
HAL Id: hal-00609293
https://hal.science/hal-00609293

Submitted on 18 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure interoperability with O2O contracts
Céline Coma-Brebel, Nora Cuppens-Bouhlahia, Frédéric Cuppens

To cite this version:
Céline Coma-Brebel, Nora Cuppens-Bouhlahia, Frédéric Cuppens. Secure interoperability with O2O
contracts. Web-based information technologies and distributed systems, 2, Atlantic Press, pp.257 -
291, 2010, Atlantis and pervasive intelligence, 978-9078677284. �hal-00609293�

https://hal.science/hal-00609293
https://hal.archives-ouvertes.fr

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Chapter 1

Secure interoperability with O2O contracts

Céline Coma, Nora Cuppens-Boulahia and Frédéric Cuppens

IT/TELECOM Bretagne, 2 rue de la Châtaigneraie, 35512 Cesson Sévigné, France

The evolution of markets and the high volatility of business requirements put an in-
creasing emphasis on the ability for systems to accommodate the changes required by new
organizational needs while maintaining security objectives satisfiability. This is even more
true in case of collaboration and interoperability between different organizations and thus
between their information systems. Usual solutions do not anticipate interoperability secu-
rity requirements or do it in a non satisfactory way. In this chapter, we propose a contract
and compatibility principles within a formal framework O2O1 to achieve a secure interoper-
ation. Contracts are used to explicitly represent the rules that determine the way interaction
between organizations must be controlled to satisfy secure accesses to resources. Compat-
ibility relations make it possible to derive interoperability security policies. We specify all
the wheelwork of interoperation between organizations which might manage their security
policies using access control model RBAC2 and/or OrBAC.3

Furthermore, as interoperation may lead to a lot of exchanges of information before
and during the interoperability session, in particular those related to credentials and secu-
rity policies, we propose to ensure privacy protection to use the O2O licence administrative
view and an XML block based access control technique to obfuscate some of the informa-
tion exchanged.

1.1. Introduction

In traditional approaches of data processing and resource access controlling, the model of
an organization is rather static. This is sufficient for managing securely the behavior of an
organization within settled ranges of actions; it is unsatisfactory when the environment of
the organization changes following the occurrence of different events like those generated
by interoperability sessions.

Environment changes become an established fact of current organizations. They need
to be agile, flexible and securely interoperable since they act in an increasingly dynamic
environment which tends to be collaborative but unfortunately possibly hostile. To meet
these requirements, synthetic knowledge is needed to let organizations continuously man-
age accesses, ensure the integrity of exchanges and the continuity of services.

Most of the recent works argue for the use of ontologies as a mean for providing this
synthetic knowledge of common domains. Moreover, as this cooperation must be secure
for each of the party involved within it, it is necessary to provide a context-aware tailored

1

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

2 C. Coma, N. Cuppens-Boulahia and F. Cuppens

mapping process that takes into account this security aspect and derives the security poli-
cies. We claim that this derivation process needs to use: (1) ontological mapping, this
means mapping structure-oriented entities of the two organizations having to interoper-
ate. Accordingly, a correct meaning can be assigned to these structuring entities which
could seem a priori different. Examples of these entities are roles or activities pertaining
to these organizations, especially the environmental conditions under which they evolve,
and (2) compatibility relations between the grantor organization offering the service and
the grantee organization requesting an access to the service, this means mapping deontic-
oriented entities of the organizations having to interoperate. These relations will be used
to specify interoperability policies. In this case, deontic entities are primarily permissions
and prohibitions rules.

Moreover, these interoperability security policies must not be derived on the fly. This
can lead to a lack of fairness, inconsistencies and breaches of security. Also, these policies
are usually established after a phase of policy negotiation, which can be time consuming.
This lapse of time may in some cases be longer than the interoperability session and result
in a loss of efficiency.

In this chapter, we propose an approach to anticipate the definition of interoperability
security policies and thus shorten the policy negotiation steps. Our work is based on the
O2O approach1 as a framework for a secure interoperability where the authority sphere
defining security policy and the management sphere administering this security policy are
well identified. We define interoperability contracts to control the aforementioned deriva-
tion process of security policies. This process is characterized by a duality between the
maximization of the security and the insurance of the cooperation.

The rest of this chapter is organized as follows. In section 1.2 we carry out a sur-
vey of existing research works related to secure interoperability and emphasize on their
weaknesses. In section 1.3 we recall the two basic bricks we use to express, derive and en-
force context-aware interoperability policies: the contextual security model OrBAC4 and
the interoperability framework O2O. In section 1.4 we explain the steps for interoperability
establishment. After limiting the scope of interoperability in section 1.6, we state formally
the different types of compatibility relations between the grantor and the grantee organi-
zations to establish interoperability security policy rules. This formal statement is based
on the ontological mapping and the definition of compatibility constraints. The process
guarantees that the interoperability security policy is consistent with the local policy of the
grantor organization and the security policy of the grantee organization. Section 1.9 shows
how our O2O model applies to manage security of a Virtual Private Organization (VPO).
Some privacy requirements and enforcement are discussed in section 1.11. We present a
peer-to-peer example to illustrate our approach in section section 1.12. Section 1.13 con-
cludes this chapter.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 3

1.2. Usual Approaches for Interoperability

Actually, there exist three ways to deal with interoperability. The first approach is Feder-
ation of Identity Management (FIM). The second kind of interoperability related works is
security policy oriented and the third way to manage secure interoperability makes use of
ontological approaches.

1.2.1. Federated Identity Management

The most famous FIM technologies are Liberty Alliance5 and Microsoft Passport (Live
Identity).6 FIM generally covers at the same time user management and access manage-
ment. Several identity services like Single Sign-On,7 access control and federation of iden-
tities, bring together the necessary components to provide a specific pertaining service to
a given identity. However, FIM bases trust relationships on reliability of the identities of
each participant. This identity is a set of information known about the participants which
could be stored across multiple management systems. Certification of identities relies on
a relevant trusted authority. So, FIM could have problems to set up the trust relationships.
Furthermore, in most of FIM systems, negotiation exchanges are centralized and partici-
pants have to be identified by FIM. This choice limits the use cases of interoperability as
FIM relies only on the user identities when dealing with security. Consequently, one of the
major problems of FIM is the lack of granularity when assigning privileges. For example,
if two organizations B and C belong to a same alliance A, all users of B have the same
privileges when they access to C. Our approach provides finer grained access control than
one can do with FIM.

1.2.2. Negotiation policy

Because most of access control models often propose a preestablished policy and cannot
take into account new requesters, trust negotiation is a good solution for dynamic policies.
In this case, the decision to grant an access is primarily based on exchanges of credentials
and accesses to the information they convey. Automated Trust Negotiation,8 TrustBuilder,9

and Trust-χ10 are examples of these approaches. In this case, specific languages have to be
defined.

ATN
Automated Trust Negotiation (ATN) is an approach to regulate the exchange of sensitive
credentials by using access control policies. The languages used in this case do not make
clear separation between the security policy specification and credentials that are used to
implement this policy. They are largely inspired by RBAC (Role based Access control)
model philosophy.11 The RBAC model does not take into account the organization dimen-
sion, which is essential in the case of interoperability to ensure the confinement principle.
Moreover, as the concept of role is prevalent in this model, this is not sufficient to express
fine grained access control. Our proposal is context-aware and goes beyond the role based

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

4 C. Coma, N. Cuppens-Boulahia and F. Cuppens

approaches.

TrustBuilder
TrustBuilder is is one of the most significant proposed system for negotiation of trust in
dynamic coalitions. TrustBuilder rests on ABAC model (attribute-based access control
model).12 That is, resources access control policies are written as a declarative specifica-
tion of the attributes needed in order to gain access to these resources. Each participant
of negotiation declares his disclosure sequences. These disclosures sequences allow Trust-
builder to construct disclosure tree via the Trustbuilder strategies (Simple Strategy, Rele-
vant Strategy, ...). With these disclosure trees, participants can disclose credentials in order
to establish trust and to gain access to a resource. Each node of these trees are labeled with
a credential. So, when a participant wants to access to a resource, he just has to disclose
gradually requested credential with respect to the resource sensitivity. So this approach in-
corporates policy disclosure; only policies that are relevant to the current negotiation may
be disclosed by the concerned parties. These policies specify what combinations of creden-
tials one can present in order to gain access to a protected resource of the accessed service.
In this way, it is possible to focus the negotiation and base disclosures on need-to-know.
Since these policies may contain sensitive information, their disclosure can also be man-
aged by a strategy. Furthermore, TrustBuilder project develops a prototype9 whose goal is
to create scalable, reusable trust negotiation components. But again, the security policy are
not explicitly stated, the focus is mainly on the negotiation aspects.

