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Abstract. We present in this paper a 3D electromagnetic formulation to describe two conductors in electric
contact with each other, submitted to the field of a coil in which an AC current is flowing. One of the two
conductors is described by the t-φ formulation, the other conductor is described by the surface impedance
boundary condition. The proposed coupled formulation has been validated with a numerical example with
a simple geometry. This coupled formulation has then been applied to a numerical example on which a
crack has to be detected. It is composed of a non magnetic tube embedded in a thick steel tube sheet,
submitted to the field of a coil.

1 Introduction

The finite element formulations using magnetic scalar po-
tential φ and electric vector potential t are efficient for
performing sinusoidal time variation electromagnetic sim-
ulations, i.e. magneto-harmonic simulations. It has been
widely used, and presented for instance in [1–4]. An al-
ternative to this t-φ formulation is the A-V formulation,
where A is a vector potential and V an electric scalar
potential [5]. We can also mention H or E field formula-
tions [6]. For the work presented in this article, we have
chosen the t-φ formulation, as we consider them as less
time consuming than the other methods, and already pre-
sented our previous works about t-φ methods in [7–9], es-
pecially for the coupling with external electric circuits. t-φ
formulations can describe a solid conductor in which the
skin effect is not too strong. When there is a strong skin ef-
fect in a conductor, i.e. when the skin effect becomes small
compared to the dimensions of the conductor, the number
of elements necessary to mesh it becomes too high and
it can be favourably described by the surface impedance
boundary condition (IBC) [10–18]. This IBC used with
the finite element method has been proposed in 2D with
the magnetic vector potential A as state variable [10]. It
has been presented in 3D with the finite element method
or with the boundary integral method with the magnetic
scalar potential φ [11–17], and with A-V potentials [18].
With all these methods, the conductor described with the
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IBC is surrounded by air and it can be in contact with a
magnetic non conducting region.

The work presented in this article deals with the eddy
current detection of cracks in the steam generator tubes of
nuclear power plants. The tubes are embedded in a steel
tube sheet and the formers are in electric contact with the
latter. Each tube is submitted to the field of an emitting
coil of a crack detection probe. The tube is made of Inconel
(non magnetic). Cracks are present in this tube. These
cracks must be detected. The skin effect is not strong in
this tube. It can therefore be described by the t-φ formu-
lation. In this article, we have considered that there is no
crack in the tube sheet. As the skin effect is strong in it,
it must be described by the surface impedance boundary
condition. We present in this article the coupling of the t-φ
formulation with the surface impedance boundary condi-
tion with an electric contact between those two conductors
(the tube and the tube sheet). The proposed coupling has
been validated with a numerical example with simple ge-
ometry, and has then been applied to the case of the tube
embedded in the steel tube sheet. This coupling can also
be applied to the simulation of other devices.

2 Numerical method

2.1 Typical problem

Let Ωc be a conductor described by the t-t0-φ formula-
tion [7–9], in electric contact with another conductor Ωf

described by the t0-φ magnetic scalar potential surface
impedance formulation [11–17] (cf. Fig. 1). Let Ωa be the
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Fig. 1. Typical problem.

air region which contains a coil described by the t0-φ for-
mulation, where t0 is a source magnetic field due to the
current in the coil and computed as mentioned in [7–9].
Let Γf be the boundary of Ωf and Γc, the boundary of
Ωc. Let Γcf be the interface between both conductors Ωc

and Ωf , Γfa, the one between Ωf and Ωa and Γca, the
one between Ωc and Ωa. We then have: Γc = Γca ∪ Γcf

and Γf = Γcf ∪ Γfa. Let Ω0 be the whole finite element
domain (Ω0 = Ωa ∪ Ωc ∪ Ωf ) and Γ0 its boundary. So
as to clarify the presentation, we will not represent the
non conducting ferromagnetic regions, as they can easily
be taken into account without difficulty using t0-φ type
formulations.

