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Abstract. We prove propagation of chaos for a system of particles interacting with
a singular interaction force of the type 1/|x|α, with α < 1 in dimension d ≥ 3. We
also recover the usual results, with sharper propagation of chaos, for forces with large
enough cut-off that are valid for α < d− 1, i.e. almost up to the most interesting case of
Coulombian or gravitationnal interaction.
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1 Introduction

The N particle system. In this article we study the evolution of system of N particles
in interaction on the whole space R

d, which is described by the system of ODEs below.
The (X1, . . . , XN) denote the position of the particles in R

d, (V1, . . . , VN) denote their
velocities in R

d and F (x) the interaction force :











Ẋi = Vi,

V̇i = E(Xi) =
∑

j 6=i

1

N
F (Xi −Xj), (1.1) eq:ODE

We used the so-called mean-field scaling which consist in keeping the total mass (or
charge) of order 1, in order to recover in the limit a “mean-field” equation. This actually
implies corresponding rescaling in position, velocity and time. Sometimes in that article
the force-field F shall also depends on N and shall be denoted FN (it shall be some N
dependent mollification of F ).
We also use the notation Zi = (Xi, Vi) and the initial conditions Z0 = (X0

1 , V
0
1 , . . . , X

0
n, V

0
n )

are given.
A case of particular interested is the case of the Coulombian force F (x) = x/|x|d−1, which
could be used to describe a plasma, or its opposite the gravitational force, in which case
the system under study may be a galaxy, a cloud of star or galaxies (and thus particles
are “stars” or even “galaxies”). But of course other forces are of physical interest.

The Jeans-Vlasov equation. As plasma or a galaxy usually contains a very huge
number of ”particles”, they are usually described using a distribution function in time,
position and speed rather than a system of particles. The evolution of that distribution
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fonction f(t, x, v) is given by the Jeans-Vlasov equation











∂tf + v · ∇xf + E(x) · ∇vf = 0 ,

E(x) =
∫

Rd ρ(t, y)F (x− y) dy,

ρ(t, x) =
∫

v
f(t, x, v) dv.

(1.2) eq:vlasov

Here ρ is the spatial density and the initial density f 0 is given.

The question of convergence. The question of the convergence of the N particles
system towards the (mean field) Vlasov equation is important for theorical reasons, since
the Vlasov equation is usually derived formally form the discrete system, and also for
numerical simulation, and especially Particles in Cells methods which introduce a large
number (roughly around 106, to compare with the order 1010 to 1023 of the number of
particles in physical systems) of “virtual” particles in order to obtain a particles system
solvable by a computer.
The precise question is the following : choosing the intial positions and speeds of the
particles so that the empirical distribution

µz
N(t) =

1

N

N
∑

i=1

δXi(t),Vi(t),

converges (weakly) towards f 0 at time 0, does the empirical distribution µN(t) still con-
verges towards f(t) (the solution of the Vlasov equation with initial condition f 0) at time
t? In other words, is the following diagram commutative?

µz
N(0)

cvg
///o/o/o

Npart

��

f(0)

V P
��

µz
N(t)

cvg
///o/o/o f(t)

Propagation of chaos. As it may be difficult to prove convergence for a particular
sequence of initial condition, the problem may be restated in term of propagation of
chaos. If the initial positions and speeds of the particles are choosen with the law (f 0)⊗N

(i.e. randomly and independantly with profile f 0), then the enpirical measure at time 0
is close to f 0 with large probability. But can we say that for any time t > 0, µz

N(t) is
close to f(t) with large probability?
The convergence and the propagation of chaos are known to hold for smooth interaction
forces (of class C1) since the end of the seventies and the works of Braun and Hepp

BraHep77
[BH77],

Neunzert and Wick
Neun79
[NW80] and Dobrushin

Dobr79
[Dob79].

Previous results with cut-off or for Euler system. The convergence was proved to
hold in the case of Coulombian or gravitational force with cut-off, for particles initially
on a mesh. The cut-off parameter ε(N) depends of the number of particles and goes to
zero as the number of particles increases. But it cannot be too small, in the sense that
it should be larger than the average distance between particles in position. Precisely,
it should satisfy limN→∞ ε(N)/N−1/d = +∞. Reference on that subject are the work
of Ganguly and Victory

Victory
[GV89], Wollman

Wollman
[Wol00] and Batt

Batt00
[Bat01] (the later gives a

simpler proof, but valid only for larger cut-off). We also mention a result of Ganguly, Lee
and Victory

Victory2
[GLV91] where the initial conditions are not equally distributed. However in

that work the cut-off is not the same and converges very slowly to zero.
The vortices system is a numerical approximation of the 2D Euler equation (which is
a mean-field equation when written in vorticity formulation), and is also similar to our

2



problem since the kernel as a singularity of the type 1/|x|. Two results of convergence
without regularization are already known for that system. The work of Goodman, Hou
and Lowengrub,

GooHouLow90
[GHL90] and

Goodman91
[GH91], has a numerical point of view but use the true sin-

gular kernel in a interesting way. The work of Schochet
Scho96
[Sch96] uses the weak formulation

of Delort of the Euler equation and prove the propagation of chaos for the true kernel.
Unfortunately, both use the symmetry of the forces in the vortex case, a symmetry which
does not exist in our kinetic problem. The force is still symmetric with respect to the
space variable, but there is now a velocity variable which break the argument used in
the vortices case. For a more complete description of the vortices system, we refer to the
references already quoted or to

Hau09
[Hau09].

Our result without cut-off. Without regularisation, there were not (at least to our
knowledge) any results known before our previous article

HauJab07
[HJ07]. This article gives a

positive answer to the question of convergence in the case of forces with singularity like
1/|x|α, with α < 1, but with a very restrictive assumption on the minimal distance (in
phase space) on the particles at time 0, which shall be of the order the average distance
between a particle and its closest neighboor.
That restrictive condition prevents us to get a result of propagation of chaos, because it
was not generic for empirical measures chosen with law (f 0)⊗N . Here, we improve our
previous result of convergence, using only a much weaker assumption on the minimal
distance between particles. This will allows us to prove the propagation of chaos, for
forces satisfying a (Sα)-condition :

(Sα) ∀x ∈ R
d, |F (x)| ≤

C

|x|α
, |∇F (x)| ≤

C

|x|α+1
. (1.3) eq:Calpha

Our precise result without cut-off is the following

thm:prob Theorem 1. Assume that d ≥ 3 and that F satisfies a (Sα)-condition with α < 1 .
Choose any initial condition f 0 ∈ L∞ with compact support for the Vlasov equation (

eq:vlasov
1.2).

For each N ∈ N
∗, look at the particles system (

eq:ODE
1.1) with initial positions (Xi, Vi)i≤N

chosen randomly according to the probability (f 0)⊗N . Then for all T ≥ 0, all

2 + 2α

d+ α
< γ < 1 and 0 < s <

γd− (2− γ)α− 2

2(1 + α)
,

there exists positive constants C0(f, F ), Cs(γ, s, f, F ) such that for N large enough

P

(

∃t ∈ [0, T ], W1(µN(t), f(t)) ≥
3eC0t

Nγ/(2d)

)

≤
Cs

N s
,

where f(t) is the unique strong solution of the Vlasov equation (
eq:vlasov
1.2) with initial condition

f 0, (the constant Cs blows up when s approaches its maximum value) and W1 denotes the
1 Monge-Kantorovitch-Wasserstein distance.
A similar result is also true for d = 2, but only for forces satisfying a (Sα)-condition, with
α < 1.

The conditions on γ and s are not completely obvious, but it can be checked that if α < 1
and d ≥ 3, 2+2α

d+α
< 1 so that admissible γ exists. And for an admissible γ, the quantity

γd−(2−γ)α−2
2(1+α)

is also positive, so that admissible s also exists. Roughly speaking, we can say
that under the assumption of Theorem

thm:prob
1, the probability of finding a deviation strictly

larger than the average inter-particle distance is small.
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The notation C(f) means that the constant depends on the function f (essentially via
conserved quantities like ‖f‖∞ and also the size of its support) on the whole interval of
time under consideration, here [0, T ].
Unfortunately, we cannot precise the rank after which the bound is satisfied. In fact,
as we shall see later, the proof uses somewhere a large deviation results which is only
asymptotic.

Remark 1. This is the first result (to our knowledge) that provides propagation of chaos
for a particle system with a singular force without cut-off. Unfortunately, the singularity
is still not very large, because with α < 1 the potential is continuous at the origin. But it
may be a first step for the understanding of more singular potential. We refer to

BaHaJa
[BHJ10]

for some ideas in that direction.

Even if the theorem is stated probabilistically in terms of propagation of chaos, it relies
on a deterministic theorem (See the Theorem

thm:deter
3 stated in the second section) which has

generic assumptions with respect to the law (f 0)⊗N . Thanks to the deterministic result
we can also construct explicit sequences of initial conditions for which the convergence
towards the Vlasov equation will holds (for instance, particles well choosen on a mesh,
but not only).

