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The efficiencyof indicator-basedlocal search
for multi-objective combinatorial optimisation
problems

M. Basseur and A. Liefooghend K. Le and E. K. Burke

Abstract

In the last few years, a significant number of multi-objective metaheuristics
have been proposed in the literature in order to address real-world problems. Lo-
cal search methods play a major role in many of these metaheuristics procedures.
In this paper, we adapt a recent and popular indicator-based selection method pro-
posed by Zitzler and Kiinzli in 2004, in order to define a population-based multi-
objective local search. The proposed algorithm is designed in order to be easily
adaptable, parameter independent and to have a high convergence rate. In order
to evaluate the capacity of our algorithm to reach these goals, a large part of the
paper is dedicated to experiments. Three combinatorial optimisation problems are
tested: a flow shop problem, a ring star problem and a nurse scheduling problem.
The experiments show that our algorithm can be applied with success to different
types of multi-objective optimisation problems and that it outperforms some clas-
sical metaheuristics. Furthermore, the parameter sensitivity analysis enables us to
provide some useful guidelines about how to set the parameters.

1 Introduction

The application of metaheuristics to multi-objective combinatorial optimisation prob-
lems is a popular research area. The growing interest in these methods originates from
the mid-eighties, when the first Pareto evolutionary algorithms were proposed. These
evolutionary algorithms, which use the Pareto dominance concept in their selection
process are very successful: a huge number of variants are proposed in the literature.
The Pareto-based approaches are an alternative to aggregation based methods, which
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represent a simple way to transform a multi-objective pgobinto a single objective
one.

In this paper, we will use a slightly different type of gememethod, which can
include Pareto dominance based algorithms as well as soalinods. We employ the
principles proposed by Zitzler and Kuinzli]41], in theirl (Indicator-Based Evolu-
tionary Algorithn). As described by the authof$BEA is based on quality indicators
where a function/ assigns each Pareto set approximation a real value reflgats
quality [45]: Then the optimisation goal becomes the idiéecdtion of a Pareto set ap-
proximation that minimizes (or maximizes). As such, they say, ! induces a total
order of the set of approximation sets in the objective spaasontrast to the classical
aggregation functions like weighted sum that operate oglsisolutions only and gives
rise to a total order of the corresponding objective vectqisee[41]). In[[28] and]41],
different indicator-based multi-objective optimizersrbdeen proposed. The main ad-
vantage of the indicator concept is that no additional digpreservation mechanisms
are required, since it can be tackled in the binary indicatdrand. Zitzler and Kiinzli
[41] have demonstrated that indicator-specific search @d yesults which are supe-
rior to popular algorithms such as SPEA2 and NSGA-II withpexg to the indicator
under consideration [48, 112]. Furthermore, since the fplads simple, it could be
adapted to various types of problem. For instance, the étolicbased search has been
proposed also iriL[15], and successfully adapted to opttinisavith uncertainty([B].

This paper aims to propose a generic metaheuristic, whiahles the optimiser to
avoid some of the drawbacks of classical methods. The desigeneric metaheuris-
tics is not an easy task, since the proposed method needisty saveral objectives,
as described below:

e The technique should be easily scalable to different ogtition problems: to
reach this goal, the method has to be as simple as possiblavaidti the ex-
ploitation of problem specificities.

e There should be low levels of parameter sensitivity: thgppsed method should
be defined by a small number of parameters. Moreover, the auafiparame-
ters which have a major influence on the results should benmsed.

e The methodology should be effective (as much as is possibl€)fferent prob-
lem sizes and problem types.

In [4], we presented a generic metaheuristic which aimstiefgahese objectives.
The methodology proposed in this paper is slightly difféeterthe approaches usually
found in the literature, which use aggregation of the olbjedunctions, or the Pareto
dominance relation, since the binary-indicator concepnigployed. In this paper, we
will describe the method presented in [4] with further deteand we also provide a
complete analysis of its performance and its parameteitsétys The contributions
of this paper include:

e Adescription of an Indicator-Based Multi-Objective Lo&adarch method, which
could be easily reused to address different problems. THe-ahjective meta-
heuristic proposed in this paper has two main charactesis{il) the employ-
ment of thebinary indicatorconceptl[41], which allows us to avoid some of the



drawbacks of using aggregation and Pareto dominance bastwds; (2) the
method proposed is a population-based local search, wiifighsdfrom a sig-
nificant body of the multi-objective metaheuristics litien®, where evolutionary
algorithms are principally represented.

e The application of the proposed method to different contiirial optimisation
problems: the goal is to show the scalability and the effiyesf the proposed
method on different problems. Three different multi-oljex problems are
considered: a flow shop scheduling problem, a ring star protdnd a nurse
scheduling problem. These problems are really differem¢ims of type, size,
constraints and number of objective functions.

e A parameter sensitivity analysis: the proposed method imel by a small
number of parameters. We provide an analysis that evaltlaeparameters
that have a great influence on the results, and propose medab set these
parameters for optimisers which are interested in the egidin of our method
to a new multi-objective problem.

The paper is organised as follows. In section 2, some defirstare introduced in
order to define multi-objective optimisation as well as thby-indicator search prin-
ciple. In section 3, the Indicator-Based Multi-Objectivedal Search (IBMOLS) algo-
rithm is described, and also its iterative version wherepbgulation initialisation is
realised in different ways. In sections 4 to 6, we presemghifferent multi-objective
combinatorial problems, which are solved using the IBMOIlgbathm. Then some
conclusions and perspectives are discussed in section 7.

2 Multi-objective binary quality indicators

Before introducing the concept of indicator-based optatiis, let us introduce some
useful notations and definitions, partially taken framl [4hjd [6]. LetX denote the
search space of the optimisation problem under consideratid letZ denote the
corresponding objective space. Without loss of generaligyassume that = R”
and that alln objectives are to be minimised. Each decision vegter X is assigned
exactly one objective vectar € Z on the basis of a vector functigh: X — Z with

z = f(x). The mapping’ defines the evaluation of a solutienc X, and often one is
interested in those solutions that are Pareto optimal wgpect tof. A Pareto optimal
solution is defined as follows:

Definition 1 = € X is said to be Pareto optimal if and only if a solutien € X which
dominates: does not exist.

Definition 2 A decision vectog; is said to dominate another decision vecter(writ-
ten aszy = x2), if fi(x1) < fi(xe) forall i € {1,...,n} and f;(z1) < f;(z2) for at
leastonej € {1,...,n}.

The relationz; > 2> means that the solutiary, is preferableto z». The main goal
is to find a high quality approximation of the Pareto optine! $Vhat constitutes 'high



quality’ very much depends on the decision maker and themigdition scenario. As
in [410], we here assume that the optimisation goal is givaeiims of a binary quality
indicator/.

A binary quality indicatori[45] can be thought of as@ntinuous extensiasf Pareto
dominance on sets of objective vectors. The vdlue, B) quantifies the difference in
quality between two sets of objective vectgxsandB. Now, if R denotes the set of
Pareto optimal solutions (or any other reference set), ttheoverall optimisation goal
can be formulated as:

argming ¢ vq(x) 1(A, R) 1)
where M (X) is the space obbjective vector setsSinceR is fixed, I actually repre-
sents a unary function that assigns, to each Pareto setxap@iton, a real number;
the smaller the number, the more preferable is the apprdidma

The indicator could be used to compare two single solutions, single solution
against an entire population. With such a comparison, tdeator can be used to
establish the selection process of evolutionary algosétldi]. Indeed, the solution to
delete (respectively select) from the population shoulthieeone which has the worst
(respectively best) indicator value according to the réghe population. In other
words, during the selection process, the goal is to deletsdhutions with the smallest
degradation of the overall quality of the population, inmerof the quality indicator
being used.

In order to be considered as a natural extension of the Pdosthinance concept,
the defined indicator has to be compliant with the Pareto dante relation. As de-
fined in [41], a binary indicatod has to verify the dominance preserving property
(definition[3). Let us note that throughout the paper, we wilte I(z, P) instead of
I({z},P)whenasetis reduced to a single solutigrio simplify our notations. More-
over, in order to avoid confusion with singleton solutiosets of solutions are written
in boldface.

Definition 3 A binary indicator! is denoted as dominance preserving if:
(1) for all T1,29 € X, 21 > Ty = I(l‘l,l'g) < I(xg, xl), and
(2) for all xr1,T2,T3 € X, x1 = Ty = I(Ig,xl) > I(xg,xg).

In the following, we first define some possible binary indicat then we present
a detailed example. We first propose to use the two indicgt@sented in[[41]: The
(additive) epsilon indicatorI{ - equatior[R) and the hypervolume indicatdg { -
equatiorB).