The source magnetic field t0 due to the current in the
coil is defined and computed by [7–9]:

js = rot t0 in Ω0

t0 × n = 0 on Γ0

where js is the current density in the stranded coil. Note
that the source magnetic field t0 is computed in the whole
finite element domain Ω0, and is also computed inside the
volume of the surface impedance region Ωf .

2.2 Surface impedance notion

When the skin depth δ becomes very small compared with
the dimensions of the solid conductor regions, we can ap-
proach the solution of the problem in these regions by a
monodimensional approximation along direction z, per-
pendicular to the surface of the conductor. We can ap-
proach h and e as follows [13]:

h(z) = hse
− (1+j)z

δ

e(z) = ese
− (1+j)z

δ (1)

where hs and es are the magnetic and electric fields tan-
gential to the Γf surface. The solution of the magneto-
harmonic problem leads to the definition of the surface
impedance Zs [19]:

es = Zs(nf × hs)

Zs =
1 + j

σδ
. (2)

2.3 Finite element formulation

We explain the magnetic field h and the current density
j in the different regions and on the interfaces as written
below:

in Ωc: h = t0 + t− grad φ, j = rot t; (3)

in Ωa: h = t0 − gradφ; (4)

on Γfa: hs = t0s − grads φ; (5)

on Γcf: hs = t0s + ts − grads φ, (6)

where hs, ts and t0s are the quantities h, t and t0 tangen-
tial to the Γf interface. On Γca, we apply the condition
t × n = 0, which ensure that j · n = 0 on Γca. With
this boundary condition and the definitions (3)–(6), the
h tangential component and the j normal component are
conserved across interfaces. The continuities of the e tan-
gential component and b normal component are ensured
in a weak sense, i.e. by the equations to solve.

The electric field e and flux density b are expressed
as function of the current density j and magnetic field h
with the constitutive laws, which we write in the following
form:

e = ρ j =
1
σ
j

b = μh (7)

where μ is the permeability, ρ the resistivity and σ, the
conductivity.

The implementation of the finite element method with
the t-t0-φ and surface impedance formulation leads to
solve in a weak sense the Maxwell-Faraday and Maxwell-
Gauss equations:

curl e = −db
dt

divb = 0. (8)

The Maxwell-Ampère equation is verified (strongly) by the
definitions of h and j (3)–(6). To obtain the formulation,
we project the above equations with adapted projection
functions [20]:

∫
Ωc

(curl e + jω b) · Wi dΩ = 0

∫
Ωa∪Ωc

divb · widΩ = 0 (9)

where Wi and wi are respectively edge and nodal ap-
proximation functions. After applying Green’s formulas
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to these equations, we obtain:

∫
Ωc

curl Wi · e dΩ +
∫
Γc

(e× Wi) · nc dΩ

+ jω

∫
Ωc

Wi · b dΩ = 0

∫
Ωa∪Ωc

gradwi · b dΩ +
∫
Γf

wi b · nfdΩ = 0. (10)

Where nc is the normal vector pointing out of Ωc conduc-
tor and nf , the normal vector pointing out of Ωf conduc-
tor. Let us transform, in a first time, the first equation
of (10), which becomes:

∫
Ωc

curl Wi · e dΩ +
∫
Γc

(nc × e) ·Wi dΩ

+ jω

∫
Ωc

Wi · b dΩ = 0. (11)

Using the first relation of (2), noticing that nc = −nf on
Γcf and cancelling Wi×nf on Γca, to ensure the condition
j·n = 0 [21], we express the second term of (11) as follows:

∫
Γcf

(nc × e) · Wi dΩ =
∫

Γcf

(nc × es) ·Wi dΩ

=
∫

Γcf

Zs (nc × (nf × hs)) ·Wi dΩ

=
∫

Γcf

Zs hs ·Wi dΩ. (12)

We now transform the second equation of (10). Consider-
ing the Maxwell-Faraday law in magneto-harmonic form,
we can write:

b · nf = − 1
jω

(rot e) · nf . (13)