The result with cut-off. Our result with cut-off is in some sense weaker than the
previously known result

Victory
[GV89], since we do not cover the critical case α = d − 1. But

it has also some advantage, especially if we are not interested by numerical simulation.
First, it is valid not only for well distributed initial positions and speeds (on a mesh).
Secondly, for α larger but close to one it is valid with small cut-off, much smaller than
average (and also minimal) distance between particles.
The result is stated for forces depending on N and satisfying a (Sα

m)-condition

(Sα
m)

i) F satisfy a (Sα)− condition
ii) ∀ |x| ≥ N−m, FN(x) = F (x)
iii) ∀ |x| ≤ N−m, |FN(x)| ≤ N−mα,

(1.4) eq:Ckappa

Note that we do not need any estimate on the gradient of FN for very small x. The result
will still be true if FN only converges to F for large enough x, with an error satisfying
‖FN−F‖1 ≤ N−1/2d. The following proof can be adapted to that case, but we choose that
particular setting that simplifies the presentation. Also keep in mind that it is interesting
to take m as large as possible if we want to be close to the dynamics without cut-off.

thm:probcutoff Theorem 2. Assume that d ≥ 3, γ ∈ (0, 1) and that FN satisfies a (Sα
m)-condition for

some 1 ≤ α < d− 1 with a cut-off order m such that

m < m∗ :=
γ

2d
min

(

d− 2

α− 1
,
2d− 1

α

)

.

Choose any initial condition f 0 ∈ L∞ with compact support for the Vlasov equation (
eq:vlasov
1.2).

For each N ∈ N
∗, look at the particles system (

eq:ODE
1.1) with initial positions (Xi, Vi)n≤N

chosen randomly according to the probability (f 0)⊗N . Then for all T there exists positive
constants C0(f, F ), and C1(γ,m, f, F ) such that

lim sup
N→+∞

1

Nλ
lnP

(

∃t ∈ [0, T ], W1(µN(t), f(t)) ≥
4eC0t

Nγ/2d

)

≤ −C1,

where λ = min
(

1− γ, d−α
2d

)

and f(t) is the unique strong solution of the Vlasov equation.
(
eq:vlasov
1.2) with initial condition f 0.
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In dimension d = 3, the minimal cut-off is given by the order of m∗ = γ
6
min((α −

1)−1, 5α−1). As γ can be chosen very close to one, for α larger but close to one, the
previous bound tells us that we can choose cut-off of order almost N−5/6, i.e. much
smaller than the likely minimal inter-particles distance in position space ( of order N−2/3,
see the third section). With such cut-off, one could hope that it is almost never used when
we calculate the interaction forces between particles. Only a few couples of particles will
become so close to each others during the time T . This suggests that there is some hope
to extend the result of convergence without cut-off at least to some α > 1.
Unfortunately, we do not know how to make rigorous the previous probabilistic argument
on the close encounters. First it is highly difficult to translate to particles system that are
highly correlated. To state it properly we need infinite bound on the 2 particles marginal.
But obtaining such a bound for singular interaction seems difficult. Moreover, it remains
to neglect the influence of particles that have had a close encounters (its trajectory after
a encounter is not well controlled) on the other particles.
Let us also mention that astro-physicists doing gravitational simulations (α = d−1) with
tree codes usually use small cut-off parameters, lower than N−1/d by some order. But it
seems that their scaling is different form our, since they are mainly close from the vacuum.
See

Dehn00
[Deh00] for a physical oriented discussion about the optimal length of this parameter.

About the proof. Because the Vlasov equation (
eq:vlasov
1.2) is satisfied by the empirical dis-

tribution µN of the interacting particle system provided that F (0) is set to 0 (in the case
of singular forces, it imposes a discontinuity at 0 but we nevertheless can do this hypoth-
esis that simplify the presentation), the problem of convergence can be reformulated into
a problem of stability of the empirical measures - seen initially as perturbation of the
smooth profile f 0 - around the solution f(t) of the Vlasov equation.
The stability result is proved thanks to Grönwall estimates involving Monge-Kantorovitch-
Wasserstein distances (precisely W1 and W∞). The estimates use as pivot a distribution
fN(t) which is the solution of the Vlasov equation with a small enlargement of µN (Dirac
masses are replaced by “blobs”) as initial conditions. The distance between f(t) and fN(t)
is controlled in W1 distance using a standard stability result for Vlasov equation. The
distance between µN(t) and fN(t) is controlled in W∞ distance thanks to careful estimates
: we separate particles that are far away, particles close from each other but with large
relative velocity, and finally close particles with small relative speed. We remark that the
use of the infinite MKW distance is important. We were not able to perform it with other
MKW distance of order p < +∞. It may seems strange to propagate a stronger norm
for a problem with low regularity but in fact it turns out to be the only MKW distance
with which we can handle a localized singularity in the force and Dirac masses in the
distribution. The ”strong” distance help us to localize the singularity.
To conclude the propagation of chaos, we need some hypothesis on the initial conditions
that are quite common, and also one more which is uncommon and as no physical interest
: the minimal inter-particle distance in phase space.

Organization of the paper. In the next section, we introduce the notations, and state
the deterministic results on which the propagation of chaos relies. In the third section,
we explain how to obtain the propagation of chaos from the deterministic results. The
fourth section is devoted to the proof of the two deterministic theorems.
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2 Notations and other important theorems
sec:main

2.1 Notations and useful results

We first need to introduce some notations and to define different quantities in order to
state the result.

• Empirical distribution µN and minimal inter-particle distance dN
Given a configuration (Xi, VI)i≤N of the particles in the phase space R2dN , the associated
empirical distribution is the measure

µN =
1

N

∑

δXi,Vi
.

An important remark is that if (Xi(t, ), Vi(t))i≤N is a solution of the system of ODE (
eq:ODE
1.1),

then the measure µN(t) is a solution of the Vlasov equation (
eq:vlasov
1.2), provided that the

interaction force satisfies F (0) = 0. This condition is necessary to avoid self-interaction of
Dirac masses. It means that the interaction force is defined everywhere, but discontinuous
and has a singularity at 0. In that conditions, the previously known results

BraHep77
[BH77],

Neun79
[NW80] cannot be applied.
For every empirical measure, we define the minimal distance dN between particles in
phase-space:

dN(µN) = min
i 6=j

(|Xi −Xj|+ |Vi − Vj|). (2.1) eq:dmin

This is a non physical quantity, but it is crucial to control the possible concentrations of
particles and we will need to bound that quantity from below.

• Infinite MKW distance
First, we use many times the Monge-Kantorovitch-Wasserstein distance of order one and
infinite. The order one distance, denoted by W1, is classical and we refer to the very clear
book of Villani for definition and properties

Vill03
[Vil03]. The second one denoted W∞ is not

widely used, so we recall its definition :

def:Winf Definition 1. For two probability measures µ and ν on X, a polish space, with Π(µ, ν)
the set of transference plan from µ to ν:

W∞(µ, ν) = inf{λ− esssup |x− y| |λ ∈ Π}.

In one of the few works on the subject
ChaDePJuu08
[CDPJ08] Champion, De Pascale and Juutineen

prove that if µ is absolutely continuous with respect to the Lebesgue measure L, then
at least one optimal transference plane is given by a optimal transport map. In other
words there exists a measurable map T : X → X such that (Id, T )#L ∈ Π (it implies in
particular that T#µ = ν) and

W∞(µ, ν) = esssupx |Tx− x|.

Although that is not mandatory, we will use this result that will greatly simplify the
proof.
Optimal transport is useful to compare the discrete sum of the N particles dynamics to the
integrals of the continuous Vlasov system. For instance, if f is a continuous distribution
and µN an empirical distribution we may rewrite the interaction force of µN using a
transport map T = (Tx, Tv) of f onto µN

1

N

∑

i 6=j

F (X0
i −X0

j ) =

∫

F (X0
i − Tx(y, w))f(y, w) dydw.
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Note that in the equality above, the function F is singular at x = 0. Using infinite MKW
distance, the singularity is still localized “in a ball“ after the transport. The term under
the integral in the right-hand-side has no singularity out of a ball of radius W∞(f, νN) in
x. Others MKV distance of order p destroys that simple localization after the transport,
which is why it seems more difficult to use them.

• The scale ε. We also introduce a scale

ε(N) = N−γ/2d , (2.2) eps

for some γ ∈ (0, 1) to be fixed later but close enough from 1. Remark that this scale is
larger than the average distance between a particle and its closest neighbor, which is of
order N−1/2d. We shall do a wide use of that scale in the sequel, and will often define
quantities directly in term of ε rather than N . For instance, the cut-off order m used in
the (Sα

m)-condition may be rewritten in term of ε, with m̄ := 2d
γ
m.