Trust-χ
Bertino et al. propose Trust-χ an XML-based framework for trust negotiations.10 The ar-
chitecture of the main component of the trust-X is symmetric and both parties are Servent
(Server-Client). So it could be used by peer-to-peer systems. Trust-χ certificates are either
credentials or declarations. A credential states personal characteristics of its owner, cer-
tified by a Credential Authority (CA), whereas declarations collect personal information
about its owner that do not need to be certified. These declarations only help in better cus-
tomized service. To specify certificates and policies trust-χ use χ-TNL.13 A novel aspect
of χ-TNL presented in this paper is the use of trust tickets and policy preconditions.

All participants in Trust-χ are considered equally. So each party has its system of
negotiation and a view on the state of the negotiation process. All information about the
user are collected in χ-profiles. So χ-profile contains all users’ credential and declarations.
All theses documents are XML-structured for a better homogeneity. Information could be
constructed by entities which do not share a common ontology, but system could correctly
interpret information with the use of namespaces combined with certificate type system.

To reduce the number of exchange in negotiation, Bertino et al. introduce the trust
ticket. The trust ticket is produced at the end of well-pass negotiation, and proves that the
provider can trust the requester for a given resource. The core of trust ticket is the sequence
of certificates which allows the negotiation to be well-pass.

Trust-χ resource can be either a certificate or a service. A resource can be characterized

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 5

by a set of attributes. Policies for a resource could be defined as follows:
p1 = ({}, peer node← peer id());
p2 = ({p1}, peer node← DELIV);
One problem of this type of specification policy, is the loops created which make the spec-
ification incorrect. So, the system has to check if the chain of policies is well-formed.

In Trust-χ , the trust negotiation is composed of three phases, the first is the introduction
phase, the second phase is the sequence generation phase and the third is caching of trust
sequence. The second phase can be done by performing the policy evaluation phase (with
negotiation tree building), by exchanging trust tickets and by using the sequence prediction
module (based on similarity with previous negotiations).

So, Bertino et al. with the use of precondition policies make the administration not user
friendly. Because, the policy designer has to be sure that the policy is well-formed. This
leads to a real scalability problem in particular in peer-to-peer systems.

1.2.3. Ontological approaches

In the case of interoperability, each organization should inform the other organizations
about some knowledge it wants to share with them, in order to help the set up or the contin-
uation of the (potential) interoperability sessions. The requirement is that this knowledge
must be understandable by the interoperability session’s participants. An ontology provides
an explicit conceptualization that describes the semantics of the data and provides a com-
mon sharing knowledge which can be easily communicated. Languages such as OWL14 or
DAML15 have been developed to share a knowledge model by using ontologies. REI16 and
KAoS17 are examples of models belonging to this category.

KAoS
KAoS is designed to specify and reason on security policies of interoperable environments,
such as Grid or Web services. It was firstly based on DAML+OIL15 a language that com-
bines the features of both the DARPA Agent Markup Language DAML and Ontology Inter-
change Language OIL. Then KAoS language has been extended using the Web Ontology
Language OWL.14 KAoS manages positive and negative authorizations and obligations.
To facilitate expression of ontologies, KAoS proposes as ontology entries more than one
hundred reusable classes of Policy Ontologies. Theses classes are composed of actions,
actors, groups, places, policies, etc. Here is an excerpt of a KAoS policy:

<rdfs:comment xml:lang="en"> An action </rdfs:comment>

<owl:Class rdf:ID="ActionExample">

<rdfs:subClassOf rdf:resource="#CommunicationAction" />

<owl:Restriction>

<owl:onProperty rdf:resource="#performedBy" />

<owl:toClass rdf:resource="#MembersOfDomainA" />

</owl:Restriction>

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

6 C. Coma, N. Cuppens-Boulahia and F. Cuppens

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDestination" />

<owl:toClass rdf:resource="#notMembersOfDomainA " />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<rdfs:comment xml:lang="en"> An authorization</rdfs:comment>

<policy:PosAuthorizationPolicy rdf:ID="Example">

<policy:controls rdf:resource="#ActionExample" />

<policy:hasSiteOfEnforcement rdf:resource="#ActorSite" />

<policy:hasPriority>10</policy:hasPriority>

In KAoS, policies are administrated using a tool called KPAT (KAoS Policy Adminis-
tration Tool) which is used also to deal with conflicts appearing in a KAoS security policy.
In this case, KPAT calls a conflict Java Theorem Prover (JTP). Therefore, KAoS users can
cumulate different classes of policy ontology and then apply JTP to manage the conflicts.
Unfortunately, KAoS is restricted to the specification of security policies that do not re-
quire the use of variable parameters. It is not a fully context-aware language though some
security policies may need to define security rules according to some imposed constraints.
These constraints can, for example, depend on parameters that are known at the time of
service deployment or execution. Thus, policies expressed with KAoS are not enough dy-
namic to fit all the interoperability requirements.

REI
REI extends the KAoS language by adding logical variables to increase its expressivity.
Like KAoS, REI also manages inconsistency of the security rules. It includes the specifi-
cation of meta-policies to solve conflicts.

Security policies expressed with REI are based on OWL-lite.14 OWL-lite is an onto-
logical language which allows REI to express security policies with constraints and obli-
gations on environmental resources. But the use of OWL-lite occasions several restrictions
in the REI policies expression. For instance, the use of disjunction and negation are not
possible and cardinality is reduced to 0 or 1. Therefore, REI extends OWL-lite language
by adding variables. This extension allows REI to be more flexible. Three sets compose
REI core policies. The first policy set is composed of action combinations and conditions.
In that case, predicates are structured as policy objects PolicyOb ject(Action,Condition).
These policy objects are permission, prohibition, obligation and dispensation. As prohi-
bitions are negative permissions and dispensations are negative obligations, conflicts can
appear in REI security policy specification. These conflicts are solved in metapolicies us-
ing override principles (negative over positive preference or vice versa). The second policy
set is used to link an entity to a policyOb ject. These entities are agent or object. For

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 7

instance, the fact that a subject which is a professor has the permission to examine a stu-
dent is expressed by has(Var,right(examineStudent, pro f essor(Var)). The third policy set
expresses actions, their effects and requisite preconditions. However, REI ontology only
deals with constraints and description of local entities which is far from being enough in
case of interoperability.

Thus, we should go further in this direction to take into account local, external and
contextual information and derive a dynamic security policy on which we can reason. That
is our proposal in this chapter.

1.3. Generic Interoperation Policies

1.3.1. Contextual Security Policy: the OrBAC model

The goal of our approach is to anticipate the management of security of potential interoper-
ability sessions. To achieve this goal, we need an approach which allows both fine-grained
access control and interoperation. The OrBAC model4 is an access control model in which
the policy designer can express the security policy of an information system at the organi-
zational level, that means independently of the future implementation of this policy. So, the
operational system security requirements could be expressed and then deployed over var-
ious security components, considered in OrBAC as sub-organizations of the information
system organization. This deployment rests also on administrative responsibilities which
could be granted to subjects assigned to different roles.

In OrBAC, the traditional access control triple (subject, action, object) is abstracted at
the organizational level into the triple (role, activity, view). A role (respectively an activity
and a view) is a set of subjects (respectively actions and objects) to which the same security
rules apply. This reduces the number of security rules to define. Furthermore, we need to
specify dynamic security rules to adapt the policy to the context and satisfy interoperability
requirements. OrBAC is context sensitive, so that the policy could be expressed dynami-
cally by taking into account environmental events and states. For instance, the following
OrBAC security rule:

securityRule(network, permission(peer, access, resource, memberO f network))

means that in organization network, a peer has the permission to access to a resource in a
context where this peer is member of network.

Moreover, using the OrBAC model we can specify a decentralized security policy ad-
ministration that complies with four principles: (1) Organization centric administration,
(2) Administration policy definition at the organizational level, (3) Contextual delegation
capabilities and (4) Inheritance of security rules through hierarchies. An ontological speci-
fication of OrBAC using OWL-DL14 which rests on the four aforementioned administration
principles, has been defined to meet interoperability objectives.18

In order to avoid overloading the figure 1.1, we have just represented classes and their
hierarchies. In the OrBAC model, concrete security policy rules are derived automatically

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

8 C. Coma, N. Cuppens-Boulahia and F. Cuppens

Fig. 1.1. OrBAC Ontology.

from abstract ones. Using OWL-DL, this derivation is expressed as the following:

is permitted(?sub ject, ?action, ?ob ject)←
securityRule(?org, permission(?role, ?activity, ?view, ?context)) ∧
hasProperty(?org, empower(?sub ject, ?role)) ∧
hasProperty(?org, consider(?action, ?activity)) ∧
hasProperty(?org, use(?ob ject, ?view)) ∧
hold(?org, context(?sub ject, ?action, ?ob ject, ?context)).

