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Building on the work of PETER HINST and GEO SIEGWART, we develop a pragmatised natural de-
duction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at
the formal level, and prove the equivalence between the consequence relation for the calcu-
lus and the classical model-theoretic consequence relation.
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Introductory Remarks

In this text®, we build on the works of PETER HINST and GEO SIEGWART on the pragmati-
sation of natural deduction calculi? and develop a (classical) speech act calculus® of natu-
ral deduction that has the following properties: (i) Every sentence sequence $), which here
means: every sequence of assumption- and inference-sentences, is not a derivation of a
proposition (i.e. a closed formula) from a set of propositions or there is exactly one

proposition T" and exactly one set of propositions X such that § is a derivation of I" from

X, this being determinable for every sentence sequence without recourse to any meta-

theoretical means of commentary.* (ii) The classical first-order model-theoretic conse-
guence relation is equivalent to the consequence relation for the calculus.

Developing the calculus, we presuppose the grammatical framework of pragmatised
first-order languages, which has been developed by PETER HINST and GEO SIEGWART, and
supplement it with some additional concepts (1). Then the concept of the availability of
propositions is established: In contrast to the calculi developed by HINST and SIEGWART,
the formulation of the speech act rules for this calculus does not take recourse to a de-

1 This text is basically a translation of our German paper: Ein Redehandlungskalkiil. Ein pragmatisierter

Kalkill des natirlichen Schliefens nebst Metatheorie. Version 2.0. Online available at
http://hal.archives-ouvertes.fr/hal-00532643/en/.

Pragmatised natural deduction calculi are natural deduction calculi that incorporate illocutionary
operators at the formal level: For each speech act governed by the calculus (i.e. making an assumption
or drawing an inference) there is a specific type of illocutionary operator, called performator, whose
application to a proposition yields a sentence (i.e. an assumption or an inference sentence). These
performators and the sentences that result from their application to propositions are part of the language
of the respective calculus and their use in speech acts is governed by the rules of the respective calculus.
Pragmatised calculi thus allow for the formal treatment of the linguistic practice of uttering derivations.
More generally, the framework of pragmatised languages developed by HINST and SIEGWART allows for
a formal treatment of all kinds of speech acts and linguistic practices. See HINST, P.: Pragmatische
Regeln, Logischer Grundkurs, Logik, and SIEGWART, G.: Vorfragen, Denkwerkzeuge and, in English
and most recent, Alethic Acts.

Our use of the expression 'speech act calculus' (German: Redehandlungskalkil) to designate
pragmatised natural deduction calculi follows SEBASTIAN PAASCH.

Note that we regulate the predicate '.. is a derivation of .. from .." in such a way that the set of
propositions mentioned at the third place is identical to the set of assumptions which actually occur in
the sentence sequence that is named at the first place and which are not eliminated in that sequence. If
one regulates the predicate so that the set of propositions named at the third place has to be a superset of
the set of assumptions that actually occur in the respective sentence sequence and are not eliminated
there, which is not unusual either, the calculus accordingly ensures that every sentence sequence §) is
either not a derivation of a proposition from a set of propositions or that there is a proposition I" and a
set of propositions X, such that for every proposition A and set of propositions Y one has: § is a
derivationof AfromY iff A=Tand X C Y.
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pendence relation between sets of propositions and propositions, but to an availability
relation between propositions, sequences of sentences and positions (natural numbers in
the domain of sequences). The concept of availability is inspired by the idea that all
propositions in a subproof except the conclusion of the subproof should not be available
after the subproof has been closed, which is implemented, for example, in the KALISH-
MONTAGUE calculus.® Here, however, only subproofs that aim at conditional introduction
(Cdl), negation introduction (NI) or particular-quantifier elimination (PE), are treated in
this way and the calculus is established in such a way that neither graphic means nor
meta-theoretical commentaries have to be used: Which propositions are available in a
given sentence sequence can be unambiguously determined without recourse to any kind
of commentary (2).

Next the Speech Act Calculus is established. As is usual for pragmatised natural deduc-
tion calculi, the calculus contains a rule of assumption, which allows one to assume any
proposition, and two rules for every logical operator, one regulating its introduction and
the other one its elimination. Except for the rule of identity introduction (I1), which allows
the premise-free inference of self-identity propositions, the introduction and elimination
rules always demand that suitable premises have already been gained, i.e. are available.
So, for example, the rule of conditional elimination (CdE) allows one to infer I" if one has
already gained A and "A — I'", i.e. if Aand "A — I are available. Propositions are
gained or made available by being inferred or assumed. One gains a proposition I" depart-
ing from an assumption if this assumption is the last one that has been made before gain-
ing I and that is still available.

Three of the rules, Cdl, NI and PE, allow one to discharge assumptions one has made: If
one has gained a proposition I" departing from the assumption of a proposition A, then
one may infer "A — I"" and thus discharge the assumption of A (Cdl); if one has gained
propositions I" and "—I"" departing from the assumption of a proposition A, then one may
infer "—A™ and thus discharge the assumption of A (NI), if a particular-quantification
"VEA™ is available and one has gained a proposition " departing from the representative

instance assumption [B, &, A], then one may infer " and thus discharge the representative

> See KALISH, D.; MONTAGUE, R.; MAR, G.: Logic. See also LINK, G.: Collegium Logicum, p. 299-363.



Introductory Remarks V

instance assumption (PE). The discharge of the respective initial assumptions is achieved
as each application of Cdl, NI and PE closes the whole subproof beginning with the re-
spective assumption. One consequence of this is that the respective initial assumptions are
not any more available, but it also makes the intermediate conclusions drawn during the
subproof unavailable as premises — these intermediate conclusions only served the pur-
pose of preparing the application of the respective rule and have been gained under the
respective assumption. If the assumption is not any more available, then neither should
any propositions that one was only able to gain under this assumption be available. One
may reflect on this using the example of the pair I" and "I that has to be gained to pre-
pare the application of NI.

After the establishment of the calculus, a derivation and a consequence concept for the
calculus are established. A sequence of sentences $ will then be a derivation of a proposi-

tion I" from a set of propositions X if and only if § can be uttered in compliance with the

rules of the calculus, T is the proposition of the last member of $ and X is the set of the
assumptions available in $. Accordingly, a proposition T will then be a deductive conse-
quence of a set of propositions X if and only if there is a derivation of ' froma Y < X
(3).

The reflexivity, closure under introduction and elimination, transitivity as well as other
properties of the deductive consequence relation have to be shown in order to prepare the
proof of the adequacy of the then established concept of deductive consequence (4). Sub-
sequently, a version of the classical model-theoretic consequence concept that fits the
grammatical framework is established (5). Then the correctness and the completeness of
the deductive consequence concept relative to this model-theoretic concept of conse-
quence are shown (6). We conclude with some remarks on ways to elaborate on the ap-
proach taken here (7).

In the development of the calculus, we assume an established set or class-set theory,
such as ZF or NBG(U). Since we do not want to restrict our meta-theory to a purely set-
theoretical framework, we sometimes have to stipulate additional properties — such as, for

example, X e {X} - that are trivial within a pure set theory, but informative within a

class-set-theory. The development and meta-theoretical analysis of the Speech Act Calcu-
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lus employ common set-theoretical and meta-logical instruments and techniques, which
are presented in the works listed in the references.

A note concerning the use of this document: All entries in the table of contents link to
the respective chapters and are bookmarked. Moreover, all cross-references as well as all
mentions of postulates, definitions, theorems and speech-act rules link to the respective
item.

We would like to thank SEBASTIAN PAAsScH for pointing out various problems which
motivated the development of our calculus, for valuable hints and for his helpful criticism
of an earlier version of this text. Also, we would like to thank GEO SIEGWART for valuable

hints, patience and an open ear.









1 Grammatical Framework

The Speech Act Calculus and its meta-theory are developed for denumerable pragmatised
first-order languages.® To simplify the following presentation, we suppress any reference
to specific languages, or, more precisely, we assume an arbitrary but fixed language of
this kind with a denumerably infinite vocabulary, the language L. First, the vocabulary
and syntax of L are to be specified (1.1). Then the substitution operation is to be devel-

oped and some theorems on substitution are to be proved (1.2).

1.1 Vocabulary and Syntax

L is supposed to be an arbitrary, but fixed representative of languages of the desired kind
with a denumerably infinite non-logical vocabulary. However, the calculus also works for
languages with finitely many descriptive constants. Since L is not an actually constructed
language, it is now just stipulated that a suitable vocabulary and a suitable concatenation
operation for expressions exist. Which vocabulary is chosen in particular cases or how it
is constructed (and how it is set-theoretically modelled, e.g. with recourse to subsets of N
in NBG or ZF, or described, e.g. with recourse to axiomatically characterised (sets of)
urelements in NBGU) is left open. The same holds for the concatenation operation for
expressions: It is left open how this concatenation operation is established, e.g. with re-
course to finite sequences or in some other way. The first postulate demands the existence

of suitable sets of basic expressions for the vocabulary of L.:

Postulate 1-1. The vocabulary of L (CONST, PAR, VAR, FUNC, PRED, CON, QUANT,
PERF, AUX)
The following sets are well-defined, pairwise disjunct and do not have @ as an element:
(i)  The denumerably infinite set CONST = {c;| i € N}, where for all ¢, j € N with i # j: ¢;
#c;and ¢; € {c;}, (the set of individual constants; metavariables: a, o', a*, ...),
(i) The denumerably infinite set PAR = {x; | i € N}, where for all 4, j € N with ¢ £ j: X; #
x;and x; € {x;}, (the set of parameters; metavariables: 8, ', f*, ...),
(iii) ~ The denumerably infinite set VAR = {z;| ¢« € N}, where for all ¢, j € N with ¢ # 5. z; #
zjand z; € {x;}, (the set of variables; metavariables: &, C, o, &, (', o', &%, C*, 0%, ...),
(iv)  The denumerably infinite set FUNC = {f;; |« € N\{0} and j € N}, where for all ¢, k£ €
N\{0} and j, I € N with (3, 5) # (k, ): f,; # fr, and f,; € {f;;}, (the set of function con-

®  See the literature mentioned in footnote 2. For a rigorous development oft the grammatical framework

see especially HINST, P.: Logik, ch. 1.
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stants; metavariables: o, ¢', ¢*, ...),

(v)  The denumerably infinite set PRED = {=} u {P.; | € N\{0} and j € N}, where {=}
Z {P,; |7 e N\{0} and j € N} and for all 7, £ € N\{0} and 5, [ € N with (z, ) # (%, 0):
P.;# Pr.and P;; € {P. }, (the set of predicates; metavariables: @, @', ®*, ...),

(vi)  The 5-element set CON = {—, —, <>, A, v} (the set of connectives; metavariables: v,
AR}

(vii)  The 2-element set QUANT = {A, V} (the set of quantificators; metavariables: II, IT',
Im*, ...),

(viii) The 2-element set PERF = {Suppose, Therefore} (the set of performators; metavari-
ables: =, Z', E*, ...), and

(ix)  The 3-element set AUX = {(} v {)} v {.} (the set of auxiliary symbols).

The meta-theoretical expressions by which the elements of the sets PERF and AUX are
designated will also be used as meta-theoretical performators and auxiliary symbols, the
same holds for the identity predicate. To avoid confusion and to enhance intuitive read-
ability, we will therefore use quasi-quotation marks ('™, ™) if object-language expres-
sions are to be designated. , T, u', ', u*, t*, ... serve as general metavariables for object-
language expressions. The vocabulary of L is now simply defined as the set of the sets

postulated in Postulate 1-1:

Definition 1-1. The vocabulary of L (VOC)
VOC = {CONST, PAR, VAR, FUNC, PRED, CON, QUANT, PERF, AUX}.

The syntax of L contains the categories of terms, quantifiers, formulas and sentences ac-
cording to the definitions found below. First, however, the set of basic expressions is es-
tablished:

Definition 1-2. The set of basic expressions (BEXP)
BEXP = UVOC.

Now, we demand the existence of a suitable operation with which we can concatenate
expressions to form larger expressions. As already remarked above, the way in which this
operation is constructed in particular cases is left open. To do this, we first regulate the
concatenation of basic expressions, and then, after defining the set of expressions and the
expression length function, we regulate the general concatenation of arbitrary expres-

sions.
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Postulate 1-2. Concatenation of basic expressions’
The concatenation of expressions expressed by juxtaposition is well-defined and it holds that:
(i) Forall £, 7 € N\{O}: If {no, ..., w1} < BEXP and {', ..., u'1} < BEXP, then:
"Mo...Mk1" = "Wo...\'s iff j=Kkand forall i < k> p; = p,
(i)  If u € BEXP, then there is no k& € N\{0, 1} such that {uo, ..., w1} < BEXP and p =
"Wo.-- M1, and
(iii)  For all £ € N\{O}: If {uo, ..., wp1} < BEXP, then "po...pr' # @ and "po.. .y €
{"Bo- " ;-

The expression of the concatenation operation by juxtaposition already presupposes the
associativity of the concatenation operation. This property can thus be regarded as implic-
itly stipulated. Now, the set of all expressions, i.e. all concatenations of basic expressions,
will be defined. This set will be a superset of all grammatical categories that are to be

defined. Then a function that assigns each expression its length will be defined:

Definition 1-3. The set of expressions (EXP; metavariables: y, T, W', T, u*, *, ...)
EXP = {I—l.,L()...l.,l,]t-.l1 | ke [N\{O} and {uo, A uk-l} - BEXP}

Definition 1-4. Length of an expression (EXPL)
EXPL = {(i, k) | p € EXP, £ € N\{0} and there is {uo, ..., w1} < BEXP with p =
r].to...].tk_l-l}.

Theorem 1-1. EXPL is a function on EXP
() Dom(EXPL) =EXP and
(i) Forallpe EXP, kI e N:If(u, k), (n, 1) € EXPL, then k =[.

Proof: (i) follows directly from Definition 1-3 and Definition 1-4. Ad (ii): Let p € EXP,
k, 1 € N and (u, k), (u, [) € EXPL. Then there is {uo, ..., w1} < BEXP with p =
"Wo...1x-1' and there is {u'o, ..., W1} < BEXP with p = "wy...u'1". According to
Postulate 1-2-(i), it then holds that £ = /. m

" Here and in the following, we assume: If k € N\{0} and {aq, ..., @i} < X, where X e {X}, then for all

1<k a € {a, ..., 41}
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Theorem 1-2. Expressions are concatenations of basic expressions
If ue EXP, then there is {Ho, ceey “—EXPL(p)-l} < BEXP such that n= ruo...}lExpL(p).l—l.

Proof: Follows directly from Definition 1-3 and Definition 1-4. m

Theorem 1-3. Identification of concatenation members
If k£ e N\{0} and for all i < k: y;, € EXP, then for all s < Z?—’;lo EXPL(w)):

(i) s<EXPL(uo)
or
(i)  EXPL(po) < s and there are [, r such that

a) O0<lI<kandr<EXPL(w)ands= (X2, EXPL(w,))+r, and

by ForallI', 71 If0 <[ <kandr < EXPL(w) and s = (X1 EXPL(,))+r,
thenl'=land r' = r.

Proof: Suppose & € N\{0} and that for all ¢ < k. n; € EXP. Now, suppose s <
f;10 EXPL(u;). We have that s < EXPL(uo) or EXPL(po) < s. In the first case, the theo-
rem holds. Now, suppose EXPL (o) < s. Then we have that 1 < k, because otherwise we
would have 1 = k£ and thus EXPL(pp) = Z?;lo EXPL(y;) > s. Thus, there is at least one ¢,
namely 1, such that 0 <7 < kand Y2, EXPL(p,) < s. Now, let [ = max({i|0 <4< kand
Y-l EXPL(u,) < s}). Then we have 0 <[ < kand Y52, EXPL(u,) < s. Then there is an
r such that (X1=2, EXPL(w,))+r = s. Suppose for contradiction that EXPL () < r. We
have that / < k-1 or [ = k-1. Suppose [ < k-1. Then we have [+1 < k. Then we would have
Lo EXPL() = (Ei2o EXPL(1))*EXPL(W) < (E52 g EXPL(w,))+r = s, which con-
tradicts the maximality of /. Suppose [ = k-1. Then we would have [-1 = k-2. Thus we
would have Y521 EXPL(w,) = (X522, EXPL(w))+EXPL(py1) < (522 EXPL(p,))+r =
s, which contradicts the assumption about s. Thus, the assumption that EXPL(w;) < r leads
to a contradiction in both cases. Therefore we have » < EXPL(y,;). Hence we have 0 <[ <
kand r < EXPL(w) and s = (X522, EXPL(,))+r-.
Now, we still have to show b), i.e. that / and r are uniquely determined. For this, sup-
pose 0 < [' < k and 7 < EXPL(w;) and s = (XL, EXPL(w,))+r". Then it holds that
-1, EXPL(w,) < s. From the maximality of /, it then follows that [' < [. Now, suppose
for contradiction that /' < [. Then we would have [' < [-1. Thus we would have
(X020 EXPL(W)+EXPL(w) = Xh-o EXPL(n) < XiZoEXPL(w) < s =
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(Xh2, EXPL(p,))+r". But then we would have EXPL(u) < 7', which contradicts our as-
sumption about 7. Thus we have [' = [. With this, we then also have (3.2, EXPL(u,))+r'
= (X2, EXPL()+r = s= (X521, EXPL(w,))+rand hence ' =r. m

Postulate 1-3. Concatenation of expressions

If £ € N\{O} and if for all ¢ < k: w, € EXP and p; = "u... 0" expry1 ', Where {p'o, ...,
WiexpLy1y S BEXP, then there are m € N\{0} and {u*o, ..., p*,.1} < BEXP such that for all
1<k

"Ho.. Mp1

"Mo- - Mo .. MEXPL (u)-L M1 e - M

"W*o... %1, Where
a)  m=Y"Y EXPL(y), and

b) For all s < m:
p*, = ptoy, if s < EXPL(po), and
p*, = p*,. for the uniquely determined [, » for which 0 < [ < k and r <
EXPL(w) and s = (X522, EXPL(w,))+r, if EXPL (o) < s.