(Sα
m)

i) F satisfy a (Sα)− condition
ii) ∀ |x| ≥ εm̄, FN(x) = F (x)
iii) ∀ |x| ≤ εm̄, |FN(x)| ≤ ε−m̄α,

(2.3) eq:Ckappa’

• The solution fN of Vlasov equation with blob initial condition.
Now we defined a smoothing of µN at the scale ε(N). For this, we choose a radial and
decreasing kernel φ : R2d → R with compact support in B1 ×B1 (B1 denoting the ball of
center 0 and radius 1 of Rd), and denote φε(·) = ε−2dφ(·/ε). We use this to smooth µN

and define
f 0
N = µ0

N ∗ φε(N), (2.4) eq:deffN

and denote by fN(t, x, v) the solution to the Vlasov Eq. (
eq:vlasov
1.2) for the initial condition f 0

N .
The interest of fN is that we may assume that it belongs to L∞ (see the density kernel
estimates of Gao

Gao03
[Gao03] introduced in the next subsection). It allows to use standard

stability estimates to control its W1 distance to another solution of the Vlasov equation
(See Loeper result

Loep06
[Loe06]).

2.2 Statement of the deterministic result without cut-off

As mentioned in the introduction, the dynamic is entirely deterministic. In theorem
thm:prob
1

the randomness comes only from the choice of the starting initial data. Precisely, the
probability on the initial conditions is used to ensure that some conditions on minimal
inter-particle distances and MKV distances are satisfied with large probability. But, once
that conditions are fulfilled, we are able to propagate them with deterministic estimates.
The following theorem shows that the particles system may be approximated by the
solution of the Vlasov equation with the ”blob“ distribution f 0

N as initial conditions,
provided that two conditions on the minimal inter-particle distance dN(0) and the infinite
norm of f 0

N are satisfied.

thm:deter Theorem 3. Assume that the interaction force F satisfies a (Sα) condition, for some
α < 1 and let 0 < γ < 1. Assume also that the empirical distribution µN of the particles
and its ε-enlargement fN satisfy :

i) d0N := dN(µN(0)) ≥ ε1+r = N−γ(1+r)/2d for some r ∈ (1, r∗) where r∗ := d−1
1+α

,

ii) ‖f 0
N‖∞ ≤ C∞, a constant independent of N ,
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iii) For some R > 0, ∀N ∈ N, Suppµ0
N ⊂ B(0, R), the ball of radius R and center 0 of

R2d.

Then for any T > 0, there exists two constants C0(R,C∞, F, T ) and C1(R,C∞, F, γ, r, T )
such that for N ≥ eC1T the following estimate is true

∀t ∈ [0, T ], W∞(µN(t), fN(t)) ≤
eC0t

Nγ/2d
. (2.5) eq:thm1

Remark. This is a inequality of the type W∞(t) ≤ W∞(0)eCt, where the value of W∞(0)
has been bounded by N−γ/2d. But that last bound is true since f 0

N is a blob approximation
of µN , with blob contained in balls of radius N−γ/2d around the Dirac of µ0

N .

2.3 Statement of the deterministic result with cut-off

As in the case without cut-off, the probabilistic result
thm:probcutoff
2 relies on a deterministic result,

much simpler with cut-off since it does not need any control on the minimal inter-particles
distance. The result is the following

thm:cutoff Theorem 4. Assume that d ≥ 3 and that the interaction force F = FN satisfies a (Sα
m),

for some 1 < α < d− 1, with a cut-off order satisfying

m < m∗ :=
γ

2d
min

(

d− 2

α− 1
,
2d− 1

α

)

.

Assume also that the initial empirical distribution of the particles µ0
N and its ε enlargement

fN satisfy :

i) ‖f 0
N‖∞ ≤ C∞, a constant independent of N ,

ii) For some R > 0, ∀N ∈ N, Suppµ0
N ⊂ B(0, R), the ball of radius R and center 0 of

R2d.

Then for any T > 0, there exists two constants C0(R,C∞, F, T ) and C1(R,C∞, F, γ, r, T )
such that for N ≥ eC1T the following estimate is true

∀t ∈ [0, T ], W∞(µN(t), fN(t)) ≤
eC0t

Nγ/2d
. (2.6) eq:thm3

Theorem
thm:cutoff
4 result has also an interest for numerical simulation because one obvious way

to fulfill the hypothesis on the infinite norm of f 0
N is is to put particles initially on a mesh

(with a grid length of N−1/2d in R
2d). In that case, the result is even valid with γ = 1.

3 From deterministic results (Theorem
thm:deter

3 and
thm:cutoff

4) to

propagation of chaos.

The assumptions made in Theorem
thm:deter
3 may seem a little bit strange, but they are in some

sense generic, when the initial positions and speed are choosen with the law (f 0)⊗N .
Therefore, to prove Theorem

thm:prob
1 form Theorem

thm:deter
3, we need to

• Obtain a bound on the W1 distance between f(t) and fN(t), which are two solution
of the Vlasov equation.
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• Estimate the probability that empirical measure chosen with the law (f 0)⊗N , do not
satisfy the conditions i) and ii) of the deterministic theorem

thm:deter
3, and are far away

from f 0 in W1 distance (the last conditions is important for the previous point on
the distance between f and fN).

For these two points, we will use known results detailed in the next two sections. After
that, a good choice of the parameter γ and r will allow us to conclude the proof.

3.1 Stability around solution of the Vlasov equation.

The following result is proved in
Loep06
[Loe06] for α = d− 1, but its proof may be adapted to

our less singular case (The adaptation is done in
Hau09
[Hau09] in the Vortex case)

Loeper Proposition 1 (From Loeper). If f1 and f2 are two solutions of Vlasov Poisson equa-
tions with different kernel K1 and K2 both satisfying a (Sα)-condition, with α < d − 1,
then

d

dt
W1(f1(t), f2(t)) ≤ Cmax(‖ρ1‖∞, ‖ρ1‖∞)W1(f1(t), f2(t)) + C‖ρ1‖∞‖K1 −K2‖1

The bound on the density may be obtained in our case with the argument of Pfaffelmoser
for solution with compact support

Pfaf
[Pfa92] (It is even simpler for α < 1 as it is explained

in the appendix of
HauJab07
[HJ07]).

Using that theorem in the case without cut-off (K1 = K2 = F ), with α < 1 (for d ≥ 3)
and a ‖f 0

N‖ compactly supported, we obtain that there exists a constant C0 depending
on F , an uniform bounds on the infinite norms of the fN and the size of their supports
(denoted C∞ and R in Theorem

thm:deter
3), such that

W1(f(t), fN(t)) ≤ eC0tW1(f
0, f 0

N) ≤ eC0t
(

W1(f
0, µ0

N) +N−γ/2d
)

, (3.1) eq:Loeper

.

3.2 Estimates in probability on the initial distribution.

The bound ii) of the deterministic theorem
thm:deter
3. A result in the theory of density

kernel estimates by Gao
Gao03
[Gao03] shows that this bound is satisfied almost surely in the

limit of large N , if the positions and velocities of the initial particles distribution µ0
N are

chosen randomly and independently according to the law f 0. As we shall only use a small
part of the Gao’s results, we present in the the following proposition only what we need
(with our notations) and explain in the appendix how to obtain it from Gao’s results.

prop:Gao Proposition 2 (From Gao). Assume that φ is bounded, radial, decreasing. Then, with
the previous notations

lim
N→∞

1

N1−γ
lnP

(

‖f 0
N‖∞ ≥ L‖f 0‖∞

)

= −‖f 0‖∞Iφ(L)

with Iφ(L) = supt∈R

{

Lt+
∫

Rd [1− etφ(x)] dx
}

> 0.

Remark 2. To get a quantitative version of Theorem
thm:prob
1 (in which we can at least precise

the rank N after which the inequality is true), one would need a quantitative version of the
previous proposition

prop:Gao
2. Unfortunately, this is not available (at least to our knowledge), and

seems more difficult than the asymptotic result. This is why we cannot precise the rank
N after which the estimate of Theorem

thm:prob
1 becomes true. However, under the additionnal

9



assumption that f 0 and φ are Lipschitz, Bolley, Guillin and Villani obtained in
BolGuiVil07
[BGV07]

quantitative concentration inequality for fN in infinite norm. But unfortunately, they can
be used in our setting because they requires to large smoothing paramater in order to give
precise results. for

Deviations for the minimal inter-particle distance. It may be proved with simple
arguments that the scale ηm is almost surely larger than N−1/d when f 0 ∈ L∞. A precise
result is stated in the Proposition below, proved in

Hau09
[Hau09]:

Proposition 3. There exists a constant c2d depending only on the dimension such that
if f 0 ∈ L∞(R2d), then

P

(

dN(Z) ≥
l

N1/d

)

≥ e−c2d‖f
0‖∞ld .

