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Abstract—Time-shifted streaming (or catch-up TV) allows
viewers to watch their TV programs within an expanded time
window. In this paper, we emphasize the challenging charac-
teristics of time-shifted TV systems that prevent known delivery
systems to be used. We model time-shifted TV as multiple-interval
graph, then we present a Peer-Assisted Catch-Up Streaming
system, namely PACUS, where a set of end users’ computers
assists the server for the content delivery. We show in particular
how the PACUS tracker server can be efficiently implemented
for catch-up TV. We demonstrate the benefits of PACUS by
simulations. We especially highlight that PACUS reduces the
traffic at the server side with the advantages of lightweight and
self-adaptive unstructured peer-to-peer systems.

Index Terms—Time-shifted IPTV; Peer-to-Peer; Interval
Graph; Video Streaming.

I. I NTRODUCTION

In time-shifted TV, a program broadcasted from a given time
t is made available at any time fromt to t + δ whereδ can
be potentially infinite. The popularity of TV services based
on time-shifted streaming has dramatically rised [1]:nPVR
(a Personal Video Recorder located in the network),catch-up
TV (the broadcaster records a channel for a shifting number
of days, and proposes the content on demand),TV surfing
(using pause, forward or rewind commands), andstart-over
(the ability to jump to the beginning of a live TV program).
Today, to enjoy catch-up TV requires a Digital Video Recorder
(DVR) connected to Internet. However, TV broadcasters need
to protect advertisement revenue whereas a DVR viewer can
decide to fast forward through commercials. By controlling
the TV stream, not only the broadcasters may guarantee that
commercials are played, but also they can adapt them to the
actual time at which the viewer watches the program.

Unfortunately, building a large-scale time-shifted streaming
service is not trivial. Delivery systems for IPTV can not be
utilized because, contrarily to live streaming systems, time-
shifted systems can not directly use group communication
techniques like multicast protocols, for the reason that clients
requiredistinctportions of the stream. Besides, the disk-based
servers that are currently used in on-demand video services
(VoD) have not been designed for concurrent read and write
operations [2]. Classic VoD servers can not massively ingest
content, and keep pace with the changing viewing habits of
subscribers. As a matter of facts, time-shifted channels are
restricted to a time delay ranging from one to three hours,

despite only40% of viewers watch their program less than
three hours after the live program [3].

Several works have highlighted the problems met by time-
shifted systems based on a centralized architecture [4–6].
New server implementations are described in [6]. Cache
replication and placement schemes are extensively studied
by the authors of [4]. When several clients share the same
optical Internet access, a patching technique described in[5]
is used to handle several concurrent requests, so that the server
requirement is reduced. These works however do not tackle
the scalability issue met by time-shifted streaming systems.
A peer-to-peer architecture for time-shifted streaming systems
has been addressed in [7–9]. These systems are based on a
predefined achitechture, such as Distributed Hash Table (DHT)
or turntable. The use of the hash function in DHT [7, 8]
seems irrelevant in this context because chunks are iteratively
produced. Furthermore, a peer departure conducts to multiple
deletions in the DHT. In [9], a replication algorithm prevents
the most unpopular past portions to be out of the system.

Our contributions. In this paper, we evaluate the gains that
can be obtained from the implementation of a peer-assisted
architecture, where a peer is a connected device located at
the home of a client watching a past portion of the stream.
This peer can store the content that it just consumed, and
serve another viewer requesting this content. Atracker (i.e., a
management server) is in charge of coordinating the peer-to-
peer exchanges. This peer-assisted architecture is expected to
significantly reduce the burden at the server side. Our goal is
to quantify these gains in realistic simulations.

The first challenge is to model the behaviors of a population
of clients, with respect to the unavailability of real traces so
far. We compose an analysis of the behavior of a casual time-
shifted TV viewer from several recent measurement studies,
then we produce a set of synthetic traces, which are expected
to reflect the reality. It is detailed in Section II. The second
challenge is to optimize the performances of the peer-assisted
architecture. We present a model based onmultiple-interval
graphs, then we introduce in Section III several strategies,
which can be implemented on the tracker side in order to
establish fast and efficient connections among peers.

We describe our results in Section IV. The results we
obtained are better than expected: the behavior of clients of
time-shifted TV actually matches the properties of the peer-



assisted architecture. We show in particular that up to 90% of
requests can be fulfilled by peers. That is, a large majority of
the traffic does not need the server, which is only used for
requests on unpopular past portions of the TV stream.