Using relations (2) and (13), the last term of the second
equation of (10) can be transformed as follows [13]:

∫
Γf

wiB · nfdΓ =
1
jω

∫
Γf

Zs gradwi · hsdΓ. (14)

The system of equations to solve, obtained from the resid-
uals (10) we have transformed, is finally in the form:

∫
Ωc

(curl Wi · e + jω Wi · b) dΩ

+
∫

Γc f

ZsWs i · hs dΓ = 0

∫
Ωa∪Ωc

gradwi · bdΩ

+
1
jω

∫
Γf

Zs gradswi · hs dΓ = 0. (15)

We interpolate φ and t on the finite element mesh with
shape functions identical to the projection functions:

t =
∑

j

Wjtj

φ =
∑

j

wjφj

where the tj and φj are the unknowns of the system to
solve [7–9,12].

The symmetry of the system is obtained multiplying
the second equation of (15) by jω. We then obtain the fol-
lowing system of equations, in the case of natural bound-
ary conditions:

[
A B
Bt C

] {
t
φ

}
=

{
D
E

}
(16)

Aij =
∫
Ωc

ρ curlWi · curlWj dΩ

+ jω

∫
Ωc

μWi ·Wj dΩ +
∫

Γc f

Zs Ws i ·Ws j dΓ

Bij = −jω

∫
Ωc

μWi · gradwjdΩ

−
∫

Γc f

Zs Ws i · grads wj dΓ

Cij = jω

∫
Ωa∪Ωc

μgradwi · gradwj dΩ

+
∫
Γf

Zs grads wi · grads wj dΓ

Di = −
∫

Γc f

ZsWs i · t0s dΓ

Ei = jω

∫
Ωa

gradwi · t0dΩ +
∫

Γf a

Zs gradswi · t0s dΓ.
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Fig. 2. (Color online) Geometry description of the example.
With the 3 symmetries, one eighth of the geometry is described.

The system of equations (16) corresponds to the “re-
duced” scalar potential formulation (t0-φ or t-t0-φ). The
“total” scalar potential formulation, i.e. the φ or t-φ for-
mulation, can be obtained cancelling D and E terms
of (16). We can have, in the same problem, conducting
or non conducting regions described by a “reduced” scalar
potential formulation (t0-φ or t-t0-φ) and others described
with the “total” scalar potential formulation (φ or t-φ). It
is also possible to describe a part of the couple of conduc-
tors Ωc∪Ωf with “total” scalar potential formulations and
another one with “reduced” scalar potential formulations.

We have used the tree-cotree gauge applied to the elec-
tric vector potential t [22], where the unknowns ti are
cancelled on the edges of a tree spanning the Ωc conduc-
tor described by the t-t0-φ or t-φ formulation. The linear
system solving algorithm used is a preconditioned conju-
gate gradient algorithm after equilibrating the linear sys-
tem [23]. The coupling method presented in this part has
been implemented in the Flux� software [24].

3 Simple geometry numerical example
for the validation

3.1 Description of the numerical example

We have validated the coupling presented above on a
simple geometry example composed of a magnetic paral-
lelepiped conductor inserted in a non magnetic cylinder-
shaped conductor with a low conductivity (cf. Fig. 2). A
coil in which flows a sinusoidal current at a frequency
equals to 10 kHz, 100 kHz or 1 MHz generates induced
currents in both conductors which are in electric contact
with each other: the cylinder-shaped conductor and the
parallelepiped conductor.

Table 1 gives the values of the skin depth in these 2
conductors, at the 3 frequencies of the coil current. The

Fig. 3. (Color online) Mesh of both conductors.

Table 1. Skin depths in both conductors for the 3 frequencies
of current in the coil.

