
HAL Id: hal-00609275
https://hal.science/hal-00609275

Submitted on 18 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-shifted TV in content centric networks: the case
for cooperative in-network caching

Zhe Li, Gwendal Simon

To cite this version:
Zhe Li, Gwendal Simon. Time-shifted TV in content centric networks: the case for cooperative in-
network caching. ICC2011: IEEE International Conference on Communications, Jun 2011, Kyoto,
Japan. �hal-00609275�

https://hal.science/hal-00609275
https://hal.archives-ouvertes.fr

Time-Shifted TV in Content Centric Networks:
the Case for Cooperative In-Network Caching

Zhe Li∗, Gwendal Simon∗
∗Institut Télécom - T́elécom Bretagne, France
{firstname.lastname}@telecom-bretagne.eu

Abstract—Recent works on Content-Centric-Networking
(CCN) enable the exploitation of the caching resources of the
new generation of routers (Content Routers or CR). So far,
only a basic Least Recently Used (LRU) strategy implemented
on every CRs has been proposed. In this paper, we introduce
a cooperative caching strategy that has been designed for
the treatment of large video streams with on-demand access.
This caching strategy addresses the need of Internet Service
Provider by halving the cross-domain traffic. We present a first
algorithm, which is a core element of this strategy, then we
show the changes that have to be brought to the CCN protocol
in order to implement this strategy.

I. I NTRODUCTION AND BACKGROUND

A. Context: Content Centric Networking

The deployment of Internet routers having caching capabil-
ities (CR for Content or Caching Router [1]) represents an
opportunity to revisit the techniques that are currently used to
deliver content in the Internet. So far, the flaws of the Internet,
in particular the poor performances of communication links
traversing several Autonomous Systems (AS) [2], have been
overcome by the deployment of large-scale Content Delivery
Networks (CDN) such as the Akamai network [3]. The recent
works towardcontent centric networking(CCN) [4] introduce
new techniques, which allow to route queries and data based
on content name. These protocols enables the exploitation
of the storage resources of any machine in the network, in
particular the CR. However, authors of CCN suggest to use
a basic Least Recently Used(LRU) policy for the cache
management of every CR. The current paper deals with a
new caching policy for CR in order to build acooperative
in-network cache. This objective requires to take into account:

• the distributed nature of this cooperative cache. Contrar-
ily to the centralized management of CDN, the envisioned
network of CR is by nature distributed: every CR must
decide by itself whether a content that it routes should
be cached. Moreover, a claimed objective of CCN is to
retain the simplicity and scalability of current Internet
protocols. Therefore, CRs can only use local information
in order to take their decision.

• the peering relationships between ASes. The equilibrium
of the whole Internet depends on the selfish actions of
every AS. In the CCN perspective, an operator of AS

This work was supported by the ANR ViPeer project, grant ANR-09-
VERSO-014 of the French Agence Nationale de la Recherche.

becomes a content provider through the CRs it manages.
A rationale behaviour is to cache in priority the most
expensive content,i.e. when the path to the server storing
this content contains expensive transit inter-AS links.

• the small caching capacity of CRs. Studies show that
video content will represent more than 90% of the whole
Internet traffic in a few years [5]. High-definition video
streams with bitrate in the order of megabits per seconds
requires storage capacity in the order of gigabits. In
comparison, the storage capacity of CR is expected to
be small (for example, only 36 gigabits in [1]).

B. Our Focus: ISP-friendly Time-shifted Streaming

We consider an Internet Service Provider (ISP), which
wants to minimize the cross-domain traffic related withtime-
shifted TV. This recent feature proposed by TV broadcasters
consists of allowing viewers to watch their favorite broadcast
TV programs within an expanded time window. A program
broadcasted from a given timet is thus made available at
any time fromt to t + δ whereδ can be potentially infinite.
The popularity of TV services based on time-shifted streaming
has dramatically rised [6]:nPVR(a Personal Video Recorder
located in the network),catch-up TV(the broadcaster records
a channel for a shifting number of days, and proposes the
content on demand),TV surfing (using pause, forward or
rewind commands), andstart-over(the ability to jump to the
beginning of a live TV program).