II. CHARACTERIZING CATCH-UP TV

The variability of clients’ access to the content drives the
design of time-shifted streaming systems. Understanding user
behavior is critical, however, it is difficult to obtain real
traces for several reasons. First, the services associatedwith
time-shifted are multiple (nPVR, catch-up TV,etc.), and still
under construction. Second, current population of clientsis
not representative of the future population. Third, clients using
DVR for time-shifted TV can not be measured, although they
represent a majority of current time-shifting users.

We have analyzed some available data, then we have gen-
erated a synthetic set of traces from the observation of other
related measurements. We are confident in the accuracy of
this set of data, which are available for downloading1. In our
opinion, this set of data can be used as instance of the time-
shifting problem until catch-up TV services become popular.

Two sets of studies conducted in 2008 and 2009 have been
utilized. The first set is real measurements by DVR vendors.
Typically, the main actor, namely TiVo, gives regularly data
about the usage of its set-top-boxes2. We also used a Nielsen
report [3] that gives precious insights about user behavior. The
second set of related works is the measurements conducted on
IPTV [10] and VoD systems [11].

The popularity of every program is chosen in a predefined
distribution, this popularity being strictly decreasing with time.
The relevance of Zipf distribution to describe the popularity
of content in current large-scale applications has been demon-
strated. Studies have however revealed that programs withina
given channel do not follow such a distribution. Contrarily, it is
established that the program popularity is a factor that it is less
important than the time at which the user watches TV. In [3], a
quarter of shifters have a stream lag that is less than one hour,
around40% of them watch their program less than 3 hours
after the live program, and more than half of shifters enjoy
a program broadcasted the same day. Some programs can be
more popular than others, but this popularity is expected tobe
a consequence of the hour usage of catch-up TV.

In [12], a peak has been identified at the beginning of each
program, where many viewers start streaming the content.
Then, as can be also stated in VoD systems, the spikes of
departure have been shown to occur mostly either at the
end of the program, or because the user does not find any
interest after browsing the beginning of the program. Peers
usually leave immediately and simultaneously at the end of
programs [13]. Moreover, a large number of sessions end in the
first minute, which means that these clients are not interested
in the programs after browsing through the beginning. In this
study, more than half of the population quits during the firstten

1http://enstb.org/∼gsimon/Resources/Time-shifted
2http://stopwatch.tivo.com

minutes of a program in average. Moreover, in most cases, the
more popular is the program, the shorter is the session length.

The TV prime-time is clearly on evening. Measurements
made in [3] confirm that clients are obviously more connected
at certain time of the day than others. In US, only1% of
clients start watching catchup-TV between6 : 00 AM and
7 : 00 AM. On the contrary, more than11% join the system
between9 : 00 PM and 10 : 00 PM (note that clients begin
watching live programs before time-shifting, typically after a
pause or a rewind through immediate past content). In our
simulator, we have reproduced the same trend. We create
x new peers at every cycle. During less attractive hours,x

equals1 while it can be equal to10 at the prime-time. These
arrival are compensated by natural churn, either because of
the aforementioned TTL, or because of crash.

This set of data, available online, models a behavior that
tends to be in favor of recent TV programs, with a few
exceptions. Figure 2 represents the Cumulative distribution
Function (CDF) of the lag of shifters at the end of our simu-
lation. The embedded plot zooms on the5,000 first minutes,
which represents actually more than80% of shifters. A point
at (1,000, 0.50) means that half of shifters are watching a
program broadcasted less than1,000 minutes ago. Note on
the embedded figure that variable program popularity results
in a sinuous curve. This curve is actually conform with the
recent measurements made in [3].

III. PEER-ASSISTEDARCHITECTURE

We now describe the algorithms for a peer-assisted archi-
tecture: a cache-and-relay approach (peer stores the video
portions they consumed) combined with a tracker. Peer-
assisted systems have attracted the attention of video service
providers for VoD (e.g. [14, 15]), but, to our knowledge, such
architecture has not been studied for time-shifted systemsyet.

A. Multiple-Interval Graph Model

We propose to use the well-knownmultiple-interval graph
structure to model the nodes and the relationships that can be
established among them. First, we recall the main principle
behind this structure, then we explain why this structure is
adequate for time-shifted streaming systems.