I (21, 22) = mazicqr,.. 0y (fi(21) — fi(22)) 2)

I.(z1,22) (Wherez; € X andze € X) represents the minimal translation (in
objective space) on which to execute so that it dominates, (see figurdll). Let us
note that the translation could take negative values. Wenassthroughout the paper,
that all the objective functions are normalised.

_ H(xo) — H(x1) if zo = 1 0rz; = 29
Lup(wr,w2) = { H(x1+x2) — H(z1) otherwise (3)
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Figure 1: lllustration of thd, indicator applied to two solutions; andz, (left hand
side: no dominance relation betweenandzx,; right hand sidexy > x1) ©[4].
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Figure 2: lllustration of thd p indicator applied to two solutions; andz (left hand
side: no dominance relation betweenandz,; right hand sidexs > z1) ©[4].

H(z) represents the volume of the space that is dominatech by p (1, 22)
represents the volume of the space that is dominateg bt not byz; (figure@).

In order to evaluate the quality of solutions according tohele populatio and
a binary indicator, several different approaches could be defined as follows:

e One possibility is to simply sum up the indicator values facte population
member with respect to the rest of the population (equéfjoriThe value ob-
tained takes into account every solution in the population.

I(P\{z},z) = Z I(z,2) (4)

zeP\{z}

e One could be interested in finding the solution which obtttiesminimal indica-
tor value against, i.e. the best solution accordingtcand’ (equatiorib). The
computed value is not influenced by dominated solutions fitmempopulation.

I(P \ {I}vI) = minzeP\{w}(I(ZaI)) (5)

e Lastly, we consider a trade off between these two approaeVteésh is an ad-
ditive approach that amplifies the influence of dominatingudation members
over dominated ones (equatidn 6, where 0 represents the scaling factor). In
our experiments, we will use this formulation for theand g p indicators.

IP\{z},2)= Y —e=o)/n (6)

zeP\{z}



Note that wherx — 0, the same order relation between solutions is obtained with
equation§s anfl 6, with one difference: when two solutionehhe same minimal
indicator value with equatidd 5, equatidn 6 enables a datisetween them according
to the second minimal indicator value computed for theset®mwis. Then, values near
to 0 are preferred for.

I. andIy p are proved to be dominance preservindin [41]. Moreover trobihe
classical Pareto ranking techniques could be used to defiagyhindicators, and use
equatiorlb ofK to combine the indicator values (it is easyhtmsthat these indica-
tors also verify the dominance preserving relation). Theregsions obtained are very
simple and could be used as a comparison of the differentadaiindicators. Some
classical multi-objective ranking techniques from therkiture are adapted into binary
indicators below, without taking into account the diversitaintaining mechanisms of
the corresponding algorithms. In the following, we propts@dapt three classical
ranking methods into binary indicators.

First, theW AR ranking method proposed by Bentley and Wakefigld [7] is simi-
lar to the binary indicator defined in equatidn 7. In this eium we keep only the
Pareto dominance relation part of the original method pseddy Bentley and Wake-
field, since one goal of this paper is to evaluate the quafity. @nd Iy p indicators
according to Pareto dominance based indicators. By usagdHitive combination of
the indicator values, we obtain equat[dn 8, which corredp@pproximatively to the
ranking method of Bentley and Wakefield.

Ipen(z1,m2) = Y —¢(fi(w1), filw2)), (7

1 if fi(xl) < fi(xg)
with ¢(fi(z1), fi(z2)) = $ & if filer) = fi(w2)
0

otherwise

Ipen(P,x) = Z(IBen(Zax)) (8)
zeP
The ranking method of Fonseca and Flemmingd [16] (equafibasd®ID) can be
adapted in the same way. We obtain a similar formulation Wit this case, exactly
corresponds to the original ranking method.

. -1 if xr1 > T2
Ipon(w1,x2) = { 0  otherwise (9)
Iron(P,z) = Z(IFOH(va)) (10)

zeP

Lastly, the well known ranking method proposed by Goldb#rgj [and used in
NSGA and NSGA-II by Srinivas and Deb_[36] is described by eiqus[T] andT2.
Note that this indicator uses th&ncombination method (equatibh 5), and we consider
that the fitness value af; is known.

ISM-(P,xl)—l if xr1 >~ T2

Isri(w1,12) = { 0 otherwise (D



Is.i(P,x) = mingep(Isri(z, 2)) (12)

With equation§B[10, arld112, we have formulated severasickisPareto rank-
ing methods (from[[7],[T16] and[36] respectively). The rankbtained by10 and
2 during the selection process correspond exactly to thiesrabtained by the cor-
responding Pareto ranking method. Note that several rgnkigthods, such as those
used in SPEAZ[43], are not adaptable into binary indicators

The principle of indicator-based search, as describedlify bnsists of using bi-
nary indicators to evaluate tfitnesf multi-objective solutions. Thitnesscomputed
are used during the selection process of the algorithm. Wepply all the indicators
presented in this section as selection operators for theQB$1algorithm, which is
presented in the next section.

In figuresDBU[B[I6 andl 7, examples of fitness computationgusia binary in-
dicatorsl, Iyp, IBen, IFon andIg,; respectively are provided. In these figures, the
same populatiol? is evaluated using the different indicatoBscontains 8 individuals,
defined as follows f being a biobjective vector function):

f(z) = (11,2)
fz2) = (5,3)
f(xs) = (8,4)
P {ar,.oas), with § H0 LY (13)
flze) = (4,7)
far) =(2,8)
f(xs) = (6,10)

Let W be the set of solutions with the worst efficiency change atiogrto the
binary indicator being used. In our exampW, = {z5} usingl,, W = {x4} using
Inp, W = {ag} usingIpe,, W = {24,258} USINGIron, andW = {x4, x5} using
Is-;. On this very simple exampl&y¥ is different for each binary indicator, which
allows us to expect that the choice of a good binary indicadorhave a great influence
on the results obtained by a binary indicator based metétieur

3 Indicator-based multi-objective local search

Most multi-objective optimisation algorithms from theeliiture are evolutionary al-
gorithms, since such methods are easily adaptable to a-ohjéctive context. In-

deed, evolving a population of solutions is a natural wayrd & set of compromise
solutions. Note that the binary quality indicator prineiplias first proposed within
a multi-objective evolutionary algorithnh [41]. Howeveochl search algorithms are
known to be efficient for many real-world applications, asgecially on large-scale
problems. Several papers propose local search for mykietibe optimisation. In

[24], a multi-objective local search is based on the domiearelation between the
considered solution and an archive of compromise solutiang is incorporated into
an evolution strategy method; this algorithm is known asRhesto Archived Evolu-

tion Strategy. In[[20], a Multi-Objective Genetic Local $&tawas proposed. The local
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search method, which is based on aggregations of the olgdatictions, is incorpo-
rated within a multi-objective genetic algorithm. [n[21fe Tabu search principle is
applied to multi-objective optimisation. Several othepgis propose multi-objective
local search approaches, such as1n 39311, 40, 34]. Tigamamulti-objective tech-
niques are presented in_J42,111]. Some application areagieea in [14], includ-
ing portfolio optimisation, airline operations, railwaghsportation, radiation therapy
planning and computer networks.

The algorithm presented in this section has been designemtding to several
specificities which compose an original, simple and genguapose search method:

e This is an original algorithm, since a major part of multietfjve local searches
from the literature are based either on the Pareto domingeiatton between
solutions or on aggregation methods.

e The proposed algorithm has only a few parameters.

o No diversity preservation mechanism is required. The ditieof the population
should be contained and improved by the use of the binargémoli defined by
the decision maker.

e The local search deals with a fixed population size, whichbksait to find
multiple non-dominated solutions in a single run, withony apecific mech-
anism dedicated to control the number of non-dominatedisols during the
local search process.

The indicator-based multi-objective local search (IBMQU8scribed below is de-
fined mainly for discrete combinatorial problems and neeasesadaptation in order
to be applicable to continuous problems. IBMOLS uses théch@inciple of local
search and is focused upon binary indicator-based fitheggnasent. We first present
the IBMOLS baselines, then we discuss the parameter values.

3.1 Algorithm description

The IBMOLS algorithm maintains a populatiéh Then it generates the neighborhood
of an individual inP until a good solution is found, i.e. one which is better theleast
one solution ofP in terms of the indicator being used. By iterating this piftesto all
the solutions irP, we obtain a local search step. The entire local searchrisnated
when the archiveA of non-dominated solutions has not received any new salutio
during a complete local search step. A detailed descritfdBMOLS is outlined in
algorithmd, which is taken froni4].