As an immediate consequence of Postulate 1-3, we have that every concatenation of ex-
pressions is identical to a concatenation of basic expressions and thus itself an expression.
Now, we will prove some general theorems on expressions and their concatenations
(Theorem 1-4 to Theorem 1-8). Then, we will define the arity of operators and subse-

quently the categories of terms, quantifiers and formulas.

Theorem 1-4. On the identity of concatenations of expressions (a)
Ifk e IN\{O}, forall i < k: W € EXP and W = r}l“io...}luiExpL(W)_l—l, where {}l“io, veey HHiEXPL(pi)—l}

< BEXP, then:

(D "Ho---pa

b u e W A
W% WOEXPL (o)1 -+ - U 0n o U EXPL ()1

(i)  EXPL(ho...tma") = X¥ZY EXPL(y,), and
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(iii)  I1fm e N\{0} and {Wo, ..., Wi} < BEXP, then:

mHo Ho -1 -1 L
L0 - W TEXPL(uo)-1+ - - b0 - U TTEXPL (1)1

'—H'o- - u'm-l—l
iff
m =¥l EXPL(w) and for all s < m: ', = po,, if s < EXPL(po), and

w', = ", for the uniquely determined /, » for which 0 </ < kand < EXPL(w) and s =
(X2 s EXPL(w))+r, if EXPL(ko) < s.

Proof: Suppose k£ € N\{0}, for all ¢ < k: w;, € EXP and w; = "u"o...w"expL)-1 ', Where
{1, ..., WMexpL)-1} © BEXP. Ad (i): First, we show, by induction on ¢, that for all 7 < £:

ruo- .. Mk—l_'

S i TS 1
W0 W OEXPL(ug)1-+ - W0+ W EXPL(u)-L M1+ - M

Then, this statement also holds for ¢ = k-1, and thus we have (i). Now, suppose the state-
ment holds for all / <. Suppose ¢ < k. Then we have that : = 0 or 0 < 4. Suppose 7 = 0. Be-

cause of po = "u%... w%expL()-1 ', We then have, with Postulate 1-3:

rllo- . Hk—l—l

"M%, P (ug)-1Ha - - - ket -

Now, suppose 0 < 4. Then it holds for all [ < ¢ that [ < £ and thus, according to the I.H.,
that

"Ho- - M1

R i n B A
W 0. W OEXPL(ug)-1+ - - IV 0+ + - UTEXPL(u)- LM+ 1 - - Mt -

Since i-1 < 4, we thus have

rllo- . Hk—l—l

Hi-1 Hi-1

"M%, %P (ug)-1- - 0 - - W EXPL ()1l - - k1 -

Because of p; = "u*%... uMexpLy)-1 ", We then have, with Postulate 1-3:

M1 M1

"M% .. W% xpL (o)1 - - 1 EXPL(it)-1Mi- - Mg

0-.-U

M1 M1

M i W ih 1
W%, .. W OEXPL (ug)-1- - EXPL(ni-1)-1H 0« -« W 'EXPL(u)-1-i+1 -+ « -1

0-.-U
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"M%, %P ug)-1- - - %0 - - - W EXPL ()1 i1 - - - ke -
Hence we have

ruo- .. Mk—l_'

S i THRS -
W0 WOEXPL(ug)-1-+ - W0+« W EXPL(u)-L M1+ - M

Ad (ii) and (iii): With Postulate 1-3, there are m* € N\{0} and {u*o, ..., W*,»1} < BEXP
such that "po...pe1" = "u¥o... %1 and m* = $42Y EXPL(w) and for all s < m*: p*, =
po, if s < EXPL(uo), and p*, = . for the uniquely determined [,  for whichO <[ <k, r

(Xt EXPL(p,))+r, if EXPL(ug) < s. Then we have
EXPL("u*o...u*1") = EXPL("wo... 1 '). Thus we have (ii).

< EXPL(w) and s
Yh2l EXPL(w) = m*
Now, for (iii), suppose m e N0} and {y%, ..., wmi1} < BEXP. (L-R): Suppose
"%, % xpL(u)-1- - - W 0 W e )T = TWoe W . With (i), we then have

"TWoer Wit = "How et = "W¥0. . W1 . With Postulate 1-2-(i), we then have m = m* =

’}7;10 EXPL(y;) and for all s < m: p's = p*,. Thus we have for all s <m: p'y = p', if s <
EXPL(uo), and p's = p*, for the uniquely determined [, » for which 0 <[ < k, » < EXPL (W)
and s = (X2, EXPL(w,))+r, if EXPL(pg) < s.

(R-L): Suppose m = Y¥*¥Z4 EXPL(y,) and that it hold for all s < m that p', = p*,, if s <
EXPL(uo), and p's = p*, for the uniquely determined [, » for which 0 <[ < k, » < EXPL (W)
and s = (X172, EXPL(w,))+r, if EXPL(uo) < s. Then it holds that m* = m and that for all s
<m: W's = p*,. With Postulate 1-2-(i), we then have "Wo... W 1" = "W*o... W 1. With (i),

a1 =

we then have r]J,uOo . HHOEXPL(uo)—l . upk'lo. .. uw‘d'lExpL(uk_l)_l-l = rlJ,o. ] u*o et H*m*—l-l =

"Woeo W1 . W

Theorem 1-5. On the identity of concatenations of expressions (b)
If £, ¥ € N\{0} and for all i < k: w;, € EXP and w; = "u"... 0" expr)1 ", Where {u'o, ...,

uuiEXPL(p,)—l} C BEXP, and for all 7 < £": },LIZ' e EXP and },ll7; = rulu'b...u‘“‘i’ExpL(”'i)_l—l, where {}l'”lio,
. I,L'”IjExpL(H‘i)_l} C BEXP, and if r},to...},tk_l—l = r}l'o...}l'k',l—l , then:

() "Moo’

rHo Ho H-1 H-1 a
L0 W TEXPL(ug)-1- - - V0 - U TTEXPL (1)1

r "o Wo L1 W1 I
L™ 0. U EXPL(up)-1- - 1 0.--l EXPL('%-1)-1
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0

Ho. --P-'k'»l—l )
(i) EXPL(Mo...1es™) = ¥ EXPL(w) = BEZH EXPL(W,) = EXPL("Wo...11"), and
(iii) Forall i<k, k' If EXPL(w) = EXPL(y,) for all j <1, then:

a) r},lo...},ll‘—l

oy o M Ky a
W%, W OEXPL(ug)-1- - - L0+« L EXPL(uy-1

(T W w; w; a
W%, T OEXpL(ig)-1e -+ U 0w U EXPL ()L

~

}J_‘o...},l',;—l, and
b) Forall j<up;=pw,

Proof: Suppose k, £ € N\{0} and for all ¢ < k: p; € EXP and pw; = "u"o... p"expL)1"

where {p"o, ..., WexeLu)y1} S BEXP, and for all 7 < £ p; € EXP and )
W 1 Py, Where {ut, ..., WMiexpLeya} © BEXP, and suppose Tpo...pp1t =
"Wo...1Wr-1". Then clauses (i) and (ii) follow with Theorem 1-4-(i) and -(ii).

Now, for (iii), suppose ¢ < k, k' and suppose EXPL(y;) = EXPL(u";) for all j <. First,
with Postulate 1-3, we have that there are m* € N\{0} and {u*o, ..., u*,.1} < BEXP
such that "wo... e = "W¥o...u*,0" and m = YA EXPL(u,) and for all s < m: p*, =
pto, if s < EXPL(up), and p*, = p*,. for the uniquely determined [, » for which0 <[ <k, r
< EXPL(w) and s = (X172, EXPL(w,))+r, if EXPL(uo) < s; and that there are m' € N\{0}
and {u*o, ..., uw*,1} < BEXP such that "wo...pw'p1’ = "W*o...u* and m' =

k-1 EXPL(w,) und for all s < m': w*, = u*o,, if s < EXPL(u'), and p'*, = w*",. for the
uniquely determined [, ' for which 0 < [' < k| » < EXPL(n}) and s =
(Xh2, EXPL(p'))+r, if EXPL(Wo) < s. With (ii), we then have m = m'. Furthermore, we
have, with (i):

% * b
Wo. . W pxa

™Mo Ho -1 -1 1
W0 W TEXPL(ng)-1- - - 700 - - WTEXPL (1)1

Mo "Wo Wi W 7
L 0. U TEXPL(g)-1- - 1 0---H EXPL(w'-1)-1

o '* x A
SRR
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With Postulate 1-2-(i), we then have for all s <m =m": p*, = p'*,. We have thati =0 or 0
< 4. First, suppose 7 = 0. By hypothesis, we have EXPL () = EXPL(u'p). Now, suppose s
< EXPL(uo). Then we have s < EXPL(u)o) and s < m = m'. Then we have p*; = p*%; and
w*, = u*o,. Then we have p*, = po,. Thus we have for all s < EXPL(po) = EXPL(w')
that p*o, = u*°,. Thus we have, with Postulate 1-2-(i), that po = "u"%... 0" expLg1’ =

W%, . M L1’ = Wo. Thus a) holds for 4 = 0. Also, if i = 0, we have for all j < i that
j =1=0and thus b) holds as well for 7 = 0.

Now, suppose 0 < i. By hypothesis, we have EXPL(u;) = EXPL(u'";) for all j <i. From
this, we get: ¥/ _, EXPL(w,) = X _ , EXPL(',). With Postulate 1-3, we have that there
are t € N\{0} and {u"o, ..., u'r1} < BEXP such that "uo...p;" = "u...u"1" and ¢ =
Y _o EXPL(u,) and for all s < t: p*, = p*o, if s < EXPL(pg), and p*, = p*,- for the
uniquely determined [°, r° for which 0 < [° < 4+1, r° < EXPL(wr) und s =
(P24 EXPL(p,))+re, if EXPL(pg) < s; and that there are ¢ € N\{0} and {u'"o, ..., p"r1}
< BEXP such that "p'o...p'" = uo...ne " and ¢ = X -, EXPL(',) and for all s < ¢
nt= o, if s < EXPL(WY), and p™, = p'*"",. for the uniquely determined '°, 7' for which
0 <[ <i+l, r'° < EXPL(u) and s = (X525 EXPL(W,))+r", if EXPL(w') < s. Then we
have t = Y _, EXPL(w,) = X' _o EXPL(n,) = t. Because of Y _, EXPL(u,) <
Y1, EXPL (), we also have t <m = m.

Now, suppose s < t. Then we have s < ¢' and s < m = m'. We have that s < EXPL(uo) or
EXPL(po) < s. Suppose s < EXPL(pp). Since 0 < ¢, we have, by hypothesis, that EXPL (i)
= EXPL(u'), and thus also that s < EXPL(u'). Then we have u*, = p*o, = u*, und p™*, =
who, = u*,. Because of p*, = u*,, we thus have u*, = n™*..

Now, suppose EXPL (i) = EXPL(i') < s. Then it holds that

u*, = p",. for the uniquely determined I, r for which 0 <[ < k, r < EXPL(w,) and s =
(2o EXPL(w)+r

and

w*, = p*r,. for the uniquely determined [, 7 for which 0 < I' < &', ' < EXPL(n";) and s =
(0o EXPL(W.)+r

and

n= Iz ", for the uniquely determined [°, r° for which 0 < [°® < 4+1, r* <EXPL(w-) and s
= (X0 2% EXPL(p)+r*

and

1+

w*, = p'r . for the uniquely determined I'°, r*° for which 0 < I'° < 4+1, 7'° < EXPL(W')
and s = (XL°25 EXPL(W,))+r".
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With [°, ['° < 4+1, we then have [°, I'° < i. By hypothesis, we thus have that EXPL () =
EXPL(u) and Y025 EXPL(w,) = X2°2% EXPL(u',). Then we have 0 < ['° < i+1 and r'° <
EXPL(w-) and s = (X424 EXPL(p,))+r"°. By Theorem 1-3, we then have I'° = [° und 7*°
= r°. Now, suppose for contradiction that ¢+1 < [. Then we would have i < [-1. But then
we would have t = Y _ ; EXPL(p,) < Y2, EXPL(y,) < s. Contradiction! Thus we have
[ <i+1. From this, we get [ =1°und r = r° In the same way, we get [' = [ and ' = r'°.
Thus we have [ = [° =" =["und r = r° = '° = 7. With this, we have u*, = p*. = u*, and
u =
that u*, = n™, and thus, with Postulate 1-2-(i), that "po...p;" = "wo...p " = 0. n™ g

ut = ut,. Since p*, = p*,, we thus have p*, = p,. Thus it holds for all s <t = ¢

= "wo...ui'. Moreover, we have, with Theorem 1-4-(i), that "po...n;' =
"%, .. 1 %expr (ug)-1- - - 0. iEXPL(pi)-l-I and "Wo... [ =
W Oeypr (gt 0. WM iExpLGey-1 - Hence a) also holds for 0 < .

Now, suppose, for b), that j <. For j = 0, we have already shown above that p; = p';.
Suppose 0 < j < 7. Now, suppose r < EXPL(n;) = EXPL(n';). Then we have
I EXPLu))+r = (U EXPL(W)+r < t = & < m = m. With s =
(X1, EXPL(w,))+r, it then holds that u*, = p%, and u'*, = w*’,. Since s < ¢ = #', we then
have, as we have just shown, that p*, = p'*, and thus that p*, = w*,.. Thus it holds for all r
< EXPL(w;) = EXPL(u';) that p*, = u*. Then it holds, with Postulate 1-2-(i), that p;

"W WexpLu)1 = 0. W iExpL(eya ! = 1. Hence b) also holds for 0 < 4. m

Theorem 1-6. On the identity of concatenations of expressions (c)
If £, s € N\{0} and {po, ..., m1} < EXP and {p’, ..., w1} < EXP and 5 < k and p;
"Wo...Wea, then: "po.. g™ = "o aPon e et e e -

Proof: Suppose k, s € N\{0} and {uo, ..., w1} < EXP and {y'o, ..., W's1} € EXPand j<
kand p; = "Wo...pw's1". With {o, ..., w's1} € EXP and Theorem 1-2, it then holds for all %
< s that there is {u", ..., W"expLy-1} © BEXP such that p';

TR Hlp‘iEXPL(p'i)—l-l :
With Theorem 1-4-(i), we  then have W = "Wow st =
W Oexpr gyt T L1t With  Postulate  1-3, we then have
"Ho...Mp1' = ruo...uj-lp'”l%...u'”'OExpL(p-o).l...u'“'ﬁ'lo...u'”'s'lExpL(p's_l).luﬁl...uk.l". Now, we
first show by induction on 7 that for all 7 < s:

. o o " " .
Ho---Hjalt" o W OEXPL(ug)1- - - U To e U S EXPL(upg) 1M1 - M
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r ' Vo ' W [T 9
Ho- -+ L bow o il ™o U el uian) - U 00 U EXPL (g a) 2 M1 M

Then, this also holds for i = s-1 and thus we get

ruo- .. Mk—l_'

r i W Wy 'y A
Uo. - st %0 U CExpL(uig)-e - - I 0 U S EXPL Q) -1 L e+ Mkt

r},lo. . },lj_ll.llo. .. l-lls—lllj+1- . I.Lk_l-l .

Then the theorem holds. Now, suppose the statement holds for all [ < 4. Suppose ¢ < s.
Then we have that 7 = 0 or 0 < 4. Suppose i = 0. Because of o = "u™%... " expr(rg-1", We

then have, with Postulate 1-3:

r W | W |p"_ 9
Ho- - 1yt ™ 0. U OEXPL(uig)-1- - T 0w L M EXPL (1) LML+

"Ho- - b o™ B0 - U MexpL e 1« 0 T Tep () 1t B
Now, suppose 0 < 4. Then it holds for all / < 7 that [ < s and thus, according to the I.H.:

W W

"Ho... Hj—ll-lluloo- .. M'”'OEXPL(H'O)-L S EXPL('s.1)-1Mj#1 - i1 |

0---U

r 1 o w W W A
Mo. .. Hj1llo... Ll Hoy.p Z+lExpL(”'l+1)_1. TR PO T lEXPL(p's-]_)-luj"'l- e lger .

Since with 0 < 4, we have -1 < ¢, we thus have

w

1Ty W W s
"Ho- . 1™ 0. . ™ Oexpr g1+ - - U 0w W EXpL () ML« et

r].lo. .. l.,l]'.llJ.'o s lyl'l'.ll.,lluio. .. lvlmiEXPL(p'j)-l v l.,l‘us'lo s H'H

SLEXPL (1)1 e - M -
Since W' = "W"... " ExpLye)1» We then have, with Postulate 1-3:

r i W Wy 'y A
Uo. - st O0u e U PExPL(uig)-e - - I 0 U S EXPL G ) -1 L e+ Mkt

"Ho...1jal'o.. . Wi ... M'”'iEXPL(H',;)-l- TR -H'Hls'lEXPL(H'S.l)-lHj+1- TP

r 1 Vo ' W W A
Uo. o it Woe s UL # o W ™ Ep (g1 U 00w U S EXPL(g)- 1L e o e

Hence the statement holds for all 7 < s and the theorem follows as indicated above. m
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Theorem 1-7. Unique initial and end expressions
If w, ', p*, u* e EXP, then:

(i) I Tt = TpeT, then: px =
(i) If Tu*p" = "p'y”, then: p* =, and
(iii) Ifyu, p' e BEXPand "up*™ = "u'n™, thenu=p'.

