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Breast cancer risk score: a data mining
approach to improve readability

Emilien Gauthier, Laurent Brisson, Philippe Lenca, Stéphane Ragusa

Abstract— According to the World Health Organization,
starting from 2010, cancer will become the leading cause
of death worldwide. Prevention of major cancer localizations
through a quantified assessment of risk factors is a major
concern in order to decrease their impact in our society. Our
objective is to test the performances of a modeling method
easily readable by a physician. In this article, we follow a
data mining process to build a reliable assessment tool for
primary breast cancer risk. A k-nearest-neighbor algorithm
is used to compute a risk score for different profiles from a
public database. We empirically show that it is possible to
achieve the same performances than logistic regressions with
less parameters and a more easily readable model. The process
includes the intervention of a domain expert who helps to
select one of the numerous model variations by combining at
best, physician expectations and performances. A risk score
is made up of four parameters: age, breast density, number of
affected first degree relatives and prone to breast biopsy. Detection
performance measured with the area under the ROC curve is
0.637.

I. INTRODUCTION

As cancer is becoming the leading cause of death world-
wide, prevention of major types of cancer through a quanti-
fied assessment of risk is a major concern in order to decrease
its impact in our society. Physicians have to inform patients
about risk factors and have to detect fatal diseases as soon
as possible in order to treat them as quickly as possible.
Nowadays, this detection is led by prevention programs
designed to target highest-risk subsets of the population. For
example, women over 50 years old in France and over 40 in
USA are recommended to perform a mammography every
two years to detect breast cancer; mammography being the
primary method for detecting early stage breast cancer which
is the first cause of cancer for women [1]. As a consequence,
our society could benefit from a widely used risk score in
order to give more accurate counseling on how cancer is
impacted by risk factors and to target smallest subset of the
population with higher risks. For example, using age at first
mammogram as an actionable variable, screenings programs
for breast cancer could be extended: younger women with
high risk profiles could be offered more frequent screenings
in order to decrease death risk [2].
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Even if some women may have genetic predisposition
for breast cancer, environmental factors may have a larger
impact on the risk according to Lichtenstein [3]. Because
of this impact and due to acquisition cost and easyness-to-
use constraints, we have decided to focus on environmental
factors as attributes to compute a risk for women who never
had breast cancer.

As pointed out by [4], ”information, dialog and more
patient involvement in the decision-making process” are key
words in dealing with cancer, therefore a major challenge in
the field of medical counseling is to provide physicians and
radiologists with adequate tools to help them to assess breast
cancer risk of their patients and to show easily how risk
factors impact global risk. For many years, risk scores built
upon statistical models did not reach to spread in medical
counseling domain despite their performances. This may
be because end-users of these tools are not oncologist nor
clinician and underlying models are too complex and too
difficult to use during a medical consultation. Thus, to build a
new risk score tool, we need to consider the model readability
and the current medical decision process. Moreover, we will
have to consider the obligation to use imbalanced datasets
with missing data. To the best of our knowledge, no one has
been interested in analyzing, with a mining approach, data
from women who never had cancer in order to create a risk
score with a prevention purpose.

Showing similar cases may improve communication with
the patient, therefore increase its involvement in the pre-
vention and decision process. Because core concept of k-
nearest-neighbor algorithm is to gather similar profiles using
a distance computation, we use it with help of a domain
expert in order to build a tool to predict breast cancer risk
and measure its performances.

The paper is organized in six sections. Section II provides
an overview of related works on risk models. Section III
describes source data and Section IV presents our approach
of the data mining process we follow. In section V, we
present results, discuss them and present future works.

II. BREAST CANCER RISK SCORES

A. Statistical approaches

We present studies focusing on prevention and the use
of environmental factors such as reproductive and medical
history. One risk prediction model emerges in the statistical
field.