Time-shifted TV services are accessible today through con-
nected Digital Video Recorders (DVR). A trend is for these
services to be offered by TV broadcasters. However, a large-
scale time-shifted streaming service can use neither classic
IPTV protocols – contrarily to live streaming systems, time-
shifted systems can not directly use group communication
techniques like multicast protocols, for the reason that clients
require distinct portions of the stream –, nor data-centers– the
disk-based servers that are currently used in on-demand video
services (VoD) have not been designed for concurrent read
and write operations [7]. As a matter of facts, time-shifted
channels are restricted to a time delay ranging from one to
three hours, despite only40% of viewers watch their program
less than three hours after the live program [8].

A series of recent works has explored CDN-based and peer-
to-peer approaches for time-shifted TV [9]–[14]. However,
none of these solutions takes ISPs’ behalf into account.

In CDN-based systems, the quality of the distribution is a
function of the location of CDN servers, and of the efficiency
of the query redirection mechanism toward the appropriate
server. An ISP that does not interact with a CDN provider is
not able to manage the traffic for the end users located in its
AS. In the context of time-shifted TV, this lack of interaction
is expensive for the ISP because every request from end user
is treated as one unique stream, resulting in larger incoming
cross-domain traffic if the CDN is located outside of the AS.

Peer-to-peer and peer-assisted architectures present also
some weaknesses. Despite recent efforts toward a better in-
teraction between ISP and peer-to-peer applications [15],the
proposals for time-shifted TV ignore the network location of
peers. Hence, it may happen that the video is downloaded
from one or several distant peers. In our previous works [14],
we have addressed the problem of guarantying that all past
chunks are correctly kept in a peer-to-peer system.

C. Our Proposal: Cooperative In-Network Caching

We aim at leveraging on a set of deployed CRs to minimize
the amount of queries for time-shifted TV that are treated by
servers outside the ISP network. Beyond time-shifted TV, our
work addresses the problem of storing large-scale streams with
on-demand access from end users in CCN.

In this paper, we propose to replace the LRU policy of CCN
by a new cooperative policy, with respect to the simplicity
of CCN protocols. Our proposal is illustrated in Figure 1.
In this example, we assume that a stream is produced by
a TV broadcaster. At a given timet, we consider that 21
chunkshave been produced (from0 to 20). Each CR has a
cache capacity of 10 chunks. According to the LRU policy,
the cache of the three CRs are filled by chunks{11 . . . 20}. At
time t, two clients request a time-shifted part of the stream,
respectively from chunk 5 and 15. With the CCN protocol,
the latter request for chunk 15 is satisfied by the CRr1, but
the request for chunk 5 has to be forwarded to the server.
The lack of coordination among CR results in an inefficient
caching strategy with redundant data stored on adjacent CRs.

Our proposal is that a CR does not cache all the chunks
that it routes, but only a part of them. Every CR is associated
with a label, which is a positive integer smaller than a fixed
integer k. Every CR uses the LRU policy only for chunks
whose number modulok is equal to its label. In our example,
we assume thatk is equal to3, and every CRri is associated
with label i. As can been seen in Figure 1(b), the CRr0 stores
the chunks{0, 3, 6, . . . , 18}, which correspond to the 10 last
chunks routed byr0 such that their chunk numbers modulo
3 are equal to 0. With this strategy, the request for chunk 5
is not forwarded to the server, but directly satisfied byr2. In
parallel, the request for chunk 15 is no longer treated byr1,
but r1 forwards the request tor0, which stores this requested
chunk. With this cooperative in-network caching strategy,both
requests are treated by machines in the AS of the end users.

(a) Basic CCN function

(b) CCN with collaborative cache

Fig. 1. Comparison of basic CCN and CCN with collaborative cache

D. Our Contributions: Algorithms and CCN Protocol

Due to page limitation, we can not describe all aspects of
this proposal in the current paper. In particular, we do not
detail how an ISP notifies all CRs that are under its control
about the set of streams that requires to be stored for the
purpose of a time-shifted service. This notification contains(i)
the name of these streams,(ii) the amount of storage space
devoted for these streams, and(iii) the number of different
labelsk. In this paper, we focus on three contributions.