Derivation in the OrBAC model is computable in polynomial time.19

1.3.2. Interoperability Framework: O2O principles

O2O (Organization to Organization)1 is both a model and a framework to manage interop-
erability between components having their own policies defined by different organizations.
To explain the basic principles of O2O, let us consider a given organization Alice.org that
wants to interoperate with another organization Bob.org. In this case, each organization
has to define a Virtual Private Organization (VPO) respectively called Alice2Bob (A2B for
short) and Bob2Alice (B2A for short). The VPO A2B is associated with a security policy
that manages how subjects from the grantee organization Alice.org, Ograntee, may have an
access to the grantor organization Bob.org, Ograntor. We say that the VPO A2B manages
the interoperability security policy from Alice.org to Bob.org. The VPO B2A is similarly
defined to control accesses of subjects from Bob.org to Alice.org. Hence, a VPO is a dy-
namic organization created to achieve a given interoperability purpose and canceled once
this purpose in no more needed.

In a VPO, the Ograntor organization controls interoperability policy and so, the assign-
ment of concrete entity (subjects, actions and objects) to abstract entities (roles, activities
and views). Unlike usual virtual organization, in O2O objects are always controlled by
their organization. When assigning subjects, actions and objects to their respective roles,
activities and views defined in a VPO, some restrictions apply:

• objects come from the Ograntor organization.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 9

vpoB2A B.orgB.orgA.orgA.org

A-authority sphere

o-grantor o-grantee

Fig. 1.2. O2O (Organization to Organization) Framework.

This is because, in a VPO, the Ograntor organization can only grant access to its
”own” objects.

• subjects are from Ograntee organization.
This is because a VPO is designed to control how subjects from the Ograntee
organization may have an access to the Ograntor organization.

• actions are from Ograntor organization or could be initiated by Ograntee organi-
zation, they are still defined by Ograntor. This is because a VPO must control the
action realized on its objects. When this action comes from the Ograntee organi-
zation, Ograntor should trust it to execute it.

O2O is formally defined as an extension of the OrBAC model. Organizations which
use O2O to interoperate could have different trust levels. For instance, we can have in one
hand a military organization which requires a very strict interoperability policy and in a
second hand, a store which needs a more attractive policy. Each of these organizations can
define interoperability policy with its own security level and access conditions.

1.4. Interoperability Establishment Steps: the O2O process

The interoperability process we propose is composed of three steps. (1) The contract defini-
tion step, (2) the interoperability security policy definition step and (3) the interoperability
security policy management step. The figure 1.3 shows the sequencing of interoperability
security policy establishment.

First of all, before the interoperation sessions, the Ograntor organization defines con-
tracts for each organization type it has to interoperate with (cf. section 1.5). For that
purpose, the Ograntor defines the scope of each contract. It specifies entities and informa-
tion that can be provided during interoperability. In the second step (cf. section 1.6), the
Ograntor organization defines some patterns of interoperability security rules on the ba-
sis of its local security policy and according to the type of interoperability. Thirdly, using
ontologies, we establish compatibility relations (cf. section 1.7). Next, using these compat-
ibility relations and contracts, we derive the interoperability security rules (cf. section 1.8).
At this stage, the VPO and its interoperability policy is created.

Finally, the Ograntor decides how this VPO will be managed: Centralized, decen-

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

10 C. Coma, N. Cuppens-Boulahia and F. Cuppens

Can_be_mapped
class

Restriction of
usable
entities

Key attributes
definition

Underivable,
exception rules

Defintion of
contract type

Restriction entities

Compability type

Ontological
mapping

• RBox match
•ABox match
•TBox match

Establishment
Secure
Interoperation
Policies

Compatibility
establishment

VPO creation

Derivation
Interoperation
Policy Rules

VPO management
• Decentralized
•Centralized
•Hybrid

Secure
Interoperation
Policies
Management

Ograntor accepts to interoperate with Ograntee

Before interoperation

Interoperation

VPO created

Fig. 1.3. Sequence of Interoperability Security Policy Establishment.

tralized or hybrid administration (cf. section 1.9). The Ograntor should also ensure the
administration of its interoperability policy. To reach this goal, the Ograntor must express
administration rules (cf. section 1.10).

1.5. Interoperability Contract

The contract
Interoperability security policies defined and managed in VPOs must be compliant with
local security policies. They have not to be defined either on the fly or from scratch. Thus,
the VPO security policies are derived from the local policies. The Ograntor, based jointly
on its objectives (security), its environment (interoperability) and also its cognitive capac-
ities (its own knowledge and knowledge it has about the grantee organization) proposes
interoperability contracts. According to the grantee organization type, a contract specifies
the way the local policy may be tuned and fixes the scope of this adaptation.

The scope
In the interoperability contract, entities that can be shared are specified. This specification
is done using the classes (or sub-classes) to whom these entities belongs. The benefit of
using classes is threefold: (1) we avoid to overload all the entities, (2) it does not matter if
the entity is a subject, an object or an action as the class overrides this difference and, (3)
finally, a class is not organization dependent.

Each class is associated with some attributes. In the logical formalism of the OrBAC
model, an attribute is specified by a binary predicate. For example, the fact peername(p1,

p1name) means that p1 has an attribute peername whose value is p1name. The predi-
cate classAssign is used to express that some object belongs to some class. For example,
classAssign(p1, peerDesc) means that p1 belongs to the class peerDesc. Then, the grantor
organization specifies the possible interoperation entities in some given contract using the
predicate can be mapped. The fact can be mapped(?grantee, ?Ograntor, ?className)
means that all entities belonging to the class ?className can be used, and so mapped
during the interoperation between ?Ograntor and ?grantee. Notice that, in that case,

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 11

?Ograntor is some organization A and ?grantee can be an organization B or also an or-
ganization type, for instance every organization that belongs to some peer to peer network.
The effective mapping
Among attributes of a class, there are decisive attributes. These decisive attributes indicate
which attributes must be used in the ontological mapping process between the grantee
and the grantor organizations; other attributes are not taken into account. So, for each
class appearing in the interoperability contract, its decisive attributes are specified. This
is achieved using the predicate class(?className, ?attribute, Key att). For instance, if
the interoperability contract requires that, in order to authenticate a user in some peer to
peer network, only one of its identities (IP address, Id client, etc.) have to be mapped,
the attributes related to the peer identity are decisive attributes. Moreover, in this example
a threshold is specified (only one attribute is needed) and required to conclude that the
mapping is accepted.

We can go further. The key attribute requirement can be strengthened. The interoper-
ability contract could specify that, for a mapping to be effective, a particular key attribute
(key key attribute) have to be mapped between entities within ontological key attributes.a

For instance, in a peer to peer network, only the hash is used to establish a compatibility
between the shared files’ contents. So, the hash attribute is such a key key attribute. The
figure 1.4 gives examples of such attributes. In figure 1.4, the ontological decisive attributes
are underlined. To establish compatibility between two elements, either all the ontological
key attributes should match, or more than AmatchT hreshold ratio decisive attributes should
match.

video1video1

 .avi.avi

Hash: ADCB

name: clip1

year: 2008

Type: mpeg4

robertrobert

 P2PuserP2Puser

Id_client: robert

@IP: 192. …

age: 25years

loc: Loctudy

videoAvideoA

 .avi.avi

Hash: ADCB

name: clip1

year: 2008

Type: mpeg4

robertrobert

 P2PuserP2Puser

Id_client: robert

@IP: 192. …

age: 25years

loc: Loctudy

robertrobert

 P2PuserP2Puser

Id_client: albert

@IP: 190. …

age: 25years

loc: Loctudy

zorrozorro

 P2PuserP2Puser

Id_client: robert

@IP: 192. …

age: 25years

loc: Loctudy

video1video1

 .avi.avi

Hash: ADDB

name: clip1

year: 2008

Type: mpeg4

videoBvideoB

 .mpeg4.mpeg4

Hash: ADCB

name: clip

year: 08

author: H

ABoxMatch ABoxMatch ABoxMatch ABoxMatch

AmatchThreshold=0,45

Fig. 1.4. Decisive Attributes and Ontological Key Attributes.

aTo have a mapping between two entities, it is necessary that all their ontological key attributes match (the con-
junction of their attributes matches); whereas it is only when some sets of decisive attributes (some disjunction)
match that a mapping between two entities is validated (cf. §1.7.1).

