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Abstract— This paper deals with the convergence loss reduction 
of a 3-dimensional turbo code combining both parallel and serial 
concatenation. This code is derived from the classical turbo code 
by concatenating a rate-1 post-encoder at its output. In order to 
reduce the observable loss of convergence at high error rates, we 
propose first a time varying construction of the post-encoded 
parity. Then, we analyse the association of the 3-dimensional 
turbo code with high order modulations, where both the 
systematic bits and the post-encoded parity bits are more 
protected than the other parity bits.  Performance comparisons 
are made between the 3GPP2 standardized turbo code and the 3-
dimensional 3GPP2 turbo code. The different stages are 
illustrated with simulation results, asymptotical bounds and 
EXIT charts. 

Keywords-turbo code; iterative decoding; 3-dimensional turbo 
code; 3GPP2; convergence threshold;  time varying trellis; turbo 
coded modulation. 

I.  INTRODUCTION  

The first application of the turbo principle concerned the 
error correcting codes and resulted in the invention of turbo 
codes (TCs) in the early nineties [1]. However, in spite of their 
performance in compliance with the theory developed by 
Claude Shannon in the middle of the twentieth century, TCs 
suffer from a flattening at medium-to-high signal to noise 
ratios. In order to improve the performance at very low error 
rates by raising the Minimum Hamming Distance (MHD), a 
hybrid concatenated code, called 3-dimensional turbo code (3D 
TC) was introduced in [2, 3]. It is based on the partial 
concatenation of a classical turbo code with a rate-1 post-
encoder, which encodes only a fraction λ of the parity bits from 
the upper and lower constituent encoders. The fraction 

λ−1 of parity bits which is not re-encoded is directly sent to 
the channel or punctured to achieve the desired code rate. The 
value of λ can be used to trade-off performance in the waterfall 
region with performance in the error floor region. As shown in 
[2, 3], the 3D TC improves performance in the error floor 
compared to the TC, at the expense of an increase in 
complexity and a certain loss in convergence. 

This paper is organized as follows. In Section II, we present 
the 3D TC. The code optimization issues are discussed in the 
same section, followed by a detailed study of the complexity 
increase of the 3D TC in Section III. Then, in Section IV, we 
discuss convergence issues and we propose time varying 3-

dimentional turbo codes as an alternative to reduce the 
observable loss of convergence. Furthermore, we analyze the 
association of 3D TCs with specific high order modulations to 
improve the performance of the 3D TC in the waterfall region. 
Finally, section V draws some conclusions. 

II. CODING SCHEME 

A. Encoding Structure 

A block diagram of the 3D turbo encoder is depicted in 
Fig. 1. In our work, we focused on the 3GPP2 code, an 8-state 
binary turbo code, used in the third generation (3G) mobile 
phone communication systems [4]. The 3GPP2 turbo code is 
built from the parallel concatenation of two Recursive 
Systematic Convolutional (RSC) codes, with generator 
polynomials 13 (recursivity) and 15 (redundancy). The overall 
code rate before puncturing is 1/3. A fraction λ of the parity 
bits from the upper and lower constituent encoders are 
grouped by a P/S multiplexer, permuted by a permutation Π’, 
and encoded by an encoder of unity rate. In [2, 3], λ is referred 
to as the permeability rate. Usually, very simple regular 
permeability patterns are applied. For instance, if λ = 1/8 the 
bits to be post-encoded are chosen in the regular basis 
{10000000} for both the upper and the lower encoders. 

Figure 1.  3D turbo encoder structure. A fraction λ of the parity bits from 
both component encoders are grouped by a  P/S multiplexer, permuted by the 

permutation Π’, and encoded by a rate-1 post-encoder. 

B. Choice of the Post-Encoder 

The choice of the post-encoder influences the performance 
in both the waterfall and error floor regions. In general, the 
post-encoder must be simple to limit the complexity increase 
of the corresponding decoder. Low memory RSC codes satisfy 



this requirement. Three linear RSC codes having memory 2 
are given in Fig. 2. Besides, the convolutional code is made 
tail-biting [5] to prevent from any side effects as the initial 
state and the final state of the post-encoder are always the 
same. This requirement is important for real–time and 
demanding applications, such as TV broadcasting or 
videoconferencing, where very low error rates are sought for. 
Last but not least, the post-encoder must not exhibit too much 
error amplification, to prevent from a high loss in convergence 
(see [2, 3] for details). To complete the analysis in [2, 3], the 
choice of the post-encoder is justified by means of EXtrinsic 
Information Transfer (EXIT) [6] analysis. 