Based on an unstratified, unconditional logistic regression
analysis, the most commonly used model was developed by



Gail et al [5] using data from the Breast Cancer Detec-
tion Demonstration Program. Risk factor information was
collected during a home interview and the analysis was
based on approximately 6,000 cases and controls. Among 15
risk factors obtained through patient interviews, only 5 were
chosen: age, age at menarche (first natural menstrual period),
number of previous breast biopsies, age at first live birth
and number of first-degree relatives with breast cancer. The
model lead to the computation of a cumulative risk of breast
cancer by multiplying each of the five relative risks. Then,
individual risk of breast cancer is obtained by multiplication
of the cumulative risk score by an adjusted population risk
of breast cancer. Gail’s risk score was validated on the
population of United States with the Cancer and Steroid
Hormone Study (CASH) by Costantino et al [6] and in Italy
on the Florence-EPIC Cohort Study by Decarli et al [7].

Barlow et al [8] also built a risk prediction model
using a logistic regression on the Breast Cancer
Surveillance Consortium (BCSC) database (see Table I
and http://breastscreening.cancer.gov) which contains 2.4
millions screenings mammograms and associated self-
administered questionnaires (see section III). Two logistic
regression risk models were constructed with 4 or 10 risk
factors depending on the menopausal status. Compared
to Gail’s model, it gains the use of breast density and
hormone therapy. As we will use the same database, it
is worth highlighting that reported area under ROC curve
(see performance measurement in section IV-D) was 0.631
for premenopausal women and 0.624 for postmenopausal
women.

Primary goal of these studies was not readability, but rather
highest risk detection performances and impact levels of each
risk factors.

B. Data mining approaches and imbalanced data

Most similar data mining approaches dealt with slightly
imbalanced data, mostly used to predict a cancer relapse as
a result of the Surveillance, Epidemiology and End Results
(SEER) database use. Here, we present two significant related
studies involving both medical data and mining algorithm.

Endo et al [9] implemented common machine learning
algorithms to predict survival rate of breast cancer patient.
This study is based upon data of the SEER program with
high rate of positive examples (18.5 %). Since this study
aims at classifying examples in two classes, authors did
not used ROC curve to assess performances results but
accuracy, specificity and sensitivity. Logistic regression had
the highest accuracy, artificial neural network showed the
highest specificity and J48 decision trees model had the best
sensitivity.

Jerez-Aragonés et al [10] built a decision support tool for
the prognosis of breast cancer relapse. They used similar
attributes as Gail (like age, age at menarche or first full
time pregnancy, see section II-A) but also biological tumor
descriptors. A method based on tree induction was conceived
to select the most relevant prognosis factors. Selected at-
tributes were used to predict relapse with an artificial neural

TABLE I
BCSC DATABASE PUBLICLY AVAILABLE ATTRIBUTES

Full name Short name Description & coding
Menopausal
status

menopaus Premenopausal or postmenopausal

Age group agegrp 10 categories from 35 to 84 years
old

Breast density density BI-RADS breast density codes
Race race White, Asian/Pacific Islander,

Black, Native American,
Other/Mixed

Being hispanic hispanic Yes or no
Body mass index bmi 4 category from 10 (underweight)

to 35 and more (obese)
Age at first birth agefirst Before or after 30 at first live birth

or nulliparous (i.e. no children)
First degree
relatives

nrelbc Number of first degree relatives
with breast cancer 0, 1 or more
than 2

Had breast
procedure

brstproc Prone to breast biopsy, yes or no

Last
mammogramm

lastmamm Last mammogram was negative or
false positive

Surgical
menopause

surgmeno Natural or surgical menopause

Hormone therapy hrt Being under hormone therapy
Cancer status cancer Diagnosis of invasive breast cancer

within one year, yes or no

network by computing a Bayes a posteriori probability in
order to generate a prognosis system based on data from
1,035 patients of the oncology service of the Malaga Hospital
in Spain .

Such studies show how mining approaches can be used to
built classification tools on medical databases while dealing
with missing data and business processes. But they do not
consider problems (such as readability) encountered by
patients who never had cancer nor physicians in their day
to day interactions.