Proof: Suppose p, w', p*, u* € EXP. Then there are i € N\{0} such that {po, ..., pi1} S
BEXP and p = "po...pi1 ", and 5 € N\{0} such that {u*o, ..., p*;1} < BEXP and p* =
"W*o...pn*51", and k € N\{0} such that {u%, ..., px1} < BEXP and p* = "pho...u'ps”.
Now, suppose for (i) that "up** = "up™™. Then it holds, with Theorem 1-5-(i), that i+j =
i+k and hence j = k. With Theorem 1-5-(iii), we then have p* = p*. (ii) follows analo-
gously. Now, for (iii), suppose p, u' € BEXP and "up*" = "u'pn™. With EXPL(u) =1 =
EXPL(u') and Theorem 1-5-(iii), we then have p = p'. m

Theorem 1-8. No expression properly contains itself
If W', p*, u* e EXP, then:
(i) T,
(i) w# ™, and
(i) p# W
Proof: Suppose ', p*, u* € EXP. Then there are i € N\{0} such that {u, ..., p'i1} <
EXP and p' = "po...n'a", and j € N\{O} such that {u*o, ..., p*;4} < EXP and p* =
"W*o...u*:q ", and & € N\{0} such that {u", ..., W's1} < EXPand pu* = "u'...n 5. As-
sume for contradiction that p' = "p'p*” or p' = "p*p'n or p' = "pw*u”. With Theorem
1-5-(ii), we would then have ¢ = i+j or ¢ = j+i+k or i = j+i and, on the other hand, with i, j,
k € N\{0}: i #i+j and i # j+i+k and i # j+i. Contradiction! Therefore p' # "u'y*" and p' #
"W and W' T .
Now, all operators can be assigned an arity, where the category of the operators described
in Definition 1-5-(vi) will be defined as the category of quantifiers further below in
Definition 1-8. Following the definition of arity, we can also define the categories of
terms and formulas and subsequently prove the unique readability for the categories es-
tablished by then. Afterwards, we will introduce further grammatical concepts up to sen-

tence sequences.
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Definition 1-5. Arity
pis s-ary
iff
() pe FUNC and thereisj € N such that p= ;" or
(i) p e PRED andthereisj e Nsuchthatp="P;;" or
(i) p="="andi=2or
(iv) p="="andi=1or
(v) pneCONY{"="}and¢=2o0r
(vi) ThereareIT € QUANT and & e VAR and = "TI§" and ¢ =1 or
(vii) pePERFandi=1.

Definition 1-6. The set of terms (TERM; metavariables: 9, 6', 6%, ...)
TERM =N{R | R < EXP and
(i) CONST u PAR u VAR C R, and
@ii)  1f{By, ..., 0,1} < R and ¢ € FUNC n-ary, then "o(0q, ..., 0,.1)" € R}.

Note: Here and in the following, blanks only serve the purpose of easing readability,
blanks are not a part of the expressions. So, for example, "f31(Co, Co, C1)" stands for

"f3.1(Co,Co,C1) " -

Definition 1-7. Atomic and functional terms (ATERM and FTERM)
(i) ATERM =CONST u PAR u VAR,
(i) FTERM = TERM\ATERM.

Definition 1-8. The set of quantifiers (QUANTOR)
QUANTOR = {TIE" | IT € QUANT and & € VAR}.

Definition 1-9. The set of formulas (FORM; metavariables: A, B, T, A, A, B', T, A", A*, B*,
I'* A*, ..)
FORM =N{R |R < EXP and
(i If {6y, ..., 0,1} < TERM and ® € PRED n-ary, then "®(0y, ..., 0,1)" € R,
(i) IfA e R,then =A™ e R,
(iii)  If Ag, Ay € R and y € CON\{"—"}, then "(Ap w A;)" € R, and
(iv) IfAeRand§ e VAR and IT € QUANT, then TIEA™ € R}.
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Definition 1-10. Atomic, connective and quantificational formulas (AFORM, CONFORM,
QFORM)

(i) AFORM ={"®(0y, ..., 0,1)" | ® € PRED n-ary and {0, ..., 0,.} < TERM},

(i) CONFORM = {™—A" | A € FORM} u {"(Ao w A1)" | Ag, A; € FORM and y €
CON\{"—"}},

(iii) QFORM = {TIEA™ | A € FORM and IT € QUANT und & € VAR}.
The following theorem leads directly to the theorems on unique readability.

Theorem 1-9. Terms resp. formulas do not have terms resp. formulas as proper initial expres-
sions

(i) 1f6,0' e TERMand p € EXP, then0' # "0u", and
(i) IfA, A" e FORMand p € EXP, then A" = "Au".

Proof: Ad (i): Suppose 6, 8' € TERM and pu € EXP. The proof is carried out by induction
on EXPL(8"). For this, suppose the statement holds for all 6* € TERM with EXPL(6%*) <
EXPL(6"). For EXPL(8") = 1, and thus 6' € ATERM, the statement holds trivially, be-
cause, according to Postulate 1-2-(ii), there are no 6, u € EXP such that 6' = "0u". Now,
suppose 1 < EXPL(6"). Then 8' ¢ ATERM and therefore 8" € FTERM. Then there are »'
e N\{0} and ¢' € FUNC, ¢' n'-ary, and {6, ..., 0';-1} < TERM such that 6' = "¢'(8', ...,
0'-1)". Suppose for contradiction that 6' = "0u". Now, suppose for contradiction that 6 e
ATERM. Then, we would have 8 € CONST u PAR u VAR. According to Theorem
1-7-(iii) and with "¢'(0%, ..., 0'1)" = 0" = "Ou", we would then have that ¢' = 0 €
CONST u PAR u VAR. Contradiction! Therefore 6 € FTERM and there are thus n e
N\{0} and ¢ € FUNC, ¢ n-ary, and {6y, ..., 6,,} < TERM such that 6 = "o(y, ...,
0,.1)". Therefore "@'(0%, ..., 0%-1)" = "@(0o, ..., 0,.1)u’. Then it holds with Theorem
1-7-(iii) that @' = ¢ and thus, according to Definition 1-5 and Postulate 1-1-(iv), we have
n = n'. Therefore "(0'Y, ..., 0'.1)" = "e(0y, ..., 0,.1)u". Note that EXPL(0';), EXPL(6;) <
EXPL(0") for all 7 < n.

With {u} u TERM < EXP, it then holds that there are {u*o, ..., W expLq1} & BEXP
and {u%%, ..., WWoexpLgyi} U .o U {0, o, 0 e, 01} © BEXP and {u, ...,
ueOExpL(eo)_l} U...U {pe”'lo, ey ue"'lExpL(en_l)_l} < BEXP such that p = "p*o... 1 expr(y-1"
and for all i < n: 0 = "u¥%...1"expLey1” and 6; = ... ExpLeya". With Theorem
1-5-(i), it then holds that

o o o o
TO(W % [ %EXPL(0g)-1r <+ s B " R0n e U T EXPL(00)-1) |
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To(u™p.. -HeOEXPL(eo)-l, ey Wty -He’l’lExpL(ey,.l)-l) W*o. .. W EXPL()-1 |

and thus with Theorem 1-7-(i)

o 0 0, 0 -
W 0. . L OEXPL()-1s s B " L0ue U " EXPL(00)-1)

s 9 0 0, * * A
W%, W OEXPL(Og)-1r «+er 00w U EXPL(0,0)-1) W¥0- - - W EXPL()-1 -

Suppose for contradiction that EXPL(6';) = EXPL(8;) for all 7 < n. With Theorem 1-5-(iii)
and Theorem 1-7-(i), we would then have that ")" = ")u*o... W expL(w-1', Whereas, with
Postulate 1-2-(ii), we have that )" # ")p*o... W expL-1" . Contradiction! Thus there is an /
< n with EXPL(6) # EXPL(0,). Let ¢ be the smallest such [ and suppose first that
EXPL(6";) < EXPL(6;). Suppose ¢ = 0. It then follows, with Theorem 1-5-(iii), that for all ;
< EXPL(®0): p’; = p% and thus, with Postulate 1-2-(i), we have that 0, =
2%, .. 1 %xpL1” = 1. nPexpLg-1" . Because of EXPL(0') < EXPL(6y) it then fol-
lows, with Theorem 1-6, that 0o expL(0g)- - - W EXPL(O)-1 " =
%%, .. 1L 001 ExPLEY) - L ExPLO) 1 = 1. .. 1M ExpLg1" = B0, Which contradicts
the I.H. Suppose i > 0. Then it holds, with Theorem 1-5-(iii), that

s o 0. 0 1
W% W OEXPL(O'0)-1r -+ o1 M o U FEEXPL(O'0)-1s

r, .0 0 0, 0, q
W0, .. W OEXPL(B)-1r -+ B R0 - U EXPL(B0)-Ls -

Therefore with Theorem 1-7-(i):

r, 0 0'; 0. 0, Rl
W0 U EXPL©-1s -eer U " R0w e U EXPL(00)-1)

r 0, 0, 0, 0, * * hl
W0e e W EXPLEO)-1 «-s 00w o U EXPL(0,0)-1) W0+ - - W ¥ EXPL(u)-1 -

With Theorem 1-5-(iii), we then have that for all j < EXPL(") it holds that u%i; = u%; and
thus, with Postulate 1-2-(i), that 0’ = "u%%... 1" expLey1” = ... nYExpLey1" . Because of
EXPL(0';) < EXPL(6)) it then follows, with Theorem 1-6, that "0'u*expL (.. - W ExpL(o)1”
= "W WexeLegaExeLey- - WiexpLeyr' = Wo...WExpLey1’ = i, which also contra-
dicts the I.H. In case of EXPL(0;) < EXPL(6';), a contradiction follows analogously.
Hence the assumption that ' = "0u™ for a 6 € TERM leads to a contradiction.

Ad (ii): Now, suppose A, A" € FORM and pu € EXP. The proof is carried out by induc-
tion on EXPL(A"). For this, suppose the statement holds for all A* € FORM with
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EXPL(A*) < EXPL(A). With A' € FORM, we have A' € AFORM u {™—A*" | A* €
FORM} u {"(Ao v A1) | Ag, A1 € FORM and y € CON\{"—"}} u QFORM. These four
cases are now considered separately.

First: Suppose A" € AFORM. The proof is carried out analogously to the induction step
for (i) by applying (i). Suppose A' = "Au". With A" € AFORM there are n' € N\{0} and
®' € PRED and {0, ..., 01} < TERM such that A' = "®'(0", ..., 0',-1)". Suppose for
contradiction that A € CONFORM u QFORM. Then there would be p' € {"=", "("} v
QUANT and pu* € EXP such that A = "u'u*". Therefore, according to Theorem 1-6,
"®'(0%, ..., 0'1)" = A= "Ap’ = "w'p*u’ and thus, according to Theorem 1-7-(iii), @' =
w'. Thus we would have that @' € {"=", "("} u QUANT. Contradiction! Therefore A ¢
CONFORM u QFORM and thus A € AFORM. Thus there are n € N\{0} and ®
PRED, ® n-ary, and {6y, ..., 6,1} < TERM such that A = "®(6, ..., 6,.1)". Therefore
o'(0', ..., 01)" = "®(Oy, ..., 0,.1)1". Then it holds with Theorem 1-7-(iii) that @' = @
and thus we have according to Definition 1-5 and Postulate 1-1-(v) that n = n'. Therefore
"0, ..., 01)" = "D(0y, ..., 0,.1)u”. From here on, the proof for A' ¢ AFORM proceeds
analogously to the induction step for (i), while the contradiction resulting here is not with
the I.H., but with (i).

Second: Now, suppose A' € {™—A*" | A* € FORM}. Then there is A* € FORM such
that A' = "—A"", and also EXPL(A") < EXPL(A"). Suppose A' = "Au” and thus "Ap’ =
"—A*. Suppose for contradiction that A € AFORM u {"(A¢ v A1)? | Ag, A; € FORM
and y € CON\{"—"}} u QFORM. Then there would be u' € PRED u {"("} u QUANT
and p* e EXP such that A = "u'p*”. Therefore according to Theorem 1-6 "—A™ = Ay’
= "u'pw*u’ and thus according to Theorem 1-7-(iii) "—' = p'. Then we would have that
=" € PRED u {"("} u QUANT. Contradiction! Therefore A € {"=A*" | A* € FORM}
and there is A* € FORM such that A = "—A*". Therefore "—A"™ = "—A™u". With
Theorem 1-7-(i) one then has that A* = "A*u™, which contradicts the I.H.

Third: Now, suppose A" € {"(Ao y A1)" | Ao, Az € FORM and y € CON\{"—"}}. Then
there are A'g, Ay € FORM and y' € CON\{"—"} such that A" = "(A' y' A'})", and also
EXPL(A') < EXPL(A") and EXPL(A") < EXPL(A"). Suppose A' = "Au” and thus "Ap" =
(A9 y' A'1)". Suppose for contradiction A € AFORM u {"—A*" | A* ¢ FORM} u
QFORM. Then there would be u' € PRED u {"="} u QUANT and p* € EXP such that
A = "Tu'p*7, and therefore "(A'p y' A'1)T = A' = "Ap’ = "p'p*u’ and thus according to
Theorem 1-7-(iii) "(" = p'. Thus one would have that "(" € PRED u {"="} u QUANT.
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Contradiction! Therefore A € {"(Ao v A1)" | Ao, A1 € FORM and y € CON\{"—"}} and
there are Ao, A; € FORM and y € CON\{"—"} such that A = "(Ay v A;)", and also
EXPL(Ao), EXPL(A)) < EXPL(A). Therefore (A% w' A1) = (Ao y A)u’. With
Theorem 1-7-(i) it holds that "A'y y' A'1)" = "Ag v Ap)u”. With {u} u FORM < EXP it
also holds that there are {u*o, ..., W*expLgy-1} S BEXP and {u*%, ..., W*%expirg-1} U
{u%, ..., 1 expLian)1} S BEXP and {u, ..., n%%xpLiag-a} U {0, ...y WMExpLian1} S
BEXP such that p = "u*o...u*expLgy-1” and for all i < 2: A = ... 1 expLay1” and A,
= "u... 0 YexpL(a)1 - With Theorem 1-5-(i), we then have that

W%, 1 Oexpr (g W I o L et

"%. .. 1 MexpLag-1WH M. . W ExpLAD-D) I ¥0. - KEXPLG)-L -

Now, suppose for contradiction that EXPL(A'y) < EXPL(Ao). With Theorem 1-5-(iii), it
then it holds for all j < EXPL(A') that u*°; = u*;. With Postulate 1-2-(i), we then have
A = %, 1 %xpL a1’ = W%, . W ExpL(a)-1 - With Theorem 1-6, we then have that
"A' O XL (D) - - - L EXPL(AG)1 = 1%, W% (o)1 EXPL(AY) - - L EXPL(AG)1 =
u%. .. 1 %xpLag-1" = Ao, Which contradicts the 1.H. In case of EXPL(Ag) < EXPL(A'Y), a
contradiction follows analogously. Therefore one has that EXPL(A's) = EXPL(Ao). Thus
it holds, with Theorem 1-5-(iii), that "u“%... " %expraga¥” = 1%, .. W %ExpL(ag1y” and
thus,  with  Theorem  1-7-(i), also  that W%, expLana)’ =
Mo 1ML (ag)-1) M ¥0- - ¥ EXPL(-1 - AS We have just done for A', Ao, e can show that
EXPL(A';) = EXPL(A,). But then we have, with Theorem 1-5-(iii), that A'; = A; and thus,
with Theorem 1-7-(i), that )" = ")u*o... W expLw-1", Which contradicts Postulate 1-2-(ii).

Fourth: Now, suppose A' € QFORM. Then there are A* € FORM and IT' € QUANT
and & € VAR such that A' = TTI'E¢A™, and also EXPL(A*) < EXPL(A"). Suppose A' =
"Ap” and thus "Ap? = TITI'E'A*. Suppose for contradiction A € AFORM u CONFORM.
Then there would be ' € PRED u {"=", "("} and p* € EXP such that A = "p'p*".
Therefore according to Theorem 1-6 TI'€¢'A™ = "Ap" = "w'p*p” and thus IT' = p'. Thus
we would have that IT' € PRED u {"=", "("}. Contradiction! Therefore A € QFORM
and there are A* € FORM and IT e QUANT and & € VAR such that A = TIEA™. There-
fore TI'E'A™ = TIEA*W. With Theorem 1-7-(iii) and -(i), we then have first &A™ =
"EATWT and then A" = "A*u™, which contradicts the I.H.