Be careful that the inequalities are in the bad sense and that this is not a large deviation
result. It is that condition that prevent us to obtain a “large deviation” result in Theorem
thm:prob
1 (contrarily to the cut-off case of Theorem

thm:probcutoff
2). In fact, the only bound it provides on the

“bad” set is

P

(

dN(Z) ≤
l

N1/d

)

≤ 1− e−c2d‖f
0‖∞ld ≤ c2d‖f

0‖∞ld.

With the notation of Theorem
thm:deter
3 it comes that if s = γ 1+r

2
− 1 > 0 then

P
(

dN(Z) ≤ ε1+r
)

= P

(

dN(Z) ≤
N−s/d

N1/d

)

≤ c2d‖f
0‖∞N−s. (3.2) dN

Deviations for the W1 MKW distance. Peyre has obtained in
Peyr07
[Pey] the following

result

probaint Proposition 4 (Peyre). If d ≥ 2, and the empirical measures µ0
N are chosen according

to the law (f 0)⊗N , then there exists an explicit constant Ld such that

P

(

W1(µ
0
N , f

0) ≥
L

N1/(2d)

)

≤ eLd−LN
d−1
2d . (3.3)

It will particularly interests us when L = N
1−γ
2d , in which case it maybe rewritten

P
(

W1(µ
0
N , f

0) ≥ ε
)

≤ Ce−N
d−γ
2d , with C = eLd . (3.4)

3.3 Conclusion

Now take the assumptions of Theorem
thm:prob
1. It means that we assume that F satisfies a (Sα)

condition for α < 1 and f 0 ∈ L∞ for d > 3. We chose

γ ∈

(

2 + 2α

d+ α
, 1

)

, and r ∈

(

2

γ
− 1, r∗ =

d− 1

1 + α

)

.

(The condition on γ ensures that the second interval is non empty). We also define

s := γ
1 + r

2
− 1 > 0, λ = min

(

1− γ,
d− γ

2d

)

10



Denote by ω1, ω2 the sets of initial conditions s.t. respectively (i), and (ii) (with C∞ =
2‖f 0‖∞) of Theorem

thm:deter
3 hold and ω3 s.t. W1(µN , f

0) ≤ 1
Nγ/(2d) .

ω1 := {Z s.t. dN(Z) ≥ ε1+r}, ω2 := {Z s.t. ‖f 0
N‖∞ ≤ 2‖f 0‖∞}

ω3 := {Z s.t. W1(µ
0
N , f

0) ≤ ε}

By the results stated in the previous section, one knows that

P(ωc
1) ≤ C N−s, P(ωc

3) ≤ Ce−N
d−γ
2d , lim

N→∞

1

N1−γ
lnP(ωc

2) = −C1 := Iφ(2) < 0.

Denote ω = ω1 ∩ ω2 ∩ ω3. Hence |ωc| ≤ |ωc
1|+ |ωc

2|+ |ωc
3| and for N large enough

P(ωc) ≤ C N−s + C e−min(1,C1)N−λ

≤ C N−s (3.5) boundomega

If the initial conditions belong to ω then one may apply Theorem
thm:deter
3 and get on [0, T ]

W1(fN , µN) ≤ W∞(fN , µN) ≤
eC0t

Nγ/(2d)
.

Now apply the stability around solution of Vlasov equation given by (
eq:Loeper
3.1) and get

W1(f, fN) ≤ W1(f
0, f 0

N) e
C0t ≤

2

Nγ/(2d)
eC0t.

The factor 2 comes from the fact that W1(f
0, f 0

N) ≤ W1(f
0, µ0

N) + W1(µ
0
N , f

0
N). We

conclude that

W1(f, µN) ≤
3

Nγ/2d
eC0t,

which proves that

P(ω) ≤ P

(

∀t ∈ [0, T ], W1(f, fN) ≤
3eC0t

Nγ/d

)

.

The bound
boundomega
3.5 then gives Theorem

thm:prob
1.

3.4 From Theorem
thm:cutoff

4 to Theorem
thm:probcutoff

2

In the cut-off case, one can derive Theorem
thm:probcutoff
2 from Theorem

thm:cutoff
4 in the same manner. As

we do not use the minimal distance in that case, the proof is simpler in the case α < d−1
and we get a stronger convergence result. The only difference is that we shall use the
Theorem

Loeper
1 with K1 = F and K2 = FN , so that an error term appears. But that error

term is bounded by
C‖ρf‖∞‖F − FN‖1 ≤ Cεd−α ≤ CW∞(t)

for any t so that the proof is unchanged. In fact, with the same λ, we obtain that

lim
N→+∞

1

Nλ
lnP

(

∃t ∈ [0, T ], W1(µN(t), f(t)) ≥
4eC0t

Nγ/(2d)

)

= −C1.
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4 Proof of Theorem
thm:deter

3

4.1 Definition of the transport

We try now to compare the the dynamics of µN and fN , two distributions which have
a compact support. For that, we choose an optimal transport T 0 from f 0

N to µ0
N for

the infinite MKW distance (See the remark after Definition
def:Winf
1). The existence of such a

transport is ensured by
ChaDePJuu08
[CDPJ08]. Since both f 0

N and µ0
N are compactly supported, note

that T 0(z) is defined for |z| ≤ R0 (the size of the support). Since f 0
N is an ε-enlargement

of µN , it is clear that W∞(f 0
N , µ

0
N) ≤ ε.

We also denote by Zf = (Xf , V f ) the smooth flow associated to fN and by ZN =
(XN , V N) the flow of the N particles system (with the convention Z(t, s) transport from
time s to time t). A simple way to get a transport of fN(t) on µN(t) is to define

T t = ZN(t, 0) ◦ T 0 ◦ Zf (0, t), and T t = (T t
x, T

t
v)

We use the following notation, for a test-”particle” of the continuous system at the position
zt = (xt, vt) at time t, zs = (xs, vs) will be its position at time s for s ∈ [t− τ, t]. Precisely

zs = Zf (s, t, zt)

Since fN is the solution of a transport equation, we have fN(t, zt) = fN(s, zs). And since
the vector-field of that transport equation is divergence free

∫

Φ(z) fN(s, z) dz =

∫

Φ(Zf (s, t, z)) fN(t, z) dz =

∫

Φ(zs) fN(t, zt) dzt.

Finally let us remark that fN is a solution to the continuous Vlasov equations with an
initial L∞ norm and support that are uniformly bounded in N . Therefore this remains
true uniformly inN for any finite time. In particular there exists a constant C independent
of N such that for any t ∈ [0, T ]

‖fN(t, ., .)‖∞ ≤ C, ‖fN(t, ., .)‖L1 = 1,

|E(t, x)| ≤

∫

|F (x− y)| fN(t, y, w) dy dw ≤ C

|∇E(t, x)| ≤

∫

|∇F (x− y)| fN(t, y, w) dy dw| ≤ C

supp fN(t, ., .) ∈ B(0, R(t)), R(t) ≤ C,

(4.1) boundfN

as of course R(t) ≤ R0 +
∫ t

0
‖E(s, .)‖∞ ds. This is always true for α < 1. In dimension

d ≤ 3 it remains true for α < d − 1 and even α = d − 1. In fact, all that estimates
where central in the work of see Pfaffelmöser

Pfaf
[Pfa92] about existence and uniqueness of

compactly supported solution of Vlasov-Poisson equation (See also
Hor93
[Hor93] for a result

with improved bounds). The proofs can be adapted to our simpler cases (See the Appendix
of

HauJab07
[HJ07] for the case α < 1).

In dimension d > 3 and for attractive forces with 1 < α < d−1, there can be a blow-up in
finite time (for α larger than a critical value depending on the dimension). In that case,
we simply restrict ourselves to a time interval on which this does not occur.

In what follows, the final time T is fixed and independent of N . For simplicity, C will
denote a generic universal constant, which may actually depend on T , the size of the initial
support, the infinite norms of the fN ... But those constants are always independent of N
as in (

boundfN
4.1).
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4.2 The quantities to control

We will not be able to control infinite norm of the field (and its derivative) created by
the empirical distribution, but only a small temporal average of this norm. For this, we
introduce in the case without cut-off a small time step τ = εr

′
for some r′ > r and close

to r (the precise condition will appear later).
In the case with cut-off where r and r′ are useless, the time step will by τ = ε.

• The MKW infinite distance between µN(t) and f(t).

We of course wish to bound W∞(t) := sup0≤s≤t W∞(µN(s), fN(s)) (note that W∞ is
hence automatically non decreasing). For the transport introduced before, one has

W∞(t) ≤ sup
(xt,vt)∈supp fN (t,.,.)

|T t(xt, vt)− (xt, vt)|.