To build a risk score, we have to detect highest risk profiles
among general population. It means we are facing highly
imbalanced data with a breast cancer incidence rate lower
than 1 000 new cases for 100 000 women. Dealing with
such imbalanced data can be done at two levels [11], [12],
[13].

At the algorithmic level, assuming all errors have a differ-
ent cost is a solution to guide the data mining process [14],
especially in the medical field where detecting an high
risk profile is more informative than detecting a low risk
profile. At the data level, sampling is another solution.
A first way to rebalance data is to decrease the number
of negative examples (under-sampling) [15]. And a second
way of rebalancing data is to increase number of positive
examples (over-sampling) [16].

III. DATA SOURCE

To ensure result reproducibility, we have to choose a public
database with environmental factors. The Breast Cancer
Surveillance Consortium (BCSC) makes available a database
that fits those major constraints. Each of the 2,392,998
lines match to a screening mammogram for a woman. This



TABLE II
MISSING DATA LEVEL BY ATTRIBUTE

Attribute Missing data level
Body mass index 55.9 %
Age at first birth 55.5 %
Surgical menopause 52.1 %
Hormone therapy 41.0 %
Breast density 26.3 %
Last mammogramm 23.4 %
Being hispanic 20.3 %
Race 15.9 %
First degree relatives 15.2 %
Had breast procedure 10.5 %
Menopausal status 7.6 %
Age group 0 %
Cancer status 0 %

publicly available database provides 12 attributes to describe
the woman including cancer status.

A. BCSC database: data collection

Originally, the consortium was conceived to enhance un-
derstanding of breast cancer screening practices [17]. The
consortium aims at establishing targets for mammography
performance and a better understanding of how screenings
affect patients in term of actions taken after the mammog-
raphy. Domain experts from the surveillance consortium
identified critical data elements for evaluating screenings
performances reaching a consensus on a standard set of core
data variables. Then, from 1996 to 2002, data were collected
in seven centers across the United States: mammograms
and their detailed analysis were collected and, at the same
time, women were asked to complete a self-administrated
questionnaire.

BCSC database provides personal factors (see Table I)
such as factual factors (age, race, body mass index), repro-
ductive history (age at first birth, menopausal status, hormone
therapy) and medical history (number of first degree relatives
with breast cancer or type of menopause). In addition,
breast density was recorded when the classic Breast Imaging
Reporting and Data System (BI-RADS) [18] was used by the
radiologist. To ensure good quality of data, exclusion rules
were set: for example, women who have undergone cosmetic
breast surgery were excluded as well as women with previous
breast cancer and women with no known prior mammogram.

Eventually, breast cancer cases were identified by linking
cancer registries to BCSC database, i.e. for each record
of the database, the class of the example is positive if
the corresponding women was diagnosed with breast cancer
within one year after the mammogram and completing the
questionnaire and negative otherwise.

B. BCSC database: exploratory analysis

Among the 2,392,998 records of the database, 9,314 cases
of invasive breast cancer were diagnosed in the first year
of follow up. We are facing highly imbalanced data with a
positive class accounting for only 0.39 % of all records.

TABLE III
BREAST CANCER INCIDENCE RATE PER 100 000

Age category SEER rate BCSC rate
(2003-2007) (1996-2002)

35-39 58.9 142.7
40-44 120.9 168.1
45-49 186.1 250.5
50-54 225.8 360.7
55-59 280.2 436.4
60-64 348.9 478.5
65-69 394.2 512.3
70-74 410.0 575.1
75-79 433.7 632.0
80-84 422.3 709.4
85+ 339.2 Unavailable

We also observe a high level of missing data (see table II).
Two main reasons explain missing data:
• Data were collected in different registries with non-

standardized self-reported questionnaire: some ques-
tions were not asked and for any question, each woman
had the possibility not to answer.