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

12 C. Coma, N. Cuppens-Boulahia and F. Cuppens

1.6. Interoperability Contract Specification

In the O2O approach, each organization defines and manages its VPO policies. The ad-
ministration of VPO must be both compliant with the local security policy and allows the
grantor organization to carry out a flexible interoperability. In the following, we set forth
VPO policy derivation requirements.

1.6.1. Underivability and Exception

Obviously, some privileges are strictly local to the grantor organization. So, to bound
the propagation of the security rules related to these kinds of privileges, the predicate
underivable is used. Thus, the following fact:

underivable(?grantee,securityRule(?Ograntor, permission(?r,?activity,?view,?cxt)))

specifies that the securityRule defined in the local policy of ?Ograntor cannot be derivable
in the VPO policy of the ?grantee organization or organization type.

Moreover, a collaborative organization can have specific security rules related to its
security policy externalization. These rules are not used in the local policy. The predicate
exception is used to express such exception rules. The fact:

exception(?grantee, securityRule(?Ograntor, prohibition(?r, ?activity, ?view, ?cxt)))

means that a prohibition is added to the VPO policy when a ?grantee organization requires
an interoperability session with ?Ograntor. An exception security rule is either a prohibi-
tion or an obligation.

Usually, a conflict can appear between a permission and a prohibition. Thus, excep-
tions can also create new conflicts. To ease the policy designer’s work, we anticipate the
resolution of conflicts generated by such exception rules. For this purpose and as suggested
in,19 conflicts are solved by assigning priorities to security rules. Thus, exception rules are
always associated with higher priority than other security rules (including the non derivable
rules). This conflict resolution strategy is chosen to manage the shadowing anomalyb and19

shows that this strategy is computable in polynomial time.

1.6.2. Compatibility Relation Patterns

A compatibility relation can be defined if and only if an ontological mapping between
Ograntee entities and Ograntor entities has been established elsewhere a new package of
security rules is defined and added to the VPO policy. Security rules of the VPO are derived
according to this mapping, the contract, underivability and exception requirements and the
restrictions to be applied to the local roles specified by the Ograntor organization for a
given Ograntee organization (see figure 1.5). We model these restrictions as compatibility
relations.
bA rule is shadowed by a higher priority rule if it can never be activated.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 13

 Contract
Underivable
security rule

Usual
security rule

Exception

Local Policy LP VPO

Compatibility

 Nuance by
Ograntee policy with
some interoperability type

Fig. 1.5. VPO Derived from Contract.

Let rOgrantor be a role defined in the Ograntor organization and rOgrantee the cor-
responding grantee role defined in the Ograntee organization. And let Ovpo be the VPO
associated with Ograntee. There are four main compatibility patterns:

• Total compatibility relation (T compatibility).
If Ograntor and Ograntee are T compatible then, in Ovpo, the grantee role
rOgrantee inherits all the security rules assigned to rOgrantor along with ex-
ception rules. Notice that underivable security rules are not inherited.

• Partial compatibility relation (P compatibility).
If Ograntor and Ograntee are P compatible then, in Ovpo, the grantee role
rOgrantee inherits the security rules associated with rOgrantor along with some
constraints and exceptions. These constraints are restrictions on activities, views,
contexts. Underivable security rules are not inherited.

• Symmetric compatibility relation (S compatibility).
If Ograntor and Ograntee are S compatible then, in Ovpo, the grantee role
rOgrantee inherits the security rules of a common derivable subset of the two
local policies of Ograntee and Ograntor, with some constraints, along with some
exceptions.

• No compatibility relation (No compatibility).
If Ograntor and Ograntee are No compatible then, in Ovpo, there is no secu-
rity rule related to rOgrantee. In this case, the interoperation cannot take place
through the role rOgrantee.

In the case of partial compatibility relation, restrictions on view, activity and context
are specified. To do so, we define a restriction predicate for each of these OrBAC entities.
For instance, restrictionActivity(Ograntor, A, RA) means that during partial compatibility
interoperation the activity A is replaced by the restriction activity RA. For instance, creating
activity during interoperability, can be restricted to updating activity. Notice that restriction
entity should be included in previous entities.

In our approach, the type of compatibility between organizations having to undertake
interoperability sessions must be known. We define the predicate type compatibility for
this purpose. The fact,

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

14 C. Coma, N. Cuppens-Boulahia and F. Cuppens

type compatibility(Ograntor, Ograntee, Type),

where Type ∈ {T compatible, P compatible, S compatible, No compatible}, means that
Ograntor and Ograntee have a Type compatibility relation.

No compatibility is the default compatible type. When this default type is used this
means the end of the collaboration. In this case, all privileges related to this collaboration,
if any, are revoked.

1.6.3. Contract example

L3L2L1

Restriction :
 File ►sharingMovies

Classes :
 avi, mp3, P2Puser, P2Paction

Contrat :ToP2PNetwork

Compatibility : partial

netpart1netpart1

file
access

playeur
music

read

Security Policy
 Licence : L1Licence : L1
type:permission
authority:netpart1
grantee:peer
privilege:access
target:files
context: playable

 Licence : L2Licence : L2
type:permission
authority:netpart1
Grantee: player
privilege:access
target:music
context: default

peer

Fig. 1.6. Example of Contract.

First part of contract
In this part, the Ograntor organization indicates which entities are usable during interoper-
ability. By default, all entities are not usable. For instance, in figure 1.6, the action read is
not usable (in grey), because any usable class (can be mapped) contains this action.

can be mapped(toP2PNetwork, net part1, avi).
can be mapped(toP2PNetwork, net part1, mp3).
can be mapped(toP2PNetwork, net part1, p2pUser).
can be mapped(toP2PNetwork, net part1, p2pAction).

In figure 1.6, we can see that there is a restriction on view f iles.

restrictionView(net part1, f iles, sharingMovies).

Second part of contract

In this second part, the Ograntor organization limits the security rules which can be
derived to create the interoperation policy. By default, all security rules can be derived
such as Licence1.

Licence1: securityRule(net part1, permission(peer, access, f iles, de f ault)).

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 15

Some licence , such as Licence2 are not derivable.

Licence2:
underivable(toP2PNetwork,securityRule(net part1, permission(player,access,music,de f ault))).

The Ograntor organization also expresses exception.

Licence3: exception(toP2PNetwork, securityRule(net part1, prohibition(peer, access,
music, de f ault))).

The Ograntor indicates which compatibility will be used to create interoperability policy.

type compatibility(net part1, toP2PNetwork, P compatible).

1.7. Secure Interoperability Policy Establishment

1.7.1. Ontological Mapping

During interoperability, access control cannot be set up without semantic compatibility es-
tablishment between security policies of parties that have to interoperate. Entities involved
in a collaboration need common knowledge which should be understandable by all parties.
We stress on the fact that to get good interoperability, organizations need to share under-
standable information. To facilitate this sharing, our approach is based on the definition
of ontologies and mappings between these ontologies. These mappings allow organiza-
tions to provide a shared and common understanding of an application domain that can be
exchanged between organizations and application systems undertaking collaboration.

An ontology is composed of instances, ontological classes and properties. Instances
represent entities related to ontology domain, and consequently to information system.
Ontological classes are sets of instances, used to structure the ontology by the way of re-
lations like hierarchy, intersection, union,... Properties are relationships between instances.
Our ontological mapping is based on TBOX mapping related to the mapping of ontological
classes, properties between classes and hierarchies, ABOX mapping related to the mappings
of instances and RBOX mapping related to the mappings of rules and properties between
instances. These mappings apply only to entities that are authorized to be mapped during
interoperability by the corresponding contracts. To illustrate the ontological mapping pro-
cess, we further describe the ABOX mapping, the RBOX mapping and the TBOX mapping.

ABOX mapping: instances mapping
ABOX mapping rests on correspondences between attributes and their associated values.
Thus, we first have to map attributes before concepts. This kind of mapping has already
been studied in several works, such as those done in COMA++20 and GLUE,21 but without
considering security issues. Notice that ABOX mapping is easy to establish or to revoke
when the decisive attributes are set up. Thus, to establish ABOX mapping, we compare the
number of correspondences of decisive attributes with a threshold, beginning first with on-
tological key attributes. Let us consider two entities c1 ∈ Ograntor, c2 ∈ Ograntee and

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

16 C. Coma, N. Cuppens-Boulahia and F. Cuppens

Sim(c1,c2) the measure of similarity between c1 and c2. First case: c1 and c2 have onto-
logical key attributes. In that case, if all the ontological key attributes of c1 and c2 match,
Sim(c1,c2) = 1, else Sim(c1,c2) = 0. Second case: c1 and c2 have no ontological key at-
tributes but decisive attributes. We use a normalized value. So, let |Ac1 | be the number
of decisive attributes associated to c1 and |Ac1 ∩Ac2 | the number of decisive attributes c1

and c2 have in common. Then, the similarity Sim between c1 and c2 is evaluated using
the formula Sim(c1,c2) =

|Ac1∩Ac2 |
min(|Ac1 |,|Ac2 |)

∈[0..1]. Then, ABOX mappings are established if
the similarity value belongs to the interval [AmatchT hreshold, 1]. AmatchT hreshold is a
threshold set by the Ograntor organization and specified in the contract.