Thus A" = "Ap" leads to a contradiction in all four cases. Therefore A" + "Ap". m
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Theorem 1-10. Unique readability without sentences (a — unique categories)
(i) CONST n (PAR u VAR u FTERM u QUANTOR u AFORM u {™=A" | A
FORM} u {"(Ao w A1)" | Ao, A1 € FORM and y € CON\{"™—"}} u QFORM) =0,
(i)  PAR n (CONST u VAR u FTERM u QUANTOR u AFORM u {™—A" | A
FORM} u {"(Ao v A1)" | Ag, Ay € FORM and y € CON\{"™—"}} u QFORM) =0,
(iii) VAR n (CONST u PAR u FTERM u QUANTOR u AFORM u {™=A" | A
FORM} U {"(Ao v A1) | Ao, A; € FORM and y € CON\{"—"}} u QFORM) =0,
(iv) FTERM n (CONST u PAR u VAR u QUANTOR u AFORM u {™—A" | A
FORM} u {"(Aoy A1)" | Ao, A1 € FORM and y € CON\{"—"}} u QFORM) =0,
(v) QUANTOR n (CONST u PAR u VAR u FTERM u AFORM u {™=A" | A
FORM} u {"(Ao v A1)" | Ag, Ay € FORM and yw € CON\{"™—"}} u QFORM) =0,
(vi) AFORM n (CONST u PAR u VAR u FTERM u QUANTOR u {"—A" | A
FORM} u {"(Ao w A1)" | Ao, A1 € FORM and y € CON\{"™—"}} u QFORM) =0,
(vii) {™—A" | A € FORM} n (CONST u PAR u VAR u FTERM u QUANTOR u
AFORM u {"(Ao v A1)" | Ao, A1 € FORM and y € CON\{"—"}} u QFORM) =0,
(viii) {"(Aoy A1) | Ag, Ay € FORM and y € CON\{"—"}} n (CONST u PAR u VAR u
FTERM u QUANTOR u AFORM u {™—A" | A € FORM} u QFORM) = @, and
(ixX) QFORM n (CONST u PAR u VAR u FTERM u QUANTOR u AFORM u {™—A"
| A € FORM} u {"(Agw A1)" | Ag, Ay € FORM and v € CON\{"™—"}}) = 0.

m

m

m

m

m

Mm

Proof: Suppose p € CONST. According to Postulate 1-1, we then have that p ¢ PAR u
VAR and, according to Definition 1-7, that u ¢ FTERM. Suppose for contradiction that p
€ QUANTOR u AFORM u {"™=A" | A € FORM} u {"(Ao v A1) | Ao, Ay € FORM and
v € CON\{"="}} u QFORM. Then, there would be u' € BEXP and u* € EXP such that
pw = "w'u*". This contradicts Postulate 1-2-(ii). Therefore u ¢ QUANTOR u AFORM u
{™=A" | A € FORM} u {"(Ao v A1)" | Ao, Ay € FORM and y € CON\{"—"}} u
QFORM.

For un € PAR and p € VAR, the proof is carried out analogously.

Now, suppose u € FTERM. According to Definition 1-7, we then have p ¢ CONST u
PAR u VAR and we have p € TERM. According to Definition 1-6, there are thus ¢ <
FUNC and p* e EXP such that p = "eu™. Suppose for contradiction that p e
QUANTOR u AFORM u {™—A" | A € FORM} U {"(Ao v A1) | Ao, Ay € FORM and
e CON\{"—"}} u QFORM. Then there would be p' € PRED u QUANT u {'—', '('} and
pu* € EXP such that = "uw'u*". According to Theorem 1-7-(iii), we would then have p' =
¢ and thus p' € FUNC. This contradicts Postulate 1-1. Therefore p ¢ QUANTOR u
AFORM u {™—=A" | A € FORM} u {"(Ao v A1)" | Ao, Ay € FORM and y €
CON\Y{"—"}} u QFORM.
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For u € QUANTOR, u € AFORM, n € {"—A™ | A € FORM}, u € {"(Ao v A1) | Ao,
A1 € FORM and vy € CONW{"—="}} and p € QFORM, the proof is carried out analo-

gously. m

Theorem 1-11. Unique readability without sentences (b — unique decomposability)
If u € TERM u QUANTOR u FORM, then:

(i) upeATERM or

(i) p e FTERM and there are n € N\{0}, ¢ € FUNC and {0, ..., 0,..} < TERM such
that p = (0, ..., 0,1)" and for all n' € N\{0}, ¢' € FUNC and {6, ..., 0'y1} <
TERM with p = "@'(0', ..., 0'1)" it holds that » = n"and ¢ = ¢' and for all i < n: 0, =
0, or

(ili) p e QUANTOR and there are IT € QUANT and & € VAR such that p = TIE" and for
all IT' € QUANT and &' € VAR with p = "II'¢" it holds that IT = IT" and & = &', or

(iv) p e AFORM and there are n € N\{0}, ® € PRED and {0, ..., 6,.1} < TERM such
that p = "®(0y, ..., 0,.1)" and for all »* € N\{0}, ®' € PRED and {0, ..., 0'y1} <
TERM with = "®'(8', ..., 0';1)" itholds that n = n' and ® = ®'and for all i < n: 9, =
0';, or

(V) pe{—A"|A e FORM}and thereis A € FORM such that p = "—A™ and for all A' €
FORM with u = "—A" it holds that A = A', or

(vi) p e {(Aowy A" | Ao, Ay € FORM and y € CON\{"—"}} and there are Ao, A; €
FORM and vy € CON\{"—"} such that u = "(Ag v Ay)" and for all A'g, A’y € FORM
and y' € CON\{"—"} with p = "(A'g y' A';)" it holds that A = A'yand A; = A’y and y =
y', or

(vii) p e QFORM and there are IT € QUANT, £ € VAR and A € FORM such that p =
TIEA™ and for all IT' € QUANT, &' € VAR and A' € FORM with p = "TT'E'A™ it holds
thatIT=IT"and { =& and A = A"

Proof: Suppose p € TERM u QUANTOR u FORM. Therefore p €¢ ATERM u FTERM
u QUANTOR u AFORM u {"™=A" | A € FORM} u {"(Ao v A1) | Ao, Ay € FORM and
vy € CON\{"—="}} u QFORM. These seven cases will be treated separately. First: Sup-
pose u € ATERM. Then (i) is satisfied trivially.

Second: Suppose u € FTERM. According to Definition 1-6 and Definition 1-7, there
are then n € N\{0}, ¢ € FUNC and {6y, ..., 0,1} < TERM such that p = "@(0o, ...,
0,-1)". Now, let also n' € N\{0}, ¢' € FUNC and {6, ..., 6',.1} < TERM be such that p
= "9'(0%, ..., 0'-1)". @ = @' follows from Theorem 1-7-(iii). With Theorem 1-7-(i), we
thus have "0, ..., 0,.1)" = "0, ..., 8':-1)". By induction on 7 we will now show that for all
i € N: If i <n, then i <n'and 6, = 0'.. For this, suppose that the statement holds for all £ <

i. Suppose i < n. Suppose ¢ = 0. We have that 0 < n'. We also have that there are {uy, ...,
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UexpLg-1t Y {0 ...y WexpL@o-1y S BEXP such that 6 = "po...pexpiL(e)-1 and 0o =
"Wo...WexpL@o-1 and thus, with Theorem 1-6, po...Hexpi(og)1s ---» On1)' =
"Wo...WeXPL@o)1s ---» 0%-1)". Now, suppose EXPL(6g) < EXPL(6). With Theorem
1-5-(iii), it would then hold for all [ < EXPL(6o) that w; = p’. With Postulate 1-2-(i), we
would thus have 6y = "po...texpLg-1' = "Ho..-H'EXPL()-1 - BUt then we would have, with
Theorem 1-6, that "Oop'exeL(o)---HEXPL@OG)-1' = "Wo-.. WEXPL(@0)-1H'EXPL(O)- - - LEXPL(OG)-L' =
0'0, which contradicts Theorem 1-9-(i). In the same way, a contradiction follows for
EXPL(0') < EXPL(6p). Therefore we have that EXPL(60) = EXPL(0'0) and thus, with
Theorem 1-5-(iii), also 6, = 0'.

Now, suppose 0 < 4. Then it holds for all £ < i that £ < n. With the 1.H., we thus have for
all k< ithat k£ <n' and 0; = 0'.. With Theorem 1-5-(iii), we then have that "8, ..., 0,1 =
0, ..., 0'.1". We also have that -1 < n' and thus that ¢ < n'. Suppose for contradiction
that 7 = n". Then we would have that "0y, ..., 6,1 = "0, ..., 01" . With Theorem 1-7-(i),
we would then have that 7, 6,, ..., 6,.1)" = "), which contradicts Postulate 1-2-(ii). Thus
we have ¢ < n'. Again with Theorem 1-7-(i), we then have that "0, ..., 0,.1)" = "0, ...,
0';-1)". From this, we can derive 0; = 6'; in the same way as 6, = 'y for 7 = 0. Therefore it
holds for all i < n that i < n' and 6, = 8';. Analogously, we can show that for all i < n' we
have that i < n and 0'; = 8,. Taken together, we thus have that n = n' and that for all i < n:
0, =0

Third: Suppose u € QUANTOR. According to Definition 1-8, there are then IT €
QUANT and & € VAR such that p = TIE". Now, let also IT' € QUANT, &' € VAR such
that p = "TI'§". From Theorem 1-7-(iii) and -(i) follows immediately IT=1IT"and £ = £'.

Fourth: Suppose u € AFORM. According to Definition 1-10-(i), there are then n e
N\{0}, ® € PRED and {0y, ..., 6,1} < TERM such that pu = "®(0q, ..., 0,.1)". Let now
also n' € N\{0}, ®' € PRED and {0, ..., 6';1} < TERM such that p = "®'(8", ...,
0',1)". ® = @' follows from Theorem 1-7-(iii). With Theorem 1-7-(i), we then get that
00, ..., 0,.1)" = "0, ..., 0-1)". In the same way as in the second case, we can then show
that n = n' and that for all t < n: 6, =9'";.

Fifth: Suppose u € {"=A" | A € FORM}. Then there is A € FORM such that u =
'—A™. Now, suppose A' € FORM and p = "—A"™. From Theorem 1-7-(i) follows immedi-
ately A = A'.

Sixth: Suppose p € {"(Ao v A1)" | Ag, A1 € FORM and y € CON\{"—"}}. Then there
are Ao, A; € FORM and y € CON\{"—"} such that u = "(Ao w A;)". Let now also A'y, A"y
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€ FORM and y' € CON\{"—"} be such that p = "(A'y y' A'1)". With Theorem 1-7-(i), we
then have "Ay y Ay)" = "A'y y' A'1)". Also, there is {po, ..., HexeLag-1} YV {Mo, ...,
WexpL(ag-1p S BEXP such that Ag = "no...HexpL(ag-1' and A'g = "Wo...WexpLiag-1' - SUp-
pose for contradiction that EXPL(A;) < EXPL(A'). WithTheorem 1-5-(iii), we would
then have p,; = p'; for all + < EXPL(Ap). But then we would have, with Postulate 1-2-(i),
that Ag = "Wo...MexpLag-1’ = "Wo..-WExpL(ag-1 - With Theorem 1-6, we would then have
TAOW'EXPL(AG) - - WEXPL(A D)1 = W0+t WEXPL(AG)-IL'EXPL(AG) -+ - WEXPL(AG)}1 = "Wo-.. WEXPL(AG)1L
= A'g, which contradicts Theorem 1-9-(ii). Analogously, a contradiction follows from
EXPL(A0) < EXPL(Ao). Therefore EXPL(Ag) = EXPL(A,) and thus A, =
"Ho...HEXPL(A)-1| = "Mo...HExpL(ag)-1 = A'o. With Theorem 1-7, it then follows first that
"y A1)" = "y A'y)7, then that w = ', then that "A;)" = "A';)" and finally that A; = A";.

Seventh: Suppose u € QFORM. According to Definition 1-10-(iii), there are then IT e
QUANT, & € VAR and A € FORM such that u = TIEA™. Let now also IT' € QUANT, &'
e VAR, A' € FORM such that p = TTI'E&'A™. From Theorem 1-7-(iii) and -(i) follows im-
mediately [T=IT"and £ =& and A=A". m

With Theorem 1-10 and Theorem 1-11, one can now define functions on the sets TERM,

FORM and their union by recursion on the complexity of terms and formulas. The fol-

lowing definitions of the degree of a term and the degree of a formula (Definition 1-11

and Definition 1-12), allow us to prove properties of terms and formulas by induction on

the natural numbers more conveniently then this can be done by using EXPL.

8

Definition 1-11. Degree of a term® (TDEG)
TDEG is a function on TERM and
(i) If6 e ATERM, then TDEG(0) =0,
(i) If "o(0, ..., 0,1)" € FTERM, then
TDEG( (6o, ..., 0,.1)") = max({TDEG(6), ..., TDEG(6,.1)})+1.

Let 'min(..)" be defined as usual for non-empty subsets of N and 'max(..)" as usual for non-empty and
finite subsets of N. If X is not a non-empty subset of N, let min(X) = 0, and if X is not a non-empty
finite subset of N, also let max(X) = 0.
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Definition 1-12. Degree of a formula (FDEG)
FDEG is a function on FORM and
(i) If A e AFORM, then FDEG(A) =0,
(i) If "SA" € CONFORM, then FDEG("—A") = FDEG(A)+1,
(iii)  If (Ao y A1)" € CONFORM, then
FDEG( (Ao v A1)") = max({FDEG(Ao), FDEG(A1)})+1,
(iv) If TIEA" € QFORM, then FDEG(TIEA™) = FDEG(A)+1.

We will henceforth use the usual infix notation without parentheses for identity formulas,
e.g. "0 = 06*" for "=(0, 6*)". Furthermore, we will often omit the outermost parentheses,
e.g. "A y B for "(A y B)". With Definition 1-13, we can now characterise the free vari-

ables of terms and formulas.

Definition 1-13. Assignment of the set of variables that occur free in a term 6 or in a formula
I (FV)
FV is a function on TERM u FORM and
(i) Ifa € CONST, then FV(a) = 0,
(i)  IfB € PAR, then FV(B) = 0,
(iii)  If & e VAR, then FV(§) = {&},
(iv) If "o(6y, ..., 0,1)" € FTERM, then
FV("o(0o, ..., 0,1)") = U{FV(6) | i < n},
(v) If "®(6, ..., 0,.1)" € AFORM, then
FV(®(0Oy, ..., 0,.1)") = U{FV(B)) | i < n},
(vi) If "SA™ € CONFORM, then FV(™—A") = FV(A),
(vii) If "(Agy A1)" € CONFORM, then FV("(Ao w A1)") = FV(Ag) u FV(Ay),
and
(viii) If TIEA" € QFORM and, then FV(TIEA™) = FV(A)\{&}-

Definition 1-14. The set of closed terms (CTERM)
CTERM ={6|6 € TERM and FV(0) = 0}.

Note that, according to Definition 1-14, parameters are closed terms.
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Definition 1-15. The set of closed formulas (CFORM)
CFORM ={A | A € FORM and FV(A) = 0}.

Closed formulas are also called propositions. Note that closed formulas can have parame-
ters among their subexpression (see Definition 1-20). Sentences are now defined as the

result of applying a performator to a closed formula.

Definition 1-16. The set of sentences (SENT; metavariables: X, &', T*, ...)
SENT ={"2[" | Z € PERF and I' ¢ CFORM}.

Definition 1-17. Assumption- and inference-sentences (ASENT and ISENT)
(i) ASENT ={"Suppose I'"" |T € CFORM},
(i)  ISENT ={"ThereforeI"" |T" € CFORM}.

Theorem 1-12. Unique category and unique decomposability for sentences
If £ € SENT, then £ ¢ TERM u QUANTOR u FORM and

(i) X e ASENT and X ¢ ISENT and there isT" € CFORM such that £ = "Suppose I'"" and
forall T" € CFORM with £ = "Suppose I'"™" holds: T'=T", or

(i) X € ISENT and £ ¢ ASENT and there isT" ¢ CFORM such that £ = "Therefore T
and for all T" € CFORM with £ = "Therefore I holds: T =T".

Proof: Suppose ¥ € SENT. Then there are = € PERF and I' € CFORM such that X =
'EI7. If £ € TERM u QUANTOR u FORM, then we would have that ¥ € ATERM or
¥ € FTERM u QUANTOR u FORM. In the first case, we would have £ € BEXP, which
contradicts Postulate 1-2-(ii). In the second case, there would be p € FUNC u QUANT v
PRED v {"—", "("} and pn' € EXP such that £ = "upu"™. Thus we would have Z = p and
therefore 2 € FUNC u QUANT u PRED u {"™=", "("}, which contradicts Postulate 1-1.
Therefore £ ¢ TERM u QUANTOR u FORM.

If now £ € SENT, then by Postulate 1-1-(viii) X € ASENT or ¥ € ISENT. The two
cases will be treated separately. First: Suppose ¥ € ASENT. Then there isI' € CFORM
such that £ = "Suppose I'". If ¥ € ISENT, then there would be I'* such that ¥ = "There-
fore I'*" and thus, according to Theorem 1-7-(iii), "Suppose” = "Therefore™. Then
{"Suppose”, "Therefore™} would not be a 2-element set, which contradicts Postulate
1-1-(viii). Therefore £ ¢ ISENT. Now, suppose I" € CFORM and X = "Suppose I'".
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Then we have "Suppose I'" = "Suppose I'"". With Theorem 1-7-(i), it follows immedi-
ately thatI' =T".

Second: Suppose £ € ISENT. Then there is I' € CFORM such that £ = "Therefore I"".
For ¥ € ASENT we would again have a contradiction to Postulate 1-1-(viii). Therefore
¢ ASENT. Now, suppose I'" € CFORM and X = "Therefore I'"". Then we have "There-
fore I'" = "Therefore I'"'. With Theorem 1-7-(i), it follows immediately that T =T". m

With Theorem 1-12, we can now define functions on the set TERM u FORM u SENT by

recursion on the complexity of terms, formulas and sentences.

Definition 1-18. Assignment of the proposition of a sentence (P)
P={("EI",T) | E € PERF and I' € CFORM}.

Note: With Definition 1-16 and Theorem 1-12, it follows immediately that P is a function
on SENT. Because of this, we use function notation: P("ZI"") = I'. We now define the set
of proper expressions as the union of the set of basic expressions and the grammatical

categories.

Definition 1-19. The set of proper expressions (PEXP)
PEXP = BEXP u QUANTOR u TERM u FORM u SENT.