In this paper, the neighborhood will be explored in a randodeg each neighbor
being generated once at most. It means that while any ititegeseighbor is found, we
pick randomly a new neighbor in the set of unexplored neighb®he neighborhood
generation stops when an interesting solution is found @mnihe entire neighborhood
is explored. In this algorithm, we choose to stop the neighbod generation once the
first improving solution is found (first neighboring solutithat improves the quality
of P with respect tdl). Then, we do not explore the entire neighborhood for kegpin
the best neighbor. Two main reasons guided our choice: @ljatvs to speed up



the convergence of the population, since most of the time ereate only a small
part of the neighborhood; (2) The selection of the best fmgleads to deterministic
local search steps (one possible way from initial solutioratset of local optima).
The selection of a random improving move allows us to reafferént local optima
from a single initial solution. This issue is interestingea the local search will be
iterated. Lastly, a recent study show that, in many casésn#fighborhood search is
more efficient that best move search in many multiobjectases([30].

Moreover, we assume that objective values of all solutiarsrermalised; to
achieve this, the minimumn; and maximum\/; value of each objective functiofy in
the populatior are computed first:

m; = mingep(fi(z))
14
{ M; = mazzep(fi(z)) (14)
Then each objective functiarof every individual: is normalised as follows:
filz) —my
Fi(z) = "—+— 15
@) = (15)

whereF;(z) is the normalised'” objective function of the individuat. The extreme
values of the population are computed after the initialigaprocess and after each
local search step (see algoritfiin 1). Then, to compute acatah valuel (z1, z2),
normalised values of objective functioAs(z) are employed. Note that extreme values
are not updated after each solution generation, but aftdr leal search step, only
when a new solution is introduced in the population. Whenvameximal valueN M;
replaces an old on#/;, the objective values of the solutionse P can be updated
easily (note that a similar equation is used when a new minmaiae is found):
filz) —mi

B = = (16)

This change does not affect solution fithess values if we os@mhnce-based in-
dicators (gen, Iron andIs,;). When usingl. or Iy p, equatior’Ib leads to a modi-
fication of solution fitness values, since it is computed ediog to objective function
difference and also equatifh 6. Then, each time a bound isteggthe fitness of each
solution in the population has to be computed entirely. Hep seems a little bit
expensive in time, but it is performed only a few time durintpeal search, since it
is applied only when a candidate solution is selected to tsednced in the popula-
tion, and at least one of the normalised objective functadrikis solution is out of the
intervall0, 1].

Local search methods are usually used in an iterative wagyder to increase
the chance of finding good local optima. In our experimentswill test an iterative
IBMOLS algorithm. Iterated local search algorithms imphetuse of a solution(s)
initialisation function for each local search. The overkcution process, outlined
in algorithm2 works as follows: a Pareto set approximalit@ is maintained and
updated with the solutions found by IBMOLS. After each losahrch, a new initial
population is created for the next IBMOLS execution, usingdeneratePopulation
function (see algorithial 2, taken froi [4]).
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Algorithm 1 Baseline Algorithm: IBMOLS
Input: N (population size)
I (binary indicator)
Output: A: (Pareto approximation set)
Step 1 - initialization: Generate an initial populatio® of size N
Step 2 A + Non dominated solutions d@
Step 3 - fitness assignmentCalculate fitness values of individualin P, i.e., Fit(z) =
I(P\ {z}, ).
Step 4 - local search stepFor allz € P do:
update, for each objective functigh, the minimalm; and maximal)M; values inP (for
objective functions normalisation)
repeat
1) ™ < one unexplored neighbor af
2) P < PuUz* 3)computer” fitness:I(P \ {z*}, z")
4) update alk € P fitness valuesFit(z)+ = I(z", z)
5) w <« worst individual inP
6) removew from P
7) update alk € P fitness valuesFit(z)— = I(w, z)
until all neighbors are explored ar # z*
Step 5 - termination: A + Non dominated solutions oA | JP. If A does not change,
then returnA ; else perform another local search step.

Algorithm 2 iterated IBMOLS algorithm

Input: N (population size)
I (binary indicator)

Output: PO: (Pareto approximation set)
Step I PO « 0
Step 2 while running time not reached do
1) P + generatePopulation(PO, N)
2) A < IBMOLS output (initialised withP)
3) PO « non dominated solutions &0 U A
Step 3 ReturnPO.

1. indicator and extreme solutions: The shape of the Pareto front is convex for
many real world multiobjective problems. In this case, # ffopulation contains only
non-dominated solutions, the worst solution will be oftenextreme solution, and
deleting extreme solutions drive to a loss of diversity iae dbjective space. In order
to avoid this problem, we needed to slightly modify the IBM®Aalgorithm when the
1. indicator is used. The algorithm automatically assignshibst possible fitness to
extreme non-dominated solutions. This allow to avoid diegghese extreme solutions.
Experiments show that this modification can have a greatanfla on the results.

3.2 Parameters

In order to design a general-purpose metaheuristic, théeuof parameters which are
sensitive to the problem treated has to be reduced as mudsaibie. The IBMOLS

11



algorithm is defined only by three main parameters. They @ddfined dynami-
cally during the search or fixed according to the problensaims¢ under consideration.
These parameters are the population size, the binary todieand the function which
initialises the population. We do not consider the neighbod structure, which is a
problem-oriented parameter. We discuss these parameters.b

Population size:

The most intuitive and classical multi-objective localmdeconsists of maintaining
a setA of non-dominated solutions, then generating the neighdmmiiA’ of solutions
in A, then extracting the non-dominated solutionsff) A’, and repeating the pro-
cess while improvement is realised[14]. The main probleth Wiis algorithm is the
population size which is not fixed, and which is heavily deget upon the problem,
objective functions and space dimension being considdreextreme cases, one can
obtain, during the search, only one non-dominated solutitsich implies a significant
loss of diversity, or a number of non-dominated solutionscivtyrows exponentially
and which radically slows down the convergence and can aldsl|to storage prob-
lems. The IBMOLS algorithm deals with a fixed population siatich allows us to
avoid this problem. In this paper, we will provide a performa analysis with differ-
ent population sizes. Our goal is to provide guidelines tdurfe applications of the
IBMOLS algorithm to combinatorial optimisation problems.

Binary indicator:

The evaluation of different binary indicators is the mairective of the paper. We
will compare the efficiency of two binary indicatork @ndig p) previously presented
in [41] against other ones, which are based on the dominalatan (e, Iron
and Is,;). The indicator used in the IBMOLS algorithm has a significafluence
on determining its efficiency. Experiments are used to datex the most efficient
indicators.

Population generation:

In most metaheuristics, the initial population is randomigated. In our experi-
ments, the initial population is also randomly initialisétbwever, once an entire local
search is terminated, the function which generates a newlatipn is very important:
Even if the initial population is entirely created randonityseems crucial to keep in-
formation about good solutions when we iterate the locaickeprocess. This issue is
often specific to the problem treated.

Naturally, we also have to define a neighborhood operatorderato apply the
IBMOLS algorithm to a specific problem. These parameterdaeussed in the ex-
perimental sections. In the following, we aim to analysedffieiency of our algorithm
on different combinatorial problems. The goal is firstly i@kiate the ability of I1B-
MOLS to be adapted on different types of problems. Seconddyaim at evaluating
the efficiency of the IBMOLS algorithm on these problems amg@rovide guidelines
on how to choose parameters properly according to the probtmsidered. A signif-
icant number of important issues has to be considered irr todarovide a complete
analysis of a generic metaheuristic. These issues include:

e Evaluating the difficulties encountered when the methogdiad to different
optimisation problems.

e Comparing the method with well-known methods.
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e Comparing the method with specific approaches proposetégrroblem under
consideration.

e Evaluating the ability of the method to be efficient on largel amall search
spaces.

e Analysing the behavior of the method when a small or largeetien time is
available.

e Evaluating the parameter sensitivity of the method.

Furthermore, this list could be enhanced by issues direethted to the multi-
objective aspect of the problem under consideration, sgcthe capacity to find a
diversified set of non-dominated solution, the ability tlexe different shapes of
objective space (for example, convex, concave or discoatia Pareto fronts) or the
efficiency of the method when the number of objective funwtiincreases. In our
experiments, we were not able to tackle all these issuesyéytrovide some useful
experiments in order to take into account the most critesliés.

In the three next sections, we will apply the IBMOLS algomittto three multi-
objective optimisation problems which are derived froml nearld situations. We
propose three different case studies in order to evaluatéettel of generality of the
IBMOLS algorithm. Moreover, we will analyse the sensitvitf the parameters in
order to extract some useful information for the applicatid the IBMOLS algorithm
to other real world multiobjective combinatorial optimtise problems.

4  Application I: A Flow-Shop problem

In this section, we propose the application of the IBMOL Soailtpm to a bi-objective
Flow-shop Scheduling Problem that has appeared in thetiiditerature over the
years. Firstly, we give some details about this optimisapooblem and the param-
eter values used for the experiments. Then we describe @ariexental design and
also how we evaluate the quality of each algorithm testedtly,ave give the results
obtained and we extract some useful information from thesalts. In this section,
we aim to perform a lot of experiments on this problem in ordeevaluate the effi-
ciency of the method, evaluate its parameter sensitivitgl, @mpare thdyp and I,
indicators to dominance-based indicators.

