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ABSTRACT

This paper concerns the parameter estimation of multi-

component damped oscillations having non-linear frequency.

In this paper, the instantaneous frequency is approximated by

polynomials while the amplitude is characterized by damped

exponentials to connect directly to its physical interpretations.

A maximum likelihood procedure is developed via an adap-

tive simulated annealing technique which helps to speed up

the convergence. Results on simulated signals show that the

proposed algorithm is more efficient than the algorithm based

on polynomial amplitude models, and allows the estimation

of damping coefficients over a very short time duration. Fi-

nally, the proposed algorithm is applied for characterizing the

ambient vibrations of a building.

Index Terms— Damped amplitude, Polynomial phase

signal, Time-frequency, Maximum likelihood, Adaptive sim-

ulated annealing.

1. INTRODUCTION

This paper deals with multi-component signals contaminated

with a white Gaussian noise. The signal is represented as

a sum of components with time-varying frequency and ex-

ponentially damped amplitude. Similar signals had been in-

vestigated in [1], where the parameters are estimated by ana-

lytical techniques, such as Fourier-transform-based methods,

high-resolution Kumaresan-Tufts, MUSIC, and matrix pencil

methods. Classical estimation methods are often simple and

fast by providing analytical solutions [2][3], but they fail to

correctly estimate such signals.

In this paper, we address the issue of modeling short-time

signals having strong non-stationarities both in amplitude

and frequency, and then a Maximum Likelihood approach

is investigated. The non-linearity of the likelihood function

compels the use of stochastic optimization techniques such

as simulated annealing, implemented by Monte-Carlo ran-

dom sampling combined with a Metropolis acceptance rule.

This work has been supported by French Research National Agency

(ANR) through RISKNAT program (project URBASIS ANR-09-RISK-009).

In [4][5][6], this optimization has been proved to be quite

efficient as a solution for short-time polynomial models.

In this paper, we consider the adaptive simulated anneal-

ing. Each multi-dimensional search must take into account

the varying sensitivities of different parameters. At any given

annealing-time, the adaptive simulated annealing described in

[7] stretches out the range over which the relatively insensi-

tive parameters are being searched, with respect to the ranges

of the more sensitive parameters. In addition, this way of do-

ing induces a gain in computing time.

Therefore, a damped-amplitude model is proposed with

the interest of exploring its pros and cons in the context of

signals studied. This model is of great interest thanks to a

faster computation and a direct extraction of the damping fac-

tor. For the purpose of comparison, referred to as an indirect

approach in this paper, the polynomial amplitude model we

proposed in [4] will be applied as well, the parameters being

transformed in order to finally model a damped amplitude.

In section 2, the model is defined and the constraints of

the modulation functions are discussed. Section 3 is focused

on the parameter estimation as well as the extraction of com-

ponents. The new Cramer-Rao bounds are given in section 4.

In section 5, the performance is analyzed on simulated sig-

nals and versus the indirect approach. Section 6 presents the

application on real-world signals. Finally, the conclusion is

drawn in section 7.

2. DAMPED-AMPLITUDE &

POLYNOMIAL-FREQUENCY MODEL

Let y[n] be a discrete time process consisting of a determin-

istic multi-component process s[n] embedded in an additive

white Gaussian noise e[n] with zero mean and variance σ2.

y[n] = s[n] + e[n] with s[n] =
K
∑

i=1

Ai[n]e
j·Φi[n] (1)

Φi[n] = 2π





n
∑

k=−N/2

Fi[k]−

0
∑

k=−N/2

Fi[k]



+ φ0,i (2)
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and Fi[n] =

Mf
∑

m=0

fm,i · gm[n] Mf ≤ 3 (3)

where −N
2 ≤ n ≤ N

2 with N even, K is the number of com-

ponents. Ai[n] is the time-varying amplitude and Φi[n] is

the instantaneous phase of the ith component. As in [8], this

model is centered in the middle of the observation window

to minimize the error of estimation, thus φ0,i = Φi[0]. The

instantaneous frequency Fi[n] is approximated by discrete or-

thonormal polynomial functions at maximum third order. At

mth order, fm,i and gm are the parameter and the orthonor-

mal polynomial respectively.

In this paper, we intend to study a new model for the

amplitude in correspondence with many real-world signals

where Ai[n] = βie
−αin. The initial amplitude βi and the

damping coefficient αi characterize the amplitude of the ith

component. In order to proceed with estimation of βi, αi, φ0,i

and the Mf+1 frequency parameters fm,i, the following con-

straints are imposed: 0 < Fi[n] <
Fs

2 with Fs the sampling

frequency, N + 1 > Mf + 4 and Φi[n] does not include any

discontinuities. With regard to real-world data, βi and αi are

both constrained to be strictly positive.

