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ABSTRACT

In this paper, we focus on the adaptive identification of sparse SIMO
channels in a blind context. More specifically, we propose different
adaptive implementations of the sparse cross relation (SCR) method
then we compare and analyse their performances in terms of conver-
gence rate, estimation accuracy and robustness. The SCR method
proceeds as follows : at first a blind approach based on the cross-
relation criterion is derived for channel estimation. Secondly, to take
into account the channel sparsity, the criterion is penalized by adding
an extra `p norm term in order to enforce the sparsity of the desired
solution. The corresponding algorithm (i.e. SCR) is shown to out-
perform the original CR method in terms of estimation accuracy and
robustness to channel order over-estimation errors. The adaptive ver-
sions of the SCR proposed in this paper are shown to preserve the
main advantages of the batch technique but suffer from low conver-
gence rate for large dimensional systems.

Index Terms— Adaptive algorithms, stochastic gradient, sparse
channel, `p norm, robustness

1. INTRODUCTION

Blind channel identification is a fundamental signal processing
technology aimed at retrieving the channel information from its out-
puts only. This problem has received a lot of attention over the
last two decades and many efficient solutions exist for SIMO and
MIMO systems [?, ?, 1]. Unfortunately, these methods become inef-
ficient (i.e. non robust or with poor estimation performance) when
the channel impulse response is very long (i.e. wireless communica-
tion, echo cancelation etc), and/or sparse [2]. Such channels are en-
countered in many applications including underwater acoustic com-
munication [3].
Recently some of the ’standard’ blind identification methods have
been modified and adapted to the sparse case either by constraining
the desired solution through an `p norm based cost function with
0 < p ≤ 1 which is considered as a good sparsity measure [4, 5] or
by using a specular channel parametric model [?, 2].
In this paper, we extend the work in [5] by considering the adaptive
implementation of the CR and SCR and comparing the convergence
speed and steady state performance of the proposed algorithms. We
start by reviewing the CR and SCR methods, then we propose gra-
dient like adaptive algorithms in a tracking scheme. In order to im-
prove the convergence rate, we introduce an adaptive step size me-
thodology which improves significantly the algorithm’s performance
at the cost of a slight increase of the computational cost.

2. DATA MODEL

The problem addressed in this paper is to determine the sparse
impulse response of a SIMO system in a blind way, i.e. only the
observed system outputs are available and used without assuming
knowledge of the specific input signal.
Consider a mathematical model where the input and the output are
discrete, the system is driven by a single-input sequence s(n) and
yields M output sequences x1(n), . . . , xM (n), and the system has
finite impulse responses (FIR’s) hi(n) 6= 0, for n = 0, . . . , L and
i = 1, . . . ,M . Such a system model can be described as follows :

x1(n) = s(n) ∗ h1(n) + w1(n)
x2(n) = s(n) ∗ h2(n) + w2(n)

...
xM (n) = s(n) ∗ hM (n) + wM (n)

(1)

where ∗ denotes linear convolution and w(n) =
[w1(n), . . . , wM (n)]T is an additive spatial white noise, i.e.
E[w(n)w(n)H ] = σ2IM where (·)T and (·)H denote the transpose
and the conjugate transpose, respectively and IM is a M × M
identity matrix. In vector form, equation (1) can be expressed as :

x(n) =

L∑
k=0

h(k)s(n− k) +w(n) , (2)

where h(z) =
∑L
k=0 h(k)z

−k is an unknown causal FIR M × 1
transfer function satisfying h(z) 6= 0, ∀z. Given a finite set of ob-
servation vectors x(1), . . . ,x(T ) and based on the channel entries
co-primness (i.e. h(z) 6= 0 ∀z), the objective here is to estimate the
channel coefficients vector h = [h(0)T , · · · ,h(L)T ]T up to a sca-
lar constant (this is an inherent indeterminacy of the blind system
identification problem as shown in [1]).