4.1 Problem description

The Flow-shop Scheduling Problem (FSP) is one of the nunsesobeduling prob-
lems. Scheduling problems are often studied with a muligctive approach, since
many different objective functions can be considered, siscbhum or maximum com-
pletion time, sum or mean tardiness among others.

The FSP can be presented as a setjobs{Ji, J,...,J,} to be scheduled om
machines{ M, Ms, ..., M,,}. Machines are critical resources: one machine cannot
be assigned to two jobs simultaneously. Each jplis composed ofn consecutive

13



tasks{t1,...,tim }, Wheret;; represents thg*" task of the jobJ; requiring the ma-
chinem;. To each task;; is associated a processing tipg. Each job.J; must be
achieved before its due dade In our study, we are interested in the permutation FSP
where jobs must be scheduled in the same order on all the nexc{gee figurid 8).

M1 J2 |34 J5| J1)J6 J3

M2 J2|34 | 35| J1 J6 | J3

M3 J2 J4 J5 J1 J

192}
[
Py
G

Figure 8: Permutation Flow-Shop solution: 6 jobs schedale8 machines.

We aim to minimize two objectives?,,, ..., the makespan (total completion time),
andT’, the total tardiness. Each task is scheduled at the timg;. The two objectives
can be computed as follows:

Crae = max {sip +pim}
i€[1...N]

T = Z [max(0, sins + pive — dy)]
i=1

In the Graham et al. notation [18], this problem is denotethdfm d; / (Cynaz, T)-
Overviews of multi-objective methods applied to schedykne given in[[2l7] and
[B2]. In [29], C}nqx minimisation has been proved to be NP-hard for more than two

machines. The total tardiness objective T has been studidaofew times form
machines[[2P], but total tardiness minimisation for one hiae has been proved to be
NP-hard[[18]. The evaluation of the performances of our @ligo has been realised
on some Taillard benchmarks for the F$P] [37], which have lséended to the bi-
objective casd [3H]

4.2 Parameter settings

Providing a complete parameter sensitivity analysis of M, using different binary
indicators, population initialisation methods and pofialasizes requires a huge num-
ber of experiments, especially since we aim to providesttesl analysis. In order to
reduce the time of experiments, we analyse the sensitifgpch parameter separately.
When the sensitivity of a parameter is not tested, its valukefined as follows:

e Generation of the initial population for local search: ramdmutations applied
on the archived solutions. The number of mutations appbettié¢ original so-
lution is 0.3n, wheren is the permutation (decision vector) size. A random
mutation consists of replacing a solution by a randomly ehaseighbor with
respect to the neighborhood used by the local search digarit

Ibenchmarks available [Attp://www.info.univ-angers.fr/pub/basseur/bench htm
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e Population sizeV: defined according to the size of the instance, as proposed in
[@] (see tabl&ll).

e Binary indicator:I..

For thel, and Iy p indicators, the scaling factor has been set td0~3. Iyp
needs a reference point, which has been s, (normalised values), as suggested
in [41]. The running time allowed to each algorithm is fixedlatefined according to
the instance size (see table 1).

Table 1. Parameter setting: Population size N and runnimg Ti. ta_#i_#j_#k rep-
resents thé&*" bi-objective instance witt jobs andj machines.
Instance | N | T || |Instance | N | T
ta_20.501 10 | 20" ta_-20-20_01 10 2’
ta_20.5_02 10 | 20~ ta_50_5_01 10 | &
ta_20.10.01 | 10 1T ta_50_10_01 20 | 10
ta_20.10.02 | 10 1T ta_50_20_01 20 | 20r

The last parameters are those which are directly relatdtetprioblem considered:
the individual coding and the neighborhood operator.

¢ Individual coding: sequence of jobs. A solution of a probleith »n jobs andn
machines is represented by a permutation of sig@e jobs have to be scheduled
in the same order on all machinés$ [5]). Then, the associasibi space is of
sizen!.

¢ Neighborhood operator: insertion of ti#é job to the positionj. The jobs be-
tween positioni andj are shifted. In[[37], this operator has been shown to be
more efficient than exchange operator gy, minimisation.

4.3 Experimental design

As shown in [3], genetic algorithms, and especially NSGAalle strongly outper-
formed by local search based algorithms, on this problenwever, as shown irl.[3],
the application of a basic local search algorithm, keeplhtha non-dominated solu-
tions during the neighborhood search, implies a very longpatation time on large-
size instances. IBMOLS enables the combination of the Iseatch principle and of a
fixed-size population.

With this set of experiments, we do not aim to show the supigyiof the IBMOLS
algorithm against other approaches. This first set of erparts mainly aims at eval-
uating the parameter sensitivity of IBMOLS. To reach thialgae perform three sets
of experiments, using different binary indicators, popiokainitialisation methods and
population sizes. Note that we do not evaluate the IBMOLSrétlym against other al-
gorithms from the literature, but we aim to evaluate the igpiaf the binary indicators
derived from these studies (the classical multi-objeaiv@utionary algorithms, such
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as NSGA-Il or SPEA2 have their own specificities, for insetite diversity maintain-
ing mechanism).

The quality assessment protocol works as follows: we firsater a set a 20 runs
with different initial populations for each algorithm andah benchmark instance.
Runs are realised on a P4 - 2.4GHz machine, with 1Gb RAM. THepeance evalu-
ation protocol described below will be used for the threémisation problems tested
in this paper.

To evaluate the quality of different setsAg ... Ax_1 of non-dominated solu-
tions obtained on a problem instance, we first compute thé&€®t, which corre-
sponds to the set of non-dominated solutions extracted fhamunion of all the so-
lutions obtained from the different executions. Moreoves,define a reference point
z = [wy, we], wherew; andw, correspond to the worst value for each objective func-
tionin Ag U--- U Ax_1. Then, to evaluate a se¥; of solutions, we compute the
difference betweer; andPO* in terms of a performance indicator. In particular, we
evaluate our outputs using thé metric, ¢ and enclosed hypervolume indicators, us-
ing the same experimental protocol described later in #dsign. Let us note that we
obtain similar results using each assessment indicatdoasttistical tests, i.e. there
are no significant differences obtained with each possitdeator or statistical test.
Then, in this paper, we will focus on the enclosed hypervaundicator only [[44].
This hypervolume difference has to be as close as possikrto(figurdP).

X Al
o PO*

Figure 9: lllustration of hypervolume difference betweereterence sePO* and a
set of non-dominated solutiont; (shaded area®)[4].

For each algorithm, we compute the 20 hypervolume diffezsrmorresponding to
the 20 runs. Once the hypervolume differences are compiliesd are two main ways
to merge these values. The simplest way consists of conpthim average hyper-
volume difference value for each algorithm tested. As saggkin [25], it is more
representative to perform statistical tests on the setgmdtvolume differences, in or-
der to evaluate with which confidence level an algoritArutperforms an algorithm
B (with respect to hypervolume differences).

Unfortunately, showing the entire statistical result rieggia lot a space, since we
have to show the statistical analysis result for each paiuwe$, for each problem in-
stance. We are not able to provide these heavy tables, aipesihce we want to
provide a range of experiments on different problems. We@se a balance between
statistical analysis and average values, which allows ggvieothe maximum amount
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of information within a small table. Our tables will provideo different pieces of
information:

e The average hypervolume difference is computed for eaabrithgn and each
problem instance. This enables us to have a good idea of #ralbperformance
of each approach.

e In order to refine the results, some values are giveoid style, which means
that the corresponding algorithm @t statistically outperformed by the algo-
rithm which obtains the best average result. To simplifg, isults in bold cor-
responds to the best methods (statistically) on the probistance considered.

We use the Mann-Whitney statistical test, as described5h [@/e obtainP val-
ues corresponding to the hypothetiee first algorithm performs better than the sec-
ond one in terms of hypervolume differenc&his is equal to the lowest significance
level for which the null-hypothesis (the medians are drasemfthe same distribution)
would still be rejected. In our experiments, we say that gorthm A outperforms an
algorithmB if the Mann-Whitney test provides a high confidence levelolhindicates
that theP-value of the hypothesi®\ performs better than B'is lower thar6%. More
details are given ir [25].

In order to allow a graphical comparison of stochastic maftiiective optimisers,
the concept of attainment function is describedid [19]. &ti@inment functiom4(2)
corresponds to the probability that at least one elemenhofiadominated sé dom-
inates a reference point(refer to [19] for more details), wher® is obtained by a
single execution of an algorithm.