RBOX mapping: properties mapping
To obtain the RBOX mapping, we analyze class taxonomies of the two organizations that
need to interoperate and their inference rules. From internal and composition relations of
the security policy ontology, we could derive new information about security policies in
one or both of these organizations. For instance, if we consider a common knowledge
about the existence of a hierarchical relation between two entities, the views movies and
shared movies, this hierarchical relation is automatically derived by the following rule:
sub view(?org,?v1,?v2)←

view(?org,?v1)∧ view(?org,?v2)∧
restrictionView(?v1,?v2).

Let us assume that both organizations use the same context taxonomy. So, the inference
rules associated with the security policy ontology will be the same. In this case, we define
a fact viewRmatch(org, pred1(?v1), pred2(?v2)) where pred1 and pred2 are view predi-
cates, ?arg1s and ?args2 their arguments vertex, and viewRmatch means that the two view
predicates are compatible. If one of the two view predicates belongs to the other organiza-
tion undertaking an interoperation, the same fact can be used to establish a compatibility
and then derive the security rule to be activated.

TBOX mapping: ontological classes mapping
This is a schema mapping. We could base TBOX matching on existing works.20–22 As TBOX

matching requires both schema and semantics correspondences, these works simplify and
automatize search of entities matching. An OrBAC security policy is defined indepen-
dently of its implementation. So, in order to preserve this suitable property in our ontology
mapping, we have to define a more generic mapping than the classical mappings between
two organizations. The reuse of previously global established mapping results simplifies
interoperability.

For instance, during file exchanges in a P2P network, several view mappings are similar.
In this case, there are two ways to reuse these pre-established similar mappings: 1) we
could define mappings common to all peers of the networks. These common mappings
could be managed by a server, or 2) we could determine a mapping between two peers of
the network and try to generalize this mapping to other peers. This allows us to define a
hierarchy of mappings in the ontology structures.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 17

CUPID22 is a good TBOX mapping approach. To establish when view
T match(?org,?v1,?v2) is true, ABOX similarities have to be established first. There are
three structuring cases to get a TBOX matching: (1) the compared views or entities have
no sub-views, (2) all sub-views of the two mapped views are globally mapped by ABOX

mappings, 3) the hierarchy schema of the two views are structurally similar and a set of
sub-views are mapped by ABOX mappings, even if immediate sub-views of the two views
are not mapped.

1.7.2. Establishment of Compatibility Relations

The establishment of compatibility relations is a prerequisite condition to the derivation
process of interoperability security rules. It is based on the three aforementioned onto-
logical mappings, TBOX , ABOX and RBOX and the four compatibility relation patterns: no
compatibility, total compatibility, partial compatibility and symmetric compatibility. So,
for each entity used to express a security rule in the access control model (namely role,
activity, view and context), we define a compatibility predicate. The role compatibility
predicate is defined as the following:

role compatibility(?orga2orgb, ?ra, ?rb)← roleT match(?orga2orgb, ?ra, ?rb).

which means that, in the VPO orga2orgb, two roles ra and rb are compatible, if there exists
an ontological mapping between ra and rb. The view compatibility predicate is defined as
the following:

view compatibility(?orga2orgb, ?resVa, ?vb)←
viewT match(?orga2orgb, ?va, ?vb) ∧ grantor(?orga2orgb, ?orga) ∧
grantee(?orga2orgb, ?orgb) ∧ restrictionView(?orga, ?va, ?resVa) ∧
type compatibility(?orga, ?orgb, P compatibility).

which means that two views resVa and vb in the VPO orga2orgb are compatible if there
exists an ontological mapping between a view va belonging to the grantor organization
orga and a view vb belonging to the grantee organization orgb and, resVa is a restricted
view of va and, there is a P compatibility relation between orga and orgb.

The two predicates activity compatibility and context compatibility are similarly de-
fined.

1.8. Derivation of the Interoperability Security Policy: automatic VPO creation

1.8.1. Derivation rules

Once some agreements exist on the compatibility of entities of those organizations having
to undertake some interoperability sessions, security rules are derived from the local poli-
cies.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

18 C. Coma, N. Cuppens-Boulahia and F. Cuppens

Total compatibility
In the case of total compatibility, a security rule is derived as the following:

securityRule(?orga2orgb, permission(?rb, ?a, ?v, ?c))←
type compatibility(?orga, ?orgb, T compatibility) ∧
grantor(?orga2orgb, ?orga) ∧ grantee(?orga2orgb, ?orgb) ∧
securityRule(?orga, permission(?ra, ?a, ?v, ?c)) ∧
role compatibility(?orga2orgb, ?ra, ?rb) ∧
not(underivable(?orgb, securityRule(?orga, permission(?rb, ?a, ?v, ?c))).

Partial compatibility
In the case of partial compatibility type, the security rule derivation depends on restrictions.
Notice that if an entity has no restriction, the restriction of this entity is itself:

securityRule(?orga2orgb, permission(?rb, ?resA, ?resV, ?resC))←
type compatibility(?orga, ?orgb, P compatibility) ∧
grantor(?orga2orgb, ?orga) ∧ grantee(?orga2orgb, ?orgb) ∧
securityRule(?orga, permission(?ra, ?a, ?v, ?cxt)) ∧
role compatibility(?orga2orgb, ?ra, ?rb) ∧ restrictionView(?orga, ?v, ?resV) ∧
restrictionActivity(?orga, ?a, ?resA) ∧ restrictionContext(?orga, ?c, ?resC) ∧
not(underivable(?orgb, securityRule(?orga, permission(?rb, ?a, ?v, ?c))).

Symmetric compatibility
When the contract specifies a symmetric compatibility, the concerned activities, views and
contexts in the grantee and grantor organizations have to be compatible:

securityRule(?orga2orgb, permission(?r, ?ab, ?vb, ?cb))←
type compatibility(?orga, ?orgb, S compatibility) ∧
grantor(?orga2orgb, ?orga) ∧ grantee(?orga2orgb, ?orgb) ∧
securityRule(?orgb, permission(?r, ?aa, ?va, ?ca)) ∧
activity compatibility(?orga2orgb, ?aa, ?ab) ∧
view compatibility(?orga2orgb, ?va, ?vb) ∧
context compatibility(?orga2orgb, ?ca, ?cb) ∧
not(underivable(?orgb, securityRule(?orga, permission(?r, ?ab, ?vb, ?cb))).

1.8.2. Example of derivation of an interoperability rule

Let us take an example of derivation of an interoperability rule.

securityRule(network, permission(node, access, sharingMovies, law f ullyMovies))←
type compatibility(net part1, net part2, P compatibility) ∧
grantor(network, net part1) ∧ grantee(network, net part2) ∧
securityRule(net part1, permission(peer, access, f iles, de f ault)) ∧
role compatibility(network, peer, node) ∧
restrictionView(net part1, f iles, sharingMovies) ∧

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 19

restrictionActivity(net part1, access, access) ∧
restrictionContext(net part1, de f ault, law f ullyMovies) ∧
not(underivable(net part2, securityRule(net part1, permission(peer, access, f iles,
law f ullyMovies))).

In this example of security rule derivation, organization net part2 has established a par-
tial compatibility type contract with organization net part2. So, the permission of a peer in
the grantee organization net part1 to get an access to a file belonging to the grantor orga-
nization net part2 must be tuned in the VPO network during the interoperability sessions.
The default context is restricted to a context related to law f ullyMovies. The role peer must
be compatible with the role node. Furthermore, organization net part1 restricts its file to an
interoperable view SharingMovies. So, in the interoperability security policy we derive the
permission for a node in the VPO organization network to access to interoperation files in
the law f ullyMovies context, that is to say movies which respect the legal age according to
the grantee country.