In fact, we will provide bound for the quantity of the right hand side. Our result
maybe stated for that quantity, rather than the infinite MKW distance. It is a little
stronger, since it means that rearrangement in the transport are not necessary to
keep the MKW distance bounded. The transport chosen at time t = 0 is preserved
during the time.

• The support of µN

We shall also need a uniform control on the support in position and velocity of the
empirical distributions :

RN(t) = max
i

|(Xi(t), Vi(t))|.

But using the infinite MKW distance, it is clear that RN(t) ≤ R(t) +W∞(t). We
will do a wide use of this control in the following.

• The infinite norm |EN |∞ of the time averaged discrete force field.

We also define the average of the discrete force field over small time intervals of
length τ (the dependence on t is implicit)

|EN |∞ = sup
i

1

τ

∫ t

t−τ

|EN(Xi(s))| ds.

• The infinite norm |∇NE|∞ of the time averaged discrete derivative of the
force field.

We also define a version of the infinite norm of its averaged derivative

|∇NE|∞ = sup
i 6=j

1

τ

∫ t

t−τ

|EN(Xi(s))− EN(Xj(s))| ds

|Xi(s)−Xj(s)|+ ε(1+r′)
ds.

For both EN and ∇NE, we use the convention that when the interval of integration
contain 0 (for t < τ), the integrand is null on the left side.

• The minimal distance in phase space dN

which has already be defined by the equation (
eq:dmin
2.1) in the Section

sec:main
2.
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• Two useful integrals Iα(t, zt) and Jα+1(t, zt)

Finally the technical computations involve

Iα(t, z̄t, zt) =
1

τ

∫ t

t−τ

|F (T s
x(z̄s)− T s

x(zs))− F (x̄s − xs)| ds.

Defining a second kernel as

Kε = min

(

1

|x|1+α
,

1

ε1+r′ |x|α

)

,

we define a second useful quantity

Jα+1(t, z̄t, zt) =
1

τ

∫ t

t−τ

Kε(|T
s
x(z̄s)− T s

x(zs)| ds

=
1

τ

∫ t

t−τ

Kε(|Xi(s)−Xj(s)| ds,

if i and j is the indices such that Zi(t) = T t(z̄t) and Zj(t) = T t(z̄s).

All previous quantities are relatively easily bounded by Iα and Jα+1. Those last two will
not be bounded by direct calculation on the discrete system, but we compare them to
similar ones for the continuous system, paying for that in terms of the distance between
µN(t) and f(t). That strategy is interesting because the integrals are easier to manipulate
than the discrete sums.
We summarize the first easy bounds in the following

Proposition 5. Under the assumptions of Theorem
thm:deter
3, one has for some constant C

uniform in N

(i) RN(t) ≤ W∞(t) +R(t) ≤ W∞(t) + C,

(ii) W∞(t) ≤ W∞(t− τ) + C τ sup
z̄t

∫

|zt|≤R(t)

Iα(t, z̄t, zt) dzt,

(iii) |∇NE|∞ ≤ C sup
z̄t

∫

|zt|≤R(t)

Jα+1(t, z̄t, zt) dzt.

(iv) dN(t) + ε1+r′ ≥ [dN(t− τ) + ε1+r′ ]e−τ(1+|∇NE|∞(t)).

propeasy

Note that the control on RN(t) is simple enough that it will actually be used implicitly
in the rest many times, and that the iv) a simple consequence of the iii). In fact, in that
proposition the crucial estimates are the ii) and iii).
Remark also that in the case of very singular interaction force (α ≥ 1) with cut-off - in
short (Sα

m) conditions - the control on minimal distance dN and therefore the control on
|∇NE|∞ are useless, so that the only interesting inequality is the second one.

4.3 Proof of Prop.
propeasy

5

Let us start with (i). Simply write

RN(t) = sup
zt∈supp fN (t,·)

|T t(zt)| ≤ sup
zt∈supp fN (t,·)

|T t(zt)− zt|+ sup
zt∈supp fN (t,·)

|zt|,

14



So indeed by (
boundfN
4.1)

RN(t) ≤ W∞(t) +R(t) ≤ W∞(t) + C.

As for (ii), simply differentiate in time W∞ to find

W∞(t)−W∞(t− τ)

τ
≤ sup

z̄t

∫
∣

∣

∣

∣

1

τ

∫ t

t−τ

[F (T s
x(z̄s)− T s

x(zs))− F (x̄s − xs)] ds

∣

∣

∣

∣

fN(zt) dzt.

Since fN is uniformly bounded in L∞ and compactly supported in B(0, R(t)), one gets
by the definition of Iα

W∞(t)−W∞(t− τ)

τ
≤ ‖f 0‖∞ sup

z̄t

∫

|zt|≤R(t)

Iα(t, z̄t, zt) dzt,

which is exactly (ii).

Concerning |∇NE|∞ in (iii), noting that

∫ t

t−τ

|EN(Xi(s))− EN(Xj(s))|

|Xi(s)−Xj(s)|+ ε1+r′
=

1

N

∑

k 6=i,j

∫ t

t−τ

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|

|Xi(s)−Xj(s)|+ ε1+r′
ds.

+
1

N

∫ t

t−τ

|F (Xi(s)−Xj(s))− F (Xj(s)−Xi(s))|

|Xi(s)−Xj(s)|+ ε1+r′
ds

By the assumption (
eq:Calpha
1.3), one has that

|F (x)− F (y)| ≤ C

(

1

|x|α+1
+

1

|y|α+1

)

|x− y|.

So

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|

|Xi(s)−Xj(s)|+ ε1+r′
≤

C

|Xi(s)−Xk(s)|1+α
+

C

|Xj(s)−Xk(s)|1+α
,

and that bound is also true for the remaining term where k = i or j. One also obviously
has, still by (

eq:Calpha
1.3)

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|

|Xi(s)−Xj(s)|+ ε1+r′
≤

C

ε1+r′ |Xi(s)−Xk(s)|α

+
C

ε1+r′ |Xj(s)−Xk(s)|α
.

Therefore by the definition of Kε

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|

|Xi(s)−Xj(s)|+ ε1+r′
≤ Kε(Xi(s)−Xk(s)) +Kε(Xj(s)−Xk(s)).

Summing up, this implies that

|∇NE|∞ ≤ Cmax
i 6=j

(1

τ

∫ t

t−τ

1

N

∑

k 6=i

Kε(Xi(s)−Xk(s)) ds

+
1

τ

∫ t

t−τ

1

N

∑

k 6=j

Kε(Xj(s)−Xk(s))ds
)

.
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Transforming the sum into integral thank to the transport, we get exactly the bound (iii)
involving Jα+1.

Finally for dN(t), consider any i 6= j, then obviously

d

ds
|(Xi(s)−Xj(s), Vi(s)− Vj(s))| ≥ −|Vi(s)− Vj(s)| − |EN(Xi(s))− EN(Xj(s))|.

Simply write

|EN(Xi(s))− EN(Xj(s))| ≤
|EN(Xi(s))− EN(Xj(s))|

|Xi(s)−Xj(s)|+ ε1+r′
(|Xi(s)−Xj(s)|+ ε1+r′)

to obtain that

d

ds
|(Xi(s)−Xj(s), Vi(s)− Vj(s))| ≥ −

(

1 +
|EN(Xi(s))− EN(Xj(s))|

|Xi(s)−Xj(s)|+ ε1+r′

)

(|(Xi(s)−Xj(s), Vi(s)− Vj(s))|+ ε1+r′).

Integrating this inequality and taking the minimum, we get

dN(t) + ε1+r′ ≥ (dN(t− τ) + ε1+r′) inf
i 6=j

exp

(

−τ −

∫ t

t−τ

|EN(Xi(s))− EN(Xj(s))|

|Xi(s)−Xj(s)|+ ε1+r′
ds

)

≥ [dN(t− τ) + ε1+r′ ] exp−τ(1+|∇NE|∞(t)) .

4.4 The bound for Iα and Jα+1

To close the the system of inequality of the Proposition
propeasy
5, it remains to bound the two

integrals involving Iα and Jα. It is done with the following lemmas

lem:boundI Lemma 1. Assume that F satisfies an (Sα)-condition with α < 1, and that τ is small
enough such that

C τ (1 + |∇NE|∞(t)) (W∞(t) + τ) ≤ dN(t).

Then one has the following bounds, uniform in z̄t
∫

|zt|≤R(t)

Iα(t, z̄t, zt) dzt ≤ C
[

W∞(t) + (W∞(t) + τ)dτ−α + (W∞(t) + τ)2d(dN(t))
−ατ−α

]

.