In an interval graphs, a vertex is associated with an interval
on the real line, and an edge occurs between two vertices
if their intervals overlap [16]. A multiple-interval graphis a
generalization of interval graph where every vertex is associ-
ated with several intervals, and the edge between two vertices
x and x′ exists if one interval associated withx overlaps
with one interval associated withx′ [17]. Multiple-interval
graphs model problems like multi-task scheduled problems
and resource allocation problems.

In time-shifted streaming systems, nodes are likely to store
video portions, and not a set of unrelated chunks. In proposals
that are based on the cache-and-relay principle, nodes store
multiple distinct portions if clients use fast forward or rewind
commands. Let represent the whole stream in Figure 1 by a
real line (i.e., the horizontal line) with the time direction from



right to left, wherech0 is the earliest chunk in the system,chn

is the freshest chunk (live chunk), and a video portion indicates
an interval (denoted by a real horizontal line). In our example,
five peers fromp1 to p5 are watching TV in this scenario. Each
peer is associated with a set of intervals, which correspondto
the video portions it stores, and a playback position denoted
by a big black ball. In multiple-interval graphs, two peersx

andx′ are linked when one video portion stored byx overlaps
with one video portion ofx′. In this example, every peer is
associated with every other peer because any pair of peers
have at least one overlapping interval.

We represent the overlay created by the tracker on the right
right part of Figure 1. We establish a directed link from a node
x to a nodex′, when the playback position ofx′ is covered
by an interval of peerx. The link direction means thatx may
act as a server forx′. The final overlay is a directed sub-graph
of the multiple-interval graphwith video portions and nodes.

The advantages of the multiple-interval structure are as fol-
lows. Let consider that a central authority has a full knowledge
of the participating nodes. Upon reception of requests from
clients for past stream portion, this front-end server has to
discover as quickly as possible the set of nodes that stores
the given chunk,i.e. the peers that store a video portion
containing this chunk. If this central authority maintainsa
multiple-interval graph in order to store information fromthe
set of peers (which peer stores which interval), then it can
make use of one of the many fast deterministic algorithms [17]
that have been proposed in the literature for that purpose.

B. Tracker-Peer Implementation

In this paper, we opt for a hybrid architecture based on a
tracker, which is expected to have a global knowledge of the
system, as shown in the left part of Figure 1. Our motivation
is that the service provider is expected to keep the control on
the stream delivery, in order for instance to adapt commercials
to the actual watching time. The main mission of the tracker
is to provide to every peeru a setP (u) of peers having the
chunk requested byu (calledpeerset).

1) Peer to Tracker Communication:The tracker is only
interested with the two endpoints of each interval stored bya
peer, and does not need to know every chunk belonging to this
interval. Concretely, when a peeru starts a new program (first
joins or implements a switch), it notifies the tracker. From the
index of the first chunk of this program, the tracker should
be able to infer at any time the chunk that is currently played
by u, because of the uniform speed of video playback. When
u finishes the program (leaves or switches again), the tracker
records the last chunk that is been played atu, and stores
this interval related withu. This strategy, which leverages on
the linearity of the video playback, alleviates the burden on
the tracker and reduces system control messages. Furthermore,
a peer also notifies the tracker on a periodical basis. These
notifications allow the tracker to implement a failure detector,
that is, a tracker is able to determine if a peer is still alive.
If a peer is detected as no longer participating to the system,
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Fig. 1. Multiple-Interval representation: the overlay generated by tracker

the tracker should discard all intervals related with this peer.
In our simulation, peers notify the tracker every ten minutes.

2) Tracker to Peer Communication:When a tracker re-
ceives a notification from a peeru, eitheru starts watching a
new program, or a periodic notification, the tracker is expected
to reply with a setP (u) of other peers having high probability
to be able to serveu until the next notification. First, the
tracker should determine the setP(u) of peers storing the
next chunk requested byu. The model based on multiple-
interval graphs simplifies the task of the tracker. Indeed, a
vast literature has explored the attractive opportunitiesof
multiple-interval graphs, where most classic problems canfind
a solution in polynomial time. In our implementation, we use
classic algorithms for lookup and subset discovery. Because
the size ofP(u) can be large, we decide that the tracker sends
information of a subsetP (u) ⊆ P(u). We will present in
Section III-C several strategies for choosing this subset.