Frequency Parallelepiped Cylinder-shaped
conductor conductor

10 kHz 0.071 mm 16 mm
100 kHz 0.022 mm 5.0 mm
1 MHz 0.0071 mm 1.6 mm

cylinder-shaped conductor, in which skin depth is between
1.6 mm and 16 mm, is described by the t-φ formulation.
In the parallelepiped conductor, skin depth is between
0.0071 mm and 0.071 mm. For each frequency, two simu-
lations have been performed:

- 1st case, the parallelepiped conductor is described by
the φ surface impedance formulation, using the method
described above;

- 2nd case, considered as the reference case, this conduc-
tor is described by the t-φ formulation.

In both cases, a cylindrical air region including the 2 con-
ductors (which can be seen in Fig. 2) is described by the
φ formulation. The region which consists of the rest of air
and the coil are described by the t0-φ formulation.

In Figure 3 is depicted the mesh used for a frequency
equal to 1 MHz. The parallelepiped conductor has been
meshed with hexahedral finite elements. On the edges, the
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Table 2. Eddy current losses in the parallelepiped conductor.

Frequency 1st case 2nd case Difference

10 kHz 6.92 × 10−8 W 6.73 × 10−8 W 2.81%

100 kHz 2.11 × 10−6 W 2.09 × 10−6 W 0.756%

1 MHz 5.84 × 10−5 W 5.76 × 10−5 W 1.47%

Table 3. Eddy current losses in the cylinder-shaped conductor.

Frequency 1st case 2nd case Difference

10 kHz 1.99 × 10−8 W 2.01 × 10−8 W 0.82%

100 kHz 1.951 × 10−6 W 1.956 × 10−6 W 0.24%

1 MHz 1.804 × 10−4 W 1.805 × 10−4 W 0.071%

elements are very elongated and have a width equal to
0.002 mm, so the mesh is compatible with the skin depth
of 0.0071 mm at this frequency.

3.2 Results

The convergence of the linear system is always obtained.
Tables 2 and 3 and Figures 4–7 show that the method
presented in this article gives good results.

In Figure 4, on the vertical edge of the parallelepiped
conductor, the current density is very small in the 2nd
case and not in the 1st case. We can explain that with
the following considerations: in the 2nd case, the paral-
lelepiped conductor is described with the t-φ formulation,
it is much more conducting than the cylinder-shaped con-
ductor, the current density passes from a vertical face to
the other passing through the interior of the volume, so
the current density is taking the shortest way. The higher
the frequency is, the smaller the skin depth is and the
smaller the zone with very small current density on the
vertical edge is. In the 1st case, the current density is not
small on the edge, because it is tangential to each face,
since the surface impedance formulation imposes that the
current density be tangential to the surface of the conduc-
tor. In Table 2, we can see that the difference at 1 MHz is
increased compared with the one at 100 kHz. It is proba-
bly due to a not enough refined mesh for the second case
at this frequency.

Figures 6 and 7 show curves of the current density and
flux density, calculated on the AB segment, located at the
interface between the parallelepiped conductor and the
cylinder-shaped conductor in both cases (AB segment is
depicted in Fig. 2). Figure 6 shows curves of the imaginary
part of the y-component of the current density j in the par-
allelepiped conductor at 100 kHz. The y-component of the
current density j is the highest of the 3 components and
j is tangential to the AB segment. We notice a small dif-
ference of values between both cases. At abscissa 0.5 mm,
corresponding to the vertical edge of the parallelepiped
conductor, the current density is very small in the 2nd
case. We find again the phenomenon already observed in
Figure 4 and which we have already explained above. Fig-
ure 7 shows the curves of the real part of the z-component

Fig. 4. (Color online) Isovalues of the current density modu-
lus in the parallelepiped conductor, at 100 kHz: on the left 1st
case (with parallelepiped conductor described with the surface
impedance formulation), on the right 2nd case (with paral-
lelepiped conductor described with the t-φ formulation). The
scale of the current density is in A/m2.