3. CR-LIKE METHODS

3.1. Cross-Relations method

From equation (1), the noise-free outputs xi(n), 1 ≤ i ≤ M
are given by :

xi(n) = s(n) ∗ hi(n), 1 ≤ i ≤M . (3)

Using the commutativity of convolution, it follows :

hj(n) ∗ xi(n) = hi(n) ∗ xj(n), 1 ≤ i 6= j ≤M . (4)



This is a linear equation satisfied by every pairs of channels. It was
shown that, based on the M(M−1)
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possible cross-relations, the chan-

nel parameters can be uniquely identified according to [1] :

Theorem 1 Under the data model assumptions, the set of cross-
relations (in the noise free case) :

xi(n) ∗ h′j(n)− xj(n) ∗ h′i(n) = 0, 1 ≤ i 6= j ≤M (5)

where h′(z) is a M × 1 polynomial vector of degree L, is satisfied
iff h′(z) = αh(z) for a given scalar constant α.

By collecting all possible pairs of M channels, one can easily esta-
blish a set of linear equations. In matrix form, this set of equations
can be expressed as :

XMh = 0 , (6)

where XM is defined by :

X 2 = [X2, −X1] (7)

and

X l =


X l−1 0

Xl 0 −X1

. . .
...

0 Xl −Xl−1


with l = 3, . . . ,M and :

Xl =

 xl(L) . . . xl(0)
...

...
xl(T − 1) . . . xl(T − L− 1)

 .

In the presence of noise, equation (6) can be naturally solved in the
least-squares (LS) sense according to :

ĥ = arg min
‖h‖2=1

{
hHXH

MXMh
}
. (8)

The CR method is referred to as the LS method in [1] because it
represents the least-squares solution to the CR equation (6).

3.2. Sparse Cross-Relations method

In this section, we propose an iterative algorithm for the iden-
tification of sparse channels in the SIMO system case, namely the
Sparse Cross-Relations method (SCR). The sparsity property can be
measured by the `p norm where 0 < p ≤ 1. More specifically, one
can define the following sparsity based contrast function :

J (h) = ‖XMh‖22 + λ‖h‖pp (9)

where λ > 0 is a weighting parameter which controls the trade-off
between approximation error and sparsity. The first term is the cross-
relations criterion and the second term is the penalty term which
minimizes the `p norm of the channel impulse response h. It is well
known that the concavity of this `p norm function yields the sparse
solution [6].
Therefore, the desired solution of h is determined by minimizing the
cost function J (h) under the unit norm constraint ‖h‖2 = 1 :

ĥ = arg min
‖h‖2=1

{
hHXH

MXMh+ λ‖h‖pp
}
. (10)

Direct minimization is computationally intensive and may be even
intractable when the channel impulse response is long and when the

number of channels is large. Here, a stochastic gradient technique is
proposed to solve this minimization problem efficiently :

hk+1 = hk − µ∇J (hk) (11)

where µ is a small positive step size and ∇ is a gradient operator.
The gradient of J (h) is given by :

∇J (h) = ∂J (h)
∂h

= 2 XH
MXMh+ λ h̃ (12)

where

h̃(i) = p sign (h(i)) |h(i)|p−1 for i = 1, . . . ,M(L+ 1) .
(13)

The unit norm constraint is to ensure that the iterative algorithm do
not converge to a trivial solution with all zero elements. However, we
observe that the gradient of the `p norm (13) may diverge if |h(i)|
is close to zero and 0 < p ≤ 1. Therefore, to avoid this problem,
we introduce the parameter ε > 0 in order to provide stability and to
ensure that a zero-valued component in hk does not strictly prohibit
a nonzero estimate at the next step

h̃ε(i) = p sign (h(i)) (|h(i)|+ε)p−1 for i = 1, . . . ,M(L+1) ,
(14)

Therefore, the update equation is given by :

hk+1 =
hk − µ

(
2XH

MXMhk + λ h̃εk

)
∥∥∥hk − µ(2XH

MXMhk + λ h̃εk

)∥∥∥
2

.