Definition 1-20. The subexpression function (SE)
SE is a function on PEXP and
(i) Ift € BEXP, then SE(t) = {1},
@ity  If (B, ..., 0,.1)" € FTERM, then
SE("9(00, ---, 0,.1)") = { 900, ..., 0,.1)", 0} U U{SE(0)) | i < n},
(i)  If TIE" € QUANTOR, then SE(TIE") = {TIE", I, &},
(iv) If "®(By, ..., 0,.1)" € AFORM, then
SE("®(By, ..., 0,.1)") ={"®(0y, ..., 0,1)", P} u U{SE(D)) | i < n},
(v) If "=A" € CONFORM, then SE("—A") ={"™=A", "—'} u SE(A),
(vi) If "(Aow A1)" € CONFORM, then
SE("(Ao v A1)") ={"(Ao v A1), y} U SE(Ao) U SE(Ay),
(vii) If TIEA" € QFORM, then
SE(TTIEA™) = {'TIEA"} u SE('TIE") u SE(A), and
(viii) If "EA" e SENT, then SE("EA™) ={"ZEA", E} u SE(A).
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Definition 1-21. The subterm function (ST)
ST is a function on TERM u FORM u SENT and for all t e TERM u FORM u SENT: ST(t)
= SE(t) n TERM.

Definition 1-22. The subformula function (SF)
SF is a function on FORM u SENT and for all t ¢ FORM u SENT: SF(t) = SE(t) n FORM.

The following definitions describe the syntax of L insofar as it goes beyond the sentence
level. As before, we suppress explicit references to L. Definition 1-23 characterises sen-

tence sequences as finite sequences of inference- and assumption-sentences:

Definition 1-23. Sentence sequence (metavariables: §, $', $*, ...)
£ is a sentence sequence

iff

$ is a finite sequence and for all - € Dom($)) holds: $; € SENT.

Definition 1-24. The set of sentence sequences (SEQ)
SEQ ={$ | $ is a sentence sequence}.

Definition 1-25. Conclusion assignment (C)
C={(®,1) |9 e SEQ{0} and I' = P(HHpom(s)-1)}-

Note: From this definition it follows directly that C is a function on SEQ\{0}.

Definition 1-26. Assignment of the subset of a sequence $) whose members are the assump-
tion-sentences of § (AS)

AS ={(%, X)| 9 e SEQand X ={(i, %)) | i € Dom(f) and $, € ASENT}}.

Definition 1-27. Assignment of the set of assumptions (AP)
AP ={($, X) | $ € SEQ and X = {I"| There is an i € Dom(AS($)) such that I" = P(£,)}}.

Definition 1-28. Assignment of the subset of a sequence $) whose members are the inference-
sentences of $ (IS)

IS={($, X)| % e SEQand X ={(i, $;) | i € Dom($)) and $; € ISENT}}.

Note: From these definitions it follows directly that AS, AP and IS are functions on SEQ.
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Definition 1-29. Assignment of the set of subterms of the members of a sequence $ (STSEQ)
STSEQ ={($, X) | $ € SEQ and X = U{ST($,) | i € Dom($)}}.

Note: From this definition it follows directly that STSEQ a function on SEQ.

Definition 1-30. Assignment of the set of subterms of the elements of a set of formulas X
(STSF)

STSF={(X,Y)| X < FORMand Y = U{ST(A) | A € X}}.

Note: From this definition, it follows directly that STSF is a function on Pot(FORM).
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1.2 Substitution

Now the substitution concept is to be established. In this, we restrict the usual substitution

concept: Only atomic terms are substituenda and only closed terms are substituentia. This

makes it superfluous to rename bound variables in order to avoid variable clashes. The

tasks that are fulfilled by free variables in many calculi and usually in model-theory are

fulfilled by parameters , which are closed terms (see Definition 1-14), in the Speech Act

Calculus as well as in the model-theory developed here. Furthermore, also sentences and

sentence sequences are substitution bases and not just terms and formulas (clauses (ix)
and (x) of Definition 1-31).

Definition 1-31. Substitution of closed terms for atomic terms in terms, formulas, sentences
and sentence sequences’

Substitution is a 3-ary function on {((0', ..., 0'x.1), B0, ..., 0r.1), W | & € N\{0}, (6, ..., 0'%1) €
]"CTERM, O, ..., Or1) € 'ATERM and uw e TERM u FORM v SENT v SEQ}. .., .., ..]' is
used as substitution operator. Values are assigned as follows:

()
(i)
(iii)

(iv)

v)

(vi)

(vii)

(viii)

If 0" € ATERM and 0" = 0,4, then [(0', ..., 0'x.2), (B, ..., O.1), 0] = 0'4.1,
If 0" € ATERM, 0" # 0,1 and k = 1, then [{0', ..., 0'x.1), Oy, ..., 0.1), 0] =0,
If 0" €« ATERM, 0" £ 0,1 and k # 1, then
[O'0, ..., 0%k2), (Boy ..., Bpa), 67T =[O, ..., 0'%2), (B0, ..., O12), 071,
If "p(8%, ..., 0*.1)" € FTERM, then
[0, ..., 0'%.1), B0, ..., Op1), "@(0%, ..., 0%11)"]
= "o([(0', ..., 0'11), (Oo, ..., Ox1), 0%c], ..., [0, ..., 0's1), (Bo, ..., Op1), O%14])7,
If "®(0y, ..., 0,.1)" € AFORM, then
[(e'O’ LEEN] e‘k—l>v <90! ey ek—l>y r@(e*O, ey 6.kl—l)—l]
= "O([(O, ..., 0':1), B0, ..., Op1), 0%0], ..., [O'0, ..., 0%1), B0, ..., Op1), O%1a])7,
If "—A" € CONFORM, then
[©'0, ..., 0'%1), B0, --vy Opa), =AT] = "= [O, ..., 0%0), B0, -, Ora), A]T,
If (Ao y A1) € CONFORM, then
[©, ..., 0'%1), B0, «..y Or1), (Ao w A1)7]
= ([B'o, ..., O'k2), B0y +-., Or1)y Ao] W [(B, ..., 0'%1), B, ..., Ora), A1])”,
If TIEA™ € QFORM, then let (%, ..., %..1) be such that s = |{j | j < kand 6, # &}| and for
alll<siye{jlj<kand6; # &} and forall k <[ <s: 4, <7, and let
[, ..., 0'%1), (Bq, ..., O.1), TIEA™] = TIE[(O, ..., 0%c1), Big, ..., Bic1), A", iF|{j|
<kand6; # &} #0, [0, ..., 0%1), B, ..., Or.1), TIEA™] = TIEA™ otherwise,

S Let'y = {f|f e Pot(X x Y)and fis function on X and Ran(f) < Y} and let {ay, ..., az.1) ={(4, @) | i <
k}. In the following we will designate 1-tuples by their values if we write down substitution results. So,
for example, [0', 6o, A] for [(0's), (o), A
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(ix) If "EA" € SENT, then
[®', ..., 0'%1), B0, ..., Or.1), "EAT] = "E[(O, ..., 0'%1), Bo, ..., Or1), A]", and

(x) If 9 e SEQ, then [0, ..., 0'1), (B0, ..., Op1), $H]
={0, [®, ..., 0'%1), B, ..., 01-1), H;]) | 7 € Dom(9H)}.

Clause (viii) regulates the substitution in quantificational formulas. In this case, the sub-
stituion is to be carried out for and only for those members of the substituendum sequence
that are not identical to the variable bound by the respective quantifier (if such members
exist). Accordingly, the desired members of the substituendum sequence and the corre-
sponding members of the substituens sequence have to be singled out. This is achieved by
the (in each case uniquely determined) number sequence (i, ..., is.1), Which picks exactly
those indices whose values in the substituendum sequence are different from the bound
variable. The new substituendum resp. substituens sequences, which have the desired
properties, are then simply the result of the composition of the original substituendum
resp. substituens sequences with (i, ..., is.1). If, however, all members of the substituen-
dum sequence are identical to the bound variable, then the substitution result is to be iden-
tical to the substitution basis, i.e. the respective quantificational formula.

Now, some theorems are to be established which are needed for the meta-theory of the
Speech Act Calculus — especially from ch. 4 onwards. We recommend that more impa-
tient readers skip these theorems for now and return here if the need arises. The first theo-
rem eases proofs by induction on the degree of a formula. It is proved by induction on the

complexity of a formula.

Theorem 1-13. Conservation of the degree of a formula as substitution basis
If 6 € CTERM, 6' € ATERM and A € FORM, then FDEG(A) = FDEG([6, 6", A]).

Proof: Suppose 6 € CTERM, 6' € ATERM and A € FORM. The proof is carried out by
induction on the complexity of A. Suppose A = "®(0q, ..., 0,.1)" € AFORM. According
to Definition 1-12, we then have FDEG(A) = 0. Then we have that [0, 0', A] = [0, 0/,
"®(0o, ..., 0,.1)"] = ([0, 0", 0], ..., [0, 0, 0,.1])" € AFORM. Therefore also FDEG([6,
0', A]) = 0. Suppose the statement holds for Ao, A; € FORM. That is: FDEG(Aq) =
FDEG([, 0', Ag]) and FDEG(A;) = FDEG([6, 0', A1]).

Ad CONFORM: Now, suppose A = "=Ap'. Then we have that FDEG(A)
FDEG(™Aq") = FDEG(Ag)+1 = FDEG([0, 6, Ag])+1 = FDEG(™—[6, ', Ac]")
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FDEG([6, 6", "—Aq']) = FDEG([6, 6', A]). Now, suppose A = "(Ag v A;)" for some vy e
CON\{"—"}. Then we have that FDEG(A) = FDEG("(Ao v A1)") = max({FDEG(Ay),
FDEG(A1)})+1 = max({FDEG([6, 6, Ao]), FDEG([6, 0', A1])})+1 = FDEG("([0, 0', A¢] w
[0, 6", A1])") = FDEG([6, 6", "(Ao w A1)"]) = FDEG([6, 6, A)).

Ad QFORM: Now, suppose A = TTIEA". First, let & = 6. Then we have that FDEG(A)
= FDEG('TIEA,") = FDEG(Ag)+1 = FDEG([6, 0", Ag])+1 = FDEG('TIE[B, 0", Ao]") =
FDEG([6, 0", TTIEAo']) = FDEG([0, 6', A]). Now, suppose & = 6. Then we have that
FDEG(A) = FDEG(TIEAG") = FDEG([6, 6", TIEAG']) = FDEG([6, 6", A]). m

Theorem 1-14. For all substituenda and substitution bases it holds that either all closed terms
are subterms of the respective substitution result or that the respective substitution result is
identical to the respective substitution basis for all closed terms

If ' € ATERM, 0* € TERM, A e FORM, then:
(i) 0 e ST([0,0,0%]) forall 0 e CTERM or [0, 0", 0*] = 0* for all © €« CTERM, and
(i) 0 e ST(0,0,A])foralld e CTERM or [0, 0', A] = A for all € CTERM.

Proof: Suppose 6' € ATERM, 6* € TERM, A € FORM. Ad (i): The proof is carried out
by induction on the complexity of 6*. Suppose 6* € ATERM. If 6" = 6*, then we have
that [0, 0', 6*] = 6 and thus that 8 € ST([6, 0', 6*]) for all 6 € CTERM. If 6' = 6*, then
we have that [0, 0', 6*] = 6* for all 6 € CTERM. Suppose the statement holds for 6%, ...,
0*.., € TERM and let 6* = "p(0*, ..., 0*,.1)" € FTERM. Then we have that [0, 6", 6*] =
[0, 0", "@(0%, ..., 0%,.1)"] = "o([6, 0", 6%¢], ..., [0, 6', 6*,.1])" for all ® € CTERM. Accord-
ing to the I.H., we have that for all i < r: 6 € ST([0, 6', 6*]) for all 6 € CTERM or [6, 0,
0*;] = 0%, for all 6 € CTERM. Suppose there is an 7 < r such that 6 € ST([0, 0', 6*]) for
all © € CTERM. Then we have that 6 € ST( ([0, 0', 0%(], ..., [0, 0", 0*,.1])") = ST([6, ©",
0*]) for all 8 € CTERM. Suppose there is no i < r such that 6 e ST([6, 6", 6*;]) for all 6 €
CTERM. According to the I.H., we then have that [0, 6, 6*;] = 6*, for all 6 € CTERM
and all i < r. Therefore [0, 0", 6*] = "o([0, 0', 6%¢], ..., [0, 8", 0*%,.1])" = "p(6%y, ..., 6%,.1)
= 0* for all 8 € CTERM.

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0y, ..., 6,.1)" € AFORM. This case is proved in the same way as the
FTERM-case by applying (i).

Suppose the statement holds for Ao, A; € FORM and let A = "—A;" € CONFORM.
Then we have that [0, 6', A] = [0, 0, "=Aq'] = ™[0, 6", Ao]" for all 6 € CTERM. Accord-
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ing to the 1.H., we have that 6 € ST([0, 6, A]) for all 8 € CTERM or [0, 6", Ag] = A, for
all 6 € CTERM. In the first case, we thus have that 6 € ST("—[6, 6", Ag]™) = ST([6, 0', A])
for all 6 € CTERM. In the second case, we have that [0, 6', A] = [0, 0", Ao]" = "=Ag" =
A for all 6 € CTERM. Suppose A = "(Ag w A1)™. This case is proved in the same way as
the negation-case.

Suppose A = TIEA,". First, suppose & = 0. Then we have that [0, 6', A] = [0, ',
MIEA,'] = TIEA," = A for all 6 € CTERM. Now, suppose & # 6. Then we have that [0,
0, A] = [0, 0, TIEA,'] = TIE[6, 0", Ao]" for all 6 € CTERM. According to the I.H., we
then have that 6 € ST([6, 0', A¢]) for all 6 € CTERM or [0, 6', Ag] = A, for all 6 €
CTERM. In the first case, we thus have that 6 € ST('TIE[O, 0", Ag]") = ST([6, 6", A]) for
all 8 € CTERM. In the second case, we have that [0, 0, A] = TIE[6, 6, Aog]" = TIEAy' =
Aforall® e CTERM. m

Theorem 1-15. Bases for the substitution of closed terms in terms

If 0 € TERM, k € N\{0}, {0o, ..., 0,23 = CTERM and {&, ..., &1} < VAR\ST(0), where &
+ &, for all 4, j < k with i # j, then there is a 0 € TERM, where FV(0") < {&, ..., &4} U
FV(0) and ST(0%) n {00, ..., 0,1} = @ such that 0 = [0, ..., Oua), o, ..., Ert), 7.

Proof: By induction on the complexity of 6. Suppose 6 € ATERM. Now, suppose k£ €
N\{0}, {60, ..., 61} < CTERM and {&, ..., &1} < VAR\ST(0), where & # &; for all ¢, j
< k with 7 # j. Then we have that 6 € CONST u PAR u VAR. First, suppose 6 € PAR u
CONST. Then there is no ¢ < k such that 6 = 6, or there is an ¢ < k such that 6 = 0;. In the
first case, it follows that 6 = [(Oq, ..., 0.1, (o, ..., &), 0] and we have that FV(0) < {&,
ey &1} U FV(0) and ST(0) n {0, ..., B2} = @. In the second case, there is an i < k such
that © = [(Bg, ..., 0, (o, ..., &), &]. Because of & # &; for all ¢, j < k with ¢ # j, we then
also have that 6 = [(0g, ..., 0, o, ..., &), &] = [Oo, ..., Or1), o, --., Ei-1), &] and we have
that FV(§) < {&, ..., &1} v FV(0) and ST(&) n {00, ..., 051} = @. Now, suppose 6 e
VAR. Because of {&, ..., &1} < VAR\ST(0), we then have that 6 = [(0o, ..., 05-1), (o,
ooy 1)y 0] and FV(0) < {&, ..., &1} u FV(0) and because of ST(0) n {0, ..., 0.1} <
VAR n CTERM = @ we also have that ST(0) n {6, ..., 0,1} = 0.

