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The efficiency of indicator-based local search 
for multi-objective combinatorial optimisation 

problems

M. Basseur and A. Liefooghe and K. Le and E. K. Burke∗

Abstract

In the last few years, a significant number of multi-objective metaheuristics
have been proposed in the literature in order to address real-world problems. Lo-
cal search methods play a major role in many of these metaheuristics procedures.
In this paper, we adapt a recent and popular indicator-based selection method pro-
posed by Zitzler and Künzli in 2004, in order to define a population-based multi-
objective local search. The proposed algorithm is designed in order to be easily
adaptable, parameter independent and to have a high convergence rate. In order
to evaluate the capacity of our algorithm to reach these goals, a large part of the
paper is dedicated to experiments. Three combinatorial optimisation problems are
tested: a flow shop problem, a ring star problem and a nurse scheduling problem.
The experiments show that our algorithm can be applied with success to different
types of multi-objective optimisation problems and that it outperforms some clas-
sical metaheuristics. Furthermore, the parameter sensitivity analysis enables us to
provide some useful guidelines about how to set the parameters.

1 Introduction
The application of metaheuristics to multi-objective combinatorial optimisation prob-
lems is a popular research area. The growing interest in these methods originates from
the mid-eighties, when the first Pareto evolutionary algorithms were proposed. These
evolutionary algorithms, which use the Pareto dominance concept in their selection
process are very successful: a huge number of variants are proposed in the literature.
The Pareto-based approaches are an alternative to aggregation based methods, which
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represent a simple way to transform a multi-objective problem into a single objective
one.

In this paper, we will use a slightly different type of generic method, which can
include Pareto dominance based algorithms as well as scalarmethods. We employ the
principles proposed by Zitzler and Künzli [41], in their IBEA (Indicator-Based Evolu-
tionary Algorithm). As described by the authors,“IBEA is based on quality indicators
where a functionI assigns each Pareto set approximation a real value reflecting its
quality [45]: Then the optimisation goal becomes the identification of a Pareto set ap-
proximation that minimizes (or maximizes)I” . As such, they say,“ I induces a total
order of the set of approximation sets in the objective space, in contrast to the classical
aggregation functions like weighted sum that operate on single solutions only and gives
rise to a total order of the corresponding objective vectors” (see [41]). In [23] and [41],
different indicator-based multi-objective optimizers have been proposed. The main ad-
vantage of the indicator concept is that no additional diversity preservation mechanisms
are required, since it can be tackled in the binary indicatorat hand. Zitzler and Künzli
[41] have demonstrated that indicator-specific search can yield results which are supe-
rior to popular algorithms such as SPEA2 and NSGA-II with respect to the indicator
under consideration [43, 12]. Furthermore, since the principle is simple, it could be
adapted to various types of problem. For instance, the indicator-based search has been
proposed also in [15], and successfully adapted to optimisation with uncertainty [6].

This paper aims to propose a generic metaheuristic, which enables the optimiser to
avoid some of the drawbacks of classical methods. The designof generic metaheuris-
tics is not an easy task, since the proposed method needs to satisfy several objectives,
as described below:

• The technique should be easily scalable to different optimisation problems: to
reach this goal, the method has to be as simple as possible andavoid the ex-
ploitation of problem specificities.

• There should be low levels of parameter sensitivity: the proposed method should
be defined by a small number of parameters. Moreover, the number of parame-
ters which have a major influence on the results should be minimised.

• The methodology should be effective (as much as is possible)on different prob-
lem sizes and problem types.

In [4], we presented a generic metaheuristic which aims to satisfy these objectives.
The methodology proposed in this paper is slightly different to the approaches usually
found in the literature, which use aggregation of the objective functions, or the Pareto
dominance relation, since the binary-indicator concept isemployed. In this paper, we
will describe the method presented in [4] with further details, and we also provide a
complete analysis of its performance and its parameter sensitivity. The contributions
of this paper include:

• A description of an Indicator-Based Multi-Objective LocalSearch method, which
could be easily reused to address different problems. The multi-objective meta-
heuristic proposed in this paper has two main characteristics: (1) the employ-
ment of thebinary indicatorconcept [41], which allows us to avoid some of the
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drawbacks of using aggregation and Pareto dominance based methods; (2) the
method proposed is a population-based local search, which differs from a sig-
nificant body of the multi-objective metaheuristics literature, where evolutionary
algorithms are principally represented.

• The application of the proposed method to different combinatorial optimisation
problems: the goal is to show the scalability and the efficiency of the proposed
method on different problems. Three different multi-objective problems are
considered: a flow shop scheduling problem, a ring star problem and a nurse
scheduling problem. These problems are really different interms of type, size,
constraints and number of objective functions.

• A parameter sensitivity analysis: the proposed method is defined by a small
number of parameters. We provide an analysis that evaluatesthe parameters
that have a great influence on the results, and propose guidelines to set these
parameters for optimisers which are interested in the application of our method
to a new multi-objective problem.

The paper is organised as follows. In section 2, some definitions are introduced in
order to define multi-objective optimisation as well as the binary-indicator search prin-
ciple. In section 3, the Indicator-Based Multi-Objective Local Search (IBMOLS) algo-
rithm is described, and also its iterative version where thepopulation initialisation is
realised in different ways. In sections 4 to 6, we present three different multi-objective
combinatorial problems, which are solved using the IBMOLS algorithm. Then some
conclusions and perspectives are discussed in section 7.

2 Multi-objective binary quality indicators

Before introducing the concept of indicator-based optimisation, let us introduce some
useful notations and definitions, partially taken from [41]and [6]. LetX denote the
search space of the optimisation problem under consideration and letZ denote the
corresponding objective space. Without loss of generality, we assume thatZ = ℜn

and that alln objectives are to be minimised. Each decision vectorx ∈ X is assigned
exactly one objective vectorz ∈ Z on the basis of a vector functionf : X → Z with
z = f(x). The mappingf defines the evaluation of a solutionx ∈ X, and often one is
interested in those solutions that are Pareto optimal with respect tof . A Pareto optimal
solution is defined as follows:

Definition 1 x ∈ X is said to be Pareto optimal if and only if a solutionxi ∈ X which
dominatesx does not exist.

Definition 2 A decision vectorx1 is said to dominate another decision vectorx2 (writ-
ten asx1 ≻ x2), if fi(x1) ≤ fi(x2) for all i ∈ {1, . . . , n} andfj(x1) < fj(x2) for at
least onej ∈ {1, . . . , n}.

The relationx1 ≻ x2 means that the solutionx1 is preferableto x2. The main goal
is to find a high quality approximation of the Pareto optimal set. What constitutes ’high
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quality’ very much depends on the decision maker and the optimisation scenario. As
in [41], we here assume that the optimisation goal is given interms of a binary quality
indicatorI.

A binary quality indicator [45] can be thought of as acontinuous extensionof Pareto
dominance on sets of objective vectors. The valueI(A,B) quantifies the difference in
quality between two sets of objective vectorsA andB. Now, if R denotes the set of
Pareto optimal solutions (or any other reference set), thenthe overall optimisation goal
can be formulated as:

argmin
A∈M(X) I(A,R) (1)

whereM(X) is the space ofobjective vector sets. SinceR is fixed,I actually repre-
sents a unary function that assigns, to each Pareto set approximation, a real number;
the smaller the number, the more preferable is the approximation.

The indicator could be used to compare two single solutions,or a single solution
against an entire population. With such a comparison, the indicator can be used to
establish the selection process of evolutionary algorithms [41]. Indeed, the solution to
delete (respectively select) from the population should bethe one which has the worst
(respectively best) indicator value according to the rest of the population. In other
words, during the selection process, the goal is to delete the solutions with the smallest
degradation of the overall quality of the population, in terms of the quality indicator
being used.

In order to be considered as a natural extension of the Paretodominance concept,
the defined indicator has to be compliant with the Pareto dominance relation. As de-
fined in [41], a binary indicatorI has to verify the dominance preserving property
(definition 3). Let us note that throughout the paper, we willwrite I(x,P) instead of
I({x},P) when a set is reduced to a single solutionx, to simplify our notations. More-
over, in order to avoid confusion with singleton solutions,sets of solutions are written
in boldface.

Definition 3 A binary indicatorI is denoted as dominance preserving if:
(1) for all x1, x2 ∈ X, x1 ≻ x2 ⇒ I(x1, x2) < I(x2, x1), and
(2) for all x1, x2, x3 ∈ X, x1 ≻ x2 ⇒ I(x3, x1) ≥ I(x3, x2).

In the following, we first define some possible binary indicators, then we present
a detailed example. We first propose to use the two indicatorspresented in [41]: The
(additive) epsilon indicator (Iǫ - equation 2) and the hypervolume indicator (IHD -
equation 3).