Figure 2.  Possible linear post-encoder candidates with memory 2. 

In Fig. 3 we report the EXIT curves for the three linear 
post-encoders of Fig. 2. When no a-priori information is 
available at the input of the pre-decoder (i.e. first iteration) the 
Mutual Information (MI) at its output is higher for post-
encoder (a). In fact, code (a) has a corresponding decoder 
which only doubles the number of errors of its input at the first 
step of the iterative process, while code (b) will (roughly) triple 
the number of errors at the first step. The worst case occurs 
with code (c) because its decoder will make a mistake once 
every two bits in its entry.    

Let us assume that a post-encoder, where the MI at its 
output is zero when there is no MI at its input (such as code 
(c)), has been selected. The worst case occurs when all the 
parity bits are post-encoded, which corresponds to high coding 
rates such as R = 2/3 for λ = 1/4 or R = 4/5 for λ = 1/8. In this 
case, the error rate at the output of the corresponding pre-
decoder at the first iteration will be 0.5. And the turbo decoder 
will have no parity to decode with at the first step of the 
iterative process. It will just be something catastrophic! 
Therefore, the EXIT analysis is a very important tool to select a 
post-encoder convenient at low but also at high coding rates. 

Figure 3.  EXIT curves for different linear post-encoders. 

In Fig. 4, we report the Frame Error Rate (FER) 
performance of the 3D 3GPP2 TC to compare it with that of 
the 3GPP2 TC for the block size 570 bits, at coding rate 
R = 1/3 and λ = 1/4. We observe a loss of convergence in the 
waterfall region when the post-encoder of Fig. 2(a) is used. 
But, as expected, this loss of convergence increases when the 
post-encoder of Fig. 2(b) is used (see Fig. 4). The largest loss 
of convergence was observed when the code of Fig. 2(c) is 
used. Other simulations at high coding rates, such as for 
R = 2/3 and λ = 1/4, show that the 3D TC does not converge 
when the code of Fig. 2(c) is selected to be the post-encoder. 
Therefore, from a convergence point of view, code (a) has 
been selected to be the post-encoder in different simulations of 
the 3D TC. 

Figure 4.  FER performance of the 3D 3GPP2 TC with λ = 1/4 for k = 570 
bits, R = 1/3 and comparison with the 3GPP2 TC. All simulations used the 

Max-Log-MAP algorithm with 10 decoding iterations. 

C. Permutations Π and Π’ 

The 3D TC is characterized by two permutations denoted 
by Π and Π’, as shown in Fig. 1. In theory, both permutations 
should be jointly optimized. However, Π is the internal 
permutation of the TC, and we keep Π unchanged with regard 
to the original code for reasons of backward compatibility. Π’ 
is used to spread a fraction λ of the parity bits before feeding 
them to the post-encoder. To optimize Π’ different types of 
interleavers were tested starting from random permutations to 
more structured permutations such as the regular interleaver. It 
was observed through the different simulations that the 
important property is the spread. In fact, performance of an 
interleaver is degraded by low values of spread. And the 
regular permutation is an interleaver achieving a spread of 

k2 [7], where k is the size of the frame. So it performs better 
than a random interleaver in terms of MHD and convergence. 

Fig. 5 shows the simulated performance of the 3D 3GPP2 
TC with an interleaver Π’, random but also regular, for code 
rate R = 1/2, λ = 1/8 and k = 762 bits. Performance of the 3D 
3GPP2 TC using a random permutation Π’ is not good in 
terms of MHD, but also in terms of convergence. However, 
the use of a regular permutation Π’ results in an increase in the 
MHD of the 3D 3GPP2 TC by more than 60 % compared to 
the standardized 3GPP2 turbo code; which provides a gain of 
more than 2 decades in the error floor. These simulation 
results were confirmed with the asymptotical bounds as shown 



in Fig. 5. Note that the permeability rate has an effect on the 
performance of the 3D TC similar to the doping ratio concept 
of [8]. 