Suppose the statement holds for 0%, ..., 6., € TERM and let 6 = "@(0', ... 0'.1)" €
FTERM. Now, suppose k£ € N\{0}, {6, ..., 01} < CTERM and {&, ..., &1} <
VAR\ST(0), where & # &; for all 4, j < k with ¢ # j. With U{ST(0) | ¢ < r} < ST(0), it
then holds for all 7 < r that {&, ..., &1} < VAR\ST(8'). According to the I.H., we then
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have that for every 0'; (i < r) there is a 0%, € TERM such that 0'; = [(0o, ..., 0,.1), &1, ...,
Era), 07] and FV(0%) < {&, ..., Ea} U FV(0") and ST(0") n {00, ..., 6,4} = 0. Then
there is no ¢ < k such that "@(0'%, ... 0'.1)" = 0,, or there is an ¢ < k such that "@(0', ...
0',.1)" = 0,. In the first case, we have that "e(0', ... 6'.1)" = "o([{Bo, ---, Op-1), o, -+, Ek1)s
6%], ..., [Bo, -..r B2, (Cor vorr Ern)y 05a])” = [0, ooy Br2)s Eov v G1)s TQ(0%0, .,
0",.1)"]. We also have that FV("e(0%, ..., 0".1)") = U{FV(0") | i < r} and hence, with the
I.H., that FV("p(0%, ..., 07,.1)") < U{FV(©") | i <1} u {&, ..., &1} = FV(To(0Y, ...,
0'-1)") u {& ..., &-1}- According to the case assumption and the I.H., we also have that
ST("p(0%, ..., 0%1)") n {00, ..., 01} = {"@(0%, ..., 071)"F U U{ST(0%) | i < }) n {00,
ey 01} = ({7087, .., 85:0)"} 0 {60, ..., Bp1}) U (U{ST(6%) | i <7} n {60, ..., B41}) =
0 u U{ST(0%) n {00, ..., 0,1} | 7 <} = 0. In the second case there is an 4 < k such that
o0, ... 051)" =[O0, ..., 0, &o, ..., &), &]. Because of & # &; for all 4, j < k with 7 # 7,
we then also have that "@(6'%, ... 0'-1)" = [(6o, ..., 8, (o, ..., &), &] = [0, ..., Or-1), (o,
o Epa), &] and FV(E) < {&o, ..., Era} U FV(T@(0Y, ... 0'-1)") and because of & ¢
CTERM also ST(E) n {60, ..., 0,1} =0. m

Theorem 1-16. Bases for the substitution of closed terms in formulas

If A € FORM, k € N\{0},{00, ..., 0;..} = CTERM and {&, ..., £..} < VAR\ST(A), where &
+ &, for all 4, j < k with i # 4, then there is a A* € FORM, where FV(A") < {&, ..., &} U
FV(A) and ST(A+) N {60, . E)k_l} =@ such that A = [<60, . Ok_1>, <(&‘;0, . {;k_1>, A+]

Proof: By induction on the complexity of A. Suppose A = "®(0', ... 0'.1)" € AFORM.
Now, suppose k£ € N\{0}, {0, ..., 0x1} < CTERM and {&, ..., &1} < VAR\ST("®(0',
.. 050)7), where & # &; for all 4, j < k with ¢ # 7. With U{ST(0") | i < 7} = ST("®(0", ...
0'..1)"), it then holds for all 7 < r that {&, ..., &1} < VAR\ST(0"). According to Theorem
1-15, we then have that for every 0'; (i < r) there is a 0", € TERM such that 0'; = [(0q, ...,
0-2), (Eor ..., Exr), 07] and FV(0%) < {&, ..., Ea} U FV(0') and ST(0) n {60, ..., 01} =
0. Then we also have that "®(0', ... 0',.1)" = "®([(0o, ..., Ox-1), o, ..., Ex-1)y 070], ..., [(Oo,
coey Op2), Eoy vony Epn)y 074])T =[O0, ...y Okr)y Eov ey Eir)y "@(O70, ..., 07,1)7]. We also
have that FV("®(0, ..., 07,.1)") = U{FV(0%) | i < r} and thus FV("®(0", ..., 6",.1)") <
ULFV(0") | i <7} u {&o, .., &1} = FV(TO(0', ..., 0'1)") U {&o, ..., &1} We then also
have that ST("®(0", ..., 071)") n {00, ..., 041} = U{ST(O%) | i < 7} n {00, ..., Op1} =
U{ST(®O") n {00, ..., Or1} | i< 71} =0.
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Now, suppose that the statement holds for Ao, A; € FORM and let A = "—Aq" €
CONFORM. Now, suppose k£ € N\{0}, {00, ..., 0x1} < CTERM and {&, ..., &1} <
VAR\ST("™—Ao"), where & # &; for all 4, j < k with 7 # 5. With ST(Ao) = ST("—Ag"), we
then have {&, ..., &1}  VAR\ST(Ao). According to the I.H. for A, there is thena A’y €
FORM such that Ag = [{0g, .., 0x-1), €o, ..., Err)y ATl and FV(A"y) < FV(Ag) u {&, ...,
&1} and ST(A%) n {0o, ..., 0,1} = 0. Then we also have that —A" = "=[(0o, ..., Or.1),
Eoy wour &)y A" =[O0, ..., 0p0), &1y ..., Et), "—A'G"]. Furthermore, we have that
FV(™—A%") = FV(A) and thus, with the I.H., that FV("™—A%") < FV(Ao) u {&, ...,
Er1} = FV(™=A0") u {&, ..., &1} According to the I.H., we also have that ST("™—A","
n {00, ..., 01} = ST(A%) n {0, ..., 0,1} = 0.

Now, let A = "(Ao y A;)" € CONFORM. Now, suppose k£ € N\{0}, {6y, ..., 031} <
CTERM and {&, ..., &1} < VAR\ST("(Ao v A1)"), where & # &; for all ¢, j < k with ¢ #
J. With ST(Ao) u ST(A1) = ST("(Ao w A1)™), we then have {&, ..., &1}  VAR\(ST(Ag)
u ST(A1)). According to the I.H. for Ay, Ay, there are then A%, A*; € FORM such that for
1< 20 A = [0, .... 001, Eo ..., Et), AT] and FV(AT) < {&, ..., Ea} U FV(A) and
ST(A™) n {0y, ..., 0.1} = 0. We then have that "(Ag y A1)" = "([{0o, ..., 041, oy -.., Er1),
A%l v [Bo, .., Or1), €1 ooy &)y AT =[O0 ooy Br2)y Eov -eny Err)y (AT W AT)T]
Also, we have that FV("(A y A™1)") = FV(A%y) u FV(A™) and thus FV(" (A% v A™)")
< FV(Ag) u FV(A1) u {&, ..., &1} = FV("(Ao v A1)") U {&o, ..., &1} We also have that
ST("(A% y A™)") n {00, ..., 01} = (ST(A%) n {00, ..., 0x1}) U (ST(A™L) n {0y, ...,
05-1}) = 0.

Now, let A = TICAg" € QFORM and suppose £ € N\{0}, {0, ..., 01} < CTERM and
{&o, ..., &1} < VAR\ST(TICAG"), where &; # &; for all 7, j < k with ¢ # 5. Then, we have
in particular ¢ ¢ {&, ..., &-1}. With ST(Ag) < ST(TICAo"), we have that {&, ..., &1} <
VAR\ST(A). According to the I.H. for Ao, there is then a A"y € FORM such that Ay =
[0, ..., Op1), (o, .., Era), ATo] and FV(AT) < {&, ..., &1} U FV(Ap) and ST(A%) n
{60, ..., 0r1} = 0. Since ¢ {&, ..., &1}, we then have TICAq" = TIC[(Bo, ..., O)-1), (o,
ey Epa)y A" =[O0, ..., Or1), o, ...y Err), TICA™S"]. We then have FV(TICAT,) =
FV(A" MG} = (FV(AMCY) U {&o, ..., &ra} = FV(TICAG") U {Eo, ..., &1} With VAR n
CTERM = ¢ we then also have ST(TIA™") n {0o, ..., 0x1} = (ST(A%) u {&}) n {00, ...,
0p1}=0.m
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Theorem 1-17. Alternative bases for the substitution of closed terms for variables in terms
If {&, } u X < VAR, where {&, (} n X =0, and 6 € TERM, where FV(0) < {&} u X, then

there is a 6* € TERM, where FV(6*) < {(} u X, such that for all 6' € CTERM it holds that
[0, & 6] =1[0', G, 6~].
Proof: Suppose {§, (} u X < VAR, where {&, (} n X =0, and 8 € TERM, where FV(0)
< {&} u X. For & =, the statement follows immediately with 6* = 6. Now, suppose & +
C. The proof is now carried out by induction on the complexity of 6. Suppose 6 € CONST
u PAR. Then it holds with 6* = 6 that FV(0*) = 0 < {{} v X and that for all 6' €
CTERM: [0, &, 0] = [0, C, 6*]. Now, suppose 6 € VAR. Suppose 0 = & Then it holds
with 6* = { that FV(6*) < {¢} u X and that for all 8' € CTERM: [6', &, 6] = 0' = [6', (,
0*]. Suppose 6 # & Then we have 6 € X and thus 6 ¢ {&, (}. Then it holds with 6* = 6
that FV(6*) = {6} < {C} u X and that for all 8' € CTERM: [6', €, 6] = 6 = 6* = [0', (, 6*].
Now, suppose the statement holds for 6y, ..., 6,.; € TERM and suppose 6 = "o(6y, ...
0,.1)" € FTERM. Then we have for all 7 < r: FV(0;) < {&£} v X. According to the I.H.,
we then have that for all 7 < r there is a 6*; € TERM, with FV(6*,) < {C} u X, such that
for all 6' € CTERM it holds that [0, &, 6,] = [0/, ¢, 6%]. With 6* = "p(6%, ... 6*,.1)" it
then holds that FV(6*) < {C} u X and that for all ' € CTERM: [6', &, 6] = [0, &, "o(0o,

-+ 0.0)7] = To([0', & O], ... [0, & 0,4])" = To([0, § 6%, ... [0, C 0%4])" = [0, G
"p(0%0, ... 0%.1)"1=1[6',(, 6*]. m

Theorem 1-18. Alternative bases for the substitution of closed terms for variables in formulas
If{& C} u X < VAR, where {§, (} n X =0, and A € FORM, where FV(A) < {€&} u X and ¢

¢ ST(A), then there is a A* € FORM, where FV(A*) < {C} v X, such that for all 0" €
CTERM it holds that [6", &, A] = [6', {, A*].
Proof: The proof is carried out by induction on the complexity of A. Suppose A = "®(0,,
.. 0,.1)" € AFORM. Let {&, (} u X < VAR, where {&, (3} n X =0, and FV(A) < {&} u
X and { ¢ ST(A). Then we have for all « < r: FV(8;) < {&} v X. According to Theorem
1-17, there is then for all i < r a 6*; € TERM, where FV(6*;) < {C} u X such that for all
0' e CTERM holds: [0', &, 0] = [0', £, 6%,]. Then it holds with A* = "®(0%, ... 0*,,)" that
FV(A*) < {C} v X and that for all 6" € CTERM holds: [0, &, "®(0o, ... 6,.1)"] = "O([6,
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& o], ... [0, & 0,a])" = "O([6", §, 0%, ... [0, C, 6%,.0])" = [0, C, "®(6%, ... 6%,.1)"] = [0,
G, A*].

Now, suppose the statement holds for Ay, A; € FORM and let A € CONFORM. Let {¢,
(} u X < VAR, where {&, (} n X =0, and FV(A) < {&} u X and { ¢ ST(A). First, sup-
pose A = "—=Aq"'. Then we have FV(Ao) = FV(A) < {&} u X and { ¢ ST(Ap). According
to the 1.H., we have a A*y € FORM, where FV(A*;) < {C} u X, such that for all 6" €
CTERM holds: [6', &, Ag] = [0, , A*o]. With A* = "—A*,", it then holds that FV(A*) <
{C} v X and that for all ' € CTERM: [0, &, "—Aq"'] = ™[0, &, Ao]” = ™[6', , A%]" =
[0, C "=A%"] = [0, G, A*].

Now, suppose A = "(Ag v A1)" € CONFORM. Then we have FV(Ay) < FV(A) < {&}
u X and ¢ ¢ ST(Ag) and FV(A;) < FV(A) < {&} v X and { ¢ ST(A;). According to the
I.H., there are then A*j, A*; € FORM, where FV(A*y) < {(} u X and FV(A*;) < {} v
X, such that for all 6" € CTERM holds: [0, &, Ao] = [0, {, A*¢] and [0, &, A1] = [0, C,
A*1]. With A* = "(A*, y A*;)", it then holds that FV(A*) < {{} v X and that for all 0" €
CTERM: [0, &, "(Ao y A1) = ([6", &, Ao] w [0, &, As])" = T([6", G, A%o] y [0, G, AX1])" =
[0, C "(A% y A*)"] = [6', G, A*].

Now, suppose A = TIE'A;" € QFORM. Let {&, (} v X < VAR, where {&, (} n X =0,
and FV(A) < {&} u X and C ¢ ST(A). Then we have in particular { # &'. First, suppose &
= &'. Then we have [0', &, TTIE'Aq'] = TIE'A" for all ' € CTERM and FV(A) < X. Let
A* = A = TIEA,". Since { ¢ ST(A), we also have [0, ¢, TIEA'] = TIE'Ay" for all 0" €
CTERM and FV(A*) = FV(A) < X < {{} u X. Now, suppose & + &'. Then we have
FV(Ag) < FV(A) u {€F < {&} u X u {&} and £ ¢ ST(Ao). According to the I.H., there
is then A*, € FORM, where FV(A*y) < {C} u X u {&}, such that for all ' € CTERM it
holds that [0, &, Ao] = [0, {, A*o]. With A* = TIE'A*,", it then holds that FV(A*) < {(}
u X and that for all ' € CTERM it holds that [6', & TIE'A."] = TTEO', & A" = TIETS,
A% = [0, ¢, TIEA*" ] = [0, C, A*]. m
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Theorem 1-19. Unique substitution bases (a) for terms
If 6, 0" € TERM, 0* € CTERM\(ST(0) u ST(6") and 6% € ATERM and if [0*, 6%, 6] = [0,
0%, 0], then 6 = 0",

Proof: By induction on the complexity of 0. Suppose 6 € ATERM. Now, suppose 0" e
TERM, 6* € CTERM\(ST(0) u ST(6%)) and 6° € ATERM and suppose [0%, 65, 8] = [0,
0%, 0']. Now, suppose 6% = 0. Then we have [0*, 6%, 0] = 6*. Then we also have 6* = [0*,
0, 0%]. Since, according to the hypothesis, 0* ¢ ST(0") and thus 8" # 6*, we then have 0 =
0*. Now, suppose 6° # 0. Then we have [0, 6%, 0] = 6. Then we have 6 = [0*, 6%, 0"]. Be-
cause of 0* ¢ ST(0) and Theorem 1-14-(i), we then also have 6 = 0",

Now, suppose the statement holds for {0, ..., 6,..} < TERM and let "o(0y, ... 0,.1)" €
FTERM. Now, suppose 0" € TERM, 0* € CTERM\(ST("¢(0y, ... 0,.1)") u ST(6")) and
0% € ATERM and suppose [0*, 6%, "¢(0o, ..., 0,.1)"] = [0*, 6%, 0°]. Therefore [6*, 6%, 0*] =
"o([0*, 0%, 0], ..., [0*, 0% 60,.])" € FTERM. Suppose for contradiction that 8% e
ATERM. We have 6% + 0" or 6% = 0*. Suppose 6° = 6*. Then we have 6" = [0*, 6%, 0] =
"o([6%, 0%, 8o, ..., [0*, 6%, 0,1])" € FTERM. Contradiction! Suppose 6° = 6*. Then we
have 0* = [0%, 0%, 0] = "o([0*, 6%, Oc], ..., [0*, 6%, 0,.1])". With Theorem 1-14-(i), it then
follows that for all 4 < r: [0*, 6%, 6] = 6, or there is an i < r such that 6* e ST([0*, 6%, 6,]).
If [0*, 6%, 0,] = 6, for all i < r, then 6* = "([0%, 6%, O¢], ..., [06*, 0%, 0,14])" = "o(6o, ...,
0,.1)" and thus, in contradiction to the hypothesis, 6* € ST("@(0o, ... 6,.1)"). If, on the
other hand, there was an i < - such that 6* e ST([0%, 6%, 0.]), then 6* would be a proper
subterm of "p([0*, 0%, o], ..., [0%, 6% 6,.1])" and therefore a proper subterm of itself,
which contradicts Theorem 1-8. Therefore 6° ¢ ATERM, but 8° € FTERM. Therefore
there are {0, ..., 0.1} < TERM and ¢' € FUNC such that 6" = "¢'(0', ..., 0'%.1)". Thus
we have "@'([0%, 0%, 0'], ..., [0*, 0%, 0':.1])" = [0%, 0%, "@'(0', ..., 0'1)"] = [0*, 6%, 0] =
"o([0*, 0%, 8o, ..., [6*, 6%, 0,.1])". With Theorem 1-11-(ii), it then follows that & = r and
0 = ¢ and [0*, 0%, 0] = [6*, 6%, 0] for all i < . With the I.H., it follows that 0, = 6'; for all
i <. Thus we then have "o(6q, ..., 0,1)" = @', ..., 0'1)" =0". m
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Theorem 1-20. Unique substitution bases (a) for formulas
If A, A" € FORM, 6* € CTERM\(ST(A) u ST(A") and 6° € ATERM and if [0*, 6%, A] = [0,
0%, A*], then A= A",

Proof: Suppose A, A* € FORM, 6* € CTERM\(ST(A) u ST(A") and 6° € ATERM and
[0*, 0%, A] = [6%, 6%, A*]. In the same way as we did in the inductive step of the preceding
proof for functional terms, one can show for all formulas that substitution bases (A and
A") belong to the same category and have the same main operator (predicate, connective
or quantifier) as the respective substitution results ([0*, 6, A] and [6*, 6%, A*]). The proof
is carried out by induction on the complexity of A. Suppose A = "®(6y, ... 0,1)" €
AFORM. Then we also have [0*, 0%, A] = "®([0*, 0, 6q], ..., [6*, 6%, 0,.1])" € AFORM
and there are {0, ..., 0.1} < TERM with "®(0', ... 0'.1)" = A". Therefore also "®([0*,
0%, 0q], ..., [0%, 0%, 0,.1])" = [6%, 05, A] = [0*, 0%, A*] = [0*, 05, "D(0'y, ... 0'..1)"] = "D([6*,
0%, 0], ..., [6*, 0% 0'.1])" € AFORM. With Theorem 1-11-(iv), it then follows that [0*,
0%, 0,] = [0*, 6%, 0'] for all i < . With Theorem 1-19, it then follows that 6; = 6'; for all i <
r. Thus we have "®(0q, ... 0,.1)" = "®(0', ... 0',.1)" = A",

Now, suppose the statement holds for Ay, A; € FORM and let A = "—Ay' €
CONFORM. Then we also have [6%, 6%, A] = —[6*, 6%, Ag]" € CONFORM and there is
A'g € FORM with "—A's" = A™. Therefore also ™—[0*, 0%, Ao]" = [0*, 68, A] = [6%, 6%, A*]
= [0*, 0%, —A',"] = —[0*, 0%, A" € CONFORM. With Theorem 1-11-(v), it then fol-
lows that [0%, 0%, Ag] = [0*, 0%, A']. With the I.H., it follows that Ag = Ay and thus A =
"—Ag' = "=A's" = A", Suppose A = "(Ag v A1) € CONFORM. Then we also have [0*,
0%, A] = T([0%, 6%, Ag] w [0%, 6%, A1])" € CONFORM and there are A'y, A'; € FORM with
(Ao w A1) = A", Therefore also "([0*, 6%, Ag] w [0%, 0%, AL])" = [0%, 6%, A] = [0%, 65, A*]
= [0%, 0%, (A% w A'1)"] = ([0, 6%, A'g] v [0%, 6%, A1])" € CONFORM. With Theorem
1-11-(vi), it then follows that [0*, 6%, A¢] = [0%, 6%, A'g] and [0, 6, A;] = [6*, 6%, A'4].
With the I.H., it follows that Ao = A'p and A; = A"y and thus that A = "(Ao y A1)" = "(A' v
AY)T = A

Suppose A = TIEA," € QFORM. Then we also have [0%, 6%, A] € QFORM and there is
A, € FORM with TIEA," = A*. Suppose & = 6%. Then we have A = TIEA," = [0*, 65,
TIEAG'] = [0%, 05, A] = [0%, 0°, A] = [0*, 0%, TIEA',"] = TTIEA'," = A", Suppose & + 6°.
Then we have TIE[0%, 65, Ag]” = [6%, 0%, A] = [6%, 65, A*] = [0, 0%, TTIEA',"] = TIE[0™,
0%, A']" € QFORM. With Theorem 1-11-(vii), it then follows that [0*, 6%, Ao] = [6*, 65,
A'o]. With the I.H., it follows that Ag = A'g and thus that A = TIEA," = TIEAY =A™ m
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Theorem 1-21. Unique substitution bases (a) for sentences
If £, =" € SENT, 6* € CTERM\(ST(Z) u ST(Z")) and 6° € ATERM and if [6%, 6%, ] = [0*,
0%, 2, thenz = x*.

