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INTRODUCTION

Blind channel identification is a fundamental signal processing technology aimed at retrieving the channel information from its outputs only. This problem has received a lot of attention over the last two decades and many efficient solutions exist for SIMO and MIMO systems [?, ?, 1]. Unfortunately, these methods become inefficient (i.e. non robust or with poor estimation performance) when the channel impulse response is very long (i.e. wireless communication, echo cancelation etc), and/or sparse [2]. Such channels are encountered in many applications including underwater acoustic communication [START_REF] Kocic | Sparse equalization for real-time digital underwater acoustic communications[END_REF]. Recently some of the 'standard' blind identification methods have been modified and adapted to the sparse case either by constraining the desired solution through an p norm based cost function with 0 < p ≤ 1 which is considered as a good sparsity measure [START_REF] Aïssa-El-Bey | Blind identification of sparse SIMO channel using maximum a posteriori approach[END_REF][START_REF] Aïssa-El-Bey | Blind SIMO channel identification using sparsity criterion[END_REF] or by using a specular channel parametric model [?, 2]. In this paper, we extend the work in [START_REF] Aïssa-El-Bey | Blind SIMO channel identification using sparsity criterion[END_REF] by considering the adaptive implementation of the CR and SCR and comparing the convergence speed and steady state performance of the proposed algorithms. We start by reviewing the CR and SCR methods, then we propose gradient like adaptive algorithms in a tracking scheme. In order to improve the convergence rate, we introduce an adaptive step size methodology which improves significantly the algorithm's performance at the cost of a slight increase of the computational cost.

DATA MODEL

The problem addressed in this paper is to determine the sparse impulse response of a SIMO system in a blind way, i.e. only the observed system outputs are available and used without assuming knowledge of the specific input signal. Consider a mathematical model where the input and the output are discrete, the system is driven by a single-input sequence s(n) and yields M output sequences x1(n), . . . , xM (n), and the system has finite impulse responses (FIR's) hi(n) = 0, for n = 0, . . . , L and i = 1, . . . , M . Such a system model can be described as follows :

         x1(n) = s(n) * h1(n) + w1(n) x2(n) = s(n) * h2(n) + w2(n) . . . xM (n) = s(n) * hM (n) + wM (n) (1)
where * denotes linear convolution and w(n) = [w1(n), . . . , wM (n)] T is an additive spatial white noise, i.e. E[w(n)w(n) H ] = σ 2 IM where (•) T and (•) H denote the transpose and the conjugate transpose, respectively and IM is a M × M identity matrix. In vector form, equation (1) can be expressed as :

x(n) = L k=0 h(k)s(n -k) + w(n) , (2) 
where h(z) = L k=0 h(k)z -k is an unknown causal FIR M × 1 transfer function satisfying h(z) = 0, ∀z. Given a finite set of observation vectors x(1), . . . , x(T ) and based on the channel entries co-primness (i.e. h(z) = 0 ∀z), the objective here is to estimate the channel coefficients vector h = [h(0) T , • • • , h(L) T ] T up to a scalar constant (this is an inherent indeterminacy of the blind system identification problem as shown in [1]).

CR-LIKE METHODS

Cross-Relations method

From equation (1), the noise-free outputs xi(n), 1 ≤ i ≤ M are given by :

xi(n) = s(n) * hi(n), 1 ≤ i ≤ M . (3) 
Using the commutativity of convolution, it follows :

hj(n) * xi(n) = hi(n) * xj(n), 1 ≤ i = j ≤ M . (4) 
This is a linear equation satisfied by every pairs of channels. It was shown that, based on the M (M -1) 2 possible cross-relations, the channel parameters can be uniquely identified according to [1] :

Theorem 1 Under the data model assumptions, the set of crossrelations (in the noise free case) :

xi(n) * h j (n) -xj(n) * h i (n) = 0, 1 ≤ i = j ≤ M (5)
where h (z) is a M × 1 polynomial vector of degree L, is satisfied iff h (z) = αh(z) for a given scalar constant α.

By collecting all possible pairs of M channels, one can easily establish a set of linear equations. In matrix form, this set of equations can be expressed as :

X M h = 0 , (6) 
where X M is defined by :

X 2 = [X2, -X1] (7) 
and

X l =      X l-1 0 X l 0 -X1 . . . . . . 0 X l -X l-1     
with l = 3, . . . , M and :

X l =    x l (L) . . . x l (0) . . . . . . x l (T -1) . . . x l (T -L -1)    .
In the presence of noise, equation ( 6) can be naturally solved in the least-squares (LS) sense according to :

h = arg min h 2 =1 h H X H M X M h . (8) 
The CR method is referred to as the LS method in [1] because it represents the least-squares solution to the CR equation ( 6).