First, we give a theoretical focus on theinitialization stage,
the phase during which each CR determines its label. A
trivial implementation consists in a random choice. In previous
works, we have shown that significant gains can be obtained
from a label assignment that takes into account the network
linkage among CRs [16]. However, the optimal assignment
has been shown to be NP-complete. We present in the current
paper a distributed algorithm that allows each CR to determine
its label, this assignment of labels being not worse than
(32k − 5

2) of the optimal assignment.
Second, we describe an augmented version of the CCN

protocol that implements our cooperative caching strategy. We
show in particular that the protocol keeps the simplicity ofthe
originel CCN protocol. We present the refinements that are
necessary to implement the cooperative caching.

Finally, we show some simulation results. We have used
the synthetic traces generated in [14] to emulate the behavior
of users of time-shifted services. We have also implemented
the ISP topology measured byRocketfuel[17]. Our results are
impressive. When the ISP reserves 1 giga-bytes of cache for
five channels, the cooperative caching strategy performs60%
better than the LRU policy.

II. N ETWORK MODEL

We consider a networkN consisting of a set of routers, and
a set of bidirectional links between these routers. We note by V

the subset of routers that are CR (i.e. having caching capacity).

We assume that the ISP is able to compute a staticdistance
dij between two CRsri and rj . This distance reflects the
connectivity of two CRs. This function is generic: for example
the length of the shortest path joiningri to rj in N , the inverse
of the capacity of routers on this path, or the average latency
measured between these two routers.

Thek−1 CRs inV that are thenearestfrom the CRri are
expected to cooperate withri. Here, nearest means having the
smallest distance. Our goal is to avoid that these CRs store
the same chunks. We note byN(i) this subset of CRs inV ,
and, by extension,N [i] is the setN(i) ∪ {ri}.

In the following, we assume that non-CR routers are able
to transmit the messages from one CR to another without
troubles. The CRs do not experience failures.

III. I NITIALIZATION STAGE

Each CR should initially determine its label. Our goal is to
ensure that every CR is as close as possible from all the labels
that are different that its own label. We note byL(i) thek−1
CRs having thek − 1 other labels and that are collectively
the closest fromri. The sum of distances from a given CRri
to the CRs inL(i) is called therainbow distanceof ri, and
it is noteddi. Formally, di =

∑
rj∈L(i) dij . Determining the

optimal assignment of labels,i.e. the assignment such that the
sum of all rainbow distances is minimal, is NP-hard [16].

To prove the performance ratio of our algorithm, we begin
with the definition of lower bound. Given an instance of the
problem, it is possible to determine a lower bound solution
by setting that every CR with itsk − 1 closest CRs store
collectively thek labels, formallyL(i) = N(i) for every CR
ri. This obvious optimal assignment is impossible in many
cases, but it gives a lower bound. We callfractional distance,
denoted byd̄i, the sum of the distances between a CRri and
its k − 1 nearest neighbors, sōdi =

∑
rj∈N [i] dij

A. Distributed Algorithm

There are two rounds. First, each CR exchanges information
with its 2-hop neighbors. Then, each CR allocates labels on
its neighbors and itself.

For each CRri, the first round goes as follows:1) it collects
from its k−1 nearest neighbors theirk−1 nearest neighbors,
thus, every CR knows all CRs that are at 2 hops in thek− 1-
nearest neighbor graph.2) it sends to this 2-hops neighborhood
the fractional distancēdi. 3), then it enterswaiting mode. 4) it
waits until all two-hop neighbors having a fractional distance
that is lower thand̄i emit a releasemessage.5) it executes
a Label Allocation Process(LAP), then broadcasts arelease
message.6) when all two-hop neighbors have sent arelease
message, ifri is both marked assaved and not assigned
label, then it chooses the farthest label for itself.

The second round, namely LAP, is label allocation. The
algorithm tests the condition thatno two CRrj and r′j ∈
N [i] can hold the same label. If N [i] satisfies the condition,
i allocates labels on every CR both inN [i] and holding no
label, such that noj andj′ hold the same label. Theni marks
itself asoptimized. If N [i] does not satisfy the condition,

i marks itself assaved. Note that some of the saved CRs are
labeled but others not.

B. Correctness and Analysis

Provided that the algorithm runs in acorrect environment,
i.e., there is neither faulty links nor faulty nodes, it returns a
solution satisfying the following conditions. First, it runs in
finite time. Second, each CR eventually holds a label. Third,
there is no missing label in the system.