3) Peer to Peer Communication:When the peeru receives
the peersetP (u), it can decide to download the requested
chunk from one or several of these peers. Many works have
dealt with efficient stream delivery from a set of potential
servers. We prefer here to let the system designer decide the
best algorithm, which depends on many parameters, typically
the video encoding. Please note that, in our simulation, we im-
plemented the simplest solution: the peeru chooses randomly
in P (u) one peer, which is in charge of delivering the chunk
if it has the capacity to do it.

C. Neighborhood Selection Strategies

We detail now strategies to select a subsetP (u) among the
setP(u) of peers that owns the chunk requested byu.

Strategy AvailCap. In an idealized system, the tracker is
able to consider the available upload capacity of the peers in
P(u), then to select the most powerful peers, and, in case of
ties, the peers having the longest series of consecutive chunks.
This strategy ensures to peeru a high probability to be served
until the next notification. It requires however to be aware of
the available capacity of every peer at any time. It is a strong
assumption, which requires to implement peers’ performance
monitoring. Nevertheless, we have implemented this strategy
because it is intuitively a near-optimal strategy.

Strategy Random. On the contrary, the simplest strategy
consists in selecting a random subsetP (u) in P(u). Note that
this strategy ensures that all peers are uniformly chosen inthis



scenarios peer capacities
content distrib. nickname 0 1 2 3 4

HDTV
homoge. h-HD 25% 50% 25% 0% 0%
heteroge. H-HD 40% 30% 20% 10% 0%

IPTV
homoge. h-IP 0% 25% 50% 25% 0%
heteroge. H-IP 0% 40% 30% 20% 10%

TABLE I
DISTRIBUTION OF PEER CAPACITY

set, but it does not take into account that(i) some peers may
have a larger upload capacity than others (a peer with poor
upload capacity is selected as frequently as a powerful peer),
and(ii) some peers have longer intervals than others (a surfer
peer is chosen as frequently as a leaver).

Strategy AS. In another strategy, the goal is to take
into account the underlying network. Thenetwork-friendly
aspect of peer-to-peer systems has received a lot of attention
recently [18]. In order to limit the potentially high impact
of traffic generated by peer-to-peer technologies on the un-
derlying network, various works have explored the building
of overlays based on network distance between peers. These
works include in particular clever algorithms at the tracker
side [18]. We suggest to implement also a network-friendly
strategy where the tracker selects the peers inP(u) that are the
closest tou. Here the distance can be measured by the latency
or the number of traversed Autonomous Systems (ASes).

Strategy Playback. Finally, the last strategy we have im-
plemented consists in selecting the peers whose overlapping
interval is also a current interval and whose playing position
is the closest. This strategy has been implemented in several
popular peer-to-peer VoD systems [13]. If the peers are not
surfers, they will probably continue to watch the program for
a while. Hence, the peeru has higher probability to find at
least one peer having the chunks until the next notification.

IV. SIMULATIONS

We use PeerSim [19], a simulator targeting large-scale and
dynamic overlays. We aim at evaluating the feasibility and
performances of Peer-Assisted systems under various contexts.
We focus on the measurements of the load reduction on the
server and the reduction of the cross-domain traffic.

A. Simulation Configuration

We have depicted in Section II a part of the configuration
parameters. The exact settings are available on our website.
Readers are invited to freely use these simulation instances. We
detail now some additional simulation parameters. At every
cycle, a new chunk,i.e. the basic video unit, is generated. We
consider that a chunk represents one minute of stream in our
simulator. Of course, when several peers can provide a given
chunk, a peer would benefit from a coordinated transmission.
In this simulations, we choose a simpler model where a peer
transmit a chunk in its entirety to another peer.

According to previous measurements [10], peers get as-
signed a role: half of the peers aresurfers (watch a same
program during1 or 2 chunks before switching),40% of them

PACUS Centralized Difference

HDTV scenario 6.12 13.28 −53.9%

IPTV scenario 3.57 13.28 −73.1%

TABLE II
AVERAGE NUMBER OF TRAVERSEDAS BY CHUNK

areviewers(switch after a duration uniformly chosen between
2 and 60 minutes), and10% are leavers(stay on a program
during a time ranging from60 to 1800 chunks, i.e. a TV
constantly opens during up to30 hours). Moreover, we do
not tolerate infinite surfers, so every peer is associated with a
Time-To-Live, either6 consecutive switches, or5,000 minutes.

