 — z) > 2z for z € [0, 3], and get

W (t —7)(1 —2C,T) 1,
20, (4.27)

7(1+202) _r=r

I\/ IAIA

1
4

Weo(t) < Wao(0)etC0?
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To summarize
Woo (t) 646’0157
[VVE|oo(t) <20y, (4.28)
dNN (t) —(142C%) t

IA A

e

vV
N = N

At the discrete level of the particles, the dynamics is continuous in time, at least for initial
conditions not leading to collisions. That set is of full measure for o < 1, and d > 2 (See
[Hau04]). So as long as (4.24) and (4.26) are satisfied at t = 0, there exists a maximal
time ¢y €]0, T (possibly to = T') such that they are satisfied on [0, o).

We show that for N large enough, i.e. £ small enough, then one necessarily has ty = T
Then we will have (4.28) on [0, T'] which is the desired result. This is simple enough. By
contradiction if ¢ty < T then

C1e") (1+ [VNE|w(to)) Wao(to) = dn(to), or 4 X W2(tg) dy*(to) = L.
Until ¢y, (4.28) holds. Therefore
W2 () dn(to) < & 2% e+ (d+20) max(Co.Coto
for € small enough with respect to 7" and the C;. This is the same for (4.24),
Cy ") (14 |VVE| o (to) Wao(to)dy (to) < 267701 (1 + 2C,) e Homax(Co-Calto 1

Hence we obtain a contradiction and prove Theorem 3.

4.6 Conclusion of the proof of Theorem 4 (cut-off case)

In the cut-off case, using Lemma 2 together with the inequality i) of the Proposition 5,
we may obtain

Weo(t) < Woo(t=7) + CoWao () [1 + (Weo(t) + 7) 177 1™ 4 (W () + 1) 1emme] .
We again rescale the quantity Wi (t) = eWa(t) and replace Wao(t) by Wao(t) + 1. Recall

that xk = e™, 7 = ¢” . Here the optimal estimate is obtained by taking 7 as large as possible
(because of the 77! term). This corresponds to ' = 1. It comes for 1 < a < d — 1,

Woo(t) < Woolt = 7) + CoWVao(t) |1 227D W1 (f) o g20-1me 201 )

As in the previous section, we will get a good bound provided that the power of £ appearing
in parenthesis are positive. The two conditions read

B . . (d—2 2d—1>
m < m” ;= min , .
a—1 Qo

In that case, for N large enough (with respect to e“*), we get a control of the type

%Wm@ < ACHT(t)

which gives the desired result.
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5 Appendix: ;From Gao’s large deviation to Propo-
sition 2

The result proven by Gao that we need is Theorem 1.2 of [Gao03], which is written below
with the modifications :

e The sequence ay of Gao is directly replaced by ay = N7, v € (0,1), which satisfies
the required assumptions

d
Na$%

N—+oo  logay N—+oo

ayn —+00.

e The general but technical assumptions on the kernel ¢ (denoted by K in Gao’s
article) are replaced by the more simple and less general below. In fact, according to

Gao’s remarks, a bounded function of the form ¢(z) = h(3>, 27) with o : R — R*
decreasing and satisfying [ ¢ =1 is admissible.

Theorem 5 (Gao ’03). Assume that f° is continuous and goes to zero at infinity, and that
¢ is a non-negative, radial and decreasing function. Then, with the notation introduced
in the section 2

lim N7 'InP (|| fx — flle = A) = =Js(N),

N—+o0

where

Js(\) = inf sup {m — f(x) /R d[ew@ — 1 —t¢(2)] dz} .

z€RY (R

This is the original formulation of Gao. Remark that in the definition of J, the supremum
is decreasing in f°(x) (the term under the integral is positive), so that the infimum will
be reach at the maximum of f°. Thus J may be rewritten as

Jo(\) = sup {tA 10l [ 60— 1~ t0(2) dz} |
teR R4

Let us explain how to obtain Proposition 2 from that result. As || fx|lce < |fn — f%lloo +
/%o, it suffices to bound by below J,((L — 1) f%||s) which is equal to

A= D) = 1 sp {2+ [ 1= 9 a:} =10

For a fixed ¢ and L > 1, we have I4(L) > 0, which is enough to provide the large
deviation result. Furthermore, in some cases, it is easy to compute explicitly I,. Consider
for instance the uniform ¢ = ﬁ]l B, (where I denotes the characteristic function and | B

the volume of By). In that case, the supremum is explicit and we get

Io(L) = |floo|B1|(LIn L — L+ 1).
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