Theorem 1 The algorithm gives a valid solution in a correct
environment.

Proof . The last condition is easily satisfied when the first CR
(the CR possess the local minimum rainbow cost) executes
LAP. To show that the first and second conditions are also
tenable, we just need to prove thati will receive all release
messages from its two-hop neighbors in a finite time. If the
algorithm does not terminate, it must be some nodesi and
j such thati never receives areleasemessage fromj, so i

never executes LAP, and broadcasts thereleasemessage. Yet,
the fractional distance being a unique real number, there is
always a CR with a smallest distance, which can enter LAP
and broadcast the release message. This also leads to the fact
that each CR will execute LAP. Together with the fact that the
distance of each CR is broadcasted only once, we conclude
that no CR will be in waiting mode for infinite time. Since
the number of nodes is finite, the algorithm terminates in finite
time, thereafter each CR holds a label. �

Each CR executes LAP, and, as the distance functiond gives
a total order on nodes, no two nodes within two hops are local
minimal at the same time, so no two nodes within two hops
execute LAP at the same time.

Theorem 2 For any k ≥ 3, the distributed algorithm gives a
solution no more than32k − 5

2 times the lower bound.

Proof . For an optimized CRri′ , we know thatdi′ = d̄i′ . For
a saved CRri, there are two cases:1) the label onri has
been assigned by another CR, and this label coincides with
the label held by one of itsk − 1 nearest neighbors,2) two
nodes inN(i) hold the same label.

In the first case, the label onri has been assigned by an
optimized CRri′ . It means thatri ∈ N(i′), and thatd̄i′ < d̄i
(becauseri′ executed LAP beforeri). Assume that the label of
ri is 1, and the neighbor ofri′ hosting labell is notedrjl . Then
the rainbow cost ofri can be calculated as follows. Sincerj ∈
L(i) is the nearest neighbor ofri, we have

∑
rj∈L(i) dij ≤∑

rj′∈N [i′] dij′ .

∑

rj∈L(i)

dij ≤
∑

rj′∈N [i′]

dij′ =
k∑

l=2

dij′l ≤
k∑

l=2

(dii′ + di′j′l) =

(k − 1)dii′ +
k∑

l=2

di′j′l = (k − 2)dii′ +
k∑

l=1

di′j′l ≤ (k − 1)d̄i

In the second case, there must be an optimized CRri′

within two hops fromri, such thatd̄i′ < d̄i. Assume thatrj1
and rj2 are the two nodes that preventri from entering the
optimized state, anddij1 < dij2 . Without loss of generality,
we can assume label 1 atj1. If ri chooses labelh in the second
phase, thenh 6= 1, as rj1 is among the nearest neighbor of
ri. According to the algorithm, we haverj1 ∈ N(i) ∩N(i′).
After labels allocation is finished,ri and rj1 hold different
labels. Thusrj1 ∈ L(i). Then the rainbow distance ofri can
be calculated as follows:

∑

rj∈L(i)

dij ≤
∑

rj′∈N [i′]

dij′ =
k−1∑

l=1

dij′l ≤

dij1 +

k−1∑

l=2

(dij1 + dj1i′ + di′j′l) =

k−1∑

l=1

di′j′l + (k − 3)di′j1 + (k − 1)dij1 ≤

k−1∑

l=1

di′j′l + (k − 3)di′j1 +
k − 1

2
(dij1 + dij2) ≤

(k − 2)
k−1∑

l=1

di′j′l +
k − 1

2

k−1∑

l=1

dijl ≤ (
3

2
k −

5

2
)d̄i

As k− 1 ≤ 3
2k−

5
2 for any k greater than 3, our algorithm

gives a solution no more than32k−
5
2 times the lower bound.

�

IV. A UGMENTED CCR PROTOCOL

We start by a quick summary of the main principles of
CCN. Please refer to [4] for more details. Then, we present the
changes that we propose in order to implement our cooperative
caching strategy.