Iǫ(x1, x2) = maxi∈{1,...,n}(fi(x1)− fi(x2)) (2)

Iǫ(x1, x2) (wherex1 ∈ X andx2 ∈ X) represents the minimal translation (in
objective space) on which to executex1 so that it dominatesx2 (see figure 1). Let us
note that the translation could take negative values. We assume, throughout the paper,
that all the objective functions are normalised.

IHD(x1, x2) =

{

H(x2)−H(x1) if x2 ≻ x1 or x1 ≻ x2

H(x1 + x2)−H(x1) otherwise
(3)
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Figure 1: Illustration of theIǫ indicator applied to two solutionsx1 andx2 (left hand
side: no dominance relation betweenx1 andx2; right hand side:x2 ≻ x1) c©[4].
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Figure 2: Illustration of theIHD indicator applied to two solutionsx1 andx2 (left hand
side: no dominance relation betweenx1 andx2; right hand side:x2 ≻ x1) c©[4].

H(x1) represents the volume of the space that is dominated byx1. IHD(x1, x2)
represents the volume of the space that is dominated byx2 but not byx1 (figure 2).

In order to evaluate the quality of solutions according to a whole populationP and
a binary indicatorI, several different approaches could be defined as follows:

• One possibility is to simply sum up the indicator values for each population
member with respect to the rest of the population (equation 4). The value ob-
tained takes into account every solution in the population.

I(P \ {x}, x) =
∑

z∈P\{x}

I(z, x) (4)

• One could be interested in finding the solution which obtainsthe minimal indica-
tor value againstx, i.e. the best solution according tox andI (equation 5). The
computed value is not influenced by dominated solutions fromthe population.

I(P \ {x}, x) = minz∈P\{x}(I(z, x)) (5)

• Lastly, we consider a trade off between these two approaches, which is an ad-
ditive approach that amplifies the influence of dominating population members
over dominated ones (equation 6, whereκ > 0 represents the scaling factor). In
our experiments, we will use this formulation for theIǫ andIHD indicators.

I(P \ {x}, x) =
∑

z∈P\{x}

−eI(z,x)/κ (6)
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Note that whenκ → 0, the same order relation between solutions is obtained with
equations 5 and 6, with one difference: when two solutions have the same minimal
indicator value with equation 5, equation 6 enables a decision between them according
to the second minimal indicator value computed for these solutions. Then, values near
to 0 are preferred forκ.

Iǫ andIHD are proved to be dominance preserving in [41]. Moreover, most of the
classical Pareto ranking techniques could be used to define binary indicators, and use
equation 5 or 4 to combine the indicator values (it is easy to show that these indica-
tors also verify the dominance preserving relation). The expressions obtained are very
simple and could be used as a comparison of the different available indicators. Some
classical multi-objective ranking techniques from the literature are adapted into binary
indicators below, without taking into account the diversity maintaining mechanisms of
the corresponding algorithms. In the following, we proposeto adapt three classical
ranking methods into binary indicators.

First, theWAR ranking method proposed by Bentley and Wakefield [7] is simi-
lar to the binary indicator defined in equation 7. In this equation, we keep only the
Pareto dominance relation part of the original method proposed by Bentley and Wake-
field, since one goal of this paper is to evaluate the quality of Iǫ andIHD indicators
according to Pareto dominance based indicators. By using the additive combination of
the indicator values, we obtain equation 8, which corresponds approximatively to the
ranking method of Bentley and Wakefield.

IBen(x1, x2) =
∑

i∈{1,...,n}

−φ(fi(x1), fi(x2)), (7)

with φ(fi(x1), fi(x2)) =







1 if fi(x1) < fi(x2)
1
2 if fi(x1) = fi(x2)
0 otherwise

IBen(P, x) =
∑

z∈P

(IBen(z, x)) (8)

The ranking method of Fonseca and Flemming [16] (equations 9and 10) can be
adapted in the same way. We obtain a similar formulation which, in this case, exactly
corresponds to the original ranking method.

IFon(x1, x2) =

{

−1 if x1 ≻ x2

0 otherwise
(9)

IFon(P, x) =
∑

z∈P

(IFon(z, x)) (10)

Lastly, the well known ranking method proposed by Goldberg [17] and used in
NSGA and NSGA-II by Srinivas and Deb [36] is described by equations 11 and 12.
Note that this indicator uses themincombination method (equation 5), and we consider
that the fitness value ofx1 is known.

ISri(x1, x2) =

{

ISri(P, x1)− 1 if x1 ≻ x2

0 otherwise
(11)
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ISri(P, x) = minz∈P(ISri(z, x)) (12)

With equations 8, 10, and 12, we have formulated several classical Pareto rank-
ing methods (from [7], [16] and [36] respectively). The ranks obtained by 10 and
12 during the selection process correspond exactly to the ranks obtained by the cor-
responding Pareto ranking method. Note that several ranking methods, such as those
used in SPEA2 [43], are not adaptable into binary indicators.

The principle of indicator-based search, as described in [41], consists of using bi-
nary indicators to evaluate thefitnessof multi-objective solutions. Thefitnesscomputed
are used during the selection process of the algorithm. We will apply all the indicators
presented in this section as selection operators for the IBMOLS algorithm, which is
presented in the next section.

In figures 3, 4, 5, 6 and 7, examples of fitness computation using the binary in-
dicatorsIǫ, IHD, IBen, IFon andISri respectively are provided. In these figures, the
same populationP is evaluated using the different indicators.P contains 8 individuals,
defined as follows (f being a biobjective vector function):

P = {x1, . . . , x8}, with















































f(x1) = (11, 2)
f(x2) = (5, 3)
f(x3) = (8, 4)
f(x4) = (13, 4)
f(x5) = (9, 6)
f(x6) = (4, 7)
f(x7) = (2, 8)
f(x8) = (6, 10)

(13)

Let W be the set of solutions with the worst efficiency change according to the
binary indicator being used. In our example,W = {x5} usingIǫ, W = {x4} using
IHD, W = {x8} usingIBen, W = {x4, x8} usingIFon andW = {x4, x5} using
ISri. On this very simple example,W is different for each binary indicator, which
allows us to expect that the choice of a good binary indicatorcan have a great influence
on the results obtained by a binary indicator based metaheuristic.

3 Indicator-based multi-objective local search

Most multi-objective optimisation algorithms from the literature are evolutionary al-
gorithms, since such methods are easily adaptable to a multi-objective context. In-
deed, evolving a population of solutions is a natural way to find a set of compromise
solutions. Note that the binary quality indicator principle was first proposed within
a multi-objective evolutionary algorithm [41]. However, local search algorithms are
known to be efficient for many real-world applications, and especially on large-scale
problems. Several papers propose local search for multi-objective optimisation. In
[24], a multi-objective local search is based on the dominance relation between the
considered solution and an archive of compromise solutions, and is incorporated into
an evolution strategy method; this algorithm is known as thePareto Archived Evolu-
tion Strategy. In [20], a Multi-Objective Genetic Local Search was proposed. The local
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search method, which is based on aggregations of the objective functions, is incorpo-
rated within a multi-objective genetic algorithm. In [21],the Tabu search principle is
applied to multi-objective optimisation. Several other papers propose multi-objective
local search approaches, such as in [39, 31, 40, 34]. Tutorials on multi-objective tech-
niques are presented in [42, 11]. Some application areas aregiven in [14], includ-
ing portfolio optimisation, airline operations, railway transportation, radiation therapy
planning and computer networks.

The algorithm presented in this section has been designed according to several
specificities which compose an original, simple and general-purpose search method:

• This is an original algorithm, since a major part of multiobjective local searches
from the literature are based either on the Pareto dominancerelation between
solutions or on aggregation methods.

• The proposed algorithm has only a few parameters.

• No diversity preservation mechanism is required. The diversity of the population
should be contained and improved by the use of the binary indicator defined by
the decision maker.

• The local search deals with a fixed population size, which enables it to find
multiple non-dominated solutions in a single run, without any specific mech-
anism dedicated to control the number of non-dominated solutions during the
local search process.

The indicator-based multi-objective local search (IBMOLS) described below is de-
fined mainly for discrete combinatorial problems and needs some adaptation in order
to be applicable to continuous problems. IBMOLS uses the basic principle of local
search and is focused upon binary indicator-based fitness assignment. We first present
the IBMOLS baselines, then we discuss the parameter values.

3.1 Algorithm description

The IBMOLS algorithm maintains a populationP. Then it generates the neighborhood
of an individual inP until a good solution is found, i.e. one which is better than at least
one solution ofP in terms of the indicator being used. By iterating this principle to all
the solutions inP, we obtain a local search step. The entire local search is terminated
when the archiveA of non-dominated solutions has not received any new solution
during a complete local search step. A detailed descriptionof IBMOLS is outlined in
algorithm 1, which is taken from [4].