1.9. VPO management: Secure interoperation policy management

In a Virtual Organization (VO), several organizations share some of their subjects, actions
and objects to achieve a common purpose. Usually, an initiator organization, which wants
to create a VO, will have to issue a query to other organizations it wants to interoperate
with. The VO will be created if all the organizations that receive this query agree to be a
member of this VO. Each of these organizations will require that the access to its resources
must be compliant with some security policy. We claim that these interoperability security
policies defined by the different organizations actually correspond to VPOs.

Thus, in our O2O approach, the security policy of the VO is the union of all these
VPOs. The problem is then to define how to manage the security policy of the VO. There
are three main approaches: decentralized VPO management, centralized VPO management
and hybrid VPO management.

Decentralized VPO management:
Like we have seen before, each organization defines its VPOs to control interoperability
with other organizations in the authority sphere. Then, each organization will manage
those VPOs that are inside its sphere of authority. The decentralized VPO management
corresponds to the figure 1.7. When a subject of a given organization A wants to have an
access to another organization B, this subject will issue a query. Organization B will apply
the VPO A2B to check whether this query is authorized. This will generally require ex-
changing credentials between A and B for negotiating the access. If this negotiation phase
succeeds, then the access will be granted.

Centralized VPO management:
In the centralized VPO management case, a VPO is both in the authority sphere of a given
organization which is in charge of defining its interoperability policies and in the manage-

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

20 C. Coma, N. Cuppens-Boulahia and F. Cuppens

A.orgA.org
B2A

A2B B.orgB.org

Authority sphere A Authority sphere B

A2C

C.orgC.org
Authority sphere C

B2C

C2A C2B

Fig. 1.7. Decentralized VPO Management.

Trust
Mediator

ServerA.orgA.org
B2A

A2B B.orgB.org

Authority sphere A Authority sphere B

A2C

C.orgC.org
Authority sphere C

B2C

C2A C2B

Management Sphere

Fig. 1.8. Centralized VPO Management.

ment sphere of a server (see figure 1.8) which is in charge of managing all the interop-
erability policies of those organizations that trust this server. So, managing the VPOs is
delegated to a unique trust server, which may be viewed as an extension of a CAS server
(Globus toolkit)23 or an advanced PEP, say PMP for Policy Management Point. Once a
VO is created, each organization involved in this VO will have to send its VPOs to this
server. When a subject s A from a given organization A wants to have an access to another
organization B, this subject must send its query to the server. The server will first authenti-
cate this subject to get the proof that this subject is member of one of those organizations
involved in the VO. Then the server will apply the VPO A2B and negotiate the access on
behalf of organization B. If this negotiation succeeds, the server will sign the query so that
the subject can then present this query to organization B for evaluation.

Hybrid VPO management:

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 21

The sensitivity of interoperation may vary. In the case of organizations (P2P or Server
exchanges for instance) that deal with high sensitive information, assigning the task of
managing the interoperability policies to a server may not meet the high confidentiality
requirements of such organizations. When some Virtual Organization is created, organiza-
tions involved in this VO may not trust the server used in the Centralized VPO Management
approach and/or may not accept to send their interoperability policies to this server because
this may lead a leakage of some sensitive information and/or some of these organizations
may not agree to interoperate with some organizations involved in this VO. In both cases,
Hybrid VPO management may be used (see figure 1.9). In this figure, three organiza-
tions A.org, B.org and C.org agree to interoperate through Centralized VPO management,
whereas the fourth organization D.org only accepts to interoperate with organization A.org
using Decentralized VPO management.

In every approach, the interoperability policies are specified using the OrBAC model.
The authority or the management sphere checks for each query(s,a,o) if a concrete permis-
sion for subject s to do action a on the object o can be derived from the specified VPO
policies. The main advantage of the centralized management approach over the decentral-
ized one is that, since the trust server has a global view of all the VPOs, it can manage
possible conflicts between these VPOs.

1.10. AdOrBAC: interoperability policy administration

1.10.1. AdOrBAC administration views

Administration defines who is permitted to manage the security policy, that is to say who is
permitted to create new security rules, or update or revoke existing security rules. Adminis-

A2D

D2A

D.orgD.org
Authority sphere D

P2P exchange

Server
exchange

Trust
Mediator

ServerA.orgA.org
B2A

A2B B.orgB.org

Authority sphere A Authority sphere B

A2C

C.orgC.org
Authority sphere C

B2C

C2A C2B

Management Sphere

Fig. 1.9. Hybrid VPO Management.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

22 C. Coma, N. Cuppens-Boulahia and F. Cuppens

tration is also used to define who is permitted to manage entities and their assignment, that
is to say who is permitted to create, update or revoke existing entities and their relations
with organization.

O2O is used to manage interoperation security policies. To secure the management of
these interoperation security policies, we should have information on their administration.
An information system has a great number of security rules and to satisfy integrity and se-
curity requirements, someone should manage the creation, updating and deletion of these
rules. That is why information system should be administrated. In general, due to infor-
mation system sizes, there are several policy designers. these policy designers have several
administration privileges.

There are some administration requirements to be satisfied. In particular,

• we have to specify a structure that defines and/or administrates the security policy.
In O2O, this structure is the organization Ograntor.

• we should have multi-grained privileges to limit the number of security rules and
manage exceptions. The view License defined in the administration model of
OrBAC can be used to achieve this goal.

• Administration should provide means to specify delegation. In usual administra-
tion models, delegation is specified using a separated model.

The administration model for OrBAC, AdOrBAC24 is defined as an extension of the
OrBAC model. AdOrBAC objectives are : (1) no separation between regular and adminis-
trative roles, (2) the self-administration, AdOrBAC uses same predicates as OrBAC to ad-
ministrate OrBAC, (3) a multi-grain administration and (4) the enforcement of confinement
principle. The confinement principle which limits the scope of privileges to organization,
restricts the authority of a subject to the organization (or sub-organizations) to which this
subject has been assigned administration privileges. The administration is achieved using
administration views.

There are four types of administration views related to our security policies:

• OEntities: we have to manage organizational and concrete entities used to express
security rules (subjects, actions, roles,...).

• OEntity Assignement: typically abstract entities have to be assigned to concrete
entities (subject/role, action/activity).

• Olicence: contextual and fine grained privileges (permission, prohibition, obliga-
tion) are assigned using an administrative view called licence.

• OEntity Hierarchy: we have to control hierarchy relations, because hierarchies
propagate privileges (role hierarchy,...).

When someone obtains a permission to insert an administrative object in one of the above
administration views, he obtains the administrative permissions related to this view.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 23

User Organization User Role Organization Role

Role

Hierarchy

Subject Action

View

Hierarchy

Context

Hierarchy
Context View Activity Role

Role

Assignmt

Activity

Assignmt

OOLicenseLicense

OOEntityEntity

HierarchyHierarchy

OOEntitiesEntities

OOEntityEntity

AssignAssignmtmt
ObjectObject

Activity

Hierarchy

Fig. 1.10. AdOrBAC Administration Views.

1.10.2. Licence

In our approach, we use administrative access control object called licence (cf. the paper24).
To specify administrative security policies, some subjects will be permitted to create, up-
date or delete particular objects. These objects (licences) have a specific structure and
meaning, namely the existence of a valid licence will be interpreted as the assignment of
some permission.

 has_property(Org,use(L,licence)) ∧
 type(L,permission) ∧
 authority(L,Organization) ∧
 grantee(L,Subject) ∧
 privilege(L,Action) ∧
 target(L,Object) ∧
 context(L,Context) ∧
 sub_organization(Org,Organization) →
 security_rule(Organization,permission(Subject,Action,Object,Context)).

 Licence : LLicence : L
type : permission
authority : Organization
grantee : Subject
privilege : Action
target : Object
context : Context

Fig. 1.11. Licence and Derivation Rule from Licence Attributes.

The notion of licence facilitates exportation of our security rule during exchanges. The
license class, related to administration objects of Olicence view, is used to specify and
manage the security policy. This class is associated with the three following attributes: (1)
authority: organization in which the licence applies, (2) grantee: subject or role to
which the licence is granted, (3) privilege: action or activity permitted by the licence,
(4) target: object or view to which the licence grants an access and (5) context: specific
conditions that must be satisfied to use the licence. Figure 1.11 shows the derivation rule
related to a licence.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

24 C. Coma, N. Cuppens-Boulahia and F. Cuppens

1.11. Privacy

During interoperability organizations should provide information on their security policies
and some of these information are private and should not be known by non authorized
external entities. So, we must provide a solution to protect the privacy of the organization
when it enters an interoperability session. As our interoperability security policies are
expressed using ontological languages and XML files,25 we can deal with the privacy aspect
through an obfuscation process of these security policies based on XML-BB principles26 .

1.11.1. XML-BB

XML-BB model introduces the concept of blocks and provides means to protect relation-
ships in the XML documents. XML-BB rest on two principles to build the authorized view
associated with an XML document.