The test procedure has been undertaken with the perfornassessment pack-
age provided by Knowles et al.[_I25], which can be found at thitoWing URL:
http://www.tik.ee.ethz.ch/pisa/assessment.html

4.4 Experiments

We provide a very detailed experimental analysis of thisofmm. Our analysis is
divided into three parts which evaluate the binary indicgtthe initialisation strategies
and the population size impact, results being given resmdygin tabled2[B anfl4.

4.4.1 Binary indicators

The first set of experiments which are carried out are deglidat evaluating the differ-
entbinary indicators. The results obtained with five défarindicators i, Igyp, IBen,
Is,; andIr,,), are shown in TablEl 2. We can extract several pieces ofrimdition for
each indicator:

e [.: This indicator obtains the best average results on margnoss. Indeed,
I, statistically outperforms all the other indicators for #hdargest instances
(ta_20-20.01, ta_50_5_01, ta_50_10_01 andta_50_20_01). I. obtains the best
average value and outperforms every indicator exégpt, on theta_20-10_01
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andta_20.10_02 instances. On the two smallest instancksjoes not outper-
form many indicators. Howevelr, is only shown to be statistically worse than
Iro, Ontheta_20_5_01 andta_20_5_02 instances.

e [y p: This indicator obtains good overall results. Indeed, thithe only indi-
cator which does not perform statistically worse tliaon theta_20.10_01 and
ta-20_10_02 instances. Moreover, evenlif outperformsy p on the two largest
instances/yp obtains a good average hypervolume difference and realabes t
second position within the different indicators. On therfather instances
(ta-20-5_01, ta-20_5_02, ta-2020_01 andta_50_-5_01), Iz p obtains good av-
erage results.

e Ir,,: This indicator obtains the best results within the set didgators which
are only based on the dominance relation. The overall estithis indicator are
comparable to théy p indicator. However, good performances are obtained on
different instancesI r,,,, obtains the best results for the two smallest instances,
and the quality of the algorithm seems to decrease when thtdgm size in-
creases.

e [s.;: The average results obtained are similar, but always wadosthose ob-
tained byl g, .

e Ip.,: This indicator performs worse than the other indicatorséib the in-
stances.

To summarise, thé. and/y p indicators tend to outperform the Pareto dominance
based indicators, especially when the problem size inesésperforms slightly bet-
ter thanlyp. Furthermore, a reference point has to be seffgs. We can conclude
that thel. indicator should be used to solve the bi-objective FSP.

To illustrate the efficiency of the different binary indioes, we have represented
the empirical attainment function computed for the50_20_01 instance in figur&30,
taken from[[4]. This figure illustrates the minimal valuedtie objective space which
are attained with at least% of the runs. This shows the superiority hfandIgp
against the other indicators on the largest instance ceresid

Table 2: Indicator comparison.
Indicator I. Iup | IBen | Isri | IFon
ta-20_.5.01 |0.005|0.077|0.117| 0.009| 0.002
ta_20_5_.02 | 0.070| 0.062| 0.097| 0.020| 0.010
ta-20_10_01 | 0.002| 0.004| 0.045| 0.010| 0.004
ta-20_10_02 | 0.018| 0.021| 0.075| 0.024| 0.022
ta_20.20_.01 | 0.001| 0.011| 0.045| 0.007| 0.004
ta_50_5_.01 | 0.009|0.059| 0.271| 0.076| 0.034
ta-50_10_01 | 0.055| 0.089| 0.341| 0.151| 0.099
ta_50.20_01 | 0.058| 0.077| 0.349| 0.182| 0.111
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Figure 10: Empirical attainment functions obtained by tiféecent indicators on the
ta_50-20_01 instance. The lines correspond to the limit of the objecépace, which
is attained by at least 90% of the runs carried out with a §ipdinary indicator©)[4].

4.4.2 Population generation methods

We propose three different functions corresponding toedifiit implementations of
the generate Population function used in algorithril2. The three functions, can be
outlined as follows:

e Rand generateV random individuals.

e Cro: generate a crossover output fr@dV parents selected randomly fraaO.
Each solution can be selected once.PIO size < 2N, then select alPO
individuals once, and fill the missing parents pool with rmdndividuals. The
recombination operator applied is the two point crossogedun [5].

e RM: Apply random mutations oV randomly selected and different solutions
of PO, such as in a basic simulated annealing algorithm [1]. Ealiitien can
be selected once. A predefined number of random moves aredypl each
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solution using the neighborhood operator used by the |@zaich algorithm. If
PO size< N, then select alPO individuals, and fill the missing pool with
random individuals (i.e. random permutations).

Table[3 presents the results obtained using three diffgreptilation generation
methods. We compare seven different sets of executioree sie performed five dif-
ferent sets of executions f&M method. IndeedRM consists of applying random
mutations to locally optimal solutions regarding to theghdiorhood operator being
used, so the amount of random mutations to apply had to beedefln these experi-
ments, we testedl%, 10%, 20%, 30% and50% of the problem size.

The results show that teM initialisation method performs better th&®andand
Cro for all the instances. Th€ro andRandinitialisation methods obtain a better av-
erage hypervolume difference th&M with 5% mutation rate on only one instance:
ta-20_5_01. As a first conclusion, we can say thaM is the most efficient initialisa-
tion algorithm, even ifCro efficiency can be improved according to the quality of the
crossover operator being used.

The results obtained with the differeRM initialisations significantly depend upon
the problem instance considered. On large-size instartees0(501, ta_50-10_01
and ta-50-20_01), applying5% or 10% of random mutations seems to be the best
choice. This result can be explained since the executioa tgriimited, then it is
better to search around the most useful solutions (smalhtiout rate applied on the
best solutions) rather than diversify the search (largeatrart rate applied on the best
solutions).

On the other instances, % mutation rate performs worse than other mutation
rates in many cases. The best mutation rate depends on thedasonsidered. On
theta_20_5_01 instance,10% and20% mutation rates obtain the best results. On the
ta_20_5_02 instance 20% and30% rates outperform the other mutation rates. On the
ta_20_10.01 instance,50% obtains the best average hypervolume difference, but it
does not outperform results obtained with #&; and30% mutation rates. On this in-
stance, it seems to be very important to diversify the seay@pplying a lot of random
mutations on the optimal solutions. On the20_10_02 instance, d 0% mutation rate
outperforms most of the other mutation rates excepttfienutation rate which ob-
tains good results, even when the size of this instance i.dnaatly, onta_20-20-01,
results obtained with different mutation rates are comparaven if the best average
result is obtained with 20% mutation rate.

As a conclusion, th&M population generation method seems to be an effective
way to initialise populations. Furthermore, we can sugtfestuse of a small muta-
tion rate to solve large-size problems. For small-size famol, it is not clear how to
choose the best mutation rate. Intuitively, creating soh# by applying high muta-
tion level corresponds to more diversification in the seat©m small instances, the
diversification enables the exploration of most parts ofgbarch space, in order to
find the optimal solutions. On large instances, we can ordy$mn small parts of the
search space, then it is better to focus the search on arétas sdlution space which
is known to contain good solutions. Perhaps it would be @sting to define this value
adaptively during the search procedure. Further expetisrame provided in the next
sections, in order to obtain more knowledge about how tdseparameter.
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Table 3: Initialisation strategy comparison.
Init strategy RM Rand| Cro
RM rate 5% | 10% | 20% | 30% | 50%
ta_20_5_01 | 0.063| 0.018| 0.007| 0.011| 0.009| 0.039| 0.024
ta-20_5_.02 | 0.087| 0.039| 0.011| 0.013| 0.018| 0.129| 0.140
ta-20-10_01 | 0.005| 0.006| 0.004| 0.004| 0.003| 0.007| 0.014
ta_20.10_02 | 0.024| 0.021| 0.030| 0.028| 0.028| 0.035| 0.063
ta-20-20_01 | 0.010| 0.003| 0.002| 0.003| 0.003| 0.013| 0.060
ta_50_5_.01 | 0.024| 0.029| 0.050| 0.061| 0.079| 0.122| 0.117
ta_50.10_01 | 0.080| 0.066| 0.087| 0.102| 0.114| 0.169| 0.263
ta-50-20_01 | 0.081| 0.081| 0.107| 0.115| 0.136| 0.174| 0.134

4.4.3 Population size

In many population-based metaheuristics, such as evohyalgorithms, the popula-
tion size is a significant parameter. Generally, the resuibetter when the population
size increases and when enough computational time is eeghldy/hen the execution
time is limited, the population size has to be set in orderlimaathe algorithm to
converge just before the time limit.