In this paper, the neighborhood will be explored in a random order, each neighbor
being generated once at most. It means that while any interesting neighbor is found, we
pick randomly a new neighbor in the set of unexplored neighbors. The neighborhood
generation stops when an interesting solution is found or when the entire neighborhood
is explored. In this algorithm, we choose to stop the neighborhood generation once the
first improving solution is found (first neighboring solution that improves the quality
of P with respect toI). Then, we do not explore the entire neighborhood for keeping
the best neighbor. Two main reasons guided our choice: (1) itallows to speed up
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the convergence of the population, since most of the time we generate only a small
part of the neighborhood; (2) The selection of the best neighbor leads to deterministic
local search steps (one possible way from initial solution to a set of local optima).
The selection of a random improving move allows us to reach different local optima
from a single initial solution. This issue is interesting since the local search will be
iterated. Lastly, a recent study show that, in many cases, this neighborhood search is
more efficient that best move search in many multiobjective cases [30].

Moreover, we assume that objective values of all solutions are normalised; to
achieve this, the minimummi and maximumMi value of each objective functionfi in
the populationP are computed first:

{

mi = minx∈P(fi(x))
Mi = maxx∈P(fi(x))

(14)

Then each objective functioni of every individualx is normalised as follows:

Fi(x) =
fi(x)−mi

Mi −mi
(15)

whereFi(x) is the normalisedith objective function of the individualx. The extreme
values of the population are computed after the initialisation process and after each
local search step (see algorithm 1). Then, to compute an indicator valueI(x1, x2),
normalised values of objective functionsFi(x) are employed. Note that extreme values
are not updated after each solution generation, but after each local search step, only
when a new solution is introduced in the population. When a new maximal valueNMi

replaces an old oneMi, the objective values of the solutionsx ∈ P can be updated
easily (note that a similar equation is used when a new minimal value is found):

Fi(x) =
fi(x)−mi

NMi −mi
(16)

This change does not affect solution fitness values if we use dominance-based in-
dicators (IBen, IFon andISri). When usingIǫ or IHD, equation 16 leads to a modi-
fication of solution fitness values, since it is computed according to objective function
difference and also equation 6. Then, each time a bound is updated, the fitness of each
solution in the population has to be computed entirely. Thisstep seems a little bit
expensive in time, but it is performed only a few time during alocal search, since it
is applied only when a candidate solution is selected to be introduced in the popula-
tion, and at least one of the normalised objective functionsof this solution is out of the
interval[0, 1].

Local search methods are usually used in an iterative way, inorder to increase
the chance of finding good local optima. In our experiments, we will test an iterative
IBMOLS algorithm. Iterated local search algorithms imply the use of a solution(s)
initialisation function for each local search. The overallexecution process, outlined
in algorithm 2 works as follows: a Pareto set approximationPO is maintained and
updated with the solutions found by IBMOLS. After each localsearch, a new initial
population is created for the next IBMOLS execution, using the generatePopulation
function (see algorithm 2, taken from [4]).
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Algorithm 1 Baseline Algorithm: IBMOLS
Input : N (population size)

I (binary indicator)
Output : A: (Pareto approximation set)
Step 1 - initialization: Generate an initial populationP of sizeN
Step 2: A← Non dominated solutions ofP
Step 3 - fitness assignment: Calculate fitness values of individualx in P, i.e., Fit(x) =
I(P \ {x}, x).
Step 4 - local search step: For allx ∈ P do:
update, for each objective functionfi, the minimalmi and maximalMi values inP (for
objective functions normalisation)
repeat
1) x∗ ← one unexplored neighbor ofx
2) P ← P ∪ x∗ 3) computex∗ fitness:I(P \ {x∗}, x∗)
4) update allz ∈ P fitness values:Fit(z)+ = I(x∗, z)
5) ω ← worst individual inP
6) removeω from P

7) update allz ∈ P fitness values:Fit(z)− = I(w, z)
until all neighbors are explored orω 6= x∗

Step 5 - termination: A ← Non dominated solutions ofA
⋃

P. If A does not change,
then returnA; else perform another local search step.

Algorithm 2 iterated IBMOLS algorithm
Input : N (population size)

I (binary indicator)
Output : PO: (Pareto approximation set)
Step 1: PO← ∅
Step 2: while running time not reached do
1) P← generatePopulation(PO, N)
2) A← IBMOLS output (initialised withP)
3) PO← non dominated solutions ofPO ∪A

Step 3: ReturnPO.

Iǫ indicator and extreme solutions: The shape of the Pareto front is convex for
many real world multiobjective problems. In this case, if the population contains only
non-dominated solutions, the worst solution will be often an extreme solution, and
deleting extreme solutions drive to a loss of diversity in the objective space. In order
to avoid this problem, we needed to slightly modify the IBMOLS algorithm when the
Iǫ indicator is used. The algorithm automatically assigns thebest possible fitness to
extreme non-dominated solutions. This allow to avoid deleting these extreme solutions.
Experiments show that this modification can have a great influence on the results.

3.2 Parameters

In order to design a general-purpose metaheuristic, the number of parameters which are
sensitive to the problem treated has to be reduced as much as possible. The IBMOLS
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algorithm is defined only by three main parameters. They can be defined dynami-
cally during the search or fixed according to the problem instance under consideration.
These parameters are the population size, the binary indicator, and the function which
initialises the population. We do not consider the neighborhood structure, which is a
problem-oriented parameter. We discuss these parameters below.
Population size:

The most intuitive and classical multi-objective local search consists of maintaining
a setA of non-dominated solutions, then generating the neighborhoodA′ of solutions
in A, then extracting the non-dominated solutions ofA ∪ A

′, and repeating the pro-
cess while improvement is realised [14]. The main problem with this algorithm is the
population size which is not fixed, and which is heavily dependent upon the problem,
objective functions and space dimension being considered.In extreme cases, one can
obtain, during the search, only one non-dominated solution, which implies a significant
loss of diversity, or a number of non-dominated solutions which grows exponentially
and which radically slows down the convergence and can also leads to storage prob-
lems. The IBMOLS algorithm deals with a fixed population size, which allows us to
avoid this problem. In this paper, we will provide a performance analysis with differ-
ent population sizes. Our goal is to provide guidelines for future applications of the
IBMOLS algorithm to combinatorial optimisation problems.
Binary indicator:

The evaluation of different binary indicators is the main objective of the paper. We
will compare the efficiency of two binary indicators (Iǫ andIHD) previously presented
in [41] against other ones, which are based on the dominance relation (IBen, IFon

andISri). The indicator used in the IBMOLS algorithm has a significant influence
on determining its efficiency. Experiments are used to determine the most efficient
indicators.
Population generation:

In most metaheuristics, the initial population is randomlycreated. In our experi-
ments, the initial population is also randomly initialised. However, once an entire local
search is terminated, the function which generates a new population is very important:
Even if the initial population is entirely created randomly, it seems crucial to keep in-
formation about good solutions when we iterate the local search process. This issue is
often specific to the problem treated.

Naturally, we also have to define a neighborhood operator in order to apply the
IBMOLS algorithm to a specific problem. These parameters arediscussed in the ex-
perimental sections. In the following, we aim to analyse theefficiency of our algorithm
on different combinatorial problems. The goal is firstly to evaluate the ability of IB-
MOLS to be adapted on different types of problems. Secondly,we aim at evaluating
the efficiency of the IBMOLS algorithm on these problems and to provide guidelines
on how to choose parameters properly according to the problem considered. A signif-
icant number of important issues has to be considered in order to provide a complete
analysis of a generic metaheuristic. These issues include:

• Evaluating the difficulties encountered when the method is applied to different
optimisation problems.

• Comparing the method with well-known methods.

12



• Comparing the method with specific approaches proposed for the problem under
consideration.

• Evaluating the ability of the method to be efficient on large and small search
spaces.

• Analysing the behavior of the method when a small or large execution time is
available.

• Evaluating the parameter sensitivity of the method.

Furthermore, this list could be enhanced by issues directlyrelated to the multi-
objective aspect of the problem under consideration, such as the capacity to find a
diversified set of non-dominated solution, the ability to explore different shapes of
objective space (for example, convex, concave or discontinuous Pareto fronts) or the
efficiency of the method when the number of objective functions increases. In our
experiments, we were not able to tackle all these issues, butwe provide some useful
experiments in order to take into account the most critical issues.

In the three next sections, we will apply the IBMOLS algorithm to three multi-
objective optimisation problems which are derived from real world situations. We
propose three different case studies in order to evaluate the level of generality of the
IBMOLS algorithm. Moreover, we will analyse the sensitivity of the parameters in
order to extract some useful information for the application of the IBMOLS algorithm
to other real world multiobjective combinatorial optimisation problems.