∫

|zt≤R(t)

Jα+1(t, z̄t, zt) dzt ≤ C
(

1 + (W∞(t) + τ)dε−(1+r′) τ−α

+ (W∞(t) + τ)2dε−(1+r′) τ−α (dN(t))
−α

)

.
boundIK

In the cut-off case where the interaction force satisfy a (Sα
m) condition (we recall that it

means that the cut-off is of size N−m = εm̄), we only need to bound the integral of Iα,
with the result

boundIcut Lemma 2. Assume that 1 ≤ α < d− 1, and that F satisfies a (Sα
m) condition, one as the

following bound, uniform in z̄t
∫

|zt|≤R(t)

Iα(t, z̄t, zt) dzt ≤ C
(

W∞(t)+(W∞(t)+τ)dτ−1εm̄(1−α)+(W∞(t)+τ)2dε−m̄α
)

. (4.2) boundIKcut

with the convention (if α = 1) that (εm̄)0 = | ln(εm̄)| 1.

1That convention may be justified by the fact that it implies a very simple algebra (x1−α)′ ≈ x
−α

even if α = 1. It allows us to give an unique formula rather than three different cases.
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The proofs with or without cut-off follow the same line and we will prove the above
lemmas at the same time. We begin by an explanation of the sketch of the proof, and
then perform the technical calculation.

4.4.1 Rough sketch of the proof

The point z̄t = (x̄t, v̄t) is considered fixed through all this subsection (as the integration
is carried over zt = (xt, vt)). Accordingly we decompose the integration in zt over several
domains. First

At = {zt | |x̄t − xt| ≥ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t)) }.

This set consist of points zt such that xs and T s
x(zs) are sufficiently far away from x̄s on

the whole interval [t − τ, t], so that they will not see the singularity of the force. The
bound over this domain will be obtained using traditional estimates for convolutions.
One part of the integral can be estimated easily on Ac

t (the part corresponding to the flow
of the regular solution fN to the Vlasov equation). For the other part it is necessary to
decompose further. The next domain is

Bt = Ac
t

⋂

{zt | |v̄t − vt| ≥ 4W∞(t) + 4 τ |E|∞|(t)}.

This contains all particles zt that are close to z̄t in position (i.e. xt close to x̄t), but with
enough relative velocity not to interact too much. The small average in time will be useful
in that part, as the two particles remains close only a small amount of time.
The last part is of course the remainder

Ct = (At ∪ Bt)
c.

This is a small set, but where the particles remains close together a relatively long time.
Here, we are forced to deal with the corresponding term at the discrete level of the
particles. This is the only term which requires the minimal distance in phase space; and
the only term for which we need a time step τ small enough as per the assumption in
Lemma

boundIK
1.

Figure 1: The partition of the phase space.
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4.4.2 Step 1: Estimate over At

If zt ∈ At, we have for s ∈ [t− τ, t]

|x̄s − xs| ≥ |x̄t − xt| − (t− s)|v̄t − vt| − (t− s)2|E|∞(t) ≥
|x̄t − xt|

2
(4.3)

|T s
x(z̄s)− T s

x(zs)| ≥ |x̄s − xs| − 2W∞(s)| ≥
|x̄t − xt|

2
. (4.4)

For Iα, we use the direct bound for z̄t ∈ At

|F (T s
x(z̄s)− T s

x(zs))− F (x̄s − xs)| ≤
C

|x̄t − xt|1+α
(|T s

x(z̄s)− x̄s|+ |T s
x(zs)− xs|)

≤
C

|x̄t − xt|1+α
W∞(s) ≤

C

|x̄t − xt|1+α
W∞(t),

and obtain by integration on [t− τ, t]

I(t, z̄t, zt) ≤
C

|x̄t − xt|1+α
W∞(t).

Then integrating in zt we may get since α + 1 < 2 ≤ d

∫

At

Iα(t, z̄t, zt) dzt ≤ CW∞(t)

∫

At

dzt
|x̄t − xt|1+α

≤ C R(t)2d−1−α W∞(t) ≤ CW∞(t).

(4.5) At

For Jα+1, we have using (
eq:FAR
4.4) on the set At the bound

|Kε(T
s
x(z̄t)− T s

x(zt))| ≤
C

|x̄t − xt|1+α
.

Integrating with respect to time and zt we get since 1 + α < d.

∫

At

Jα+1(t, z̄t, zt) dzt ≤ C

∫

At

dzt
|x̄t − xt|1+α

≤ C R(t)d−1−α ≤ C.

(4.6) At2

For the cut-off case, the estimation on Iα for this step is unchanged.

4.4.3 Step 1’ : Estimate over Ac
t for the continuous part of Iα.

For the remaining term in Iα, we use the rude bound

|F (T s
x(z̄s)− T s

x(zs))− F (x̄s − xs)| ≤ |F (T s
x(z̄s)− T s

x(zs))|+ |F (x̄s − xs)|.

The term involving T s is complicated and requires the additional decompositions. It will
be treated in the next sections. The other term is simply bounded by

∫

zt∈Ac
t

1

τ

∫ t

t−τ

|F (x̄s − xs)|ds dzt ≤
1

τ

∫ t

t−τ

∫

zt∈Ac
t

C dzt
|x̄s − xs|α

ds

≤
1

τ

∫ t

t−τ

∫

zs∈Zf (s,t,Ac
t )

C dzs
|x̄s − xs|α

ds.
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From the bound R(t) and |E|∞(t) we see that

|Ac
t | ≤ CR(t)d(W∞(t) + τ)d ≤ C(W∞(t) + τ)d.

Since the flow Zf is measure preserving, the measure of the set Zf (s, t, Ac
t) satisfies the

same bound. This set is also included in [−R(t), R(t)]2d (if R is increasing, a property
that we may assume). We use the above lemma which implies that above all the set
Z(s, t, Ac

t), the integral reaches is maximum when the set is a cylinder

Lemma 3. Let Ω ⊂ B(0, R) ⊂ R
n. Let P be a projection from R

n to R
m with m ≤ n.

Then for any a < m
∫

Ω

dx

|Px|a
≤ CaR

a(n−m)/m |Ω|1−a/m.

cylinder

Proof of Lemma
cylinder
3. We can freely assume that Px = (x1, . . . , xm). Now maximize the

integral
∫

ω

|Px|−adx

over all sets ω ⊂ R
n satisfying ω ⊂ B(0, R) and |ω| = |Ω|. It is clear that the maximum

is obtained by concentrating as much as possible ω near Px = 0, i.e. with a cylinder of
the form Bm(0, r)×Bn−m(0, R) where Bk denotes the k-dimensional ball. Since |ω| = |Ω|
we have r = |Ω|1/m R1−n/m. The integral can now be computed explicitly and gives the
lemma.

Applying the lemma, we get

∫

zt∈Ac
t

1

τ

∫ t

t−τ

|F (x̄s − xs)| dztds ≤ C(W∞(t) + τ)d−α. (4.7) Ic

That term do not appear in Lemma
lem:boundI
1 since it is strictly smaller than the bound of the

remaining term (involving T ), as we shall see in the next section.
For the cut-off case, we do not need the estimate on Jα+1 and the bound in this case is
similar since α ≤ d− 1 < d. The cut-off cannot in fact help to provide a better bound for
this term.

At this point, the remaining term to bound in Iα is only

∫

zt∈Ac
t

1

τ

∫ t

t−τ

|F (T s
x(z̄s)− T s

x(zs))| ds ≤ C

∫

zt∈Ac
t

1

τ

∫ t

t−τ

dzt
|T s

x(z̄s)− T s
x(zs)|

α
ds. (4.8) eq:remain

For Jα+1 one may bound the integral of the continuous part on Ac
t in a similar manner.

As Kε ≤
1

ε1+r′ |x|α
, the remainder can be controlled by (

eq:remain
4.8)

∫

Ac
t

Jα+1(t, z̄t, zt) dzt ≤ C (W∞(t) + τ)d−α +
C

ε1+r′

∫

zt∈Ac
t

1

τ

∫ t

t−τ

dzt
|T s

x(z̄s)− T s
x(zs)|

α
ds.

(4.9) remainderJalp

Therefore in the next sections we focus on giving a bound for (
eq:remain
4.8).
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4.4.4 Step 2: Estimate over Bt

If zt ∈ Bt, we have, as for At, for s ∈ [t− τ, t]

|v̄s − vs − v̄t + vt| ≤ 2τ |E∞|(t) ≤
|v̄t − vt|

2
, (4.10)

|T s
v (z̄s)− T s

v (zs)− v̄t + vt| ≤ |v̄s − vs − v̄t + vt|+ 2W∞(s)| ≤
|v̄t − vt|

2
. (4.11)

This means that the particles involved are close to each others (in the positions variables),
but with a sufficiently large relative velocity, so that they do not interact a lot on the
interval [t− τ, t].
First we introduce a notation for the term of (

eq:remain
4.8)

∫

zt∈Bt

Ibc(t, z̄t, zt) dzt, with Ibc(t, z̄t, zt) = Ibc(t, i, j) :=
1

τ

∫ t

t−τ

1

|T s
x(z̄s)− T s

x(zs)|
α
ds,

(4.12) eq:Ibc

where (i, j) are s.t. T s
x(z̄s) = Xi(s), T

s
x(zs) = Xj(s).