• Collection of some risk factors did not start at the
same time. For example, height and weight were added
later, explaining such a high rate of missing data for
the body mass index.

Last, one has to notice that data of the BCSC are not rep-
resentative of the USA breast cancer incidence rate (number
of new cases during a specified time for a given population).
Table III offers a comparison between the BCSC and the
SEER incidence rate [19] by age categories.

Indeed, depending on data sources, the breast cancer
incidence usually increase slowly from approximatively 60
to 80 years old and starts to decrease after 80 years old.
But such a slower increase or decrease does not occur in the
BCSC database.

IV. PROCESS TO BUILD A RISK SCORE

A. Main objectives

The main objective of our approach is to provide physi-
cians with a tool to assess a cancer risk score for their
patient and to promote dialog between them. As statistical
models spread with difficulty in the physician community,
we aim to find models with good scoring performance and
good readability. In our case, we say a model has a good
readability if it allows a physician to explain the risk score
to his patient:
• it has to be quickly readable by a physician during a

medical appointment
• and has to give access to understanding the score,
Furthermore, we have other constraints: physicians have

a priori ideas about good attributes of a model, patients
need actionable attributes to change their lifestyle, both of
them want immediately usable score (i.e. very low cost of
data acquisition). In addition, a generic algorithm that can
be easily adapted to various pathologies is desirable.
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B. General process

Our approach follows the CRoss Industry Standard Process
for Data Mining (CRISP-DM) [20] data-mining methodol-
ogy. Figure 1 shows the 6 steps of this process where gray
ones identify our major contributions. Business and data
understanding steps are not impacted because we want to
work on the same data as [8] to be able to compare our
results.

1) Business understanding: An expert with knowledge of
the needs of physicians help us to prioritize our objectives
(see section IV-A) and to assess the situation. We decide to
focus on a scoring task (no classification or prediction).

2) Data understanding: Despite limitations described in
section III, the BCSC database contains most of the known
breast cancer personal factors. It is the largest database
publicly available that includes breast density information.

3) Data preparation: To deal with data imbalance, we
can apply rebalancing algorithms on this data but it is not
the focus of the paper. We do want to minimize modification
of data in order to compare our results with Barlow’s. The
only modification we apply is normalization. It was decided
to keep the same split between training and validation set.

4) Modeling: If several data mining algorithms were con-
sidered, domain expert suggested to use a k-nearest-neighbor
algorithm because it uses a concept of similarity which
is easily understandable by end-users without explaining a
complex formula. Moreover, such algorithm is able to deal
with imbalanced data if there is enough positive examples
among neighbors. We generate models and search for the
best combination of attributes by performing an exhaustive
search (see section IV-C) on a limited set of combinations.
The reason is that the expert issued a recommendation of
using a restricted number of factors to make the risk score
easy to use. Obviously, for large combinations, computation
time can increase sharply, but it is not a problem as models

are generated offline only once by us, when a physician uses
the final software, no computation is necessary.

5) Evaluation: We evaluate generated models with Re-
ceiver Operating Characteristic validation (see section IV-D)
using Area Under Curve (AUC) in order to sorts models by
scoring performance. Then, our expert has to choose the most
useful models leveraging on the AUC performance combined
with its knowledge of physician needs. ROC evaluation of
every generated model is automatized in our software but we
have to improve our process to formalize and support expert
choice.

6) Deployment: We are currently working to incorporate
selected model configuration into a computer software tool
for physicians. It will come with a graphical explanation of
the concept of nearest neighbor. But it will not embed the
database.

C. Focus on k-nearest-neighbor implementation
To provide experts with several interesting models, k-

nearest-neighbor algorithm (see [21], [22]) is used with var-
ious size of attributes combinations (from 1 to 6 attributes),
several Minkowski generalized distance measure (p = 1 to 5)
and several k values were used (see section V). Performance
of each of hundreds generated combinations is tested for each
values of k.