4. ADAPTIVE IMPLEMENTATION

For blind channel identification to be practically useful in real-
time applications, it is imperative that the algorithm should be com-
putationally simple and can be adaptively implemented. In this sec-
tion, we present an adaptive implementation of the CR and penalized
CR algorithms with least mean square (LMS) and normalized least
mean square (NLMS) approache.

4.1. Adaptive CR implementation

In the same way that in the block approach, the cross-relations
between the sensor outputs can be exploited to estimate the channel
impulse responses. In this case, we can rewrite the CR criterion as
follows :

J (h) = hHQM (n)h , (15)

where

QM (n) = γQM (n− 1) +XH
M (n)XM (n) ,

with XM (n) given computed by using equations (7), (3.1) and

X 2(n) = [x2(n), −x1(n)] (16)

and

X l(n) =


X l−1(n) 0

xl(n) 0 −x1(n)
. . .

...
0 xl(n) −xl−1(n)

 (17)

with l = 3, . . . ,M and :

xl(n) =
[
xl(n) . . . xl(n− L)

]
. (18)



Therefore, the desired solution for h is determined by minimizing
the mean value of the cost function J (h) :

ĥ = argmin
‖h‖2=1

{
E
[
hHQM (n)h

]}
Here, an LMS algorithm is proposed to solve this minimization pro-
blem efficiently. Then, the filter coefficient vector is then update by :

hn+1 =
hn − 2µQM (n)hn

‖hn − 2µQM (n)hn‖2
.

However, the LMS algorithm suffers from slow and data-dependent
convergence behavior. The normalized LMS (NLMS) [7], an equally
simple, but more robust variant of the LMS algorithm, exhibits a bet-
ter balance between simplicity and performance than the LMS algo-
rithm. Therefore, we present in what follow, a NLMS approach to
optimize the CR criterion. One easy way to find adaptive algorithms
that adjust the new channel vector hn+1 from the old one hn is to
minimize the following function [7] :

L [hn+1] = d [hn+1,hn] + µhHn+1QM (n)hn+1

where d [hn+1,hn] is a measure of distance from the old to the new
channel vector and η is a positive constant. The magnitude of repre-
sents the importance of correctiveness compared to the importance
of conservativeness [3]. To minimize L [hn+1], we need to set its

derivative
∂L[hn+1]
∂hn+1

to zero. Hence, the solution will be found by
solving the equation :

d [hn+1,hn]

∂hn+1
+ 2µQM (n)hn+1 = 0 (19)

The LMS algorithm is easily obtained from (19) by using the squared
Euclidean distance

d [hn+1,hn] = ‖hn+1 − hn‖22 (20)

so that and from equation (19), we obtain that :

hn+1 =
(
I + µQM (n)

)−1
hn , (21)

but, according to the constraint :

hHn
(
I + µQM (n)

)−1QM (n)
(
I + µQM (n)

)−1
hn = 0 . (22)

By using the first order approximation of the inverse matrix, the
equation (22) will be :

hHn
(
I − µQM (n)

)
QM (n)

(
I − µQM (n)

)
hn = 0 . (23)

Therefor, the optimal step size µ is determined as a positive solution
of the second order equation :

µ2 − 2aµ+ b = 0

where

a =
hHnQM (n)2hn

hHnQM (n)3hn

and

b =
hHnQM (n)hn

hHnQM (n)3hn

4.2. Adaptive SCR implementation

In the same way that in the adaptive standard CR implementa-
tion, the rewriting of the sparse CR criterion in adaptive case, leads
to the following criterion :

J (h) = hHQM (n)h + λ‖h‖pp , (24)