Sparse Cross-Relations method

In this section, we propose an iterative algorithm for the identification of sparse channels in the SIMO system case, namely the Sparse Cross-Relations method (SCR). The sparsity property can be measured by the p norm where 0 < p ≤ 1. More specifically, one can define the following sparsity based contrast function :

J (h) = X M h 2 2 + λ h p p (9)
where λ > 0 is a weighting parameter which controls the trade-off between approximation error and sparsity. The first term is the crossrelations criterion and the second term is the penalty term which minimizes the p norm of the channel impulse response h. It is well known that the concavity of this p norm function yields the sparse solution [START_REF] Kreutz-Delgado | Sparse basis selection, ICA, and majorization : towards a unified perspective[END_REF]. Therefore, the desired solution of h is determined by minimizing the cost function J (h) under the unit norm constraint h 2 = 1 :

h = arg min h 2 =1 h H X H M X M h + λ h p p . ( 10 
)
Direct minimization is computationally intensive and may be even intractable when the channel impulse response is long and when the number of channels is large. Here, a stochastic gradient technique is proposed to solve this minimization problem efficiently :

h k+1 = h k -µ∇J (h k ) (11)
where µ is a small positive step size and ∇ is a gradient operator. The gradient of J (h) is given by :

∇J (h) = ∂J (h) ∂h = 2 X H M X M h + λ h (12) 
where

h(i) = p sign (h(i)) |h(i)| p-1 for i = 1, . . . , M (L + 1) . ( 13 
)
The unit norm constraint is to ensure that the iterative algorithm do not converge to a trivial solution with all zero elements. However, we observe that the gradient of the p norm (13) may diverge if |h(i)| is close to zero and 0 < p ≤ 1. Therefore, to avoid this problem, we introduce the parameter ε > 0 in order to provide stability and to ensure that a zero-valued component in h k does not strictly prohibit a nonzero estimate at the next step

h ε (i) = p sign (h(i)) (|h(i)|+ε) p-1 for i = 1, . . . , M (L+1) , (14) 
Therefore, the update equation is given by :

h k+1 = h k -µ 2 X H M X M h k + λ h ε k h k -µ 2 X H M X M h k + λ h ε k 2 .

ADAPTIVE IMPLEMENTATION

For blind channel identification to be practically useful in realtime applications, it is imperative that the algorithm should be computationally simple and can be adaptively implemented. In this section, we present an adaptive implementation of the CR and penalized CR algorithms with least mean square (LMS) and normalized least mean square (NLMS) approache.

Adaptive CR implementation

In the same way that in the block approach, the cross-relations between the sensor outputs can be exploited to estimate the channel impulse responses. In this case, we can rewrite the CR criterion as follows :

J (h) = h H Q M (n)h , (15) 
where

Q M (n) = γ Q M (n -1) + X H M (n)X M (n) ,
with X M (n) given computed by using equations ( 7), (3.1) and

X 2(n) = [x2(n), -x1(n)] (16) 
and

X l (n) =      X l-1 (n) 0 x l (n) 0 -x1(n) . . . . . . 0 x l (n) -x l-1 (n)      (17) 
with l = 3, . . . , M and :

x l (n) = x l (n) . . . x l (n -L) . (18) 
Therefore, the desired solution for h is determined by minimizing the mean value of the cost function J (h) :

h = arg min h 2 =1 E h H Q M (n)h
Here, an LMS algorithm is proposed to solve this minimization problem efficiently. Then, the filter coefficient vector is then update by :

hn+1 = hn -2 µ Q M (n) hn hn -2 µ Q M (n) hn 2 .
However, the LMS algorithm suffers from slow and data-dependent convergence behavior. The normalized LMS (NLMS) [START_REF] Haykin | Adaptive filter theory[END_REF], an equally simple, but more robust variant of the LMS algorithm, exhibits a better balance between simplicity and performance than the LMS algorithm. Therefore, we present in what follow, a NLMS approach to optimize the CR criterion. One easy way to find adaptive algorithms that adjust the new channel vector hn+1 from the old one hn is to minimize the following function [START_REF] Haykin | Adaptive filter theory[END_REF] :

L [hn+1] = d [hn+1, hn] + µ h H n+1 Q M (n)hn+1
where d [hn+1, hn] is a measure of distance from the old to the new channel vector and η is a positive constant. The magnitude of represents the importance of correctiveness compared to the importance of conservativeness [START_REF] Kocic | Sparse equalization for real-time digital underwater acoustic communications[END_REF]. To minimize L [hn+1], we need to set its derivative

∂L[h n+1] ∂h n+1
to zero. Hence, the solution will be found by solving the equation :

d [hn+1, hn] ∂hn+1 + 2µ Q M (n)hn+1 = 0 (19)
The LMS algorithm is easily obtained from (19) by using the squared Euclidean distance

d [hn+1, hn] = hn+1 -hn 2 2 (20)
so that and from equation ( 19), we obtain that :

hn+1 = I + µQ M (n) -1 hn , (21) 
but, according to the constraint :

h H n I + µQ M (n) -1 Q M (n) I + µQ M (n) -1 hn = 0 . ( 22 
)
By using the first order approximation of the inverse matrix, the equation ( 22) will be :

h H n I -µQ M (n) Q M (n) I -µQ M (n) hn = 0 . ( 23 
)
Therefor, the optimal step size µ is determined as a positive solution of the second order equation :