4 Application I: A Flow-Shop problem

In this section, we propose the application of the IBMOLS algorithm to a bi-objective
Flow-shop Scheduling Problem that has appeared in the scientific literature over the
years. Firstly, we give some details about this optimisation problem and the param-
eter values used for the experiments. Then we describe our experimental design and
also how we evaluate the quality of each algorithm tested. Lastly, we give the results
obtained and we extract some useful information from these results. In this section,
we aim to perform a lot of experiments on this problem in orderto evaluate the effi-
ciency of the method, evaluate its parameter sensitivity, and compare theIHD andIǫ
indicators to dominance-based indicators.

4.1 Problem description

The Flow-shop Scheduling Problem (FSP) is one of the numerous scheduling prob-
lems. Scheduling problems are often studied with a multi-objective approach, since
many different objective functions can be considered, suchas sum or maximum com-
pletion time, sum or mean tardiness among others.

The FSP can be presented as a set ofn jobs{J1, J2, . . . , Jn} to be scheduled onm
machines{M1,M2, . . . ,Mm}. Machines are critical resources: one machine cannot
be assigned to two jobs simultaneously. Each jobJi is composed ofm consecutive
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tasks{ti1, . . . , tim}, wheretij represents thejth task of the jobJi requiring the ma-
chinemj . To each tasktij is associated a processing timepij . Each jobJi must be
achieved before its due datedi. In our study, we are interested in the permutation FSP
where jobs must be scheduled in the same order on all the machines (see figure 8).

M3

M2

M1   J2 

  J2

  J4   J5   J1   J3   J6

  J5   J1 

  J1 

  J4   J6   J3 

  J2   J4   J5   J6   J3 

Figure 8: Permutation Flow-Shop solution: 6 jobs scheduledon 3 machines.

We aim to minimize two objectives:Cmax, the makespan (total completion time),
andT , the total tardiness. Each tasktij is scheduled at the timesij . The two objectives
can be computed as follows:

Cmax = max
i∈[1...N ]

{siM + piM}

T =

n
∑

i=1

[max(0, siM + piM − di)]

In the Graham et al. notation [18], this problem is denoted: F/perm, di/(Cmax, T ).
Overviews of multi-objective methods applied to scheduling are given in [27] and

[32]. In [29], Cmax minimisation has been proved to be NP-hard for more than two
machines. The total tardiness objective T has been studied only a few times form
machines [22], but total tardiness minimisation for one machine has been proved to be
NP-hard [13]. The evaluation of the performances of our algorithm has been realised
on some Taillard benchmarks for the FSP [37], which have beenextended to the bi-
objective case [38]1.

4.2 Parameter settings

Providing a complete parameter sensitivity analysis of IBMOLS, using different binary
indicators, population initialisation methods and population sizes requires a huge num-
ber of experiments, especially since we aim to provide statistical analysis. In order to
reduce the time of experiments, we analyse the sensitivity of each parameter separately.
When the sensitivity of a parameter is not tested, its value is defined as follows:

• Generation of the initial population for local search: random mutations applied
on the archived solutions. The number of mutations applied to the original so-
lution is 0.3n, wheren is the permutation (decision vector) size. A random
mutation consists of replacing a solution by a randomly chosen neighbor with
respect to the neighborhood used by the local search algorithm.

1benchmarks available athttp://www.info.univ-angers.fr/pub/basseur/bench.html
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• Population sizeN : defined according to the size of the instance, as proposed in
[4] (see table 1).

• Binary indicator:Iǫ.

For theIǫ and IHD indicators, the scaling factorκ has been set to10−3. IHD

needs a reference point, which has been set to[2, 2] (normalised values), as suggested
in [41]. The running time allowed to each algorithm is fixed and defined according to
the instance size (see table 1).

Table 1: Parameter setting: Population size N and running time T.ta #i #j #k rep-
resents thekth bi-objective instance withi jobs andj machines.

Instance N T Instance N T
ta 20 5 01 10 20” ta 20 20 01 10 2’
ta 20 5 02 10 20” ta 50 5 01 10 5’
ta 20 10 01 10 1’ ta 50 10 01 20 10’
ta 20 10 02 10 1’ ta 50 20 01 20 20’

The last parameters are those which are directly related to the problem considered:
the individual coding and the neighborhood operator.

• Individual coding: sequence of jobs. A solution of a problemwith n jobs andm
machines is represented by a permutation of sizen (the jobs have to be scheduled
in the same order on all machines [5]). Then, the associated desion space is of
sizen!.

• Neighborhood operator: insertion of theith job to the positionj. The jobs be-
tween positioni andj are shifted. In [37], this operator has been shown to be
more efficient than exchange operator forCmax minimisation.

4.3 Experimental design

As shown in [3], genetic algorithms, and especially NSGA-II, are strongly outper-
formed by local search based algorithms, on this problem. However, as shown in [3],
the application of a basic local search algorithm, keeping all the non-dominated solu-
tions during the neighborhood search, implies a very long computation time on large-
size instances. IBMOLS enables the combination of the localsearch principle and of a
fixed-size population.

With this set of experiments, we do not aim to show the superiority of the IBMOLS
algorithm against other approaches. This first set of experiments mainly aims at eval-
uating the parameter sensitivity of IBMOLS. To reach this goal, we perform three sets
of experiments, using different binary indicators, population initialisation methods and
population sizes. Note that we do not evaluate the IBMOLS algorithm against other al-
gorithms from the literature, but we aim to evaluate the quality of the binary indicators
derived from these studies (the classical multi-objectiveevolutionary algorithms, such
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as NSGA-II or SPEA2 have their own specificities, for instance the diversity maintain-
ing mechanism).

The quality assessment protocol works as follows: we first create a set a 20 runs
with different initial populations for each algorithm and each benchmark instance.
Runs are realised on a P4 - 2.4GHz machine, with 1Gb RAM. The performance evalu-
ation protocol described below will be used for the three optimisation problems tested
in this paper.

To evaluate the quality ofk different setsA0 . . .Ak−1 of non-dominated solu-
tions obtained on a problem instance, we first compute the setPO

∗, which corre-
sponds to the set of non-dominated solutions extracted fromthe union of all the so-
lutions obtained from the different executions. Moreover,we define a reference point
z = [w1, w2], wherew1 andw2 correspond to the worst value for each objective func-
tion in A0 ∪ · · · ∪ Ak−1. Then, to evaluate a setAi of solutions, we compute the
difference betweenAi andPO

∗ in terms of a performance indicator. In particular, we
evaluate our outputs using theR metric, ǫ and enclosed hypervolume indicators, us-
ing the same experimental protocol described later in this section. Let us note that we
obtain similar results using each assessment indicator and/or statistical tests, i.e. there
are no significant differences obtained with each possible indicator or statistical test.
Then, in this paper, we will focus on the enclosed hypervolume indicator only [44].
This hypervolume difference has to be as close as possible tozero (figure 9).

Ai

PO*

Z

Figure 9: Illustration of hypervolume difference between areference setPO
∗ and a

set of non-dominated solutionsAi (shaded area)c©[4].

For each algorithm, we compute the 20 hypervolume differences corresponding to
the 20 runs. Once the hypervolume differences are computed,there are two main ways
to merge these values. The simplest way consists of computing the average hyper-
volume difference value for each algorithm tested. As suggested in [25], it is more
representative to perform statistical tests on the sets of hypervolume differences, in or-
der to evaluate with which confidence level an algorithmA outperforms an algorithm
B (with respect to hypervolume differences).

Unfortunately, showing the entire statistical result requires a lot a space, since we
have to show the statistical analysis result for each pair ofruns, for each problem in-
stance. We are not able to provide these heavy tables, especially since we want to
provide a range of experiments on different problems. We propose a balance between
statistical analysis and average values, which allows us togive the maximum amount
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of information within a small table. Our tables will providetwo different pieces of
information:

• The average hypervolume difference is computed for each algorithm and each
problem instance. This enables us to have a good idea of the overall performance
of each approach.

• In order to refine the results, some values are given inbold style, which means
that the corresponding algorithm isnot statistically outperformed by the algo-
rithm which obtains the best average result. To simplify, the results in bold cor-
responds to the best methods (statistically) on the probleminstance considered.

We use the Mann-Whitney statistical test, as described in [25]. We obtainP val-
ues corresponding to the hypothesis“the first algorithm performs better than the sec-
ond one in terms of hypervolume difference”. This is equal to the lowest significance
level for which the null-hypothesis (the medians are drawn from the same distribution)
would still be rejected. In our experiments, we say that an algorithmA outperforms an
algorithmB if the Mann-Whitney test provides a high confidence level which indicates
that theP -value of the hypothesis“A performs better than B”is lower than5%. More
details are given in [25].