We implement the k-nearest-neighbor algorithm in two
steps:
• Selection of neighborhood: for a combination of at-

tributes (e.g. age and breast density), a score value has
to be computed for each combination of values (e.g.
age=5 and breast density=3). To compute such score
value, a neighborhood has to be defined for each values
combination. To determine if a profile of the database
belong to the neighborhood of a combination of values,
an euclidian distance is used to compute the distance
between a combination of value and every single record
of the database using a normalized version of the coding
values of the BCSC database. Thus, at least k of the
nearest records of the database are included in the
neighborhood. The neighborhood may not have always
the same size because for a given group at the same
distance, if k is not reached yet, all neighbors at the
same distance are added to the neighborhood.

• Scoring function: the score of a combination of values,
is the ratio between the number of breast cancer cases
(i.e. positive examples) and the size of the neighbor-
hood. In epidemiology, the ratio of individuals having a
disease in a population is called prevalence. This ratio
was chosen because it is well known by physicians,
easily explainable to a patient and it is directly built
on the number of patient diagnosed with breast cancer
among patients with a similar profile.

To deal with missing data, we keep the same decision
as Barlow, i.e. assign a high value when missing. It will
prevent a record with a missing value to be integrated in the
neighborhood.



TABLE IV
BEST PERFORMANCES BY COMBINATION SIZE

Size Combinations AUC Mean AUC Std Deviation AUC Median Best combination (See Table I) AUC
1 12 0.536 0.030 0.529 agegrp 0.614
2 66 0.563 0.031 0.553 agegrp+density 0.635
3 220 0.581 0.029 0.601 agegrp+density+brstproc 0.641
4 495 0.593 0.026 0.597 agegrp+density+brstproc+lastmamm 0.642
5 792 0.602 0.023 0.586 agegrp+density+brstproc+lastmamm+menopaus 0.642
6 924 0.607 0.019 0.603 agegrp+density+brstproc+lastmamm+hrt+nrelbc 0.637

D. Focus on ROC evaluation

The Receiver Operating Characteristic (ROC) [23] is used
to measure performance due to the continuous nature of our
classifier: performance has to depict how positive instances
are assigned with higher scores than negative ones. The
ROC curve allows to measure detection performances using
a moving threshold to classify examples of the validation set.
Moreover, it allows direct comparison with Barlow’s results
and epidemiological-based scores in general.

Negative examples labeled as positive by the algorithm are
called a false positives whereas positive examples labeled as
positives are called true positives. The ROC curve is plotted
with the false positive rate on the X axis and the true positive
rate on the Y axis [24], both rates being calculated for a given
threshold. It can be summarized in one number: the Area
Under the ROC Curve (AUC). The area being a portion of
the unit square, its value is in then [0,1] interval. The best
classifier will have an AUC of 1.0 (i.e. all positive examples
are assigned with higher score than negative ones) whereas
an AUC of 0.5 is equivalent to random score assignment.

Each k value of each combination of attributes is assigned
with a ROC curve and the corresponding AUC in order to
help the expert to choose the best model.

V. EXPERIMENTAL RESULTS

A. Scoring performances

An experiment set was designed to test how the k-nearest-
neighbor algorithm perform on the BCSC data. As one of our
constraint is to build a readable risk score (see section IV-
A), we select all combinations with a size s of 1 to 6
attributes among n = 12 available attributes, meaning we
have

∑6
s=1

n!
s!(n−s)! = 2, 509 combinations to test. A first

way of assessing results of these combinations is to look at
the best combinations by size (see Table IV). These results
are obtained in an euclidian space using a 2-norm euclidian
distance as they are not significantly better, when improved,
using another p-norm measures.

Among one attribute combinations, agegrp is by far the
best factor to score breast cancer risk in the BCSC database
with an AUC of 0.614, while the next best attribute (not
shown), menopaus for menopausal status, performs only
at 0.563. This result confirms expert knowledge since it’s
widely known that age is a major breast cancer risk factor.