Let us consider that the security policy is an XML document represented by a tree
and some nodes in this tree are connected by edges, two principles are used to build the
authorized view associated with an XML document:

• Cumulative principle: The effect of two GRANT (i.e. permission) rules is
cumulative, that is the resulting permissions actually correspond to the union of
the nodes respectively selected by theses rules.

• Connectivity principle: If two selected nodes are connected by an edge in
the XML document, then this edge will appear in the view presented to the user.

It is the combination of these two principles that sometimes fails to protect some in-
formation we need to hide. XML-BB is based on the new notion of block that avoids this
problem. Intuitively, relationships between nodes selected in the same block are preserved
whereas relationships between nodes selected in two different blocks are broken. Thus, an
access control policy is specified using several blocks. In some sense, this is similar to the
Chinese Wall security model suggested by Brewer-Nash.27 In a Chinese Wall policy, a user
may be permitted to have an access to different entities, but due to some conflict of interest
between theses entities, this user is not permitted to aggregate this information. When we
use two different blocks to specify an access control policy, we can in some sense con-
sider that there is a wall between these two blocks. XML-BB allows us to express both a
GRANT or REVOKE read access privilege and write privileges (insert, update and delete)
on an XML file.

In the case of obfuscation, we use the same procedure to limit the access to security
policy. There are three options to perform this obfuscation:

• Propagate: This option will select every sub-node of a selected node.
• Shuffle: This option will randomly shuffle the selected nodes. If a shuffled node

is the root of a sub-tree, then this node will be the root of the same sub-tree after
the shuffling operation.

• Masquerade: This option will replace the value of a selected node by the new

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 25

value specified in the option. This is used to hide the value of a given node without
hiding the existence of this node.

1.11.2. Obfuscation

With XML-BB, we consider that an access control policy is defined as a set of blocks.
As we have seen in §1.7.1, an ontology is composed of instances, ontological classes and
properties. So, we have two types of blocks in an ontology: instance block and ontological
class block. Due to the existence of these two kinds of blocks, according to XML-BB block
concept, we have two ways to obfuscate security policies: the generic obfuscation and the
specific obfuscation.

Generic obfuscation
This method is related to ontological class blocks. When we specify the type of access on a
class block, we shall prohibit or permit access under some conditions to a whole set of in-
stances. For example, our XML-BB approach may obfuscate any set of entities considered
as internal objects and noncommunicable. Let us consider that during an interoperability
session, we do not want to communicate information on concrete entities that cannot be
used for this session. From the Ograntor point of view, all information related to object
and action classes should be hidden. In this case, we will specify that we revoke privileges
on object class block to an external subject using the fact: REVOKE read,write /P ON
= ob ject TO externalSub ject. The /P means that the revocation is propagated to all the
sub-nodes.

The advantage of generic obfuscation is that as a class is represented by a block with
a unique path, we only have to find in the XML file the node related to this class. A sim-
ple XML file search algorithm based on depth-first search can be used to find the chosen
node. Furthermore, we can distinguish ontological class block from the other blocks, as
they begin by the tag rdfs:Class and finish by /rdfs:Class. Once, the block related to
ontological class is founded, we have two cases: (1) The class does not have any subclass,
in this case, we only have to hide all instances related to this class, that is done by propaga-
tion. (2) The class has some subclasses, in this case, we have to decide, if the obfuscation
has to be propagated to the subclass or not. In last case, we have to distinguish (based
on the tags) sub-blocks related to classes or to instances in the XML file. In that sense,
we can define an exception rule to limit the propagation: GRANT read /P ON /ob ject/.

WHERE rd f s : subClassO f := ob ject TO externalSub ject. This requirement means that
externalSub ject is permitted to read sub-nodes of node ob ject if they are subclasses of the
class ob ject. As noticed by the XML-BB’s authors,26 XML-BB algorithm applies the last
matching principle; when several rules apply to the selected node, the last rule is applied.

Specific obfuscation
This method is related to instance blocks. It consists in hiding all blocks related to some
information of a given entity. For instance, we can obfuscate all information on an identity
if we hide all attributes related to this identity. We can also hide specific entities using

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

26 C. Coma, N. Cuppens-Boulahia and F. Cuppens

administrative objects. For instance, if we want to get some information on a role R in
a security policy, we look for the relation role or for all administrative objects with role
attributes such as grantee. So, if we want to revoke privileges related to role Root to exter-
nal subjects, the following fact meets this security requirement: REVOKE read,write /P
ON /parent :: . WHERE grantee = Root TO externalSub ject. Structurally, in the XML
file, instance blocks are sub-trees of the ontology. So, to take care about all information
related to an instance, we should browse the different sub-trees and find all the sub-blocks
related to some specified information. Then, depending on the obfuscation expression, we
hide all information related to instance attributes by masquerading (specifying ”ON /.:” on
the current block, that is to say attribute) or we hide all instances related to some attribute
description by propagation (specifying ”ON /parent :: .:” on an upper block, that is to say
instance).

1.12. Illustration

1.12.1. P2P and interoperability

As seen in the related works (cf. §1.2), most of the usual approaches rest on a centralized
administration of policies to create collaborations, like in CAS server,28 or are not sufficient
to express fine grained access control. The increasing use of spontaneous networks like peer
to peer29,30 tends to require a decentralized administration of the collaboration resources. In
that case, the security of this kind of interoperability environments remains a hard problem.
As a matter of fact, peer-to-peer systems can be very dynamic and the peers’ volatility is a
barrier to a negotiation process setting during access control checking. Furthermore, P2P
networks have many specific problems. For instance, in P2P systems, a peer is anonymous,
so it is difficult to establish trust relationships. File sharing mitigates free-riding problem,
but it is a spread vector of corrupted and malicious files. As suggested in this chapter, the
O2O framework is based on the concept of contract that each interoperability policy of
sub-organization has to comply with. This approach significantly contributes to secure the
collaboration. In the following, we illustrate the interoperability policy derivation process
using a P2P scenario.

1.12.2. Obfuscation during interoperability

In figure 1.12, we can see the composition of view f iles. The corresponding interop-
erability contract specifies a restriction on this view: restrictionView(net part1, f iles,
sharingMovies). net part1 wants to obfuscate unusable elements on f iles view. To achieve
this goal, net part1 defines the bloc FILEStoP2Pnetwork and its access rules.

BEGINBLOCKFILEStoP2Pnetwork
REVOKE read,write /P ON / f ile TO P2Pnetwork.
REVOKE read,write /P ON /music TO P2Pnetwork.
REVOKE read,write /P ON /persoFiles TO P2Pnetwork.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 27

GRANT read /P ON / f ile/sharingFiles/sharingMovies/. TO P2Pnetwork.
ENDBLOCKFILEStoP2Pnetwork

1.12.3. P2P and O2O contract

Let Robert be a new peer that joins the P2P network peerNetwork. Robert wants to get
an access to the Resident Evil movie. So, First, Robert emits a search request to find this
movie. The Distributed Hash Table indicates that two peers own the Resident Evil movie:
P1 and P3. Then, Robert sends a resource request to P3 to get an access to Resident Evil.
A resource access request is composed of an interrogative license and can also contain
the authorization proofs (credentials). The corresponding access request looks like the
following:

accessRequest(?number,@Robert,resourceAccess,
license[authority(L,@Dest),grantee(L,Robert), privilege(L,download),
target(L,ResidentEvil), context(L,de f ault)]), @polRobert).

where ?number is the identifier of the request, grantee, privilege, target and context are
license information. @polRobert is the URI of Robert’s security policy. @Robert is
Robert’s address. @Dest is the grantor’s address, in this case P3 address.

P3 contract specifies that there is No compatibility type with a peer which has never ex-
changed resources in peerNetwork. Thus, Robert cannot download Resident Evil from P3.
This denial of access leads Robert to send a request to another peer P1 which owns the same
resource, the Resident Evil movie. P1 contract specifies that there is a T compatibility type
with a peer pertaining to peerNetwork. So, to establish a VPO security rules between P1

and Robert, we only have to establish role compatibility. To do so, Robert provides a RDF
file of his security policy, which is easily exchangeable because it rests on XML. Robert
can hide information which are not related to roles. Then, P1 derives from its local security
policy and this RDF file the VPO Robert2P1. The security policy of VPO Robert2P1 is cre-
ated in a new RDF file and identified by the URI @Robert2P1. Thus, P1 can send the VPO
file to a server; and Robert can consult the VPO at the address @Robert2P1. In our exam-
ple P1 decides to restrict the access to Resident Evil according to legal condition related to
the grantee country. So, the law f ullyMovies context is then defined as the following:

/files

/sharingProfessionnalDoc

/music

/sharingPictures

/persoFiles

/sharingMovies

/sharingFiles

Fig. 1.12. Composition of net part1 Files.