Fig. 5. (Color online) Isovalues of the current density modulus
in the cylinder-shaped conductor, at 100 kHz: on the left 1st
case (with parallelepiped conductor described with the surface
impedance formulation), on the right 2nd case (with paral-
lelepiped conductor described with the t-φ formulation). The
scale of the current density is in A/m2.

of the flux density b in the cylinder-shaped conductor at
100 kHz. The real part of this z-component is the highest
of the 3 components. The curves of the imaginary part of
the z-component show the same shapes. We observe that
the curves corresponding to both cases are superimposed,
which shows that the surface impedance formulation, even
if it is not accurate near the vertical edge does not modify
very much the results in the cylinder-shaped conductor
described by the t-φ formulation. In Figure 7, close to
abscissa 0.5 mm, corresponding to the vertical edge, the
curve presents oscillations, which would probably be due
to the mesh which is not enough fine in this area.
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Current density in the parallelepiped conductor
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Fig. 6. (Color online) Curves of the imaginary part of the
y-component of the current density j in the parallelepiped con-
ductor, on the AB segment, at 100 kHz, in both cases.

Flux density in the cylinder-shaped conductor 
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Fig. 7. (Color online) Curves of the real part of the
x-component of flux density b in the cylinder-shaped conduc-
tor, on the AB segment, at 100 kHz, in both cases.

4 Numerical example of a tube with crack
embedded in a tube sheet

4.1 Description of the numerical example

We have then used the method presented above on a de-
vice which comprises a steam generator tube embedded in
a steel tube sheet. The tube contains a crack and is sub-
mitted to the field of an emitting coil of a crack detection
probe.

In the steam generators, the tubes made of Inconel
(non magnetic) of around 22 mm diameter are embed-
ded in a 30 mm thick steel tube sheet and expanded. The
tubes and the tube sheet are in electric contact. Each tube
is submitted to the field of an emitting coil of a crack de-
tection probe. The numerical example we have simulated
is composed of a part of tube embedded in a part of the
tube sheet. The tube has a larger diameter in the lower
part than in the upper part. In the upper part, the diam-
eter of the tube is equal to 19.7 mm, whereas in the lower
part, its diameter is equal to 20.4 mm. There is a zone
where the tube is cone-shaped. The tube is submitted to

Tube thickness : 
1.27 mm

Inconel tube 

σ = 1 MS/m
µr = 1

Steel tube sheet 

σ = 5 MS/m
µr = 100

20 mm 

30 mm 

25 mm 

5 mm 

19.7 mm 

20,4 mm 

Fig. 8. (Color online) Geometry of the tube and tube sheet,
with material properties indicated.

Table 4. Skin depths in the tube and the tube sheet for the 2
working frequencies of the probe.

Frequency Tube Tube sheet

100 kHz 1.6 mm 0.071 mm

600 kHz 0.65 mm 0.029 mm

the magnetic field of the probe emitting coil. In this exam-
ple, we have placed this latter in the cone-shaped zone of
the tube and the rest of the probe (receiving coils, ferrite)
are not represented. We have described only one fourth
of the device with two vertical symmetry planes. On the
first plane which cuts the coil, we have imposed a tangen-
tial magnetic field boundary condition. We suppose that
the field of the coil is negligible in the diametrically op-
posite zone (see Fig. 9). Thanks to this approximation,
the second vertical symmetry plane was put to reduce the
number of nodes of the problem. In Figure 8, we give the
main dimensions taken for the simulation, for the tube
and tube sheet, as well as the used material characteris-
tics. It is necessary to model the tube sheet as it modifies
the probe response. Indeed, the impedance measured by
the probe receiving coils is not the same when this probe
is in the lower part or in the upper part of the tube.

Table 4 gives the values of skin depths in the tube and
tube sheet at working frequencies of the probe: 100 kHz
and 600 kHz. At these frequencies, skin depth is much
smaller than the dimensions of the tube sheet, which
means that the use of the surface impedance boundary
condition in this region is valid. In the tube, the mesh
consists of 8 layers of hexahedral elements (cf. Fig. 10).