For zt ∈ Bt, define for s ∈ [t− τ, t]

φ(s) = (T s
x(z̄s)− T s

x(zs)) ·
v̄t − vt
|v̄t − vt|

.

Note that |φ(s)| ≤ |T s
x(z̄s)− T s

x(zs)| and that

φ′(s) = (T s
v (z̄s)− T s

v (zs)) ·
v̄t − vt
|v̄t − vt|

= |v̄t − vt|+ (T s
v (z̄s)− T s

v (zs)− (v̄t − vt)) ·
v̄t − vt
|v̄t − vt|

≥
|v̄t − vt|

2
,

where we have used (
eq:CBF
4.10). Therefore if φ attains its minimum on [t− τ, t] at s0, then

|T s
x(z̄s)− T s

x(zs)| ≥ |t− s0|
|v̄t − vt|

2
.

Using this directly gives, as α < 1

|Ibc(t, z̄t, zt)| ≤
C

τ
|v̄t − vt|

−α

∫ t

t−τ

ds

|s− s0|α
≤ C τ−α |v̄t − vt|

−α. (4.13) vtrick

Now integrating
∫

zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C τ−α

∫

Ac
t

dzt
|v̄t − vt|−α

≤ C τ−α (W∞(t) + τ)d (R(t))d−α,

by using again Lemma
cylinder
3. In conclusion

∫

zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C τ−α (W∞(t) + τ)d. (4.14) Bt

With the cut-off where α ≥ 1, the reasoning follows the same line up to the bound (
vtrick
4.13)

which relies on the hypothesis α < 1. (
vtrick
4.13) is replaced by

|Ibc(t, z̄t, zt)| ≤
C

τ

∫ t

t−τ

ds

(|s− s0||v̄t − vt|+ 4εm̄)α

≤
C

τ

∫ τ
2|v̄t−vt|

0

ds

(s+ κ)α
≤

Cεm̄(1−α)

τ
,

(4.15)
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with the convention (εm̄)0 = | ln(εm̄)| for α = 1. Integrating that bound (which do not
depend on vt) over Bt, we get the estimate

∫

zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C (W∞(t) + τ)d τ−1 εm̄(1−α) . (4.16) Btcutoff

4.4.5 Step 3: Estimate over Ct

First remark that Ct ⊂ {|zt| ≤ C(W∞(t) + τ)}, so that its volume is bounded by
C(W∞(t) + τ)2d. From the previous steps, it only remains to bound

∫

zt∈Ct

Ibc(t, z̄t, zt) dzt.

We begin by the cut-off case, which is the simpler one. In that case, one simply bounded
Ibc ≤ C ε−m̄α which implies

∫

zt∈Ct

Ibc(t, z̄t, zt) dzt ≤ C(W∞(t) + τ)2dε−m̄α. (4.17) Ctcutoff

It remains the case without cut-off. Denote C̃t = {j | ∃zt ∈ Ct, s.t. Zj(t) = T t(zt)}, and
bound
∫

zt∈Ct

Ibc(t, z̄t, zt) dzt ≤
∑

j∈C̃t

aij
N

INc(t, i, j) with INc(t, i, j) =
1

τ

∫ t

t−τ

dzt
|Xi(s)−Xj(s)|α

ds,

where i is the number of the particle associated to z̄t (T
t(z̄t) = Zi(t)) and

aij = N |{zt ∈ Ct, T
t(zt) = Zj(t)}|, so that

1

N

∑

j∈C̃t

aij = |Ct|.

To bound INc over C̃t, we do another decomposition in j. Define

JXt =

{

j ∈ C̃t , |Xj(t)−Xi(t)| ≥
dN(t)

2

}

,

and

JVt =

{

j ∈ C̃t , |Xj(t)−Xi(t)| ≤ |Vj(t)− Vi(t)| and |Vj(t)− Vi(t)| ≥
dN(t)

2

}

.

By the definition of the minimal distance in phase space dN(t), one has that C̃t = JXt ∪
JVt. Since

|T t(zt)− zt| ≤ W∞(t),

one has by the definition of C̃t and of Ct that for all j ∈ C̃t, |Zj(t)−Zi(t)| ≤ C (W∞(t)+τ).

Let us start with the bound over JXt. If j ∈ JXt, one has that

|Xj(s)−Xi(s)| ≥ |Xj(t)−Xi(t)| −

∫ t

s

|Vj(u)− Vi(u)| du.

On the other hand

|Vj(u)− Vi(u)| ≤ 2W∞(t) + |v̄u − vu| ≤ 2(W∞(t) + τ |E|∞) + |v̄t − vt| ≤ C(W∞(t) + τ).
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Therefore assuming that
C τ(W∞(t) + τ) ≤ dN(t)/4, (4.18) assJX

we have that for any s ∈ [t − τ, t], |Xj(s) − Xi(s)| ≥ dN(t)/4. Consequently for any
j ∈ JXt

INc(t, i, j) ≤ C (dN(t))
−α. (4.19) boundJX

For j ∈ JVt, we write

|(Vj(s)− Vi(s))− (Vj(t)− Vi(t))| ≥ −

∫ t

s

|EN(Xj(u))− EN(Xi(u))| du.

Note that

|Xj(s)−Xi(s)| ≤ |Xj(t)−Xi(t)|+

∫ t

s

|Vj(u)− Vi(u)| du

≤ C(W∞(t) + τ) + 2

∫ t

s

(W∞(u) +R(u)) du

≤ C(W∞(t) + τ).

(4.20) xclose

Hence we get for s ∈ [t− τ, t]

∫ t

s

|EN(Xj(u))− EN(Xi(u))| du ≤ C τ |∇NE|∞ (W∞(t) + τ + ε1+r′).

Note that the constant C still does not depend on τ . Therefore provided that

C τ |∇NE|∞ (W∞(t) + τ + ε1+r′) ≤ dN(t)/4, (4.21) assJV

one has that

|Vj(s)− Vi(s)− (Vj(t)− Vi(t))| ≥ dN(t)/4 and also |Vi(s)− Vj(s)| ≥
dN(t)

4
.

As in the step for Bt this implies the dispersion estimate |Xj(s)−Xi(s)| ≥ |s−s0| dN(t)/4
for some s0 ∈ [t− τ, t]. As a consequence for j ∈ JVt,

INc(t, i, j) ≤
C

τ
(dN(t))

−α

∫ t

t−τ

ds

|s− s0|α
≤ C τ−α (dN(t))

−α. (4.22) boundJV

Summing (
boundJX
4.19) and (

boundJV
4.22), one gets

∑

j∈C̃t

aij
N

INc(t, i, j) ≤ C |Ct|
(

(dN(t))
−α + τ−α (dN(t))

−α
)

.

Coming back to Ibc and keeping only the largest term of the sum
∫

Ct

Ibc(t, z̄t, zt) dzt ≤ C (W∞(t) + τ)2dτ−α (dN(t))
−α. (4.23) Ct

4.4.6 Conclusion of the proof of Lemmas
boundIK
1,

boundIcut
2

Assumptions (
assJX
4.18) and (

assJV
4.21) are ensured by the hypothesis of the lemma. Summing up

(
At
4.5) for Iα or (

At2
4.6) for Jα+1, with (

Ic
4.7), (

Bt
4.14) and (

Ct
4.23), we indeed find the conclusion

of the first lemma.
In the Sα

m case, no assumption is needed, and summing up the bounds (
At
4.5), (

Ic
4.7), (

Btcutoff
4.16),

(
Ctcutoff
4.17), we obtain the second lemma.
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4.5 Conclusion of the proof of Theorem
thm:deter

3 (without cut-off)

In this subsection, in order to make the argument clearer, we number explicitly the con-
stants. Let us summarize the important information of Prop.

propeasy
5 and Lemma

boundIK
1.

Note that W∞(t) ≥ W∞(0) ≥ τ so we freely replace C(W∞+ τ) by 2CW∞ in the inequal-
ities of lemma

boundIK
1. Let us also rescale the interested quantities s.t. all may be of order

1
ε W̃∞(t) = W∞(t), ε1+r d̃N(t) = dN(t).

We also assume that W̃∞ and |∇NE|∞ are non decreasing functions of t, and that d̃N
is a non increasing function of t. In fact the bound proved before are also valid for
sups≤t W̃∞, sups≤t |∇

NE|∞, and infs≤t d̃N(s). With that convention W̃∞(t) ≥ W̃∞(0) ≥ 1.

By assumption (i) in Theorem
thm:deter
3, also note that d̃N(0) ≥ 1.

