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Abstract

A posteriori error estimates are a key ingredient for the certified reduced basis method. Sharp error bounds

rely on the construction of lower bounds for the coercivity or inf-sup stability constant. The Successive

Constraint Method (SCM) has been previously proposed to compute such lower bounds, using an effi-

cient Offline-Online strategy. We present in this article some modifications to the SCM to get rid of user-

dependent parameters, which also improve convergence and reduce the computational cost of the method.

Les estimateurs d’erreur a posteriori sont un élément clé de la méthode des bases réduites certifiées. L’ob-

tention d’estimateurs précis repose sur la construction de bornes inférieures pour la constante de coercivité

ou de stabilité inf-sup. La Méthode par Contraintes Successives (SCM) a été proposée afin de calculer

de telles bornes inférieures, en utilisant une stratégie efficace hors ligne-en ligne. Dans cet article, nous

présentons certaines modifications à la SCM afin de se passer de paramètres dépendant de l’utilisateur. Ces

modifications permettent également d’avoir une convergence plus rapide de la méthode, ainsi qu’un gain

computationel significatif.

Keywords: Reduced basis method, Successive constraint method, Méthode bases réduites, Méthode par
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1. Successive constraint method

This section describes the Successive Constraint Method (SCM) as first introduced in [1] and then im-

proved in [2].

Starting from an affine bilinear form

a(w, v; µ) =

Q
∑

q=1

θq(µ) aq(w, v), w, v ∈ XN , µ ∈ D

we wish to compute αLB : D → R such that 0 < αLB(µ) ≤ αN (µ), µ ∈ D where αN (µ) is the coercivity

constant

αN (µ) = infw∈XN
a(w,w; µ)

‖w‖2
X

Hence we have that

αN (µ) = infy∈YJ
obj(µ; y) where Jobj(µ; y) ≡

∑Q

q=1
θq(µ)yq

Y =
{

y ∈ RQ| ∃w ∈ XN s.t. yq =
aq(w,w)

‖w‖2
XN

, 1 ≤ q ≤ Q
} (1)
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We now need to characterize Y, to do this we construct two sets YLB and YUB such that YUB ⊂ Y ⊂ YLB

over which (1) is feasible. First we set the design space for the minimisation problem (1). We introduce

B =
∏Q

q=1

[

infw∈XN
aq(w,w)

‖w‖2
X

; supw∈XN
aq(w,w)

‖w‖2
X

]

Ξ =
{

µi ∈ D; i = 1, ..., J
}

and CK =
{

µi ∈ Ξ; i = 1, ...,K
}

⊂ Ξ

Ξ is a fine sampling of D. CK will be constructed using a greedy algorithm. Finally we denote PM(ν; E)

the set of M points closest to ν in the set E.

1.1. Lower bounds

Given Mα,M+ ∈ N we are now ready to define YLB and αLB

YLB(ν; CK) =
{

y ∈ B|
∑Q

q=1
θq(ν′)yq ≥ α

N (ν′), ∀ν′ ∈ PMα (ν; CK)
∑Q

q=1
θq(ν′)yq ≥ αLB(ν′; CK−1), ∀ν′ ∈ PM+ (ν;Ξ\CK)

} (2)

αLB(ν; CK) = infy∈YLB(ν;CK )
Jobj(ν; y) (3)

(3) is in fact a linear program with Q design variables, yq, and 2Q+Mα +M+ constraints online. It requires

the construction of CK offline.

1.2. Upper bounds

YUB(CK) =
{

y∗(µk), 1 ≤ k ≤ K
}

with y∗(ν) = argminy∈Y J
obj(ν; y)

αUB(ν; CK) = infy∈YUB(CK ) J
obj(ν; y) (4)

YUB requires K eigensolves to compute the eigenmode ηk associated with wk, k = 1, ...,K and KQN inner

products to compute the y∗q(wk) =
aq(ηk ,ηk)

‖ηk‖
2

XN

, k = 1, ...,K offline . Then (4) is a simple enumeration online.