Proof: The theorem is proved analogously to the negation-case in the proof of Theorem
1-20 by applying Theorem 1-20 and Theorem 1-12. m

Theorem 1-22. Unique substitution bases (b) for terms
If 0, 0" € TERM, 0* € CTERM\(ST(0) u ST(0")), & € VAR, B € PAR and [0%, &, 0] = [0*, B,
0], then 0" = [B, &, 0].

Proof: By induction on the complexity of 0. Suppose 6 € ATERM. Now, suppose 0" €
TERM, 6* ¢ CTERM\(ST(0) u ST(6%)), & € VAR, B € PAR and [0*, &, 6] = [0*, B, 6"].
Then we have 6 € CONST u PAR u VAR. Now, suppose 6 € CONST. Then we have
[0%, &, 6] = 6. Then we have 0 = [0*, B, 07]. Because of 0* ¢ ST(0) and Theorem 1-14-(i),
we then have that 6 = 0" and because of 0 # £ we have 6" = 0 = [B, &, 6]. Now, suppose 0
e PAR. Then we have [0*, & 0] = 0. Then we have 0 = [0*, B, 07]. Because of 6* ¢ ST(0)
and Theorem 1-14-(i), we then have again 6 = 0" and because of £ # 0: 0" = 0 = [B, &, 0].
Now, suppose 6 € VAR. Suppose 6 = &. Then we have [0%, &, 6] = 06*. Then we have 6* =
[6*, B, 07]. Because of 0* # 0, we then have B € ST(0"). Thus we have 0* e ST([0*, B,
0']). If 0" # B, we would have, with 6* = [0*, B, 07], that 0* is a proper subterm of itself,
which contradicts Theorem 1-8. Therefore we have 0" = B = [B, &, 6]. Now, suppose 0 # &.
Then we have 0 = [0*, &, 0]. Then we have 6 = [0*, B, 0']. Because of 0* ¢ ST(0) and
Theorem 1-14-(i), we then have 0 = 0" and, because of 0 # &, we thus have 0" = 0 = [B, &,
0].

Now, suppose the statement holds for {6y, ..., 6,.1} < TERM and suppose "¢(0y, ...,
0.1)" € FTERM. Now, suppose 6* € TERM, 6* € TERM\(ST("¢(0o, ..., 6,-1)") U
ST(6%)), & € VAR, B € PAR and [0*, &, "¢(0p, ..., 0,.1)"] = [0%, B, 67]. Therefore [0*, B,
0'] = ([0, &, 0], ..., [0%, &, 0,.1])" € FTERM. Suppose for contradiction that 6" e
ATERM. We have B = 0" or B = 0". Suppose B + 0°. Then we have 0" = [0*, B, 0] =
"o([0%, E, 0], ..., [0%, & 0,4])" € FTERM. Contradiction! Suppose p = 0*. Then we have
0* = [0%, B, 0] = "o([0%, &, 00), ..., [0%, &, 0,.1])". With Theorem 1-14-(i), it then follows
that for all - < r: [06*, &, 6,] = 0, or there is an ¢ < r such that 6* € ST([0*, &, 6,]). If [6%, &,
0,] = 6, for all ¢ < r, then we would have 6* = "o([0*, &, 0¢], ..., [6%, &, 6,.1])" = "0(Bq, ...,
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0,.1)" and thus 6* € ST("p(0o, ... 6,-1)"), which contradicts the hypothesis. If, on the other
hand, there was an ¢ < r such that 6* € ST([0*, &, 6,]), then 6* would be a proper subterm
of "o([0*, &, o], ..., [6%, &, 0,.1])" and therefore a proper subterm of itself, which contra-
dicts Theorem 1-8. Therefore 6" ¢ ATERM, but 6© € FTERM. Therefore there are {0',
..., 024} < TERM and ¢' € FUNC such that 8" = "9'(0%, ..., 0'.1)". Thus we have
"0'([6%, B, 0'0], ..., [6*, B, 0%1])" = [6%, B, ¢'(®'s, ..., 0'1)"] = [6%, B, 07] = "o([0*, &, 6],
oy [0%, &, 0,.4])7 . With Theorem 1-11-(ii), it then follows that £ = r and ¢' = ¢ and [6*, B,
0] = [0*, &, 0;] for all 7 < r. With the I.H., it follows that 6", = [B, &, 6,] for all 7 < r. Thus
we have 6" = "¢'(0', ..., 0%1)" = "¢([B, & 60, ..., [B, & 0,4])" = [B, & "@(0o, ..., 0,1)"]. m

Theorem 1-23. Unique substitution bases (b) for formulas
If A, A" € FORM, 6* € TERM\(ST(A) u ST(A")), £ € VAR, B € PAR and [0%*, &, A] = [0*, B,
A'], then A" = [B, &, Al.

Proof: Let A, A" € FORM, 6* € CTERM\(ST(A) u ST(A")) and £ € VAR, B € PAR and
[0%, &, A] = [0*, B, A"]. In the same way as we did in the inductive step of the preceding
proof for functional terms, one can show for all formulas that substitution bases (A and
A") belong to the same category and have the same main operator (predicate, connective
or quantifier) as the respective substitution results ([0*, &, A] and [0*, B, A']). The proof is
carried out by induction on the complexity of A. Suppose A = "®(0y, ... 0,1)" €
AFORM. Then we also have [0*, §, A] = "®([6%*, &, O¢], ..., [6%, &, 0,.1])" € AFORM and
there are {0, ..., 0,1} < TERM with "®(0', ..., 0'.1)" = A". Therefore we also have
"O([6%, & O], ..., [0%, & 0.1])" = [0%, & A] = [0%, B, A] = [0%, B, "0, ..., 0/1)"] =
"o([0*, B, 0%], ..., [0*, B, 0'1])" € AFORM. With Theorem 1-11-(iv), it then follows
that [0*, &, 0,] = [0%, B, 0] for all < < r. With Theorem 1-22, it follows that 0'; = [B, &, 6,]
for all ¢ < 7. Thus we then have A* = "®(0', ... 0',.1)" = "®([B, &, Oq], ..., [B, &, 0,4])" =
[B,& "0, ..., 0,1)"]1=[B, & Al.

Now, suppose the statement holds for Ag, A; € FORM and let A = "SAy" €
CONFORM. Then we also have [0*, & A] = "=[0%, &, A¢]' € CONFORM and there is
A'g € FORM with "—A'y" = A", Therefore we also have ™—[0%*, &, Ao]" = [0%, B, A™] = [0%,
B, —AG'] = "=[0%, B, A')]" € CONFORM. With Theorem 1-11-(v), it then follows that
[0%, &, Ag] = [0%, B, A'g]. With the I.H., it follows that A’y = [B, &, Aq] and thus that A™ =
=AY = =B, & A" = [B & A0l = [B, & Al Suppose A = (Ao y A" €
CONFORM. Then we also have [0*, & A] = ([0%, & Ao] v [0%, & A1])" € CONFORM
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and there are A'y, A'y € FORM with "(A'y y A'1))" = A*. Therefore we also have ([0, &,
Aol w [0%, & A4])" = [0%, B, A"] = [0%, B, (Ao w A')'] = "([6%, B, A'o] w [6%, B, A4])" €
CONFORM. With Theorem 1-11-(vi), it then follows that [6*, &, Ao] = [0*, B, A'] and
[0%, &, A1] = [6*, B, A'1]. With the I.H., it follows that A’y = [B, &, Ao] and A"y = [B, &, A1]
and thus we have A" = (A9 w A1)" = ([B, & Aol w [B, & A1) =B, & (Ao v A))'] = [B,
& Al

Suppose A = TIE'A;" € QFORM. Suppose &' = & Then we have A = TIE'A," = [0%, &,
TIE'A'] = [0%, &, A] = [0%, B, A']. With Theorem 1-14-(ii), we then have 6* e ST([0*,
B, A™]) = ST(A) or [6%, B, A"] = A". This first case is excluded by the hypothesis. In the
second case, we have that A* = TIE'Ay" = [B, & TIEA'] = [P, &, A]. Suppose &' =+ &.
Then we have [0%, & A] = TIE[6%, & Ao]" € QFORM and there is Ay € FORM with
TIE'A'y" = A", Therefore we also have TIE[0*, &, Ao]" = [0%, B, A™] = [0%, B, TIEAY'] =
TIE[6*, B, A']" € QFORM. With Theorem 1-11-(vii), it then follows that [0*, &, Ao] =
[0*, B, A'g]. With the I.H., it follows that A’y = [B, &, Ao] and thus A" = TIE'A'y" = TIE'[B,
& A" = [B, & TIEA'] = [B, & Al m

Theorem 1-24. Cancellation of parameters in substitution results
If 0 € TERM, A € FORM, £ e SENT, 6* € CTERM, B € PAR\(ST(0) u ST(A) u ST()) and
0" € ATERM, then:

(i) [6* 07, 01=1[0% B, [B, 0, 6]l
(i) [06%, 0%, A]=[06%B, B, 6", A]], and
(ii) [0*, 0%, =] = [0*, B, [B, 6", Z]].

Proof: Let & € TERM, A € FORM, T e SENT, 6* € CTERM, B e PAR\(ST(6) u ST(A)
u ST(Z)) and 0" € ATERM. Ad (i): The proof is carried out by induction on the complex-
ity of 0. Suppose 6 € ATERM. Then we have 6 = 0" or 6 + 0". First, suppose 0 = 0".
Then we have [B, 07, 6] = B and [0*, 67, 6] = 0*. Then we have [0*, 67, 6] = 0* = [0*, B, B]
=[6%, B, [B, 0%, 06]]. Now, suppose 6 + 0*. Then we have [B, 0%, 0] = 0 and [0*, 6", 6] = 0.
Because of B ¢ ST(0), we have B + 0 and thus 0 = [0*, B, 0]. Therefore we have [0*, 6,
0]=0=[0*, B, 6] =[0%, B, [, 0", ]].

Now, suppose the statement holds for {6, ..., 6,.1} < TERM and suppose 6 = "¢(0o, ...
0,.1)" € FTERM. Because of B ¢ ST(0), we also have that § ¢ ST(0;) for all ¢ < . With
the I.H., it then holds that [6*, 07, 0] = [0*, B, [B, 07, 0,]] for all i < r. Then we have [0*,
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0%, "p(0o, .. 6,-1)"1 = "p([6*, 07, Bo], ..., [6*, 6%, 0,4])" = "o([6*, B, [B, 67, o], ..., [6*, B,
[B, 07, 0,-1])" = [06%, B, "o([B, 6%, 6a, ..., [B, 07, 0,.11)"] = [6*, B, [B, 0", "@(Bo, ... 6,-1)"]].

Ad (ii): The proof is carried out by induction on the complexity of A. Suppose A =
"®(0p, ... 0,1)" € AFORM. Then we have B ¢ ST(0,) for all i < r and [0*, 6", A] = [0%*,
0%, "®(0y, ... 0,1)"] = "®([6*, 07, Og], ... [0*, 07, 0,.1])". With (i), it holds that [0*, 0", 0,]
=[0*, B, [B, 0%, 6]]] for all 7 < . Therefore we have [6*, 0%, A] = "®([0*, B, [B, 0%, 0c]], ...,
[6%, B, [B, 67, 6,.1])" = [0%, B, "®([B, 6", Oc], ..., [B, 07, 0,.4])" = [6%, B, [B, 67, "®(B, ...
0,.)"11 = [0%, B, [B, 0", A].

Now, suppose the statement holds for Ay, A; € FORM. First, let A = Ay €
CONFORM. Then we have B ¢ ST(Ag) and [0%*, 0%, A] = [0%, 0", "—Ag'] = "—[0%, 07,
Ao]. With the I.H., it holds that [6*, 8, Ag] = [0, B, [B, 6%, A¢]]. Therefore [6*, 6, A] =
—[6%, B, [B, 6", Aoll" = [6%, B, [B, 6", "=A¢"]] = [6*, B, [B, 67, A]]. Suppose A = (Ao
A;)" € CONFORM. This case is proved analogously to the negation-case.

Suppose A = TIEA;" € QFORM. Suppose & = 0°. Then we have [0*, 6%, A] = [0*, 0,
TIEA,"] = TIEAG = [B, 6%, TTIEAG™] = [B, 0, A]. Then we have B ¢ ST([B, 6%, A]) =
ST(A). Therefore [0%, 07, A] = [B, 07, A] = [0*, B, [B, 07, A]]. Suppose & = 0. This case is
proved analogously to the negation-case.

Ad (iii): This case is proved analogously to the negation-case. m

Theorem 1-25. A sufficient condition for the commutativity of a substitution in terms and for-
mulas

If 0%, 6%, € CTERM, 65, 61 € ATERM, 0o % 0y, 6, ¢ ST(6%) and 6, ¢ ST(6*1), then:
(l) If 9+ € TERM, then [9*1, 61, [6*0, 90, 6+]] = [9*0, 60, [6*1, 91, 6+]], and
(i) If A € FORM, then [6%1, 01, [0%, 06, AJ] = [0*0, 6o, [0*1, O, A]].

Proof: Let 0%, 0*; € CTERM, g, 0, € ATERM, 0o # 01, 0, ¢ ST(6%) and 0 & ST(6*1).
Ad (i): Suppose 6" € TERM. The proof is carried out by induction on the complexity of
0". Suppose 6 € ATERM. Suppose 0* = 0,. Then we have 0" # 0; and [0*1, 01, [0%o, 0o,
07]] = [0*1, 01, 0%;]. Because of 0; ¢ ST(0%;), we have [0*1, 01, 0%9] = 6*,. On the other
hand, we have [0%, 0o, [0*1, 01, 07]] = [0%0, 00, 07] = 0%;. Therefore [0*1, 01, [0%0, 0o, 071]
= [0%o, 0o, [0*1, 01, 07]]. Now, suppose 0" # 0. Suppose 0" = 0;. Then we have [0*1, 0,
[0%0, 8o, 07T] = [0%1, 01, 0] = 0*1. Because of 0y ¢ ST(0*1), we have [0%,, 0g, 0%1] = 0*;.
Thus we have [0%g, 0o, [0%1, 01, 07T] = [0%0, 00, 0*1] = 0*1. Therefore [0*1, 01, [0%¢, 0o, 071]
= [0%0, 00, [0*1, 01, 07]]. Suppose 0" # 01. Then we have [0*1, 01, [0%¢, 00, 07]] = [6%1, 01,
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0%] = 0" and [0%, 0o, [0*1, 01, 07]] = [6%0, 00, 07] = 0. Therefore we have again that [0*;,
01, [0%0, 00, 07]] = [0%0, 00, [0*1, 01, 071].

Now, suppose the statement holds for {0', ..., 0',.1} < TERM and suppose 0" = "p(0',
..., 0'.1)" € FTERM. Then we have [0%1, 04, [6%0, 80, 0*T] = [0*1, 01, [6%0, 80, "@(0%, ..,
0'-1)" 1] = "o([6%*1, 01, [0%0, B0, O']], ..., [6%1, 01, [0%0, B0, 0'--1]])". With the I.H., it holds
that [0%*1, 01, [0%0, 0o, 0']] = [0%0, 00, [0*1, 01, 6']] for all 7 < r. Therefore we have [6%*;, 04,
[6%0, 60, 671] = "@([0%0, 00, [0%1, 01, 0%]], .., [6%0, B0, [0*1, 01, 6',-1]])" = [0%0, O, [0%1, 01,
"0(0', ... 0'-1)"1] = [6%0, 00, [0*1, 01, O7T].

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0', ... 0'.1)" € AFORM. Then we have [0*1, 61, [6%0, 00, A]] = [0%1,
01, [6%0, B0, "@(0'0, ..., 0'.2)"]] = "O([6%*1, 01, [6%0, B0, O']], ..., [0*1, 01, [0%0, 60, 0'-1]])" "
With (i), we have that [0%*1, 01, [6%0, 80, 0']] = [0%0, 00, [6%1, 01, 6']] for all 7 < 7. Therefore
we have [0%1, 01, [0%0, 60, A]] = "®([06%*0, B0, [6*1, 81, 0']], ..., [6%0, B0, [6*1, 01, 0',4]])" =
[6%0, 60, [6%1, 61, "O(0', ... 0'.2)" 1] = [6%0, 00, [6%1, 01, A]].