The tube is described by the t-φ formulation and the
tube sheet by the φ surface impedance formulation, using
the method described in this article. The air region sur-
rounding the coil inside the tube is described by the t0-φ
formulation. The rest of the air region is described by the
φ formulation.
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Surface of the 
tube sheet

Tube

Emitting 
coil

Crack

Fig. 9. (Color online) Geometry described for the simulation.

We have performed 2 computations, one, without
crack, the other with a crack. It is situated on the sym-
metry plane which cuts the coil, in the cone-shaped zone
of the tube, and is 2.5 mm high, and has a depth half the
one of the tube (cf. Fig. 9). We have described the crack
by a t×n = 0 boundary condition on a nearly rectangular
face, which imposes a zero normal component of current
density j on this face. This boundary condition describes
a perfectly insulating surface crack. It is quite possible to
describe an insulating volume crack, for instance: a paral-
lelepiped crack. On the example, we have performed the
simulations at 600 kHz frequency, which corresponds to
the most difficult simulation in terms of convergence of the
linear system solving algorithm and in terms of computa-
tion time, because the skin depths are the smallest and the
numbers of finite elements and unknowns are the highest.

4.2 Results

Without the tree-cotree gauge applied to the electric vec-
tor potential t, the example of the tube embedded in the
tube sheet does not converge at the 600 kHz frequency. In
Figures 11 and 12 are represented the arrows and isoval-
ues of the current density in the tube, in the case “without
crack” and “with crack”. In the case “with a crack”, the
current flows under the crack and is therefore more impor-
tant on the external face of the tube, on the tube sheet
side.

In Figure 13 are represented the arrows of the current
density j on the tube sheet, in the case “with crack”. The
arrows of the case “without crack” are not represented
because they are a lot alike those represented in Figure 13.

In Figure 14 are represented the isovalues of the cur-
rent density j in the tube sheet, in the case “without
crack” and “with crack”. The current density in the tube
sheet is a little more greater in the case “with crack” than

Fig. 10. (Color online) Mesh of the tube and surface of the
tube sheet, with a zoom of the cone-shaped zone of the tube.

Fig. 11. (Color online) Arrows of the current density in the
tube, under the coil, for ωt = 120◦: on the left, in the case
“with a crack”, on the right, in the case “without crack”.

in the case “without crack”, as we can see it in Figure 14,
although the maximum values between both cases are very
close. This can be explained by the crack which forces cur-
rents to pass under the crack, therefore to be closer to the
surface of the tube sheet than in the case “without crack”.
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Fig. 12. (Color online) Isovalues of the current density mod-
ulus in the tube, under the coil: on the left, in the case “with
a crack”, on the right, in the case “without crack”. The scale
of the current density is in A/m2.

Fig. 13. (Color online) Isovalues of the surface current density
on the surface of the tube sheet, under the coil, in the case
“with a crack”, for ωt = 90◦.

5 Conclusion

We have developed and validated a method which allows
to model a conductor described by the t-φ formulation in
electric contact with another one described by the surface
impedance boundary condition. The coupling presented in
this article has been validated with a numerical example

Fig. 14. (Color online) Isovalues of the surface current density
on the surface of the tube sheet, under the coil: at the top, in
the case “with a crack”, at the bottom, in the case “without
crack”. The scale of surface current density is in A/m.

of simple geometry. This coupling has then been applied
to a crack detection problem in steam generators. This
problem consists of a non magnetic tube embedded in a
steel tube sheet, submitted to the field of an emitting coil
of a crack detection probe. Future work will deal with the
extension of the coupling method to the couples of mul-
tiply connected conductors, i.e. with holes, and coupled
with an external electric circuit. The same approach will
also be developed with the AV -A formulation [18]. It will
be possible to model a conductor described by the A-V
formulation in electric contact with another one described
by the surface impedance boundary condition with A-V
potentials.

This work has been carried out as part of the ANR “Playa”
project for the promotion of the simulation of eddy current
Non Destructive Testing processes.
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(2008)
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