In order to allow a graphical comparison of stochastic multi-objective optimisers,
the concept of attainment function is described in [19]. Theattainment functionαA(z)
corresponds to the probability that at least one element of anon-dominated setP dom-
inates a reference pointz (refer to [19] for more details), whereP is obtained by a
single execution of an algorithmA.

The test procedure has been undertaken with the performanceassessment pack-
age provided by Knowles et al. [25], which can be found at the following URL:
http://www.tik.ee.ethz.ch/pisa/assessment.html .

4.4 Experiments

We provide a very detailed experimental analysis of this problem. Our analysis is
divided into three parts which evaluate the binary indicators, the initialisation strategies
and the population size impact, results being given respectively in tables 2, 3 and 4.

4.4.1 Binary indicators

The first set of experiments which are carried out are dedicated to evaluating the differ-
ent binary indicators. The results obtained with five different indicators (Iǫ, IHD , IBen,
ISri andIFon), are shown in Table 2. We can extract several pieces of information for
each indicator:

• Iǫ: This indicator obtains the best average results on many instances. Indeed,
Iǫ statistically outperforms all the other indicators for the4 largest instances
(ta 20 20 01, ta 50 5 01, ta 50 10 01 and ta 50 20 01). Iǫ obtains the best
average value and outperforms every indicator exceptIHD , on theta 20 10 01
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andta 20 10 02 instances. On the two smallest instances,Iǫ does not outper-
form many indicators. However,Iǫ is only shown to be statistically worse than
IFon on theta 20 5 01 andta 20 5 02 instances.

• IHD : This indicator obtains good overall results. Indeed, thisis the only indi-
cator which does not perform statistically worse thanIǫ on theta 20 10 01 and
ta 20 10 02 instances. Moreover, even ifIǫ outperformsIHD on the two largest
instances,IHD obtains a good average hypervolume difference and reaches the
second position within the different indicators. On the four other instances
(ta 20 5 01, ta 20 5 02, ta 20 20 01 andta 50 5 01), IHD obtains good av-
erage results.

• IFon: This indicator obtains the best results within the set of indicators which
are only based on the dominance relation. The overall results of this indicator are
comparable to theIHD indicator. However, good performances are obtained on
different instances.IFon obtains the best results for the two smallest instances,
and the quality of the algorithm seems to decrease when the problem size in-
creases.

• ISri: The average results obtained are similar, but always worse, to those ob-
tained byIFon.

• IBen: This indicator performs worse than the other indicators for all the in-
stances.

To summarise, theIǫ andIHD indicators tend to outperform the Pareto dominance
based indicators, especially when the problem size increases.Iǫ performs slightly bet-
ter thanIHD . Furthermore, a reference point has to be set forIHD . We can conclude
that theIǫ indicator should be used to solve the bi-objective FSP.

To illustrate the efficiency of the different binary indicators, we have represented
the empirical attainment function computed for theta 50 20 01 instance in figure 10,
taken from [4]. This figure illustrates the minimal values inthe objective space which
are attained with at least90% of the runs. This shows the superiority ofIǫ andIHD

against the other indicators on the largest instance considered.

Table 2: Indicator comparison.
Indicator Iǫ IHD IBen ISri IFon

ta 20 5 01 0.005 0.077 0.117 0.009 0.002
ta 20 5 02 0.070 0.062 0.097 0.020 0.010
ta 20 10 01 0.002 0.004 0.045 0.010 0.004
ta 20 10 02 0.018 0.021 0.075 0.024 0.022
ta 20 20 01 0.001 0.011 0.045 0.007 0.004
ta 50 5 01 0.009 0.059 0.271 0.076 0.034
ta 50 10 01 0.055 0.089 0.341 0.151 0.099
ta 50 20 01 0.058 0.077 0.349 0.182 0.111
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Figure 10: Empirical attainment functions obtained by the different indicators on the
ta 50 20 01 instance. The lines correspond to the limit of the objectivespace, which
is attained by at least 90% of the runs carried out with a specific binary indicatorc©[4].

4.4.2 Population generation methods

We propose three different functions corresponding to different implementations of
the generatePopulation function used in algorithm 2. The three functions, can be
outlined as follows:

• Rand: generateN random individuals.

• Cro: generate a crossover output from2N parents selected randomly fromPO.
Each solution can be selected once. IfPO size< 2N , then select allPO

individuals once, and fill the missing parents pool with random individuals. The
recombination operator applied is the two point crossover used in [5].

• RM: Apply random mutations onN randomly selected and different solutions
of PO, such as in a basic simulated annealing algorithm [1]. Each solution can
be selected once. A predefined number of random moves are applied on each
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solution using the neighborhood operator used by the local search algorithm. If
PO size< N , then select allPO individuals, and fill the missing pool with
random individuals (i.e. random permutations).

Table 3 presents the results obtained using three differentpopulation generation
methods. We compare seven different sets of executions, since we performed five dif-
ferent sets of executions forRM method. Indeed,RM consists of applying random
mutations to locally optimal solutions regarding to the neighborhood operator being
used, so the amount of random mutations to apply had to be defined. In these experi-
ments, we tested5%, 10%, 20%, 30% and50% of the problem size.

The results show that theRM initialisation method performs better thanRandand
Cro for all the instances. TheCro andRandinitialisation methods obtain a better av-
erage hypervolume difference thanRM with 5% mutation rate on only one instance:
ta 20 5 01. As a first conclusion, we can say thatRM is the most efficient initialisa-
tion algorithm, even ifCro efficiency can be improved according to the quality of the
crossover operator being used.

The results obtained with the differentRM initialisations significantly depend upon
the problem instance considered. On large-size instances (ta 50 5 01, ta 50 10 01
and ta 50 20 01), applying5% or 10% of random mutations seems to be the best
choice. This result can be explained since the execution time is limited, then it is
better to search around the most useful solutions (small mutation rate applied on the
best solutions) rather than diversify the search (large mutation rate applied on the best
solutions).

On the other instances, a5% mutation rate performs worse than other mutation
rates in many cases. The best mutation rate depends on the instance considered. On
the ta 20 5 01 instance,10% and20% mutation rates obtain the best results. On the
ta 20 5 02 instance,20% and30% rates outperform the other mutation rates. On the
ta 20 10 01 instance,50% obtains the best average hypervolume difference, but it
does not outperform results obtained with the20% and30% mutation rates. On this in-
stance, it seems to be very important to diversify the searchby applying a lot of random
mutations on the optimal solutions. On theta 20 10 02 instance, a10% mutation rate
outperforms most of the other mutation rates except the5% mutation rate which ob-
tains good results, even when the size of this instance is small. Lastly, onta 20 20 01,
results obtained with different mutation rates are comparable, even if the best average
result is obtained with a20% mutation rate.

As a conclusion, theRM population generation method seems to be an effective
way to initialise populations. Furthermore, we can suggestthe use of a small muta-
tion rate to solve large-size problems. For small-size problems, it is not clear how to
choose the best mutation rate. Intuitively, creating solutions by applying high muta-
tion level corresponds to more diversification in the search. On small instances, the
diversification enables the exploration of most parts of thesearch space, in order to
find the optimal solutions. On large instances, we can only focus on small parts of the
search space, then it is better to focus the search on areas ofthe solution space which
is known to contain good solutions. Perhaps it would be interesting to define this value
adaptively during the search procedure. Further experiments are provided in the next
sections, in order to obtain more knowledge about how to set this parameter.
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Table 3: Initialisation strategy comparison.
Init strategy RM Rand Cro
RM rate 5% 10% 20% 30% 50%
ta 20 5 01 0.063 0.018 0.007 0.011 0.009 0.039 0.024
ta 20 5 02 0.087 0.039 0.011 0.013 0.018 0.129 0.140
ta 20 10 01 0.005 0.006 0.004 0.004 0.003 0.007 0.014
ta 20 10 02 0.024 0.021 0.030 0.028 0.028 0.035 0.063
ta 20 20 01 0.010 0.003 0.002 0.003 0.003 0.013 0.060
ta 50 5 01 0.024 0.029 0.050 0.061 0.079 0.122 0.117
ta 50 10 01 0.080 0.066 0.087 0.102 0.114 0.169 0.263
ta 50 20 01 0.081 0.081 0.107 0.115 0.136 0.174 0.134

4.4.3 Population size

In many population-based metaheuristics, such as evolutionary algorithms, the popula-
tion size is a significant parameter. Generally, the resultsare better when the population
size increases and when enough computational time is employed. When the execution
time is limited, the population size has to be set in order to allow the algorithm to
converge just before the time limit.