Recalling τ = εr
′
, the condition of Lemma

lem:boundI
1 after rescaling reads

C1 ε
r′−r (1 + |∇NE|∞(t)) W̃∞(t) ≤ d̃N(t), ∀ t ∈ [0, t0]. (4.24) assumption

We have that for some constants Ci independent of N (and hence ε), such that if (
assumption
4.24)

is satisfied, then for any t ∈ [0, t0]

W̃∞(t) ≤ W̃∞(t− τ) + C0 ε
r′
(

W̃∞(t) + ελ1 W̃ d
∞(t) + ελ2 W̃ 2d

∞ (t) d̃−α
N (t)

)

,

|∇NE|∞(t) ≤ C2

(

1 + ελ3 W̃ d
∞(t) + ελ4 W̃ 2d

∞ (t) d̃−α
N (t))

)

d̃N(t) + εr
′−r ≥ [d̃N(t− τ) + εr

′−r]e−τ(1+|∇NE|∞(t)),

where ε appear four times with four different exponents λi, i = 1, . . . , 4 defined by

λ1 = d− 1− α r′, λ2 = 2d− 1− α(1 + r′ + r),

λ3 = d− 1− r′ − α r′, λ4 = 2d− 1− r′ − α(1 + r′ + r).

To propagate uniform bounds as ε → 0 and N → ∞, we need all λi to be positive. As
r, r′ > 0, it is clear that λ1 > λ3 and λ2 > λ4. Thus we need only check λ2 > 0 and
λ4 > 0. Now, simply note that if

r <
d− 1

1 + α
, and r <

2d− 1− α

1 + 2α
,

then for any r′ > r close enough to r, one has λ2 > 0 and λ4 > 0.
As α2 < 1 < d, the first inequality is the stronger one. As it is the condition given in
Theorem

thm:deter
3, and r′ is close to r, we have that all λ are positive and we denote λ = mini(λi).

Then by a rough estimate,

W̃∞(t) ≤ W̃∞(t− τ) + C0 τ
(

W̃∞(t) + 2 ελ W̃ 2d
∞ (t) d−α

N (t)
)

,

|∇NE|∞(t) ≤ C2

(

1 + 2 ελ W̃ 2d
∞ (t) d̃−α

N (t)
)

,

d̃N(t) ≥ [ d̃N(0) + εr
′−r]e−t(1+|∇NE|∞(t)) − εr

′−r.

(4.25) roughestimate

If one has (
assumption
4.24) and

2 ελ W̃ 2d
∞ (t) d̃−α

N (t) ≤ 1, (4.26) assumption2

then using W∞ ≥ 1, we get W̃∞(t) ≤ W̃∞(t− τ) + 2C0τW̃∞(t) so that

W̃∞(t) ≤ W̃∞(t− τ)(1− 2C0τ)
−1,

|∇NE|∞(t) ≤ 2C2,

d̃N(t) ≥ e−(1+2C2) t − εr
′−r.

(4.27) presquegronwall
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The last inequality implies d̃N(t) ≥
1
2
e−(1+2C2) t if 2εr−r′e(1+2C2)T < 1. That condition is

fulfilled for ε small enough, i.e. N large enough.
The first inequality in (

presquegronwall
4.27), iterated gives W∞(t) ≤ W∞(0)(1 − 2C0τ)

− t
τ . If C0τ ≤ 1

4
,

then we can use − ln(1− x) ≥ 2x for x ∈ [0, 1
2
], and get

W̃∞(t) ≤ W̃∞(0)e4C0t

To summarize

W̃∞(t) ≤ e4C0t,

|∇NE|∞(t) ≤ 2C2,

d̃N(t) ≥
1

2
e−(1+2C2) t.

(4.28) result

At the discrete level of the particles, the dynamics is continuous in time, at least for initial
conditions not leading to collisions. That set is of full measure for α < 1, and d ≥ 2 (See
Hau04
[Hau04]). So as long as (

assumption
4.24) and (

assumption2
4.26) are satisfied at t = 0, there exists a maximal

time t0 ∈]0, T ] (possibly t0 = T ) such that they are satisfied on [0, t0].
We show that for N large enough, i.e. ε small enough, then one necessarily has t0 = T .
Then we will have (

result
4.28) on [0, T ] which is the desired result. This is simple enough. By

contradiction if t0 < T then

C1 ε
(r−r′) (1 + |∇NE|∞(t0)) W̃∞(t0) = d̃N(t0), or 4 ελ W̃ 2d

∞ (t0) d̃
−α
N (t0) = 1.

Until t0, (
result
4.28) holds. Therefore

ελ W̃ 2d
∞ (t0) d̃

−α
N (t0) ≤ ελ 2α e(α+(4d+2α)max(C0,C2)) t0 < 1,

for ε small enough with respect to T and the Ci. This is the same for (
assumption
4.24),

C1 ε
(r−r′) (1 + |∇NE|∞(t0)) W̃∞(t0)d̃

−1
N (t0) ≤ 2ε(r−r′)C1(1 + 2C2)e

(1+6max(C0,C2))t0 < 1.

Hence we obtain a contradiction and prove Theorem
thm:deter
3.

4.6 Conclusion of the proof of Theorem
thm:cutoff

4 (cut-off case)

In the cut-off case, using Lemma
boundIcut
2 together with the inequality ii) of the Proposition

propeasy
5,

we may obtain

W∞(t) ≤ W∞(t−τ)+C0W∞(t)
[

1 + (W∞(t) + τ)d−1τ−1εm̄(1−α) + (W∞(t) + τ)2d−1ε−m̄α
]

.

We again rescale the quantity W∞(t) = εW̃∞(t) and replace W̃∞(t) by W̃∞(t) + 1. Recall
that κ = εm, τ = εr

′
. Here the optimal estimate is obtained by taking τ as large as possible

(because of the τ−1 term). This corresponds to r′ = 1. It comes for 1 ≤ α < d− 1,

W̃∞(t) ≤ W̃∞(t− τ) + C0W̃∞(t)
[

1 + εd−2−m̄(α−1) W̃ d−1
∞ (t) + ε2d−1−m̄α W̃ 2d−1

∞ (t)
]

.

As in the previous section, we will get a good bound provided that the power of ε appearing
in parenthesis are positive. The two conditions read

m̄ < m̄∗ := min

(

d− 2

α− 1
,
2d− 1

α

)

.

In that case, for N large enough (with respect to eCt), we get a control of the type

d

dt
W̃∞(t) ≤ 4C0W̃∞(t)

which gives the desired result.
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5 Appendix: From Gao’s large deviation to Proposi-

tion
prop:Gao

2

The result proven by Gao that we need is Theorem 1.2 of
Gao03
[Gao03], which is written below

with the modifications :

• The sequence aN of Gao is directly replaced by aN = Nγ, γ ∈ (0, 1), which satisfies
the required assumptions

aN −→
N→+∞

0,
NadN
log aN

−→
N→+∞

+∞.

• The general but technical assumptions on the kernel φ (denoted by K in Gao’s
article) are replaced by the more simple and less general below. In fact, according to
Gao’s remarks, a bounded function of the form φ(x) = h(

∑

i x
2
i ) with h : R

+ → R
+

decreasing and satisfying
∫

φ = 1 is admissible.

thm:Gao Theorem 5 (Gao ’03). Assume that f 0 is continuous and goes to zero at infinity, and
that φ is a non-negative, radial and decreasing function. Then, with the notation intro-
duced in the section

sec:main
2

lim
N→+∞

Nγ−1 lnP
(

‖fN − f 0‖∞ ≥ λ
)

= −Jφ(λ),

where

Jφ(λ) = inf
x∈Rd

sup
t∈R

{

tλ− f(x)

∫

Rd

[etφ(z) − 1− tφ(z)] dz

}

.

This is the original formulation of Gao. Remark that in the definition of J , the supremum
is decreasing in f 0(x) (the term under the integral is positive), so that the infimum will
be reach at the maximum of f 0. Thus J may be rewritten as

Jφ(λ) = sup
t∈R

{

tλ− ‖f 0‖∞

∫

Rd

[etφ(z) − 1− tφ(z)] dz

}

.

Let us explain how to obtain Proposition
prop:Gao
2 from that result. As ‖fN‖∞ ≤ ‖fN − f 0‖∞ +

‖f 0‖∞, it suffices to bound by below Jφ((L− 1)‖f 0‖∞) which is equal to

Jφ((L− 1)‖f 0‖∞) = ‖f 0‖∞ sup
t∈R

{

Lt+

∫

Rd

[1− etφ(z)] dz

}

=: Iφ(L).

For a fixed φ and L > 1, we have Iφ(L) > 0, which is enough to provide the large
deviation result. Furthermore, in some cases, it is easy to compute explicitly Iφ. Consider
for instance the uniform φ = 1

|B1|
IB1 (where I denotes the characteristic function and |B1|

the volume of B1). In that case, the supremum is explicit and we get

Iφ(L) = |f |∞|B1|(L lnL− L+ 1).
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