Figure 5.  FER performance of the 3D 3GPP2 TC with λ = 1/8 for k = 762 
bits, R = 1/2 and comparison with the 3GPP2 TC. All simulations used the 

Max-Log-MAP algorithm with 10 decoding iterations. The all-zero iterative 
decoding algorithm [9] was applied to obtain the distance spectrum. 

III.  COMPLEXITY ANALYSIS OF 3-DIMENSIONAL TURBO 

DECODERS 

In [3], the complexity increase was estimated to be less 
than 10% with respect to classical 2-dimensional TC. In this 
section, we propose a more detailed analysis of the complexity 
of a 3D TC. In fact, compared to a classical turbo decoder, the 
additional complexity of the 3D turbo decoder is mainly due 
to the implementation of the binary 4-state decoder but also to 
the calculation of the extrinsic information about the post-
encoded parity bits. Let us consider a RSC code with the 
following parameters: 

• ν is the memory length of the code, 

• n is the number of coded bits provided by the encoder 
at each trellis stage (when no puncturing is performed), 

• and k is the trellis length. It is also the length of 
information sequence, in terms of binary bits. 

Table I summarizes the resulting complexity for the process 
of a trellis stage, or equivalently of an information bit. The 
corresponding numerical values are given in Table II. In order 
to compare the complexity of the different families of 
decoders, it is assumed that addition/subtraction and compare-
select operators have similar hardware complexity.  

On the other hand, the memory requirements for the turbo 
decoder are the amount of both RAM and ROM memory. A 
very small amount of ROM memory is required to store the 
turbo code permutation parameters. This amount of memory is 
the same for all coding schemes under consideration. But for 
the RAM memory, two input buffers are necessary for each 
data sequence, including systematic and parity bits, stemming 
from the transmission channel. Thus, if k is the length of the 
information sequence, 2k/R input samples, quantized on qx 
bits, have to be stored at the decoder input. In addition, 2k 
extrinsics (dual-port RAM) need to be stored (quantized on qx 
+1 bits). For a 3D TC, additional extrinsics (2 λ k) related to 
re-encoded redundancy bits need to be stored. Then, the 

hardware decision at the decoder output requires k memory 
bits (single-port RAM). Finally, sliding window [10] 
processing is performed to reduce the amount of memory 
required by SISO decoding; and state metrics at the window 
sides have to be stored at each iteration. 

TABLE I.  COMPUTATIONAL COMPLEXITY OF THE MAX-LOG-MAP 
ALGORITHM.  

 
Table II compares the hardware complexity of the 3GPP2 

turbo decoder and the corresponding 3D decoder for the worst 
case, when λ = 1/8 is used, in terms of memory size: k = 1530 
bits and R = 1/2. Table II provides: 

TABLE II.  SUMMARY OF COMPLEXITY ANALYSIS FOR 3GPP2 AND 3D 
3GPP2 TURBO DECODERS FOR  K = 1530 BITS, R = 1/2 AND Λ = 1/8.  

Overall SISO HW complexity (number of add / compare-
select operators  

1=P  2=P  4=P  

3GPP2 1112 C=  2224 C=  4448 C=  

3D TC based 
on 3GPP2 

176 

%57C1 +=  

304 

36% C 2 +=  

560 

25% C 4 +=  

RAM (equivalent single-port memory in bits) 
Input quantization: 6 bits  

1=P  2=P  4=P  

3GPP2 101,510 = 1M  106,630 = 2M  126,251 = 4M  

3D TC based 
on 3GPP2 

= 1M + 9.2 % = 2M + 8.8 % = 4M + 8.0 % 

 
• the complexity of the overall hardware dedicated to 

SISO decoding with the Max-Log-MAP algorithm in 
terms of add / compare-select operators, 

• the amount of RAM memory required for the 
implementation, in terms of equivalent single-port 
RAM bit (1 dual-port RAM bit = 2 single-port RAM 
bit). 