We describe now two crucial settings: the upload capacity
of peers, and the location of peers in the network. In our
system, peers are expected to upload a whole chunk to other
peers,i.e., one data transmission consists of one-minute long
stream delivery. Therefore, the capacity of a peer is described
as the number of concurrent streams that the peer is able to
send to other peers. We have simulated tow scenarios: High-
Definition TV (HDTV) and classic IPTV. In the HDTV, the
average capacity of peers is1 (in average, a peer is able to
send one stream to one peer only), although peers could serve
in average2 peers in classic IPTV scenario. Besides, we have
basically considered two scenarios of the distribution of the
peer capacities, eitherhomogeneous(most peers have the same
capacities), orheterogeneous(many peers have no capacity,
but some powerful peers can deliver a lot). We describe in
Table I the four considered scenarios with their nicknames.

The location of peers depend also on the nature of the TV
broadcaster. In our simulation, we have configured an Internet
map from a CAIDA data-set containing28,421 ASes. Peers
are uniformly spread over these ASes. This setting corresponds
to a world-wide TV broadcaster, the main target for our study.

Finally, the number of cycles is30,000, i.e., more than
20 days. This duration is actually far longer than the current
offers of TV broadcasters, where the duration is in the order
of the hours. Besides, random effects are avoided by using
five distinct instances, for every simulation settings.

B. Simulation Results

We first highlight a result that makes the case for peer-
assisted architecture. We present in Figure 3 the number of
replicas of every chunk from time 0 to time30,000 at the
end of our simulation. In the embedded figure, we zoom on
a smaller area from time26,000 to time 29,000. Obviously,
only active peers are represented. This result shows inevitably
that the most replicated chunks are the recent chunks. Now,
we invite the reader to recall Figure 2 where the lags of clients
are represented. The number of chunk replicas in Figure 3 is
actually conforming with chunk popularity in Figure 2. Indeed,
the more requested are the chunks, the more replicated they
are. This is especially true in the embedded Figure. Actually,
even the popularity of programs, which varies, produce high
differences between chunk replicas. Of course, this is a natural
result obtained by active clients. We highlight this resultto
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explain why peer-assisted architecture fits remarkably with
catch-up TV: the storage capacity of peers is automatically
utilized for the most popular chunks. Please note that some
chunks in early period do not have any replica. It means that
a client on this period has no other choice but to request
missing chunks from the server. In order to guarantee chunk
availability, a new replica mechanism deserves to be devised.

We now present in Figure 4 the most important result of our
system: the percentage of chunk requests that are handled by
a peer. Obviously, the larger is the percentage, the better is the
system because the less saturated is the server. We highlight
three observations. First, the ratio of requests handled bythe
peer-to-peer system is very important. In the IPTV scenario,
this ratio represents more than80% of requests. More than
half of requests can also be treated in the HDTV scenario.
This awesome result means that the server can actually be
used as a backup server or for other purposes. Second, as can
be expected, the strategy where the tracker is able to know
the available capacity of every peer outperforms the other
strategies. We notice the relatively poor performances of the
strategy based on the proximity of playback position. Despite
its flaws, the random strategy has better results than the
network-friendly one. Third, the heterogeneous distribution of
peer capacity does not really affect the capacity of the system.
However, when the tracker can not rely on such information,
results are slightly dropping, but the drop is negligible.

Finally, we study the overall impact on the network in Ta-
ble II. The peer-assisted system is compared with a centralized
system with only one server. For every chunk request, we
count the number of ASes traversed by the chunk in the peer-
assisted system, and compare it in the case that it comes from
the server. Hence, we measure the overall cross-domain traffic
generated by the catch-up TV system. For the peer-assisted
system, we use the AS-friendly strategy.

We observe that the results are impressive with gains that
reach up to73%. Actually, a peer-assisted architecture is not
only a way to reduce the traffic at the server side, it is also an
architecture for reducing the overall traffic over the Internet.
Therefore, a peer-assisted system should be of major interest
for both service providers and network operators.

V. CONCLUSION

We have introduced in this paper the main characteristics of
time-shifted TV systems. We demonstrate that a peer-assisted

architecture can absorb most of the video traffic, with an
estimation that up to 80% of the traffic can be handled by
peers when the video quality is IPTV. Moreover, we propose
several strategies at the tracker side. Finally, we show that
a simple AS-friendly strategy in the tracker can significantly
reduce the overall cross-domain traffic.
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