Therefore, the desired solution for h is determined by minimizing
the mean value of this cost function and the LMS solution is given
by the following adaptive solution :

hn+1 =
hn − µ

(
2QM (n)hn + λ h̃εn

)
∥∥∥hn − µ(2QM (n)hn + λ h̃εn

)∥∥∥
2

. (25)

where

h̃εn(i) = sign (hn(i)) (|hn(i)|+ε)p−1 for i = 1, . . . ,M(L+1) ,
(26)

In this paper we consider only the case where (p, ε) ∈{
(1, 0), (0, ε0)

}
to avoid the non-convexity problem of the proposed

criterion.
For the NLMS approach in the case of sparse CR criterion, we as-
sume the same development as in section 4.1 . By tackint into a count
the sparsity penalty term, the new cost function can be express as :

L [hn+1] = d [hn+1,hn] + µhHn+1QM (n)hn+1 + λ‖hn+1‖pp

In the same way that shown is section 4.1 , in order to minimize
L [hn+1] in the case squared Euclidean distance, we need to set its

derivative
∂L[hn+1]
∂hn+1

to zero. Hence, the solution will be found by
solving the equation

2 (hn+1 − hn) + 2µQM (n)hn+1 + λh̃n+1 = 0 (27)

To avoid the divergence problem of the derivative of the `p norm,
we replace the h̃n+1 by h̃εn+1 such as is define by equation (), and
by using the following approximation h̃εn+1 ≈ h̃εn for (p, ε) ∈{
(1, 0), (0, ε0)

}
, we obtain that :

hn+1 =
(
I + µQM (n)

)−1
(
hn −

λ

2
h̃εn

)
, (28)

and according to the CR constraint ;(
hn −

λ

2
h̃εn

)H (
I+µQM (n)

)−1QM (n)
(
I+µQM (n)

)−1
(
hn −

λ

2
h̃εn

)
= 0 .

(29)
and we can find easely from the previous section that the optimal
step size µ is a solution of

µ2 − 2ãµ+ b̃ = 0

where

ã =

(
hn − λ

2
h̃εn

)H
QM (n)2

(
hn − λ

2
h̃εn

)
(
hn − λ

2
h̃εn

)H
QM (n)3

(
hn − λ

2
h̃εn

)
and

b̃ =

(
hn − λ

2
h̃εn

)H
QM (n)

(
hn − λ

2
h̃εn

)
(
hn − λ

2
h̃εn

)H
QM (n)3

(
hn − λ

2
h̃εn

)



5. SIMULATIONS

We present here some numerical simulations to assess the per-
formance of the proposed algorithm. We consider a SIMO system
with M = 3 outputs represented by polynomial transfer function of
degree L = 32. The channel impulse response is a sparse sequence
of random variables with Bernoulli-Gaussian distribution [8] :

f(hi) = piδ(hi) + (1− pi)
1√
2πσ2

i

exp
(
−h2

i /2σ
2
i

)
generated by the MATLAB function SPRANDN. We used the pa-
rameters pi = 0.1 and σi = 1. The input signal is a BPSK i.i.d.
sequence of length T = 25000. The observation is corrupted by
addition white Gaussian noise with a variance σ2 chosen such that
the SNR = ‖h‖2

σ2 . Statistics are evaluated over Nr = 100 Monte-
Carlo runs and estimation performance are given by the normalized
mean-square error criterion :

NMSE =
1

Nr

Nr∑
r=1

min
α

(
‖αĥr − h‖2

‖h‖2

)

=
1

Nr

Nr∑
r=1

1−

(
ĥHr h

‖ĥr‖‖h‖

)2

,

where ĥr denotes the estimated channel coefficient vector at the rth

Monte-Carlo run and α is a scalar factor that compensates for the
scale indeterminacy of the BSI problem. For the SCR algorithm, we
used SCR1 and SCR2 for the SCR algorithm with the parameters
(p, ε) = (1, 0) and (p, ε) = (0, ε0) respectively.
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Fig. 1. Comparison of convergence between the CR and SCR adap-
tive algorithms for the three-channel system at 20 dB SNR.
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