For combinations size from 1 to 3 attributes, mean,
median and best AUC rise, whereas for sizes of 4 and 5
attributes, maximal performances level off around 0.64 with
a slight decrease with 6 attributes for best combinations. It

TABLE V
TOP 15 PERFORMANCE RESULTS BEFORE AND AFTER EXPERT ADVICE

A. Best combinations before expert advice AUC
agegrp, lastmamm, density, brstproc 0.642
menopaus, agegrp, lastmamm, density, brstproc 0.642
agegrp, density, brstproc 0.641
menopaus, agegrp, density, brstproc 0.641
bmi, agegrp, density, brstproc 0.640
bmi, agegrp, lastmamm, density, brstproc 0.640
agegrp, hispanic, density, brstproc 0.640
agegrp, density, brstproc, agefirst 0.639
agegrp, hispanic, lastmamm, density, brstproc 0.639
bmi, agegrp, density, brstproc, race 0.638
menopaus, agegrp, hispanic, density, brstproc 0.638
hrt, agegrp, lastmamm, density, brstproc 0.638
agegrp, density, brstproc, race 0.638
agegrp, surgmeno, lastmamm, density, brstproc 0.638
agegrp, lastmamm, density, brstproc, race 0.638

B. Best combinations after expert advice AUC
agegrp, density, brstproc 0.641
menopaus, agegrp, density, brstproc 0.641
bmi, agegrp, density, brstproc 0.640
agegrp, hispanic, density, brstproc 0.640
agegrp, density, brstproc, agefirst 0.639
bmi, agegrp, density, brstproc, race 0.638
menopaus, agegrp, hispanic, density, brstproc 0.638
agegrp, density, brstproc, race 0.638
menopaus, agegrp, surgmeno, density, brstproc 0.638
agegrp, hispanic, density, brstproc, agefirst 0.638
bmi, agegrp, hispanic, density, brstproc 0.638
menopaus, agegrp, density, brstproc, agefirst 0.638
bmi, agegrp, density, brstproc, agefirst 0.637
menopaus, hrt, agegrp, density, brstproc 0.637
agegrp, density, brstproc, nrelbc 0.637

is interesting to obtain the best results using less possible
attributes to improve model readability. Furthermore, our 3
attributes agegrp, density, brstproc combination has an AUC
of 0.641 while in Barlow’s results (see section II-A), at least
4 attributes are needed to achieve an AUC of 0.631 on a
subset of data that includes only premenopausal women only.

A first list of all possible combinations (from 1 to 6
attributes), is produced and sorted by performances (see
Table V-A). We observe that with an AUC of 0.642, the
agegrp, density, brstproc, lastmamm combination perform
better than the two specialized regression models obtained
on pre- and postmenopausal women by [8].

B. Use of expert knowledge

As stated in section IV-A, besides scoring performances,
our main objectives also include readability and integration
of a priori ideas from physicians. This step of the process in-
volves contribution from a domain expert (see section IV-B).
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Fig. 2. Performances of top 15 combinations from Table V-B

From our domain expert point of view, with Table V-A in
hand, it appears that the result of the last mammogram is a
costly piece of information to obtain from women during
a counseling appointment with a physician compared to
performance improvement. Domain expert chooses to reduce
his choices list to available combinations without lastmamm.
Top 15 performances measures without lastmamm attribute
are shown in Table V-B.

Based on his domain knowledge, the expert highlights
that the number of first degree relatives affected by breast
cancer (nrelbc) is widely recognized as an important factor
in breast cancer risk whereas other risk factor, like the
body mass index (bmi), are not that important compared
to others. According to this expert, a good candidate for
our risk score would be the agegrp, density, brstproc, nrelbc
combination with an AUC of 0.637, which is a good perfor-
mance compared with best performances of Barlow’s logistic
regression model (AUC of 0.624 to 0.631 depending on
menopausal status). This combination uses relevant attributes
for physicians according to our expert and performance loss,
from 0.642 to 0.637, is acceptable.