A. CCN in a Nutshell

In CCN, every content is identified by a hierarchical name
like URL and divided into multiple chunks. Each chunk is
indicated by the content name plus a sequence number. When
a content is published by a provider, the CR connected with
that provider floods an advertisement of the content to adjacent
CRs. A Forwarding Information Base(FIB) is established to
redirect any incominginterest(a.k.a. request) toward content
provider. When an interest is forwarded according to the FIB,
an entry into thePending Interest Table(PIT) is created to
trace the requesting interface, so that the content can be sent
back along the reverse path of interest. The content is then
cached by the CRs on its forwarding path. If the content
is requested again, the replica in theContent Store(CS), or
cache, is directly delivered by the CR.

B. New Tables in CCN

In order to implement our cooperative caching strategy,
we require two new tables. First, every CRri maintains
the information of itsk − 1 closest CRs inL(i) in a new
table, namelyCollaborative Router Table(CRT). There are
three fields in CRT of a CR: the label, the identifier of
the collaborative router and the interface. Thus, every CR
knows where to redirect an interest or forward a chunk. The
second table added on the basic CR is theCollaborative
Content Store(CCS). In CCS, a CR keeps the names and the
sequence numbers of all the chunks that may be found in its
collaborative cache. When an interest arrives, the preference
of the four prefix matches is CS match to CCS match to PIT
match to FIB match.

C. Distribute Chunks in the Cooperative Cache

When a chunkc is sent back to consume an interest, a CRri
with label li, which receivesc, should take a decision (whether
to cache it or not) based onli, on the identifierc of this chunk,
and the match result. We describe the action as follows:

• this chunk is handled byri, that is c mod k = li. The
CR ri addsc into its cache, and removes the least recently
used chunk. Thenri calculates a PIT match. If a PIT
match is found, it forwards the data to the interfaces
indicated by the PIT, otherwise, the process is finished.

• this chunk is not handled byri, that is c mod k 6= li.
The CRri first finds in its CRT the routerrj having the
label lj that matches with the chunkc. Thenri sends the
chunkc to rj . Moreover, ifri finds a match in its PIT for
this chunk, it also forwardsc to the requesters. Finally,ri
addsc in the CCS Table, so that later interests requiring
the same chunk will be forwarded torj , but no longer
according to the FIB.

In this scheme, each data packet should carry a random
nonceto prevent broadcast storm. When a duplicated packet
with the same nonce is received, it should be immediately
discarded.

D. CCS Consistency

At every time, the CS of a given CRri should be consistent
with all the CCS tables of all CRs that considerri among
its closest CR. In particular, when a entry of the CSri is
discarded by the caching policy, the corresponding entry in
the CCS of a CRrj with ri ∈ L(j) should also be deleted,
otherwise interests for the eliminated content may be lost in
the forwarding process. For example, ifrj receives an interest
requiring chunkc, it finds the CCS match point tori. Assume
that chunkc in ri has been discarded. The CRri forwards the
interest following the FIB entry. Ifrj is an intermediate CR
betweenri and the corresponding server, the interest will be
regarded as a duplicated one, and discarded byrj . Therefore,
the interest for chunkc is lost. We should remind that the lost
interest can be recognized as a duplicated one because every
interest is given a random nonce when it is generated.

To both maintain consistency and avoid increasing control
messages, we use piggyback interest (p-interest) to carry the

control information. A CRri with labelli acts as follows when
an interest for chunkc is received:

• the requested chunkc is handled by ri, that is c

mod k = li. The CRri first calculates the CS match.
If a CS match is found, it sends back the data directly.
Otherwise, if a PIT entry is found, it adds the requiring
face into the pending list. If neither CS match nor PIT
match is found,ri changes the interest into a p-interest,
it generates a new nonce for the p-interest, and forwards
this p-interest according to FIB entry.

• the requested chunkc is not handled byri, that is c

mod k 6= li, and the interest is a p-interest. The CR
ri needs to determine whether the CRrj indicated in
the p-interest is in the CRT ofri. When rj is not the
relative collaborative router,ri executes normal process.
Otherwise,ri should eliminate the CCS for the chunk
required in the interest, then adds the requiring face in
its PIT. Finally,ri forwards the interest according to the
FIB, even if PIT already existed. The final step ensures
that the interest arrives at a provider.

• the requested chunkc is not handled byri, that is c

mod k 6= li, and the interest is not a p-interest. The CR
ri just executes the normal CCN process (collaborative
CS match is preferred than PIT match, and PIT match is
preferred than FIB match).