Table[4 shows the results obtained using different pomriaizes. The first impor-
tant result which can be extracted from this set of experisisrthat the IBMOLS al-
gorithm performs well using a small population size: thgéest population size tested
(50 individuals) never obtains the best result, for all peabinstances. However, the
best population size seems to increase according to thefike problem. For most
of the smallest instances, the best results are achievadest than 10 individuals in
the population, but for the two largest instanaes;0.10_01 andta_50_20_01, the best
population sizes lay in the range of 15 to 30 individuals. ;i order to solve new in-
stances, it could be interesting to evaluate the averagéseshen the population size
is fixed linearly according to the numbat of jobs times the numbey/ of machines,

N.M
~f5~ for example.

Table 4: Population size comparison.

Population size| 3 5 8 10 15 20 30 50

ta_20_5_01 0.002| 0.004| 0.006| 0.009| 0.010| 0.015| 0.025| 0.065
ta_20_5_02 0.005| 0.004| 0.015| 0.038| 0.037| 0.081| 0.099| 0.147
ta_20-10_01 0.013| 0.007| 0.004| 0.005| 0.006| 0.007| 0.012| 0.016
ta-20-10-02 0.032| 0.027| 0.028| 0.025| 0.024| 0.023| 0.026| 0.038
ta_20-20_01 0.008| 0.003| 0.002| 0.002| 0.002| 0.004| 0.006| 0.017
ta_50_5_01 0.071| 0.046| 0.034| 0.034| 0.043| 0.061| 0.067| 0.079
ta_50-10_01 0.213| 0.128| 0.100| 0.091| 0.087| 0.098| 0.125| 0.147
ta_50-20_01 0.211| 0.149| 0.107| 0.097| 0.084| 0.078| 0.077| 0.110

FiguredIIL an@12 show the evolution of the performance ofBMOLS algo-
rithm, in terms of average hypervolume difference over tinkggure[I1 shows that
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results obtained with a population size of 30 individuaks@utperformed by those ob-
tained with a smaller population size, and it does not seerhange when the run time
increasest-20-10_01 instance). FigurEZ12 is obtained &m 502001 instance. In
this case, the results obtained with 30 individuals are erfitpmed by those obtained
with eight individuals, but only when the run time is lessrttaound 350 seconds. Af-
ter that period, we can observe that the IBMOLS algorithm@s&iO individuals starts
to outperform the one using eight individuals, as we obséwenany evolutionary
algorithms. However, on the same figure, we can observehbatmployment of 50
individuals never seems to perform well. This issue is gdéng and is discussed in
section[6, where a complete set of experiments is provideidguifferent running
times.
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Figure 11: Evolution of the average hypervolume differenising different population
sizes:ta_20_10_01 instance.
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Note that the execution times are very short in this studg {able[l), in order to
be able to provide statistical analysis of the differentoeti®ns. However, the results
obtained by thed BM OLS algorithm are close to the best values foundlin [5], with
very long execution times.

5 Application II: A Ring Star problem

In this section, we will consider another application: thiadgrStar problem, which
is an academic problem with many real world applicationgstFwe present some
details about the bi-objective Ring Star problem. Secandéydiscuss the parameter
values used for the experiments, and how to adapt IBMOLSs$m#w problem. Then,
we describe our experimental protocol and provide an aisabfghe results. In this
section, we aim to compare our method with two classical i@biective Evolution-
ary Algorithms (MOEAS) of the literature, i.e. NSGA2 and IBEfor the Ring Star
problem.

5.1 Problem description

TheRing Star Problen{RSP) [26] can be described as follows. I&t= (V, E, A)
be a complete mixed graph wheVe = {vy,vs,...,v,} is a set of verticesE =
{[vs, vj]|vi,v; € V,i < j}is a set of edges, and = {(v;, v;)|vi,v; € V} is a set of
arcs. Vertex; is the depot. To each edde, v;], we assign a non-negativiag cost
¢ij, and to each ar@;, v;) is assigned a non-negatigssignment cosi;;. These costs
are defined as follows: €}, denote the Euclidian distance between two nagesd
v; of a TSPLIB data file. As proposed by Labbé et al.l[26], the ostc;; and the
assignment cost;; are both been set ig; for every pair of nodes; andwv;.

The RSP consists of locating a simple cycle through a subset V' (with v; €
V') while (i) minimising the sum of the ring costs related toages that belong to the
cycle, and (ii) minimising the sum of the assignment costaro$ directed from every
non-visited node to a visited one so that the associatedsaghimum. An example
of solution is given in figurEZ3, where the solid lines reprishe edges that belong
to the ring and the dashed lines represent the arcs of thgnassits.

The first objective is called théng costand is defined as:

Z CijLij (17)

[vi,v;]€E

wherez;; is a binary variable equal to 1 if and only if the edgg v;] belongs to the
cycle.
The second objective, tressignment costan be computed as follows:

U,LGV\V/ vj 2%

This problem is particularly challenging because, for egighn subset of nodes to
visit, a classical Traveling Salesman Problem (TSP) #ithains to be solved.
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Figure 13: The bi-objective Ring Star problem: minimize thng cost and the assign-
ment cost (bold cycle). Each vertex which does not belongearing is assigned to
the closest vertex in the ring (dashed lines).

5.2 Parameter setting

The parameters which are directly related to the problensidened, the individual
coding and the neighborhood operator, are defined as fallows

¢ Individual coding: sequence of vertices. A solution of alppeon withn vertices
is represented by a set éfvertex indices, withD < k < n. Thesek values
corresponds to visited nodes, in the order they are visited.

e Neighborhood operator: the Ring Star problem is at the séme an assign-
ment problem and a routing problem. In order to take into antthese two
specificities, the neighborhood is divided into three sthse

1. 2-opt exchange operator: the sequence of visited nodesbe two ver-
ticesv; andv, is reversed.

2. Insert vertex: add a vertexin the ring. The position of in the ring is
chosen in order to minimise the ring cost, i.e. placed at &t position
among all possible ones according to the ring cost. The ms®gt is up-
dated according to the vertex inserted.

3. Delete vertex: remove a vertexfrom the ring. Re-assign the vertices
which were assigned to.

As for the FSP problem, the neighbors are randomly genegnaititbut consid-
ering any exploration order between the three subsets ghhers.
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The other parameters are defined as for the first applicatia®pt the binary indi-
cator. Indeed, we will only consider here théndicator, which has obtained the best
average performance on the bi-objective FSP.

5.3 Experimental design

In the previous section, the statistical analysis of thalteslemonstrated the efficiency
of the I, indicator, which outperforms the other binary indicatdrsthese experiments
and the experiments presented in the next section, we wilpravide further results
using different binary indicators, since the results oiediare very similar and the
best results are achieved by theindicator. For the same reason, we will not provide
an analysis of the results of the differgptnerate Population functions, sinceRM
clearly outperforms the other approaches on the three @gaiion problems treated in
this paper.

Here, we provide a statistical analysis of different IBMOL&sions, using dif-
ferent population sizes and mutation rates in Rid initialisation. Furthermore, we
provide a comparison against two well known MOEAs from theréiture: NSGA I
and IBEA [12,[41]. The performance assessment protocol imsttbse experiments
is described in the previous section. For each methodolegycompute the 20 hy-
pervolume differences corresponding to the 20 runs. Thencampute the statistical
confidence level for the affirmatidtalgorithm A outperforms algorithmB” (Mann-
Whitney test); the average hypervolume values which appeaold in the tables cor-
respond to the algorithms which are not statistically orfggened by any other algo-
rithm.

Eight problem instances, extracted from the travelingssasin problem benchmark
instance$ are testedeil51, st70, kroA100, bier127, kroA150, kroA200, pr264 and
pr299. The number contained in each instance name representsritzen of vertices
of the corresponding problem.

We experiment with nine different versions of the IBMOLS@iighm, using com-
binations of three different population sizes and threéediht mutation rates in the
RM population generation strategy. The previous experimamtg/ed that the use of
a small mutation rate and population size allows us to otteitter results. In the
experiments presented here, we test different values:

e Mutation rate:5%, 10% and20% of the problem size (i.e. the number of ver-
tices).

e Population size: three different values, (M and L), defined according to the
instance size, i.e. respectively 5, 10 and 15#6t51 and St70 instances, 10,
15 and 20 folkroA100 andbier127 instances, and 15, 20 and 30 fero A150,
kroA200, pr264 andpr299 instances.

The IBEA and NSGA Il algorithms are also tested. For both atgms, the
crossover probability is set to 0.25, and the mutation podityato 1.00, with a prob-
ability of 0.25, 0.25 and 0.50 for the remove, the insert dred2-opt operator, respec-
tively. The population size is fixed to 100 individuals. Lgsive present results for the

2URL: http://www.iwr.uni-heidelberq.de/groups/comopt/soft ware/TSPLIB95/
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IBEA algorithm using a small population sizé/( values), since as for the IBMOLS
algorithm, IBEA seems to perform better using a small pajiutesize. Implementa-
tion was realised using thRaradis EO platform [9]. The experiments are realised on
an Intel duo-core 2*2.4GHz with 2Gb RAM.