Table 4 shows the results obtained using different population sizes. The first impor-
tant result which can be extracted from this set of experiments is that the IBMOLS al-
gorithm performs well using a small population size: the largest population size tested
(50 individuals) never obtains the best result, for all problem instances. However, the
best population size seems to increase according to the sizeof the problem. For most
of the smallest instances, the best results are achieved with less than 10 individuals in
the population, but for the two largest instances,ta 50 10 01 andta 50 20 01, the best
population sizes lay in the range of 15 to 30 individuals. Then, in order to solve new in-
stances, it could be interesting to evaluate the average results when the population size
is fixed linearly according to the numberN of jobs times the numberM of machines,
N.M
10 for example.

Table 4: Population size comparison.
Population size 3 5 8 10 15 20 30 50
ta 20 5 01 0.002 0.004 0.006 0.009 0.010 0.015 0.025 0.065
ta 20 5 02 0.005 0.004 0.015 0.038 0.037 0.081 0.099 0.147
ta 20 10 01 0.013 0.007 0.004 0.005 0.006 0.007 0.012 0.016
ta 20 10 02 0.032 0.027 0.028 0.025 0.024 0.023 0.026 0.038
ta 20 20 01 0.008 0.003 0.002 0.002 0.002 0.004 0.006 0.017
ta 50 5 01 0.071 0.046 0.034 0.034 0.043 0.061 0.067 0.079
ta 50 10 01 0.213 0.128 0.100 0.091 0.087 0.098 0.125 0.147
ta 50 20 01 0.211 0.149 0.107 0.097 0.084 0.078 0.077 0.110

Figures 11 and 12 show the evolution of the performance of theIBMOLS algo-
rithm, in terms of average hypervolume difference over time. Figure 11 shows that
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results obtained with a population size of 30 individuals are outperformed by those ob-
tained with a smaller population size, and it does not seem tochange when the run time
increases (ta 20 10 01 instance). Figure 12 is obtained onta 50 20 01 instance. In
this case, the results obtained with 30 individuals are outperformed by those obtained
with eight individuals, but only when the run time is less than around 350 seconds. Af-
ter that period, we can observe that the IBMOLS algorithm using 30 individuals starts
to outperform the one using eight individuals, as we observefor many evolutionary
algorithms. However, on the same figure, we can observe that the employment of 50
individuals never seems to perform well. This issue is interesting and is discussed in
section 6, where a complete set of experiments is provided, using different running
times.
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Figure 11: Evolution of the average hypervolume difference, using different population
sizes:ta 20 10 01 instance.
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Note that the execution times are very short in this study (see table 1), in order to
be able to provide statistical analysis of the different executions. However, the results
obtained by theIBMOLS algorithm are close to the best values found in [5], with
very long execution times.

5 Application II: A Ring Star problem

In this section, we will consider another application: the Ring Star problem, which
is an academic problem with many real world applications. First, we present some
details about the bi-objective Ring Star problem. Secondly, we discuss the parameter
values used for the experiments, and how to adapt IBMOLS to this new problem. Then,
we describe our experimental protocol and provide an analysis of the results. In this
section, we aim to compare our method with two classical MultiObjective Evolution-
ary Algorithms (MOEAs) of the literature, i.e. NSGA2 and IBEA, for the Ring Star
problem.

5.1 Problem description

The Ring Star Problem(RSP) [26] can be described as follows. LetG = (V,E,A)
be a complete mixed graph whereV = {v1, v2, . . . , vn} is a set of vertices,E =
{[vi, vj ]|vi, vj ∈ V, i < j} is a set of edges, andA = {(vi, vj)|vi, vj ∈ V } is a set of
arcs. Vertexv1 is the depot. To each edge[vi, vj ], we assign a non-negativering cost
cij , and to each arc(vi, vj) is assigned a non-negativeassignment costdij . These costs
are defined as follows: letlij denote the Euclidian distance between two nodesvi and
vj of a TSPLIB data file. As proposed by Labbé et al. [26], the ring costcij and the
assignment costdij are both been set tolij for every pair of nodesvi andvj .

The RSP consists of locating a simple cycle through a subsetV ′ ⊂ V (with v1 ∈
V ′) while (i) minimising the sum of the ring costs related to alledges that belong to the
cycle, and (ii) minimising the sum of the assignment costs ofarcs directed from every
non-visited node to a visited one so that the associated costis minimum. An example
of solution is given in figure 13, where the solid lines represent the edges that belong
to the ring and the dashed lines represent the arcs of the assignments.

The first objective is called thering costand is defined as:
∑

[vi,vj ]∈E

cijxij (17)

wherexij is a binary variable equal to 1 if and only if the edge[vi, vj ] belongs to the
cycle.

The second objective, theassignment cost, can be computed as follows:
∑

vi∈V \V ′

min
vj∈V ′

dij (18)

This problem is particularly challenging because, for eachgiven subset of nodes to
visit, a classical Traveling Salesman Problem (TSP) still remains to be solved.
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Figure 13: The bi-objective Ring Star problem: minimize thering cost and the assign-
ment cost (bold cycle). Each vertex which does not belong to the ring is assigned to
the closest vertex in the ring (dashed lines).

5.2 Parameter setting

The parameters which are directly related to the problem considered, the individual
coding and the neighborhood operator, are defined as follows:

• Individual coding: sequence of vertices. A solution of a problem withn vertices
is represented by a set ofk vertex indices, with0 ≤ k ≤ n. Thesek values
corresponds to visited nodes, in the order they are visited.

• Neighborhood operator: the Ring Star problem is at the same time an assign-
ment problem and a routing problem. In order to take into account these two
specificities, the neighborhood is divided into three subsets:

1. 2-opt exchange operator: the sequence of visited nodes between two ver-
ticesvi andvj is reversed.

2. Insert vertex: add a vertexv in the ring. The position ofv in the ring is
chosen in order to minimise the ring cost, i.e. placed at the best position
among all possible ones according to the ring cost. The assignment is up-
dated according to the vertex inserted.

3. Delete vertex: remove a vertexv from the ring. Re-assign the vertices
which were assigned tov.

As for the FSP problem, the neighbors are randomly generated, without consid-
ering any exploration order between the three subsets of neighbors.
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The other parameters are defined as for the first application,except the binary indi-
cator. Indeed, we will only consider here theǫ indicator, which has obtained the best
average performance on the bi-objective FSP.

5.3 Experimental design

In the previous section, the statistical analysis of the results demonstrated the efficiency
of theIǫ indicator, which outperforms the other binary indicators.In these experiments
and the experiments presented in the next section, we will not provide further results
using different binary indicators, since the results obtained are very similar and the
best results are achieved by theIǫ indicator. For the same reason, we will not provide
an analysis of the results of the differentgeneratePopulation functions, sinceRM
clearly outperforms the other approaches on the three optimisation problems treated in
this paper.

Here, we provide a statistical analysis of different IBMOLSversions, using dif-
ferent population sizes and mutation rates in theRM initialisation. Furthermore, we
provide a comparison against two well known MOEAs from the literature: NSGA II
and IBEA [12, 41]. The performance assessment protocol usedin these experiments
is described in the previous section. For each methodology,we compute the 20 hy-
pervolume differences corresponding to the 20 runs. Then, we compute the statistical
confidence level for the affirmation“algorithm A outperforms algorithmB” (Mann-
Whitney test); the average hypervolume values which appearin bold in the tables cor-
respond to the algorithms which are not statistically outperformed by any other algo-
rithm.

Eight problem instances, extracted from the traveling salesman problem benchmark
instances2, are tested:eil51, st70, kroA100, bier127, kroA150, kroA200, pr264 and
pr299. The number contained in each instance name represents the number of vertices
of the corresponding problem.

We experiment with nine different versions of the IBMOLS algorithm, using com-
binations of three different population sizes and three different mutation rates in the
RM population generation strategy. The previous experimentsshowed that the use of
a small mutation rate and population size allows us to obtainbetter results. In the
experiments presented here, we test different values:

• Mutation rate:5%, 10% and20% of the problem size (i.e. the number of ver-
tices).

• Population size: three different values (S, M andL), defined according to the
instance size, i.e. respectively 5, 10 and 15 forEil51 andSt70 instances, 10,
15 and 20 forkroA100 andbier127 instances, and 15, 20 and 30 forkroA150,
kroA200, pr264 andpr299 instances.