V. SIMULATIONS

The goal of these simulations is to evaluate the benefits one
can expect from the cooperative in-network caching strategy.
We develop our simulator over OMNET++, a simulation
framework for communication networks.

A. Simulation Setup

To build a typical ISP network, we use the real backbone
topology measured byRocketfuel[17]. We choose 87 routers,
5 point of presences (POPs) and 161 bidirectional links
with latencies from the AS of European Backbone (Ebone).
Every POP is connected with one server, which stores all the
produced chunks. Chunks are pushed into servers from 6 TV
providers with different popularities. We deploy 200 clients
uniformly on the access routers locating at the edge of the
topology. We reserve 1 giga-Bytes in each CR to cache time-
shifted TV streaming. The basic data unit of the TV streaming
is a chunk, which contains the streaming for 1 minute play-
back. One new chunk is produced every simulation minute
by each TV provider. We assume the streaming playback rate
is 1 megabits per second, so that the size of one chunk is
7.5 mega-Bytes. Therefore the cache of a CR can store 130
chunks, approximately two hours of video.

We use the same synthetic model as [14] for modeling
the behavior of users of time-shifted services. This model is
based on two measurement studies conducted in 2008 and
2009 [8, 18]. This model includes that a TV stream is divided
into programs, associated with agenre. The popularity of
programs decreases with time. Moreover, the number of clients
varies following a given distribution. In our case, according to

different hours in a day, the number of activated clients ranges
from 20 to 180. Every client get assigned a role: half of the
clients aresurfers(watch a same program during1 or 2 chunks
before to switch to another program),40% of them areviewers
(switch after a duration uniformly chosen between2 and 60
minutes), and only10% areleavers(stay on a program during
a time comprised between60 and1000 minutes).

We run our simulation for9,000 minutes, i.e. about one
week. Since six TV streams are in the system,54,000 chunks
are produced during the simulation. We measure in particular:

• the caching diversityof the policy by counting the
number of distinct chunks that are stored in the network.
The more distinct chunks are stored in the system, the
better is the cooperative caching system. With 87 CRs
having each a maximum caching capacity of 130 chunks,
the maximal caching diversity is11,310 chunks.

• the ISP-friendlinessof the policy by measuring the
number of requests that are treated by servers outside
the network. The lesser is the number of requests, the
friendlier is the caching policy.

B. Results Analysis

We first investigate the impact ofk on the performance
of the system. We changek from 1 to 6, wherek = 1
is exactly the basic LRU policy. In Figure 2, we show the
caching diversity at the end of the simulation. For anyk ≥ 3,
the system using collaborative cache can keep at least 700
distinct chunks more than the system using basic LRU. The
number of distinct chunks keeps increasing although it grows
slower afterk = 4. When k = 6, the caching diversity
reaches4,500 chunks, that is, the collaborative cache with
k = 6 outperforms the basic LRU by almost60%. As can be
expected, the cooperative caching policy increases the caching
diversity by avoiding redundant chunk caching.

We demonstrate the efficiency of our proposal in Figure 3,
where we compare the ISP-friendliness of the basic LRU pol-
icy implemented in CCN to our cooperative caching strategy
with k = 6. In average, every server should upload 20.56
chunk by minute with the basic LRU system, and only 8.92
in our proposal. In other words, the ISP can expect a reduction
of around60% of the cross-domain traffic.

Moreover, we observe that the workload in basic LRU
system is not well balanced , with servers 3 and 5 exhibiting
two times more traffic than server 4. The workload depends
on the network topology: less CRs locate around the POP
which is connected with server 4, so less requests for the
old chunks, which no longer exist in the cache, arrive at
server 4. The reverse situation, which happens on server 3
and 5 causes the unbalance of the workload between servers.
However, in collaborative cache system, every server sustains
approximately the same number of requests. Since most of
the chunks for shifted streaming are kept in the collaborative
cache, a majority of the requests redirected to servers are the
requests for live streaming.