The number of SISO decoders placed in parallel, P, 
depends both on the required data throughput and on the 
hardware implementation technology. Table II presents 
complexity figures for P = 1, P = 2 and P = 4. This complexity 
assessment does not take the size of the SISO internal operands 

 Add (or subtract) Compare-select 
Branch metrics (forward or 

backward recursion) 22 1 −+n   

One step of recursion 
(forward or backward) 

12 +ν  ν2  

A posteriori LLRs and hard 
decision 12 1 ++ν  12 1 −+ν  

Extrinsic LLRs for 
information symbols 4   

Extrinsic LLRs for 
redundancy bits 2  22 1 −+ν  

Total computational 
requirement per 

information bit for classical 
TC 

122*3 21 ++ ++ nν  12 2 −+ν  

Total computational 
requirement per 

information bit for 3D TC 
322*3 21 ++ ++ nν  ( )123 1 −+ν  



into account. The implementation of the control part (state 
machines) and interleavers is not taken into account either. 
Note that the complexity of the state machines does not differ a 
lot between the different families of decoders. 

To conclude, the first estimation of the complexity of in [3] 
was optimistic. And Table II shows that the more important the 
degree of parallelism is, the less the impact (additional 
complexity) of using a 3D TC is. 

IV.  REDUCING THE CONVERGENCE LOSS OF 3-DIMENSIONAL  

TURBO CODES 

The 3D TC improves performance in the error floor 
compared to the TC, at the expense of a loss in convergence 
and an increase in complexity. In this section, we propose a 
time varying construction of the post-encoded parity bits to 
reduce the loss of convergence at high error rates. Then, we 
show that there is no need to use the time varying technique 
when the code is associated with a high order modulation 
because the observable loss of convergence "disappears" when 
a specific permutation before the mapping is used. 

A. Time Varying 3-Dimensional Turbo Codes 

1) Time Varying Encoding: The proposed time varying 
(TV) encoding consists in alternating two redundancies in 
time W1 = 4 and W2 = 7, instead of having only one. It is a 
mixture of the code (5,4) of  Fig. 2(a) and the code (5,7) of 
Fig. 2(c) to benefit from the better performance of the latter in 
the error floor region and that of  the code (5,4) in the 
waterfall region. In fact, the EXIT curves in Fig. 3 
corresponding to the post-encoders of Fig. 2(a) and 2(c) cross 
around input MI 0.1. For high input MI the curve related to 
code (c) indicates a better behavior in the error floor region. 
For this reason, the principle of the time varying encoding is 
to combine the two encoders. Unfortunately, the distance of 
the time varying  code (5,4:7) is only 2 compared with 3 for 
the RSC code (5,4) and 5 for the RSC code (5,7).  

To avoid this problem, the idea proposed in [11] was to 
replace some redundancies 4 by other redundancies 7 to get 
closer to the code (5,7). And the replacement period is denoted 
by L (see [12] for details). 

2) EXIT chart analysis: To generate the  EXIT chart of the 
3D TC, we have to consider that the two 8-state decoders 
exchange also extrinsic information about the post-encoded 
parity bits with the 4-state SISO pre-decoder. As the extrinsic 
information about these parity bits changes every iteration, the 
curves of mutual exchange between the two decoders change 
from an iteration to the other one.  

Fig. 6 shows an EXIT chart of a 3-dimensional TV turbo 
code for Eb/N0=1.58 dB, where Eb/N0 denotes the signal-to-
noise ratio, at code rate R = 2/3 and λ = 1/4. The transfer 
characteristics of the two decoders are no more symmetric. In 
fact, for the post encoder, two redundancies W1 = 4 and W2 =7 

are alternated in time, but W1 is periodically replaced by W2 

with period L = 30. This replacement generates the asymmetry 
between the transfer characteristics of the two 8-state SISO 

decoders. Note that, after the seventh iteration, the transfer 
characteristics remain almost unchanged. 