5.4 Experiments

Table[® summarises the results obtained with the differlgyurithms on several in-
stances. The difference between the algorithms, in terrhgmérvolume difference, is
very small. Then, in Tablgl 5, the vallds given to the most efficient algorithm, and
the other values correspond to the deviation of the consitalgorithm with respect
to the best algorithm. The table shows the efficiency of tHd@.S algorithm, which
obtains very good results on all instances excepkand100 and pr299 instances,
where some IBMOLS versions are statistically outperforingdBEA (with 100 in-
dividuals). IBEA obtains good results, but is generallypmiformed by most of the
IBMOLS versions.

IBMOLS seems to perform better using the larger populatine.sHowever, the
larger size corresponds to 15, 20 or 30 individuals, whiduite small in comparison
to usual population size used in classical MOEAs. Concerttie mutation level, no
overall conclusion can be extracted from the table, evdreifate still has an influence
on the results.

As a conclusion, the tests realised on the ring star probleow ssome similar
properties to those carried out on the flow shop problem, lit several differences:
IBMOLS performs better using a small population size, eVéina optimal population
size is larger on the RSP. When applied on the FSP, the 'optim#ation rate of
IBMOLS should be smaller with increasing problem size. Hor RSP this seems
not to be the case. Moreover, IBMOLS outperforms two stétdre-art well known
MOEAs: NSGA-Il and IBEA.

Table 5: Algorithm comparison: average difference with thest algorithm (hy-
pervolume difference deviations10~3). The running times are 10", 20", 1’, 2,
5’, 10, 20’ and 50’ for theeil51, st70, kroA100, bier127, kroA150, kroA200,
pr264 andpr299 instances respectivel\s, M, L} equals to{5, 10, 15} for Eil51 and
St70 instanceg 10, 15, 20} for kroA100 andbier127 instances, and15, 20, 30} for

kroA150, kroA200, pr264 andpr299 instances.

Algorithms IBMOLS NSGA-II IBEA

RM rate 5% 10% 20% - -

Pop size S M L S M L S M L 100 100 M
eil51 1.144/0.6300.075/1.9530.656) 0 (3.1420.890[0.119 3.068 | 0.995| 3.572
st70 1.036/0.531/0.070,1.6010.677/0.121{2.0420.498 O 2.077 | 0.198]| 2.208

kroA100 |1.2240.237, 0 |1.6350.4120.0202.4910.584/0.268 3.079 | 0.793| 6.577
bier127 1.5140.302/0.035/2.13210.390, 0 |3.0301.271]0.784 3.385 | 0.972(10.430
kroA150 |0.8800.324/ 0 |(1.3320.701/0.311{1.926/1.164/0.421] 3.106 |19.321f 8.525
kroA200 [0.8620.641] O |1.0200.668/0.1521.2921.085/0.650 2.608 |44.943 8.189
pr264 0.0390.113/0.238/0.059 0.189/0.327/0.263 0.069 0 0.614 | 0.163| 1.430
pr299 0.111/0.20410.092/0.041]0.155/0.436/0.054/0.098 0 0.967 | 2.571| 2.743
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6 Application Ill: A Nurse scheduling problem

Nurse rostering is an important search problem that hasvemtsignificant attention

from the research communityi[8]. In this section, we will s@ler a Nurse Scheduling
Problem (NSP) which is directly extracted from a real woitdation. This problem

is slightly different from the two first problems considereahd will give us an idea
of the difficulties of adapting IBMOLS to real world problembdeed, the problem
considered here contains a lot of hard constraints and tijeetives. In this section,
IBMOLS is compared to SEAMO-R, which was proposed to soheeNSP problem

in [28]. First, we briefly describe the nurse scheduling peob Secondly, we discuss
the parameter values used for the experiments, and issueswoto adapt IBMOLS to

this real world problem. Then we describe our experimentatqeol and provide an

analysis of the results.

6.1 Problem description

The Nurse Scheduling Problem described in this paper, isotstouct non-cyclic
schedules for a ward of nurses in tBeeens Medical Centi@ Nottingham, UK. The
scheduling period is a 28 days period to cover a 24-hours lfaarly, late and night
shift), seven days a week. Each nurse works either on aipzatdr on a full-time
basis. Nurses are classified in a hierarchy according togelifications and training.
This NSP includes the most common constraints from the raaiseduling literature,
as identified in[[1D].

The Queens Medical CentdSP is formulated as the ordered p&¥urses, C)
whereNurses = {N; : 1 <i < n} is a set ofn nurses and’ is a set of constraints.
Nurses usually indicate their individual working prefecer{e.g. days off, preferred
shifts, etc.) for each scheduling period. Constructeddules should meet the work
regulation such as one working shift a day, maximum workiogrk regarding nurses’
contract, maximum/minimum consecutive working daysg#éleshift patterns. The
constructed schedules should also confront the coveragartis regarding nurse qual-
ifications and training. Furthermore, any surplus or deficitverage, demand) of
nurses over the scheduling period should be evenly diseibamongst shifts.

We aim to minimise three objective functions, which are ftyidescribed below:

e Work regulation violations: Combination of three prefereitypes, i.e. (1pin-
gleNight Penalty is applied each time a night shift is assigned toraenon
a specific day, and shifts different to Night are assigneddjacgnt days; (2)
WeekendSplitPenalty is applied each time a nurse is assigned to workamly
a single day of a weekend; (8YeekendBalancdenalty is applied if a nurse is
assigned to work at least one day in each of the four weekerttie ischeduling
period.

e Coveragalemands satisfaction in the scheduling period: if the nurabeurses
with specific qualifications and training assigned to a giskeift is less than the
coverage demand, a penalty equals to the deficit in the nuofiberses assigned
is applied.
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e Even distribution of nurses amongst shiftS8oferageBalande it consists in
measuring the statistical variation on the difference leetnthe number of qual-
ified nurses assigned to each shift and the coverage demaqudlified nurses.

Note that we set a fixed threshold for the nurses’ individualking preferences to
guarantee a minimum level of staff satisfaction among$ediht scheduling periods
rather than trying to optimise it. For more details of thelpjeon description seé [28],
and visit/http://www.cs.nott.ac.uk/ ~tec/NRP/ | for a web repository of
nurse scheduling problems.

6.2 Parameter setting

The parameters which are directly related to the probleeinttiividual coding and the
neighborhood operator, are defined as follows:

¢ Individual coding: set ofi schedules of 84 time slots (28 days, each day being
divided in three time slots). A decoding procedure is agptia the individuals
before the evaluation process, since some constraintstbdwe satisfied. The
decoder is able to apply a small change to a solution in oadbuild a feasible
solution. For more details, see [28].

e Neighborhood operator: i [28], the authors remark thatrduthe evolution
process, the crossover operator is able to build good sokitvhereas the mu-
tation operator is unable to improve existing good solwgiofhen, they choose
to use only the crossover operator in their GA. The crossoperator used is
thecycle crossovej33], applied on each nurse schedule. The cycle crossover is
described in the example below:

Let two permutation$’1 and P2 of size nine, withP1 = (1,2, 3,4,5,6,7,8,9)
andP2 = (4,1,2,8,7,6,9,3,5). The childC starts by taking the first value

from P1, the childC = (1,—,—,—,—, —,—, —, —). The next value must be
from P2 and from the same position. This gives value 4, which is irrtfou
position onP1: C = (1,—,—,4,—,—,—, —, —). This process is iterated until
a cycle is obtained@ = (1,2,3,4,—,—,—,8,—) for this example). Once,

the cycle is obtained, the remaining value are pasted fR2nthen we obtain
c=0,2,3,4,7,6,9,8,5).

Thecycle crossoveis applied on each couple (schedule of nurseéindividual

1, schedule of nurseof individual 2). In our case, the neighborhood consists
of applying the cycle crossover on only one selected nunsetder to favorise
local moves instead of applying an entire crossover ogmraflhen, if the al-
gorithm runs withN individuals on a problem instance containingurses, the
neighborhood size is equal tox N.

The other parameters are defined as for the two first apitatior the population
generation function, the random mutation rate in the appba consists of several
random swap mutations on the individuals.
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6.3 Experimental design

The different datasets available for this problem have lamnsizes, e.g. around 15
nurses and 28 days divided into 84 time slots. The datasetsmmnds to nurse sched-
ule in different month in 2001 (from March to September), ethare named accord-
ingly (March2001, ..., September2001). In order to evaluate the effectiveness of the
IBMOLS algorithm under different conditions, we perfornréh different test series,
using different run times: 30 seconds, 5 minutes and 30 re@audur goal is to eval-
uate the IBMOLS algorithm’s efficiency when using short rimds as well as when
using long run times. Furthermore, we will evaluate theatésn of the optimal pa-
rameter values according to the run time available. In oraevaluate the efficiency
of the IBMOLS algorithm, we will compare our results with thesvious algorithm
which was proposed for this problem: SEAMO-R][28]. The pagioh sizes used to
evaluate SEAMO-R and IBMOLS are different, since IBMOLSffecgent using small
populations and SEAMO-R is efficient using large populatiofhen, the population
sizes tested correspond to the most efficient possible s¥alue

6.4 Experiments

Table 6: Algorithm comparison: 30 seconds runs.