To further study the popularity of chunks stored in the
system, we investigate the time interval between last two

Fig. 2. Caching diversity: the number of distinct chunks stored in the set of
CRs when the number of labelsk varies

Fig. 3. ISP-friendliness: the number of times each server located is accessed.
The smaller is the bar, the more ISP-friendly is the caching strategy.

requests for each cached chunk. This indicates the volatility
of content in the cache: the smaller are the time intervals,
the more frequent are the read-write operations on the cache.
In average, the basic LRU policy has a more intensive usage
of the cache. We show the Cumulative Distribution Function
of the number of chunks with regard to their time interval
in Figure 4. A point at(40, 0.85) means that85% of the
chunks have been accessed at most 40 minutes ago. As
can be expected, our cooperative caching policy produces a
less intensive caching strategy. On one hand, it means that
operations on the disks are less frequent. On the other hand,
the content would have higher probability to be removed if
ISP were unable to reserve a certain storage space in the cache
because unpopular chunks should be replaced by other data.

Finally, in Table I, we compare the average response time of
each request, that is, the round trip time between the sending
of a request and the receiving of the corresponding chunk. The
response time in collaborative cache is just 40ms more than
that in the basic LRU. Thus, our collaborative cache does not
cause any significant degradation of the Quality of Experience.

REFERENCES

[1] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric
networking,” inInternational Conference on Energy-Efficient Computing
and Networking, 2010.

Fig. 4. Cumulative Distribution Function. They-axis is the ratio of chunks,
the x-axis is the time elapsed between two consecutive access on a CR.

Cache scheme Average response (ms)

Basic LRU 243.38
Cooperative cache 288.25

TABLE I
COMPARISON OFRESPONSETIME AND REQUESTEDTIME INTERVAL

[2] T. Leighton, “Improving performance on the internet,”Communications
of the ACM, vol. 52, no. 2, pp. 44–51, 2009.

[3] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network:a
platform for high-performance internet applications,”ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N.H. Briggs,
and R. L. Braynard, “Networking named content,” inProc. of the Int’l
Conf on emerging networking expe. and tech. (CoNEXT), 2009.

[5] The Cisco Visual Networking (VNI) Forecast 2009-2014, Cisco, June
2010.

[6] Three Screen Report Q1, Nielsen Company, June 2010.
[7] Evolving Requirements for On Demand Networks, Motorola, Inc., March

2009.
[8] Nielsen, “How DVRs Are Changing the Television Landscape,” Nielsen

Company, Tech. Rep., April 2009.
[9] J. Zhuo, J. Li, G. Wu, and S. Xu, “Efficient cache placement scheme

for clustered time-shifted TV servers,”IEEE Transactions on Consumer
Electronics, vol. 54, no. 4, pp. 1947–1955, November 2008.

[10] T.Wauters, W. de Meerssche, F. Turch, B. Dhoedt, P.Demeester, T. Cae-
negem, and E.Six, “Co-operative proxy caching algorithms fortime-
shifted iptv services,” inIEEE Computer Society Washington, 2006.

[11] J.-C. Zhuo, J. Li, G. Wu, and L.-Y. Zhu, “A novel data replication
and placement scheme for time-shifted tv cluster,” inInternational
Conference on Computer Science and Software Engineering, 2008.

[12] F. V. Hecht, T. Bocek, C. Morariu, D. Hausheer, and B. Stiller,
“LiveShift: Peer-to-Peer Live Streaming with Distributed Time-
Shifting,” in Proc. of 8th Int. P2P Conf., 2008, pp. 187–188.

[13] D. Gallo, C. Miers, V. Coroama, T. Carvalho, V. Souza, andP. Karlsson,
“A Multimedia Delivery Architecture for IPTV with P2P-BasedTime-
Shift Support,” inProc. of 6th IEEE CCNC, 2009, pp. 1–2.

[14] Y. Liu and G. Simon, “Distributed Delivery System for Time-Shifted
Streaming System,” in35th IEEE Conf. on Local Computer Networks
(LCN), 2010.

[15] H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. Yang, “P4P: Explicit
Communications for Cooperative Control Between P2P and Network
Providers,”P4PWG Whitepaper, May, 2008.

[16] Y. Chen, J. Leblet, and G. Simon, “On reducing the cross-domain traffic
of box-powered cdn,” inProc. of IEEE ICCCN, 2009.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isptopologies
with rocketfuel,” in SIGCOMM, 2002.

[18] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatrianin,
“Watching television over an ip network,” inProc. of Usenix/ACM
SIGCOMM Internet Measurement Conference (IMC), 2008.