1.3. Construction of CK

Given Ξ and ǫ ∈ [0; 1]

While maxν∈Ξ
αUB(ν;CK )−αLB(ν;CK )

αUB(ν;CK )
> ǫ

• µK+1 = argmaxν∈Ξ
αUB(ν;CK )−αLB(ν;CK )

αUB(ν;CK )

• CK+1 = CK ∪ {µK+1}, K ← K + 1

2. Discarding Mα and M+

For the computation of the lower bound, the two parameters Mα and M+ must be set by the user, who is

supposed to have at least a basic knowledge of the SCM and what these parameters are meant to be. This

is quite disappointing as the SCM is part of a framework for reduced basis a posteriori error computation,

which should be usable like a black box. Moreover, even for someone familiar with the SCM, it is not

straightforward to tune these parameters. Thus we propose a modification of the SCM which does not need

the parameters Mα and M+, and gives a faster convergence.
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2.1. Offline construction of CK

The constraints of the LP (2) for a given ν are basically corresponding to the definition of the coercivity

constant taken at neighboring points ν′ of ν. For some of the first kind, the actual coercivity constant

has been computed, (ν′ ∈ PMα (ν; CK)), for others of the second kind, only a lower bound is available

(ν′ ∈ PM+ (ν;Ξ\CK)). Actually, when building the CK spaces, the lower bound estimates are rather poor,

at least for the first iterations. So the constraints of the second kind are not as good as the constraints of

the first kind. Therefore, the first idea is to completely drop M+ and to keep only the constraint of the

second kind for ν′ = ν, which enforces the monotonic decreasing of the stopping criterion. The next idea

to get rid of Mα is to keep in mind that in a LP with Q variables, there are at most Q active constraints

when the minimum is reached. It is also straigthforward to see that among all constraints of the first kind,

if a constraint is not active at rank K, it will not be active for all ranks J ≥ K. So while building the

CK spaces, we can keep track of these active constraints (of the first kind), which is easy because there

is only to look if the new constraint given by µK is active. So we never get more than Q constraints of

the first kind, therefore Mα is not needed anymore. One can note that there is no guarantee that the active

constraints correspond to the neighboring points ν′ ∈ PMα (ν; CK). As a consequence, taking the active

constraints instead of the neighboring constraints will give at least the same results, but more likely better

results. Moreover, computing neighbors can be expensive if the trial sampling is big, this problem vanishes

when considering the active constraints. To make things clear, with these modifications the space YLB at

iteration K now reads :

YLB(ν; CK) =
{

y ∈ B|
∑Q

q=1
θq(ν′)yq ≥ α

N (ν′), ∀ν′ ∈ A(ν; CK−1)
∑Q

q=1
θq(µK)yq ≥ α

N (µK)
}

where A(ν; CK−1) denotes the set of active constraints at minimum for the computation of αLB(ν; CK−1).

After αLB(ν; CK) is computed, we check which constraints are active among A(ν; CK−1) ∪ µK and store the

active ones in A(ν; CK).

2.2. Online computation of αLB

For the online computation of αLB(ν), we start from the same idea : the best constraints are from the

first kind, and only a few are active. But in this case, we have to deal with ν < Ξ, so the active set of

constraints has not been built during the construction of CK . So to be sure to have the best constraints, one

can use all the µk ∈ CK . This is a rather brute force approach, but the computation is not so expensive as it

corresponds to a linear program with few variables and many constraints, so it can be solved very rapidly

by considering the dual problem.

3. A short example

We illustrate our modifications on a simple 2D steady-state diffusion equation ∇ · (k∇u) = 0, in a

square domain where k is piecewise constant as described in figure 1 (the thermal block problem [3]). The

ki, i = 1..9 are the parameters of the PDE. One shall note that the problem is parametrically coercive, which

means that in the affine decomposition

∀µ ∈ D, θq(µ) > 0 and ∀w ∈ XN , aq(w,w) ≥ 0 1 ≤ q ≤ Q.

So in this case, a lower bound for the coercivity constant can easily be computed without the need of the

SCM [3]. We still consider the thermal block as a toy example to show the advantage of our proposed

modifications.

We show in figure 2 the value of the stopping criterion αUB−αLB

αUB
with respect to K during the construction

of the CK spaces (with Card(Ξ) = 10000). With the proposed modifications, there are at most 10 constraints

in the linear programs, yet we get a better convergence rate to what is obtained with the former SCM with

Mα = 10 and M+ = 10, i.e. with 20 constraints. It underlines the fact that the best constraints are not

necessarily given by the neighboring points. Moreover, because we avoid neighbors, there is a significant

gain in computational cost : reaching K = 300 takes 8h for the SCM with neighbors, but only 9mn for

the proposed SCM. Also, we used a kd-tree structure to compute the neighbors efficiently, but it is very
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memory demanding, that is why the red curve in figure 2 stops at K = 300. Such a problem is completely

avoided with the proposed SCM.

As described above, our modifications could be a drawback for online computation, because in this case

taking the best constraints means taking all the constraints from CK , i.e. K constraints. On this example,

for K = 1500, it took 1mn to compute online 105 different lower bounds, so it does not appear to be much

of a problem.
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Figure 1: Domain geometry. Géométrie du domaine.
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Figure 2: Value of the stopping criterion with respect to K. Valeur du critère

d’arrêt en fonction de K.
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