C. Stability

In order to run a k-nearest-neighbor algorithm, the size of
neighborhood has to be set. Since only k closest neighbors
are used to compute the ratio healthy vs. diseased, risk score
value depends on k value. If the neighborhood is too small,
few breast cancer cases are included and if the neighborhood
is too large, patient profiles are too different: in both cases the
risk score is not reliable. For each of the 2,509 combinations
of attributes, we tested the scoring function with 40 values
of k from 100 to 100 000.

Using, as an example, the top 15 combinations from Ta-
ble V-B, we plotted the evolution of the performance (using
the AUC mean) depending on the size of the neighborhood
(see Fig. 2). With an undersized neighborhood, performances
are low but then, as k increases, performances increase with
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Fig. 3. Zoom on performances of top 15 combinations from Table V-B

a maximum of 0.638. From 2,500 to 8,400 neighbors (see
Fig. 3), performances are always higher than 0.637 meaning
that the algorithm is relatively stable depending on k and
ultimately on the number of positive examples in the neigh-
borhood. Eventually, as k increases, performances decrease
because using a larger neighborhood leads to compute a ratio
with increasingly dissimilar profiles and poor targeting.

It means that performance of the combination is not
obtained with a local maximum for a single value of k.
It rather depicts overall prediction ability of a combination
independently of the value of k as long as the size of
the neighborhood is large enough to be statistically reliable
(according to the law of large numbers) and stringent enough
to eliminate too dissimilar profiles.

D. Discussion

As statistical risk scores do not spread in the medical
community, we think there is a possibility to improve risk
scores to offer both readability in its elaboration and possi-
bility for experts to integrate their knowledge (regarding end
users expectations and the disease itself) in the process. A
standard methodology called CRISP-DM was followed in the
process of building such a risk score. The database from the
BCSC was selected because a regression-based score was
already built upon it and because the database itself was
publicly available. We chose to run extensive test with a k-
nearest-neighbor algorithm to score profiles with different
combinations of attributes. Every combinations with 1 to 6
attributes were tested, each for several values of k neighbors.
Thus, we were able to allow experts to establish rules to keep
or reject combinations by weighting between performance
versus attributes usefulness and risk factors expected by
physicians.

Nevertheless, our study has some limitations. First, even
if we selected one of the few databases large enough
to be representative of the targeted population, findings
from database of volunteers require cautious extrapolation
to general population. Second, if the concept of similarity



used in the algorithm is easy to understand for everyone,
performances may be limited due to imbalanced data and the
constraint of not modifying data used in this paper in order
to be able to compare results. However, options are available
to improve steps of the process. Better performances may be
obtained using another algorithm, potentially with balance
of data in the data preparation step, or by combining k-
nearest-neighbor with another algorithm [25]. Use of expert
knowledge could be improved by selecting models which
are provided to the expert to avoid complications due to the
size of the list of combinations. Performances could also be
improved by integrating domain knowledge deeper in the
algorithm: for example, introduction of relative risk as a
weight in the distance computation may help to deal with
the different level of influence of each risk factors.

Since k-nearest-neighbor algorithm gives good results, we
think it would be useful to test this process on another
database that include continuous attributes that were not
discretized. For example age or breast density are one of
the most predictive attributes and more specific data should
improve performances. Higher risk profiles should be more
accurately targeted leading to increased performances.

VI. CONCLUSION

On a medical dataset, we obtain good results on readability
on the modeling method with a k-nearest-neighbor algorithm
easy to understand for physicians and patients. In addition,
the score is very easy to use for end-users with only four
attributes needed. We also allow the expert to choose a
combination that has not necessarily the best detection
performance, but show qualities like physician acceptance
and inclusion of most performant attributes recognized by
the community.

Our approach is innovative and successful because we
have shown that it is possible to build a simple and readable
risk score model for primary breast cancer prevention that
performs as good as widely used logistical models.
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