µ 2 -2aµ + b = 0 where a = h H n Q M (n) 2 hn h H n Q M (n) 3 hn and b = h H n Q M (n)hn h H n Q M (n) 3 hn

Adaptive SCR implementation

In the same way that in the adaptive standard CR implementation, the rewriting of the sparse CR criterion in adaptive case, leads to the following criterion :

J (h) = h H Q M (n)h + λ h p p , (24) 
Therefore, the desired solution for h is determined by minimizing the mean value of this cost function and the LMS solution is given by the following adaptive solution :

hn+1 = hn -µ 2 Q M (n) hn + λ h ε n hn -µ 2 Q M (n) hn + λ h ε n 2 . ( 25 
)
where

h ε n (i) = sign (hn(i)) (|hn(i)|+ε) p-1 for i = 1, . . . , M (L+1) , (26) 
In this paper we consider only the case where (p, ε) ∈

(1, 0), (0, ε0) to avoid the non-convexity problem of the proposed criterion. For the NLMS approach in the case of sparse CR criterion, we assume the same development as in section 4.1 . By tackint into a count the sparsity penalty term, the new cost function can be express as :

L [hn+1] = d [hn+1, hn] + µ h H n+1 Q M (n)hn+1 + λ hn+1 p p
In the same way that shown is section 4.1 , in order to minimize L [hn+1] in the case squared Euclidean distance, we need to set its derivative

∂L[h n+1] ∂h n+1
to zero. Hence, the solution will be found by solving the equation

2 (hn+1 -hn) + 2µ Q M (n)hn+1 + λ hn+1 = 0 (27) 
To avoid the divergence problem of the derivative of the p norm, we replace the hn+1 by h ε n+1 such as is define by equation (), and by using the following approximation h ε n+1 ≈ h ε n for (p, ε) ∈ (1, 0), (0, ε0) , we obtain that :

hn+1 = I + µQ M (n) -1 hn - λ 2 h ε n , (28) 
and according to the CR constraint ;

hn - λ 2 h ε n H I+µQ M (n) -1 Q M (n) I+µQ M (n) -1 hn - λ 2 h ε n = 0
(29) and we can find easely from the previous section that the optimal step size µ is a solution of

µ 2 -2 aµ + b = 0 where a = hn -λ 2 h ε n H Q M (n) 2 hn -λ 2 h ε n hn -λ 2 h ε n H Q M (n) 3 hn -λ 2 h ε n and b = hn -λ 2 h ε n H Q M (n) hn -λ 2 h ε n hn -λ 2 h ε n H Q M (n) 3 hn -λ 2 h ε n 5. SIMULATIONS
We present here some numerical simulations to assess the performance of the proposed algorithm. We consider a SIMO system with M = 3 outputs represented by polynomial transfer function of degree L = 32. The channel impulse response is a sparse sequence of random variables with Bernoulli-Gaussian distribution [START_REF] Zibulevsky | Extraction of a source from multichannel data using sparse decomposition[END_REF] :

f (hi) = piδ(hi) + (1 -pi) 1 2πσ 2 i exp -h 2 i /2σ 2 i
generated by the MATLAB function SPRANDN. We used the parameters pi = 0.1 and σi = 1. The input signal is a BPSK i.i.d. sequence of length T = 25000. The observation is corrupted by addition white Gaussian noise with a variance σ 2 chosen such that the SN R = h 2 σ 2 . Statistics are evaluated over Nr = 100 Monte-Carlo runs and estimation performance are given by the normalized mean-square error criterion :

N M SE = 1 Nr Nr r=1 min α α hr -h 2 h 2 = 1 Nr Nr r=1 1 - h H r h hr h 2 ,
where hr denotes the estimated channel coefficient vector at the r th Monte-Carlo run and α is a scalar factor that compensates for the scale indeterminacy of the BSI problem. For the SCR algorithm, we used SCR1 and SCR2 for the SCR algorithm with the parameters (p, ε) = (1, 0) and (p, ε) = (0, ε0) respectively. 
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 1 Fig. 1. Comparison of convergence between the CR and SCR adaptive algorithms for the three-channel system at 20 dB SNR.
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 2 Fig.2. Comparison of convergence between the CR and SCR adaptive algorithms for the three-channel system at 50 dB SNR.
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 3 Fig.3. Comparison of convergence of the SCR2 adaptive algorithms for the three-channel system at 50 dB SNR with the true channel order and overestimated channel order.
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 4 Fig. 4. Comparison of convergence of the SCR2 adaptive algorithms for the three-channel system at 50 dB SNR with different channel order.