The IBEA and NSGA II algorithms are also tested. For both algorithms, the
crossover probability is set to 0.25, and the mutation probability to 1.00, with a prob-
ability of 0.25, 0.25 and 0.50 for the remove, the insert and the 2-opt operator, respec-
tively. The population size is fixed to 100 individuals. Lastly, we present results for the

2URL: http://www.iwr.uni-heidelberg.de/groups/comopt/soft ware/TSPLIB95/
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IBEA algorithm using a small population size (M values), since as for the IBMOLS
algorithm, IBEA seems to perform better using a small population size. Implementa-
tion was realised using theParadisEO platform [9]. The experiments are realised on
an Intel duo-core 2*2.4GHz with 2Gb RAM.

5.4 Experiments

Table 5 summarises the results obtained with the different algorithms on several in-
stances. The difference between the algorithms, in terms ofhypervolume difference, is
very small. Then, in Table 5, the value0 is given to the most efficient algorithm, and
the other values correspond to the deviation of the considered algorithm with respect
to the best algorithm. The table shows the efficiency of the IBMOLS algorithm, which
obtains very good results on all instances except onkroA100 andpr299 instances,
where some IBMOLS versions are statistically outperformedby IBEA (with 100 in-
dividuals). IBEA obtains good results, but is generally outperformed by most of the
IBMOLS versions.

IBMOLS seems to perform better using the larger population size. However, the
larger size corresponds to 15, 20 or 30 individuals, which isquite small in comparison
to usual population size used in classical MOEAs. Concerning the mutation level, no
overall conclusion can be extracted from the table, even if the rate still has an influence
on the results.

As a conclusion, the tests realised on the ring star problem show some similar
properties to those carried out on the flow shop problem, but with several differences:
IBMOLS performs better using a small population size, even if the optimal population
size is larger on the RSP. When applied on the FSP, the ’optimal’ mutation rate of
IBMOLS should be smaller with increasing problem size. For the RSP this seems
not to be the case. Moreover, IBMOLS outperforms two state-of-the-art well known
MOEAs: NSGA-II and IBEA.

Table 5: Algorithm comparison: average difference with thebest algorithm (hy-
pervolume difference deviation,×10−3). The running times are 10”, 20”, 1’, 2’,
5’, 10’, 20’ and 50’ for theeil51, st70, kroA100, bier127, kroA150, kroA200,
pr264 andpr299 instances respectively.{S,M,L} equals to{5, 10, 15} for Eil51 and
St70 instances{10, 15, 20} for kroA100 andbier127 instances, and{15, 20, 30} for
kroA150, kroA200, pr264 andpr299 instances.

Algorithms IBMOLS NSGA-II IBEA
RM rate 5% 10% 20% - -
Pop size S M L S M L S M L 100 100 M
eil51 1.144 0.630 0.075 1.953 0.656 0 3.142 0.890 0.119 3.068 0.995 3.572
st70 1.036 0.531 0.070 1.601 0.677 0.121 2.042 0.498 0 2.077 0.198 2.208
kroA100 1.224 0.237 0 1.635 0.412 0.020 2.491 0.584 0.268 3.079 0.793 6.577
bier127 1.514 0.302 0.035 2.132 0.390 0 3.030 1.271 0.784 3.385 0.972 10.430
kroA150 0.880 0.324 0 1.332 0.701 0.311 1.926 1.164 0.421 3.106 19.321 8.525
kroA200 0.862 0.641 0 1.020 0.668 0.152 1.292 1.085 0.650 2.608 44.943 8.189
pr264 0.039 0.113 0.238 0.059 0.189 0.327 0.263 0.069 0 0.614 0.163 1.430
pr299 0.111 0.204 0.092 0.041 0.155 0.436 0.054 0.098 0 0.967 2.571 2.743
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6 Application III: A Nurse scheduling problem

Nurse rostering is an important search problem that has received significant attention
from the research community [8]. In this section, we will consider a Nurse Scheduling
Problem (NSP) which is directly extracted from a real world situation. This problem
is slightly different from the two first problems considered, and will give us an idea
of the difficulties of adapting IBMOLS to real world problems. Indeed, the problem
considered here contains a lot of hard constraints and threeobjectives. In this section,
IBMOLS is compared to SEAMO-R, which was proposed to solve the NSP problem
in [28]. First, we briefly describe the nurse scheduling problem. Secondly, we discuss
the parameter values used for the experiments, and issues onhow to adapt IBMOLS to
this real world problem. Then we describe our experimental protocol and provide an
analysis of the results.

6.1 Problem description

The Nurse Scheduling Problem described in this paper, is to construct non-cyclic
schedules for a ward of nurses in theQueens Medical Centrein Nottingham, UK. The
scheduling period is a 28 days period to cover a 24-hours basis (early, late and night
shift), seven days a week. Each nurse works either on a part-time or on a full-time
basis. Nurses are classified in a hierarchy according to their qualifications and training.
This NSP includes the most common constraints from the nursescheduling literature,
as identified in [10].

The Queens Medical CentreNSP is formulated as the ordered pair〈Nurses, C〉
whereNurses = {Ni : 1 ≤ i ≤ n} is a set ofn nurses andC is a set of constraints.
Nurses usually indicate their individual working preference (e.g. days off, preferred
shifts, etc.) for each scheduling period. Constructed schedules should meet the work
regulation such as one working shift a day, maximum working hours regarding nurses’
contract, maximum/minimum consecutive working days, illegal shift patterns. The
constructed schedules should also confront the coverage demands regarding nurse qual-
ifications and training. Furthermore, any surplus or deficit(coverage, demand) of
nurses over the scheduling period should be evenly distributed amongst shifts.

We aim to minimise three objective functions, which are briefly described below:

• Work regulation violations: Combination of three preference types, i.e. (1)Sin-
gleNight: Penalty is applied each time a night shift is assigned to a nurse on
a specific day, and shifts different to Night are assigned on adjacent days; (2)
WeekendSplit: Penalty is applied each time a nurse is assigned to work onlyon
a single day of a weekend; (3)WeekendBalance: Penalty is applied if a nurse is
assigned to work at least one day in each of the four weekends in the scheduling
period.

• Coveragedemands satisfaction in the scheduling period: if the number of nurses
with specific qualifications and training assigned to a givenshift is less than the
coverage demand, a penalty equals to the deficit in the numberof nurses assigned
is applied.
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• Even distribution of nurses amongst shifts (CoverageBalance): it consists in
measuring the statistical variation on the difference between the number of qual-
ified nurses assigned to each shift and the coverage demand for qualified nurses.

Note that we set a fixed threshold for the nurses’ individual working preferences to
guarantee a minimum level of staff satisfaction amongst different scheduling periods
rather than trying to optimise it. For more details of the problem description see [28],
and visit http://www.cs.nott.ac.uk/ ˜ tec/NRP/ for a web repository of
nurse scheduling problems.

6.2 Parameter setting

The parameters which are directly related to the problem, the individual coding and the
neighborhood operator, are defined as follows:

• Individual coding: set ofn schedules of 84 time slots (28 days, each day being
divided in three time slots). A decoding procedure is applied on the individuals
before the evaluation process, since some constraints haveto be satisfied. The
decoder is able to apply a small change to a solution in order to build a feasible
solution. For more details, see [28].

• Neighborhood operator: in [28], the authors remark that during the evolution
process, the crossover operator is able to build good solutions whereas the mu-
tation operator is unable to improve existing good solutions. Then, they choose
to use only the crossover operator in their GA. The crossoveroperator used is
thecycle crossover[33], applied on each nurse schedule. The cycle crossover is
described in the example below:

Let two permutationsP1 andP2 of size nine, withP1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)
andP2 = (4, 1, 2, 8, 7, 6, 9, 3, 5). The childC starts by taking the first value
from P1, the childC = (1,−,−,−,−,−,−,−,−). The next value must be
from P2 and from the same position. This gives value 4, which is in fourth
position onP1: C = (1,−,−, 4,−,−,−,−,−). This process is iterated until
a cycle is obtained (C = (1, 2, 3, 4,−,−,−, 8,−) for this example). Once,
the cycle is obtained, the remaining value are pasted fromP2, then we obtain
C = (1, 2, 3, 4, 7, 6, 9, 8, 5).

Thecycle crossoveris applied on each couple (schedule of nursei of individual
1, schedule of nursei of individual 2). In our case, the neighborhood consists
of applying the cycle crossover on only one selected nurse, in order to favorise
local moves instead of applying an entire crossover operation. Then, if the al-
gorithm runs withN individuals on a problem instance containingn nurses, the
neighborhood size is equal ton ∗N .