An intrinsic error of the complex model with damped am-

plitude has to be mentioned. The model defined in (1) does

not always satisfy Bedrosian conditions because the expo-

nential amplitude can present a wide-band spectrum. How-

ever, in actual problems that we investigate, frequencies are

at about 1Hz, and damping coefficients αi are usually trivial

(< 10−1)[9], then the -3 dB spectral bandwidth of the damped

amplitude (8.08αi Hz) is very narrow. This error is thus neg-

ligible even for the low frequency signal that we process.

3. PARAMETER ESTIMATION ALGORITHM

We discuss the parameter estimation of a low-order poly-

nomial model which intends to track locally highly non-

stationary modulations. The signals are of short time length

of approximately 30 to 100 samples. Let us consider the

instantaneous frequency (3) be approximated by an orthonor-

mal polynomial at M th
f order, the parameters of each compo-

nent in (1) form a vector:

θi = [θAi
, φ0,i,θFi

] =
[

βi, αi, φ0,i, f0,i, . . . , fMf ,i

]

, (4)

where 1 ≤ i ≤ K, so that the parameters of all the compo-

nents are

θ = [θi,j ]K×(Mf+4) =
[

θT

1 , . . . ,θ
T

K

]T

. (5)

Each element θi,j in θ corresponds to the jth parameter

of the ith component. The estimation of θ leads to a problem

of Maximum Likelihood which corresponds to a Least Square

approach under the hypothesis of a white Gaussian noise,

θ̂ = argmin
θ∈R

K×(Mf+4)

N
2

∑

n=−N
2

|y[n]− s[n]|
2
. (6)

In [6], optimal and sub-optimal algorithms were devel-

oped to balance between the precision and the computation

cost. The sub-optimal approach can be affected when one

component has distinctly weaker amplitude than the others.

So thereafter, only the optimal approach is considered. We

assume that the number of components K and the polynomial

order of each component Mf are a priori known and remain

unchanged. This assumption is justified by the short-time du-

ration.

In this paper, the steps of the parameter initialization and

of the estimation procedure, close to [4], take into account

the damped amplitude model and use the adaptive simulated

annealing proposed in [7]. Let Nacc, Ngen, c be factors a

priori fixed, ∆ = [∆i,j ]K×(Mf+4) be a constant matrix of

parameter search step, matrix T gen = [T gen
i,j ]K×(Mf+4) and

variable T acc be the temperatures which control the genera-

tion of parameter candidates and the decision of acceptance

respectively. In addition, the temperatures are regulated by a

variable τacc and a matrix τ gen = [τgeni,j ]K×(Mf+4). At the

tth iteration, the algorithm steps are:

i) Generation of parameter candidates: the candidate

matrix θ̂
can

is drawn element-wise from the parameter ma-

trix at previous iteration θ̂
t−1

. The (i, j)th element of the

candidate matrix is

θ̂cani,j = θ̂t−1
i,j + u∆i,jT

gen
i,j

(

1 + 1
T gen
i,j

)|u|−1

, u being

drawn randomly from uniform distribution u ∼ U [−1, 1].
ii) Acceptance of candidates by Metropolis rule: Let

MSE(θ̂) denote the Mean Square Error of θ̂, then MSE t =

MSE(θ̂
can

) − MSE(θ̂
t−1

). The candidates are definitely

accepted if MSE t < 0, otherwise they are accepted with the

probability
exp(MSEt)

Tacc ;

iii) Update of temperatures:

iii-a) Cooling: Every Ngen number of loops, τacc and

each element of τ gen are increased by 1. T acc and each ele-

ment of T gen are decreased

T acc = exp
(

−c(τacc)1/K(Mf+4)
)

,

T gen
i,j = exp

(

−c(τgeni,j )1/K(Mf+4)
)

;

iii-b) Re-annealing: When every Nacc candidate ma-

trices are accepted, define θ̂
best

= argmin
k∈1,...,t

MSE(θ̂
k
), and

q = max(i,j)(q
best) with qbest =

[

qbesti,j

]

K×(Mf+4)
=

∣

∣

∣

∂MSE(θ)
∂θ

∣

∣

∣

θ=θ̂
best

as its convergence speed matrix. T acc,

τacc and each element of T gen and τ gen are updated:

T gen
i,j =

qT gen
i,j

qbesti,j

, τgeni,j = 1
c

∣

∣−log
(

T gen
i,j

)∣

∣

K(Mf+4)
,

T acc = MSE(θ̂
best

),
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τacc = 1
c

∣

∣

∣log
(

T acc/MSE(θ̂
t
)
)∣

∣

∣

K(Mf+4)

.

At this step, t is increased by 1. The algorithm stops when

t reaches its pre-defined limit or when the estimation error is

close enough to a white Gaussian noise.