Now, suppose the statement holds for Ay, A; € FORM and suppose A = "—Aqy' €
CONFORM. Then we have [0*1, 01, [0%0, 00, A]] = [0%1, 01, [0%0, 60, "—A¢"]] = "—[0%1,
01, [0%0, 60, Ao]]". With the L.H., it holds that [6*y, 61, [6%0, 60, Ao]] = [0%0, 60, [6*1, 01,
Ao]]. Therefore we have [0%*y, 01, [0, 00, A]] = "—[6%0, 00, [0%1, 01, Ao]]" = [6%0, B0, [0%1,
01, "=A0']] = [0%0, 00, [0%1, 01, A]]. Suppose A = "(Ag y A;)" € CONFORM. This case is
proved analogously to the negation-case.

Suppose A = TIEA," € QFORM. Suppose & = 8y. Then we have & # 06, and [0*y, 64,
[0%0, B0, A]] = [6%1, 01, [0%0, B0, TIEAG']] = [06%1, 61, TIEAG'] = TIE[6%1, 01, Ao]" = [0%,
0o, TIE[O*1, 01, Ao]™] = [06%0, 60, [0%1, 01, TIEAG']] = [0%0, B0, [6%1, 61, A]]. Suppose & =
0;. Then we have & # 0y and [0*1, 01, [0%0, 80, A]] = [0%1, 01, [0%0, 00, TIEAG']] = [0%1, 01,
TIE[6%0, 60, Ao]"] = TIE[0%0, 00, Ao]" = [0%0, 00, TIEAG'] = [0%0, 00, [6%1, 01, TIEAG']] =
[0%0, B0, [0*1, 01, A]]. Suppose 6, # & # 0;. This case is proved analogously to the nega-

tion-case. m



42 1 Grammatical Framework

Theorem 1-26. Substitution in substitution results

If{ € VAR, 0", 0* ¢ CTERM and 6" € CONST u PAR, then:
(i) 1f0 e TERM, then [0, 0%, [0%, ¢, 0]] = [[0", 0%, 6*], ¢, [0, 67, 0]], and
(i) If A e FORM, then [0", 07, [0%, , A]] = [[0", 67, 6*], ¢, [0', 67, A]].

Proof: Suppose { € VAR, 0', 0* ¢ CTERM and 6 € CONST u PAR. Ad (i): Suppose 0
e TERM. The proof is carried out by induction on the complexity of 6. Suppose 6 €
ATERM. First, suppose 6 € CONST u PAR. Suppose 0 = 0*. Then we have [0', 6%, [0*,
¢, 0]]1 = [0, 07, 0] = 6. We have { ¢ ST(0") € CTERM and thus [0', 07, [6%, (, 6]] = 6" =
[[6", 6%, 6*], ¢, 0] = [[0", 6%, 0*], {, [6", 6, 6]]. Suppose 6 = 6°. Then we have [0", 6%, [0*,
¢, 0]] = 1[0, 067,01 =0=[[0, 6%, 0*], ¢, 6] = [[0', 0%, 6*], ¢, [0, 07, 6]]. Now, suppose 0
VAR. Suppose 0 = {. Then we have [0', 6%, [0*, {, 6]] = [0, 07, 6*] = [[0", 6%, 6*], (, 0] =
[0, 6, 0*], ¢, [0, 6%, 8]]. Suppose 6 # {. Then we have [0', 6%, [6*, (, 0]] = [0, 67, 0] =6
= [[0, 6%, 6], &, 6] = [[0", 6%, 6*], €, [0", 67, 6]].

Now, suppose the statement holds for {6, ..., 6,.1} < TERM and suppose 6 = "¢(8y,
..., 0,1)" € FTERM. Then we have [0', 6%, [6*, ¢, 0]] = [0', 07, [0*, {, "o(0y, ..., 0,.1)"]] =
"o([0", 07, [6%, G 0o]], ..., [0', 07, [6%, ¢, 6,4]])". With the I.H., it holds that [6", 6%, [6*, (,
0,11 = [[0', 0%, 6%], ¢, [0, 0%, 6]] for all i < r. Therefore we have [0', 07, [0*, {, 0]] =
"o([[0', 6", 6*], G, [0', 0%, 6c]l, ..., [[0", 6%, 6*], &, [0', 6%, 6,.1])" = [[0", 6%, 6*], , [0, 67,
"0 (0o, ..., 0,.1) 11 = [[0", 67, 6*], €, [0", 67, 6]].

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0p, ... 0,1)" € AFORM. This case is proved analogously to the
FTERM-case by applying (i).

Now, suppose the statement holds for Ay, A; € FORM and suppose A = "—Aqy' €
CONFORM. Then we have [0, 07, [0*%, {, A]] = [0', 0%, [0%, {, —A¢']] = [0, 07, [0%, ¢,
Ao]]™. With the I.H., it holds that [0', 8%, [6*, ¢, Ao]] = [[0', 6%, 6*], ¢, [0', 6", Ao]]. There-
fore [0', 6%, [6*, C, A]] = "[[0, 07, 6*], &, [0, 0%, Ao]]” = [[6', 6%, 0*], , [0', 67, —A0"]] =
[[0', 0%, 6%], ¢, [0", O, A]]. Suppose A = "(A¢ v A1)" € CONFORM. This case is proved
analogously to the negation-case.

Suppose A = TIEA;' € QFORM. Suppose & = {. Then we have [0', 0%, [0%, {, A]] = [0,
0", [0%, ¢, TIEAQ"]] = [0", 6%, TTIEAQ"] = "TIE[0', 67, Ao]” = [[0, 0%, 0*], ¢, "TIE[6', 07, Ao]"]
= [[0, 6%, 0%, ¢, [0", 0%, TTIEA™]] = [[0", 07, 6*], ¢, [0', 0%, A]]. Suppose & + (. This case is
proved analogously to the negation-case. m
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Theorem 1-27. Multiple substitution of new and pairwise different parameters for pairwise
different parameters in terms, formulas, sentences and sequences

If 0 € TERM, A ¢ FORM, T e SENT, $ e SEQ, k ¢ N\{0} and {B*o, ..., B} <
PAR\(ST(6) U ST(A) u ST(Z) u STSEQ($)) and {Bo, ..., Bi} = PAR[B*, ..., B}, where
B*;# p*;and B; # B, for all 4, j < k+1 with ¢ # j, then:

(1) [B* Br [B*0, -y B*r2)s Bos --os Brea)s 011 = [B*0, -+, B*ms Bos -+, By O],

(i) [B*% Br [B*0s ---s B*r-1), Boy - Br)y All = [B*0, -, B Bos -+, Bo)y Al

(i) - [B*% B [KB* 0, -y B*s)s Boy -y Br-)s 211 = (B0, -, B* Boy -, B, Z], and

(iv)  [B*% Br [B* 0, -y B*r-1)s Boy - Br)y O] = [B*0, -, B*0 Bos ---s By H]-

Proof: Suppose 6 € TERM, A € FORM, X € SENT, $ € SEQ, £ € N\{0} and {B*o, ...,
B*:} < PAR\(ST(0) u ST(A)) and {Bo, ..., P} = PAR\{P*o, ..., B*i}, where B*; # B*;
and B; # B, for all ¢, j < k+1 with ¢ # 5. Ad (i): The proof is carried out by induction on the
complexity of 6. Suppose 6 € ATERM. Then we have 6 € CONST u PAR u VAR.
Now, suppose 8 € CONST u VAR u (PAR\{Bo, ..., Bi}). Then we have 6 = [(B*o, ...,
B*i-1), PBo, ---» Pr-1), 0] and we have 6 = [(B*o, ..., B*r, Po, ---» Br, 0] and thus [B*x, Br,
[B*o, ..., B*-), PBo, -y Brw)y 011 = [B*k, Br, 0] = 6 = [(B*0, ..., B*), Bo, ..., B, 6]

Now, suppose 6 € {Bo, ..., Br}. Then we have 6 = 3, for an 7 < k+1. According to the
hypothesis, we then have that for all j < k+1 with j # ¢ it holds that 6 # B,. Thus we have
[B*o, ...\ B*1s Bo, ---, Pry, 0] = P*i. Now, suppose i < k. Then we have [{f*o, ..., P*r1),
Bo, -1 Bra), 61 = B and thus [B*%, Br, [B*o, ..., B*r-0)s Bov -+ Brer) 611 = [B*x: Bro B*il-
By hypothesis, we have that 3 # p*; and thus that [B*, Br, B*;] = B*;. Now, suppose i = k.
Then we have [{B*o, ..., B*i-1), PBo, ---» Br1), 0] = 0 = B and hence [B*k, Br [P*0, .-,
B*r1)s Boy +-y Br-)s 011 = [B*ks Brs Brl = B*1 = B*s.

Now, suppose the statement holds for {8, ..., 6,1} < TERM and suppose 6 = "¢(6,,

.., 0,1)" € FTERM. Then we have [B*L, Br [(B*o, ..., P*t-1)» Bov ---» Br-)s 011 = [B*% Brs
[B*o, ---» B*:-0), Bos -1 Br)y @O0, ---s 0:0)"1] = "0([B*k B, [B*0s ---s B*r1)s Boy -,
Br-1) Oolls -+ [B* % Brs [B%0s --vs P¥r-1)s PBoy ---» Pr)y 0,1]])7. With the L.H., it holds that
[B*k Br [B*0, s B*ka)s Boy --vs Bra)y 0] = [B*0, -, B*, Bo, ..., B, 0] forall e < 7.
Therefore we have [B*:, Br, [{B*0, ---» B*r-1)s PBoy ---» Pr-1)s 011 = "0([{B*0, ..., P*1)» Poy ---,
Bo, Ol - B0, -y B Bov vy By 0a])" = [B*0s -y B0 Bov s B2 "0(o, ...,
0,-0)"1 = [B*o, -, B*), Boy ---, Br), 0]

Ad (ii): The proof is carried out by induction on the complexity of A. Suppose A =
"®(0o, ... 0,.1)" € AFORM. This case is proved analogously to the FTERM-case by ap-

plying (i).
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Now, suppose the statement holds for Ay, A; € FORM and suppose A = "—Aq' €
CONFORM. Then we have [B*;, B [(B*o, ..., B*r1) Bov .- Br) Al = [B*w Br [P0,
coor B*r0)s Bov - By "=A Tl = =[BFk Bre [B*0, -y BFR1), Bos -ees Pra)s Ao]]T. With
the I.H., it holds that [B*y, Bx, [(B*o, ---» B*4-1), Bos ---» Br-1)s Aoll = [B*o, ---5 B*w), {Bos -+
Br), Ao]- Therefore we have [B*x, Br [{B*0s -.-» B*k1), Boy ---y Br1)y A]l = —[B%0, ..., P*w),
Boy s Brdy Ao]™ = [B*0, --vs B Boy v Brdy A1 = [(B*0, -y B*) Boy -oos By Al
Suppose A = "(Ag y A1) € CONFORM. This case is proved analogously to the negation-
case. Suppose A = TIEA;" € QFORM. This case is also proved analogously to the nega-
tion-case.

Ad (iii) and (iv): (iii) follows analogously to the negation-case by applying (ii), and (iv)
follows analogously to the FTERM-case by applying (iii). m

Note: For sets of formulas, a theorem that is analogous to Theorem 1-27 can be proved.

Theorem 1-28. Multiple substitution of closed terms for pairwise different variables in terms
and formulas (a)

If £ € N\{0}, {6%, ..., 0%} < CTERM and {&, ..., &} < VAR, where & # &, for all ¢, j <
k+1 with ¢ £ 4, then:
(i) 10 e TERM, then
[0%5 & [(0%0, ..., 0%%0), G0y --vy Epn), O]] = [(O%, ..., 0%, (&, ..., &, 0], and
(i) 1fA e FORM, then
[0k & [(0%0, ...y 0%%0), G0y --vy En)y A]] = [(0%, ..., 0%D), (Goy ---y &), Al

Proof: Let k& € N\{0}, {6%, ..., 6%} < CTERM and {&, ..., &} < VAR, where & # &;
for all 4, j < k+1 with ¢ # 7. Ad (i): Suppose 6 € TERM. The proof is carried out by induc-
tion on the complexity of 6. Suppose 6 € ATERM. Suppose &; # 0 for all < < k+1. Then
we have [0%, &, [(0%, ..., 011, o, ..., &k, O]] = [6%%, & 0] = 0 = [(0%0, ..., 0%, (&,
..., &, 0]. Suppose & = 6 for an i < k. Then we have &; # 0 for all i< j < k+1. Then we
have [(0%, ..., 0%p), (G0, ..., &), 6] = [0, ..., 0%11), oy ..y Er-1)y O] = [0, ..., 6%, (&,
..., &), 0] = 0%, € CTERM. Therefore [06*;, &, [(0%0, ..., 0%1), (o, ..., Ex1), O]] = [0%4, &,
0%:] = 6% = [(0%0, ..., 0%4.1), (G0, ..., &)y O] = [(O%0, ..., 0%D), (G0, ..., &), 6] Suppose & =
0. Then we have & = 0 for all < kand [(0%, ..., 0%.1), o, ..., k1), 0] = 6. Therefore
[0%%, &k [0%0, --.y 6%50), oy -ovs Gin)y O] = [0%, &k 6] = 6% = [(0%, ..., 0%p), (o, -, Ep
0].
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Now, suppose the statement holds for {8, ..., 6,1} < TERM and suppose 6 = "¢(6o,
.., 0,.1)" € FTERM. Then we have [0*, &, [(6%0, ..., 0%11), o, ..., &)y O]] = [0%%, &k,

[6%0, ..., 6%%1), (G0, ---, Ek1)y "@(O0, ...y 0,1) 1] = T@([0% &, [0, ..., 0%%1), (o, --.) Epa),
0oll, -, [0%% &k [(O%0, ..., 0%, o, ...y Ep), 0,1]])7. With the 1LH., it holds that [6%;, &,
[(6%o, ..., 0%11), (o, ..., &)y 0:]] = [(0%0, ..., 0%, (&0, ..., &, 0] TOr all ¢ < r. Therefore
we have [0%, &, [(0%0, ..., 011, €0, ...y Er)y O]] = "@([(O%0, ..., %), (&0, ..., &R, B0, ...,
[0%0, ..., 6%, Eos +vvs &)y 0r1])" = [0%0s ..ns 0%, (Eoy .oy E)y "@(O0, ..., 0,1)7] = [(0%0,
ooy 070, oy -ony Ep, O]

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0p, ... 0,1)" € AFORM. This case is proved analogously to the
FTERM-case by applying (i).

Now, suppose the theorem holds for Ag, A; € FORM. Suppose A = "—Aq' €
CONFORM. Then we have [0*;, &, [(0%, ..., 0%1.1), o, ..., &t Al = [0%% & [0%, ..,
0%, (Goy -y &)y ATl = TH[0%, &k [(0%0, ... 0%%1), oy -ery Ea)y Aol With the
ILH., it holds that [6%, &, [(0%0, ..., 0%12), Eor ..., Ext), Add] = [(0%0, ..., 0%, Co, ..., R,
Ao]. Therefore [0%, &, [(0%0, ..., 0%11), o, .-, Epr)y A]] = ™=[(0%0, ..., 6%, &0y ...y &R,
Ao = [(0%0, ... 0%, Cor -y &) —A0"] = [(0%, ..., 0%, (o, ..., &, A]. Suppose A =
"(Ao v A;)" € CONFORM. This case is proved analogously to the negation-case.

Suppose A = TICA;" € QFORM. Suppose &; =  for one ¢ < k. Then we have &; # ¢ for
all 7 < k+1 with ¢ # 5. Then we have [0%y, &, [(0%0, ..., 0%11), o, ..., 1)y A]] = [0%% &,
[0%0, ..., 0%40), Co, ..., &ra)y TICAQ™]] = [0%%, & TTIE[O%0, ..., 0%it, 0%isa, ..., 6%p0), (o,
ooy &ty ity ooy Epr)y Ao]] = TTIC[0%, Eky [0%0, -.vy %01, %541, oy 0%50), o, -ovy Eity Eina,y
oy &)y Ao]]™ . With the 1LH., it holds that [0%, &, [(6%0, ..., 0%i1, 0%41, ..., 0%%1), o, -,
Eity Einy oony Ent)y Ao]] = [(0%, .., 0%i1, 0%, ..y 0%, o -y Eit, Eina, -y E), Ag]. There-
fore we have [0*;, &, [(0%0, ..., 0%k1), o, ..., Epr)y A]] = TIC[(O%, ..., 0%1, 0%, ...,
0%, (G0, ++vs Girty Girty wees &y Ao]™ = [(0%0, ..., 0%, (G0, --es &)y TICAQT] = [(0%0, ..., 0%,
&oy -y &y A]. Suppose &, = C. Then we have & #  for all < < k and [0%, &, [(6%, ...,
0%e1, oy - Ge)y Al = [6%% & [0%0, .. 6%00), G0y i Gen)y TICAG']] = [0 &
TIC[O%, ..., 0%%1), (Eo, -y &1y Ao]"] = TIC[O%, ..., 0%41), (Eo, --vy Ep-1)y Ao]" = [(0%,
e 0%, (o, oy &)y TTICAGT] = [(0%, ..., 0%, (Co, -, &), AL

Suppose &; # ¢ for all 7 < k+1. Then we have [6%}, &, [(0%0,