Algorithms IBMOLS SEAMO-R
RM rate 5% 20% -
Pop size 10 | 20 | 30 | 10 | 20 | 30 | 50 | 100 | 200

March2001  |0.2390.268 0.293/0.266{0.300/0.272/0.558 0.537/0.770|
April2001 0.257/0.272/0.324{0.304,0.278/0.284,0.644 0.596/ 0.829
May2001 0.257/0.274{0.275/0.276{0.316/0.258 0.683 0.580/0.777
June2001 0.529 0.5190.426/0.483 0.565|0.424,0.427)0.203 0.246
July2001 0.346/0.304{0.260/0.278 0.313 0.245 0.525 0.393 0.594
August2001 |0.2870.285/0.3730.284/0.3190.322/0.691] 0.655/0.947|
September200D.3920.33410.326] 0.3540.336{0.310/0.6120.498/0.723
Average 0.3300.322/0.325{0.321{0.347|0.302 0.591 0.495/0.698

Table 7: Algorithm comparison: 5 minutes runs.

Algorithms IBMOLS SEAMO-R
RM rate 5% 20% -
Pop size 10 | 20 | 30 | 10 | 20 | 30 | 50 | 100 | 200

March2001  [0.1750.172/0.226/0.2880.2390.203 0.694{0.504]0.449
April2001 0.137/0.199/0.169 0.281{0.230/0.169 0.721]0.532/0.439
May2001 0.136/0.168/0.144{0.235 0.221{0.204,0.686 0.484/0.369
June2001 0.263 0.352/0.338/0.273 0.286|0.282/0.526/0.182/ 0.095
July2001 0.1480.198/0.166{0.191{0.182/0.179 0.494 0.284/0.221
August2001 |0.1620.185/0.186/0.221{0.196/0.202/0.743 0.530/0.419
September200D.1870.220/0.232/0.224 0.220|0.246/0.742 0.466| 0.306
Average 0.1730.2130.209 0.2450.225/0.2120.658 0.426/0.328
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Table 8: Algorithm comparison: 30 minutes runs.

Algorithms IBMOLS SEAMO-R
RM rate 5% 20% -
Pop size 10 | 20 | 30 | 10 | 20 | 30 300

March2001  [0.191)0.2590.249 0.304/0.267|0.249  0.609
April2001 0.206/0.199/0.172/0.2650.260/0.254  0.718
May2001 0.226/0.255/0.165{0.363 0.300[0.315 0.584
June2001 0.2700.298/0.358/0.183 0.250/0.279  0.246
July2001 0.261/0.255/0.254/0.1530.143{0.172  0.333
August2001 |0.247/0.287/0.192/0.3140.330,0.3120  0.672
September200D.171{0.196/0.239/0.231]0.267|0.251]  0.432
Average 0.2250.2500.233/0.259 0.260/0.262f  0.513

Results obtained with runs of 30 seconds, 5 minutes and 30tesare respectively
described in tabldd Bl 7 ahH 8. For each problem, we haveltéi$terent combinations
of population sizesl(, 20 and30) andRMrates 6% and20%).

The comparison of the different IBMOLS approaches agaigstN80-R allows us
to conclude that IBMOLS approaches are statistically méireéient than the SEAMO-
R approach, except on theine2001 instance. SEAMO-R performs slightly better on
this instance, but the difference tends to be reduced wheerutiming time increases.
In particular, SEAMO-R is statistically outperformed oretfiune2001 instance on
runs of 30 minutes. On the remaining problem instances, SBAMis statistically
outperformed, on runs of 30 seconds, 5 minutes and 30 minutes

Now let us discuss about results obtained using differerarpater values for the
IBMOLS algorithm. No clear conclusion can be extracted ftabled6[I7 andl8. How-
ever, we can observe two tendencies from these tableslyFirgtny of the IBMOLS
algorithm versions are incomparable on runs of 30 secondsylven the run time in-
creases, the number of statistically incomparable vessismeduced. Secondly, the
IBMOLS version using the smallest population size and thallest mutation level
obtains the best average results on 5 and 30 minutes runs.obkérvation confirms
our conclusion introduced in the previous experiments,the IBMOLS algorithm is
more efficient using a small population size and a small nartatte.

7 Conclusion and perspectives

In this paper, we presented a new and generic multi-obgatigtaheuristic using the
binary quality indicator concept. We proposed the use oharyiindicator within an
iterated local search algorithm. The algorithm combinesaemt, popular and effi-
cient mechanism proposed for MOEAs and the iterated loeaitbeprinciple, which is
known to perform well on real world applications.

One advantage of the indicator-based search is its highdéggnerality, mainly
due to the small number of parameters that are required. W designed the IB-
MOLS algorithm in order to propose a methodology which is eseagic as possible.
We have performed a wide range of experiments, using diffggarameter values, to
evaluate its level of generality and to find guidelines on toveet the small num-
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ber of parameters needed for the IBMOLS algorithm. Furtleeeywe perform some
experiments on other methods in order to evaluate the eféexss of our algorithm.

We have evaluated the IBMOLS algorithm by applying it to thdifferent combi-
natorial problems. This enables us to make the followingeolzgions:

e The IBMOLS algorithm is highly generic: it has been easilyl @uccessfully
applied on very different combinatorial problems. Howeitatoes not facilitate
the avoidance of a specific study of the considered probldordaddressing it,
especially with regard to the neighborhood structure basegl in the algorithm.
Forinstance, the neighborhood structure used for the setsluling problem is
very important, and the one used in this paper (based on sahselule mating)
has a major influence on the results. The use of classicatbeigood operators,
such aswapor insertoperators lead to disappointing results on this problem.

e The comparison with some other algorithms from the liteaallows us to say
that the IBMOLS algorithm is efficient on different problemEBBMOLS out-
performs some classical state-of-the-art multi-objecévolutionary algorithm,
even if some exceptions exist.

e Among the binary indicators tested in this paper, we advieeuse ofl. which
outperforms the other indicators in many cases. Howevenyrather indicators
could be defined and could outperfoim

e The IBMOLS algorithm is more efficient using a small popuwdatsize. In many
cases, the best results are achieved using a populatiossahign 10 individuals.
However, if the search space is large or if the run time abkles large, we sug-
gest the increase of this size to several tens of individdalBowing this guide-
line, the search methodology should obtain good resultsimyaases. However,
there are some exceptions such as those encountered inpguimegnts. Then, a
good solution should be to start the search with small-sigrifation, then after
several local searches the population size can be defingdivaaa during the
search. Such principle has been already proposed for sihigetive optimisa-
tion [2].

e The initialisation of the local search populations is an amant parameter of
the IBMOLS algorithm. In our experiments, the method of gpm random
mutations to some non-dominated solutions from the ardeitéghly efficient.
The efficiency of this initialisation method depends on theant of random
mutations to be applied. We observe that the same genedarieies when ob-
serving population size i.e. good results can be obtaind¢ld avsmall number
of random mutations, except on large-size problems andavidige computa-
tion time. However, these results are not very clear, andtveagly suggest to
adapt the mutation rate during the search in order to findladpiglity rate, also
because the most-suited parameter value probably changeg the algorithm
execution.

The binary-indicator search principle has been succdggftdposed for evolution-
ary algorithms in[[4i1] and for local search in this paper. signeral principle could
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be adapted to every type of (meta)heuristic search, sucimtasobony optimisation
and Tabu search][1]. Once we have different indicator-basacch strategies, it will
be interesting to propose an adaptive version of IBMOLS cWwhiill be efficient on
a new problem without preliminary studies. To achieve tlgalgthe exploration of
hyper-heuristicd[35] could also lead to significant resulhis will help us to search
for the most appropriate population size or initialisatfanction dynamically during
the search, by evolving different indicator-based searctéth such an approach, we
could obtain a modified IBMOLS algorithm which will be aplzle across a large
range of multi-objective problems.

Another perspective is to explore the possible definitiod avaluation of other
indicators. In particular, it should be interesting to use tinary hypervolume indica-
tor within IBMOLS algorithm, since this is the most commoalscepted performance
indicator in the community. However, this would not be anyetask since the en-
closed hypervolume computation is an #P-hard problem daugto the number of
objectives.
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