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

28 C. Coma, N. Cuppens-Boulahia and F. Cuppens

hold(Robert2P1, law f ullyMovies(?S,download,?Movie))←
ip adress(?S,?ipAd) ∧ country(?ipAdr,?Country) ∧ declared age(?S,?AgeS) ∧
lawMovie(?Age,?Country,?Movie) ∧ in f erior(?Age,?AgeS).

In France, children less than 12 years old are prohibited from watching Resident Evil
movie. Thus, the management sphere, who is in charge of managing the VPO Robert2P1,
requires Robert to prove his age (for instance, via a credential). If this phase succeeds, then
Robert can download Resident Evil from P1.

1.13. Conclusion

To facilitate collaboration between organizations, conflict between security policy scopes
should be detected and solved. Furthermore, interoperability requires reactivity, flexibility
and continuity of service. In this chapter, we suggest a new approach to facilitate secure
interoperation between organizations and preserving privacy property. This approach is
defined as an extension of the O2O approach. In O2O, each organization administrates its
resources so that it is always possible to know which security policy is applied to the re-
source. The objective of the suggested extension is to automatically derive interoperability
security rules. This derivation depends on the following taxonomy of interoperability re-
lations: total compatibility relation, partial compatibility relation, symmetric compatibility
relation and no compatibility relation. These compatibilities can be refined with exception
rules.

The main innovation of our approach is to provide a solution to anticipate over security
requirements before the interoperability establishment. This anticipation is possible due to
the abstraction of the whole security policy and its independency of the implementation.
To interoperate securely and anticipate on this interoperation, we use the notion of con-
tract. A contract which is defined by the grantor organization, specifies for each grantee
organization, which grantor’s resources or part of these resources are accessible. More-
over, as the interoperability security policies are derived from the grantor security policy,
according to the nature of the contract, adaptation constraints of this security policy may
be also specified. In this way, the grantor organization controls the accesses to its resources
during interoperability sessions without weakening the security policies of the grantee or-
ganizations. An automatic derivation process of the interoperability policies based on these
contracts has been defined. Since our approach to manage interoperability is defined as an
extension of the OrBAC model, derivation of interoperability policies has actually similar
complexity as derivation in the OrBAC model, namely polynomial. We are currently im-
plementing this derivation process as an extension of MotOrBAC,31 a toolkit that supports
the specification of security policies using the OrBAC model.

References

1. F. Cuppens, N. Cuppens-Boulahia, and C. Coma. O2O: Virtual Private Organizations to Manage
Security Policy Interoperability. In Second International Conference on Information Systems

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

Secure interoperability with O2O contracts 29

Security (ICISS’06) (December, 2006).
2. R. Sandhu, D. Ferraiolo, and R. Kuhn, Role-based access control, In American national standard

for information technology: ANSI INCI TS 359-2004 (February 3. 2004).
3. O. et al., The OrBAC Model Web Site. 2006.
4. A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,

C. Saurel, and G. Trouessin. Organization Based Access Control. In 4th IEEE International
Workshop on Policies for Distributed Systems and Networks (Policy’03) (June, 2003).

5. S. Cantor, J. Hodges, J. Kemp, and P. Thompson, Liberty ID-FF Architecture Overview. (Thomas
Wason edition, https://www.projectliberty.org/resources/ specifications.php#box1, 2005).

6. R. Oppliger, Microsoft .net passport: A security analysis, Computer. 36(7), 29–35, (2003). ISSN
0018-9162.

7. A. Pashalidis and C. J. Mitchell. A Taxonomy of Single Sign-On Systems. In Lecture Notes in
Computer Science, vol. 2727, pp. 249 – 264 (Junary, 2003).

8. J. Li, N. Li, and W. H. Winsborough. Automated trust negotiation using cryptographic cre-
dentials. In 12th ACM Conference on Computer and Communications Security, CCS 2005, pp.
46–57, Alexandria, VA, USA (November 7-11, 2005).

9. T. toolkit. Trustbuilder download: http://dais.cs.uiuc.edu/dais/security/trustb.php, (2003).
10. E. Bertino, E. Ferrari, and A. C. Squicciarini, Trust-X: A Peer-to-Peer Framework for Trust

Establishment, IEEE Trans. Knowl. Data Eng. 16(7), 827–842, (2004).
11. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, Role-Based Access Control

Models, Computer. 29(2), 38–47, (1996). ISSN 0018-9162.
12. E. Yuan and J. Tong. Attributed based access control (ABAC) for Web services. In IEEE Inter-

national Conference on Web Services (ICWS’05) (July 11-15, 2005).
13. E. Bertino, E. Ferrari, and A. Squicciarini. X-TNL: An XML-based Language for Trust Negotia-

tions. In Fourth IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’03) (June 04-06, 2003).

14. D. L. Mcguinness and F. van Harmelen. Owl web ontology language overview. In
http://www.w3.org/TR/2004/REC-owl-features-20040210/ (February, 2004).

15. D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, L. A. Stein, and L. Technologies.
Daml+oil reference description. In http://www.w3.org/TRdaml+oil-reference (December, 2001).

16. R. Masuoka, M. Chopra, Z. Song, Y. K. Labrou, L. Kagal, and T. Finin. Policy-based Access
Control for Task Computing Using Rei . In Policy Management for the Web Workshop, WWW
2005, pp. 37–43 (May, 2005).

17. A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S. Aitken, Kaos policy
management for semantic web services, IEEE Intelligent Systems. 19(4), (2004).

18. C. Coma, N. Cuppens-Boulahia, F. Cuppens, and A. R. Cavalli. Context Ontology for Se-
cure Interoperability. In 3rd International Conference on Availability, Reliability and Security
(ARES’08) (March 4-7, 2008).

19. F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel, High level conflict management strate-
gies in advanced access control models, Electronic Notes in Theoretical Computer Science
(ENTCS). 186, 3–26 (Jully, 2007).

20. H.-H. Do and E. Rahm. COMA - A System for Flexible Combination of Schema Matching
Approaches. In 28th Conference on Very Large Databases (VLDB’02) (August, 2002).

21. A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy, Learning to match ontolo-
gies on the Semantic Web, The VLDB Journal. 12(4), 303–319, (2003). ISSN 1066-8888.

22. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with Cupid. In 27th
International Conference on Very Large Data Bases (VLDB’01), pp. 49–58 (September 11-14,
2001). ISBN 1-55860-804-4.

23. globus.org. globus toolkit, http://www.globus.org/toolkit/, (2004).
24. F. Cuppens, N. Cuppens-Boulahia, and C. Coma. Multi-granular licences to decentralize security

June 21, 2009 0:24 Atlantis Press Review Volume - 9.75in x 6.5in SITIS˙contractJune

30 C. Coma, N. Cuppens-Boulahia and F. Cuppens

administration. In SSS/WRAS 2007: First international Workshop on Reliability, Availability and
Security (November 14-16, 2007).

25. T. Bray, J. Paoli, and C. Sperberg-McQueen, Extensible Markup Language (XML), The World
Wide Web Journal. 2(4), 29–66, (1997).

26. F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Protection of Relationships in XML Docu-
ments with the XML-BB Model. In Information Systems Security, First International Confer-
ence (ICISS’05), pp. 148–163 (December 19-21, 2005).

27. M. J. N. David F. C. Brewer. The Chinese Wall security policy. In IEEE Symposium on Security
and Privacy, (1989).

28. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community Authorization Ser-
vice for Group Collaboration. In 3rd international workshop on Policies for Distributed Systems
and Networks (POLICY’02), Monterey, California, U.S.A (June 5-7, 2002).

29. R. Sandhu and X. Zhang. Peer-to-peer access control architecture using trusted computing tech-
nology. In Proceedings of the tenth ACM symposium on Access control models and technologies
(SACMAT’05), pp. 147–158, (2005).

30. H. Tran, M. Hitchens, V. Varadharajan, and P. Watters. A Trust based Access Control Frame-
work for P2P File-Sharing Systems. In 38th Annual Hawaii International Conference on System
Sciences (HICSS’05), Hawaii (January 03-06, 2005).

31. F. Autrel, F. Cuppens, N. Cuppens-Boulahia, and C. Coma. MotOrBAC 2: a security policy tool.
In Third Joint Conference on Security in Networks Architectures and Security of Information
Systems (SARSSI’09), Loctudy, France (october 13-17, 2008).