The convergence threshold of the 3D TV turbo code is 
1.58 dB for code rate R = 2/3 and λ = 1/4, i.e. the minimum 
signal to noise ratio where the tunnel between the EXIT 
curves opens. These results were confirmed by simulations of 
the code. On the other hand, the convergence threshold of the 
TC at code rate R = 2/3 is estimated around 1.49 dB and that 
of the 3D TC is 1.67 dB. As a conclusion, the use of TV 3-
dimensional 3GPP2 TC reduced the loss of convergence by 
50% from 0.18 dB (1.67 -1.49) to 0.09 dB (1.58- 1.49) at code 
rate R = 2/3 and λ =1/4.  And among the simulated cases it was 
observed that the time varying parity construction reduces the 
observable loss of convergence by 10% to 50% of the value 
expressed in dB. 

 

Figure 6.  EXIT chart of a time varying 3D TC at code rate R = 2/3, λ = 1/4 
and   Eb/N0=1.58 dB. 

B. Turbo Coded Modulations using 3D TCs 
1) Transmission scheme: We consider the coded 

modulation scheme depicted in Fig. 7, based on the so-called 
pragmatic or BICM approach [13]. Fig. 7 shows a 3D turbo 
encoder and a 16-QAM modulator that follows a Gray 
mapping. At the receiver side, the demapper computes the Log 
Likelihood Ratio (LLR) related to each bit of the information 
sequence. This symbol-to-bit LLR calculation is followed by a 
3D turbo decoder that uses the MAP algorithm. It is known that 
among the four bits forming a symbol in 16-QAM, the average 
probability of error is smaller for the first and third  bits than 
for the second and fourth bits [14].  

After turbo encoding, several constellation mappings, all 
compliant with Gray labeling, were performed. First, the 
mapping is uniformly distributed on the entire constellation. 
Then the systematic bits are protected in priority, and all the 
other bits are distributed the same way. Finally, the systematic 
bits as well as the post-encoded parity bits are more protected 
by the 16-QAM modulation than the other non re-encoded 
parity bits. This choice is made because the systematic bits, as 
well as the post-encoded parity bits, are used by the two 



decoders during the decoding process. And protecting them 
should reduce the loss of convergence. 

Figure 7.  Transmission scheme. 

2) Simulation Results: The FER performance of the 3D 
3GPP2 TC has been simulated with λ = 1/8 at code rate R = 1/3 
for k = 2298 bits. Fig. 8 shows that the use of the 16-QAM 
modulation, as explained above, allows the observable loss of 
convergence of the 3D 3GPP2 TC to be reduced and even be 
tranformed into a gain in the waterfall region of 0.22 dB 
compared with the 3GPP2 standardized TC. Wheras, for a 
QPSK modulation, the convergence loss of the 3D TC was 
estimated to 0.26 dB at code rate R = 1/3 and λ = 1/8. These 
simulation results were confirmed by an EXIT chart analysis. 
In fact, the convergence threshold of a TC with 16-QAM 
modulation at code rate R = 1/3 is 2.08 dB and that of the 3D 
TC with 16-QAM modulation, where the systematic bits and 
the post-encoded parity bits are well protected, is 1.86 dB at 
code rate R = 1/3 and λ = 1/8. This confirms the observed gain 
of  0.22 dB in the waterfall region. 

Figure 8.  FER performance of the  3D 3GPP2 TC with λ = 1/8 for k = 2298 
bits, R =1/3 and comparison with the 3GPP2 TC. All simulations used the 

MAP algorithm with 10 decoding iterations and 16 QAM modulation. 

V. CONCLUSIONS  

The 3D TC, recently introduced by Berrou et al., calls for 
both parallel and serial concatenation and increases the MHD 

with respect to the classical TCs. In this paper we discussed 
how to choose a post-encoder by means of an EXIT analysis. 
Then, a complexity study of 3D TCs was presented to estimate 
the additional complexity. When high throughputs are 
required for a given application, many processors can be 
placed in parallel; which decreases the relative additional 
complexity of the 3D coding scheme. Furthermore, we 
proposed an approach to reduce the observable loss of 
convergence of 3D TCs at high error rates by using a TV 
construction of the post-encoded parity. This technique allows 
reducing the loss of convergence by 10% to 50%. However, 
when the code is associated with high order modulations, there 
is no need to use a TV trellis and a specific mapping allows 
obtaining even a gain in the waterfall region. Therefore, the 
3D TC is adapted to be used in high spectral efficiency 
transmission systems  
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