The other parameters are defined as for the two first applications. For the population
generation function, the random mutation rate in the application consists of several
random swap mutations on the individuals.
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6.3 Experimental design

The different datasets available for this problem have similar sizes, e.g. around 15
nurses and 28 days divided into 84 time slots. The dataset corresponds to nurse sched-
ule in different month in 2001 (from March to September), which are named accord-
ingly (March2001, . . . , September2001). In order to evaluate the effectiveness of the
IBMOLS algorithm under different conditions, we perform three different test series,
using different run times: 30 seconds, 5 minutes and 30 minutes. Our goal is to eval-
uate the IBMOLS algorithm’s efficiency when using short run times as well as when
using long run times. Furthermore, we will evaluate the variation of the optimal pa-
rameter values according to the run time available. In orderto evaluate the efficiency
of the IBMOLS algorithm, we will compare our results with theprevious algorithm
which was proposed for this problem: SEAMO-R [28]. The population sizes used to
evaluate SEAMO-R and IBMOLS are different, since IBMOLS is efficient using small
populations and SEAMO-R is efficient using large populations. Then, the population
sizes tested correspond to the most efficient possible values.

6.4 Experiments

Table 6: Algorithm comparison: 30 seconds runs.
Algorithms IBMOLS SEAMO-R
RM rate 5% 20% -
Pop size 10 20 30 10 20 30 50 100 200
March2001 0.239 0.268 0.293 0.266 0.300 0.272 0.558 0.537 0.770
April2001 0.257 0.272 0.324 0.304 0.278 0.284 0.644 0.596 0.829
May2001 0.257 0.274 0.275 0.276 0.316 0.258 0.683 0.580 0.777
June2001 0.529 0.519 0.426 0.483 0.565 0.424 0.427 0.203 0.246
July2001 0.346 0.304 0.260 0.278 0.313 0.245 0.525 0.393 0.594
August2001 0.287 0.285 0.373 0.284 0.319 0.322 0.691 0.655 0.947
September20010.392 0.334 0.326 0.354 0.336 0.310 0.612 0.498 0.723
Average 0.330 0.322 0.325 0.321 0.347 0.302 0.591 0.495 0.698

Table 7: Algorithm comparison: 5 minutes runs.
Algorithms IBMOLS SEAMO-R
RM rate 5% 20% -
Pop size 10 20 30 10 20 30 50 100 200
March2001 0.175 0.172 0.226 0.288 0.239 0.203 0.694 0.504 0.449
April2001 0.137 0.199 0.169 0.281 0.230 0.169 0.721 0.532 0.439
May2001 0.136 0.168 0.144 0.235 0.221 0.204 0.686 0.484 0.369
June2001 0.263 0.352 0.338 0.273 0.286 0.282 0.526 0.182 0.095
July2001 0.148 0.198 0.166 0.191 0.182 0.179 0.494 0.284 0.221
August2001 0.162 0.185 0.186 0.221 0.196 0.202 0.743 0.530 0.419
September20010.187 0.220 0.232 0.224 0.220 0.246 0.742 0.466 0.306
Average 0.173 0.213 0.209 0.245 0.225 0.212 0.658 0.426 0.328
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Table 8: Algorithm comparison: 30 minutes runs.
Algorithms IBMOLS SEAMO-R
RM rate 5% 20% -
Pop size 10 20 30 10 20 30 300
March2001 0.191 0.259 0.249 0.304 0.267 0.249 0.609
April2001 0.206 0.199 0.172 0.265 0.260 0.254 0.718
May2001 0.226 0.255 0.165 0.363 0.300 0.315 0.584
June2001 0.270 0.298 0.358 0.183 0.250 0.279 0.246
July2001 0.261 0.255 0.254 0.153 0.143 0.172 0.333
August2001 0.247 0.287 0.192 0.314 0.330 0.312 0.672
September20010.171 0.196 0.239 0.231 0.267 0.251 0.432
Average 0.225 0.250 0.233 0.259 0.260 0.262 0.513

Results obtained with runs of 30 seconds, 5 minutes and 30 minutes are respectively
described in tables 6, 7 and 8. For each problem, we have tested different combinations
of population sizes (10, 20 and30) andRM rates (5% and20%).

The comparison of the different IBMOLS approaches against SEAMO-R allows us
to conclude that IBMOLS approaches are statistically more efficient than the SEAMO-
R approach, except on theJune2001 instance. SEAMO-R performs slightly better on
this instance, but the difference tends to be reduced when the running time increases.
In particular, SEAMO-R is statistically outperformed on the June2001 instance on
runs of 30 minutes. On the remaining problem instances, SEAMO-R is statistically
outperformed, on runs of 30 seconds, 5 minutes and 30 minutes.

Now let us discuss about results obtained using different parameter values for the
IBMOLS algorithm. No clear conclusion can be extracted fromtables 6, 7 and 8. How-
ever, we can observe two tendencies from these tables. Firstly, many of the IBMOLS
algorithm versions are incomparable on runs of 30 seconds, but when the run time in-
creases, the number of statistically incomparable versions is reduced. Secondly, the
IBMOLS version using the smallest population size and the smallest mutation level
obtains the best average results on 5 and 30 minutes runs. This observation confirms
our conclusion introduced in the previous experiments, i.e. the IBMOLS algorithm is
more efficient using a small population size and a small mutation rate.

7 Conclusion and perspectives

In this paper, we presented a new and generic multi-objective metaheuristic using the
binary quality indicator concept. We proposed the use of a binary indicator within an
iterated local search algorithm. The algorithm combines a recent, popular and effi-
cient mechanism proposed for MOEAs and the iterated local search principle, which is
known to perform well on real world applications.

One advantage of the indicator-based search is its high level of generality, mainly
due to the small number of parameters that are required. We have designed the IB-
MOLS algorithm in order to propose a methodology which is as generic as possible.
We have performed a wide range of experiments, using different parameter values, to
evaluate its level of generality and to find guidelines on howto set the small num-
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ber of parameters needed for the IBMOLS algorithm. Furthermore, we perform some
experiments on other methods in order to evaluate the effectiveness of our algorithm.

We have evaluated the IBMOLS algorithm by applying it to three different combi-
natorial problems. This enables us to make the following observations:

• The IBMOLS algorithm is highly generic: it has been easily and successfully
applied on very different combinatorial problems. However, it does not facilitate
the avoidance of a specific study of the considered problem before addressing it,
especially with regard to the neighborhood structure beingused in the algorithm.
For instance, the neighborhoodstructure used for the nursescheduling problem is
very important, and the one used in this paper (based on nurseschedule mating)
has a major influence on the results. The use of classical neighborhood operators,
such asswapor insertoperators lead to disappointing results on this problem.

• The comparison with some other algorithms from the literature allows us to say
that the IBMOLS algorithm is efficient on different problems. IBMOLS out-
performs some classical state-of-the-art multi-objective evolutionary algorithm,
even if some exceptions exist.

• Among the binary indicators tested in this paper, we advice the use ofIǫ which
outperforms the other indicators in many cases. However, many other indicators
could be defined and could outperformIǫ.

• The IBMOLS algorithm is more efficient using a small population size. In many
cases, the best results are achieved using a population of less than 10 individuals.
However, if the search space is large or if the run time available is large, we sug-
gest the increase of this size to several tens of individuals. Following this guide-
line, the search methodology should obtain good results in many cases. However,
there are some exceptions such as those encountered in our experiments. Then, a
good solution should be to start the search with small-size population, then after
several local searches the population size can be defined adaptively during the
search. Such principle has been already proposed for singleobjective optimisa-
tion [2].

• The initialisation of the local search populations is an important parameter of
the IBMOLS algorithm. In our experiments, the method of applying random
mutations to some non-dominated solutions from the archiveis highly efficient.
The efficiency of this initialisation method depends on the amount of random
mutations to be applied. We observe that the same general tendencies when ob-
serving population size i.e. good results can be obtained with a small number
of random mutations, except on large-size problems and witha large computa-
tion time. However, these results are not very clear, and we strongly suggest to
adapt the mutation rate during the search in order to find a high quality rate, also
because the most-suited parameter value probably changes during the algorithm
execution.

The binary-indicator search principle has been successfully proposed for evolution-
ary algorithms in [41] and for local search in this paper. This general principle could

31



be adapted to every type of (meta)heuristic search, such as ant colony optimisation
and Tabu search [1]. Once we have different indicator-basedsearch strategies, it will
be interesting to propose an adaptive version of IBMOLS, which will be efficient on
a new problem without preliminary studies. To achieve this goal, the exploration of
hyper-heuristics [35] could also lead to significant results. This will help us to search
for the most appropriate population size or initialisationfunction dynamically during
the search, by evolving different indicator-based searches. With such an approach, we
could obtain a modified IBMOLS algorithm which will be applicable across a large
range of multi-objective problems.

Another perspective is to explore the possible definition and evaluation of other
indicators. In particular, it should be interesting to use the unary hypervolume indica-
tor within IBMOLS algorithm, since this is the most commonlyaccepted performance
indicator in the community. However, this would not be an easy task since the en-
closed hypervolume computation is an #P-hard problem according to the number of
objectives.
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