4. CRAMER-RAO LOWER BOUNDS

The Cramer-Rao Bounds had been calculated in [10] for a

damped polynomial phase signal. We propose to recalculate

these bounds for the model defined in (1,2,3) under the dis-

crete orthonormal polynomial base we used as in [6]. Further

we derive these bounds not only for the parameters but also

for the modulation functions. The Fisher information matrix

of an arbitrary component defined by (1) is given as

IθAi,Fi
=

1

σ2
ℜ{

[

IθAi
0

0 IθFi

]

} (7)

IθAi
=











N/2
∑

n=−N/2

2e−2αin −
N/2
∑

n=−N/2

2nβie
−2αin

−
N/2
∑

n=−N/2

2nβie
−2αin

N/2
∑

n=−N/2

2n2β2
i e

−2αin











Denote ηm[n] =
∑n

k=−N/2 gm[k] as the numerical inte-

gration of the orthonormal polynomial, IθFi
is a block matrix

of (Mf + 1)× (Mf + 1) dimension, with elements

Ih,l =

N/2
∑

n=−N/2

2ηh[n]ηl[n]β
2
i e

−2αin; 1 ≤ h, l ≤ Mf + 1.

(8)

Then, in the non-biased case, CRBs of the instantaneous

amplitude denoted as CRBAi[n] and of the instantaneous fre-

quency denoted as CRBFi[n] are

CRBAi[n] =
σ2

2
di

†{I†
θAi

IθAi
}di (9)

CRBFi[n] =
σ2

2
hi

†{I†
θFi

IθFi
}hi (10)

where di = [e−αin,−βine
−αin]

T
, hi =

[

g0[n], . . . , gMf
[n]

]T

,

[·]† denotes the conjugated transpose. These bounds will be

used to compare the performance of the proposed algorithm

to what we defined the indirect approach.

5. RESULTS ON SIMULATED SIGNALS

We consider the case of 2 components over 33 samples. In

accordance with real-world data, the damping ratios are taken

in the order of several percent. Fig.1 shows the results of the

proposed algorithm with K = Mf = 2 and a signal-to-noise

ratio (SNR) of 15 dB. It is important to notice that this global

SNR can be drastically different from the local SNR due to

the non-stationarity. In this example, the local SNR varies

from 18.82 dB to 9.46 dB. Table 1 shows the normalized root

mean square errors for the algorithm proposed compared to

the indirect approach. The proposed algorithm gives better

estimation results for all parameters, especially for the ampli-

tude.
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Fig. 1. Estimated modulations (–) and original modulations
(- -) of the simulated signal sampled at 1 Hz - SNR=15 dB.

Table 1. Normalized root mean square errors in %

Algorithm α1 A1[n] F1[n] α2 A2[n] F2[n]
Proposed 0.67 1.38 0.66 3.4 1.92 1.07
Indirect 7 7.73 1.31 8.2 4.17 2.04

Fig.2 shows Cramer-Rao bounds of both components ob-

tained by the proposed algorithm under the SNR varying from

0 to 25 dB, averaged among 100 noise realizations. We ob-

serve that these bounds are lower than those obtained by the

indirect algorithm since the error caused by amplitude regres-

sion is avoided.
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Fig. 2. MSEs and CRBs in dB for the simulated signal. CRBs
of the algorithm proposed (– red) and of the indirect algorithm
(- - green), MSEs (-.o blue)

6. RESULTS ON BUILDING AMBIENT VIBRATIONS

The analyzed real-world signal is an ambient vibration

recorded at the top of the Grenoble City Hall in France.

The purpose is to evaluate the natural structural variation of

the building, which is directly related to the damping coef-

ficients and the frequencies of vibrations in all directions.

The proposed algorithm permits a local analysis which has

never been done before. Based on the priori knowledge that
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the signal has 3 main directions of observation: longitudinal,

transverse and vertical, K is fixed to 3. Fig.3 shows the results

of a segment of 12 s of the vertical measurement, sampled at

200 Hz and decimated by 40. The calculation is executed by

both the proposed and the indirect algorithm with Nacc = 60,

Ngen = 80, c = 3.

From Fig.3, we can conclude that these components and

their variations are correctly identified using both algorithms

[9][11]. Meanwhile, the proposed algorithm performs better

than the indirect approach, indeed the normalized root mean

square error of the reconstructed signal is about two times

smaller than the indirect approach.
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Fig. 3. Results for the building ambient vibration. Left: pro-
posed algorithm. Right: indirect algorithm

As another advantage, the proposed algorithm requires

smaller parameter space to track the amplitude variations,

which induces a 25% saving in calculation time (Thinkpad

x200 lap-top).

In this application, seeing that the lowest frequency is suf-

ficiently far away from the null frequency as illustrated by

Fig.3, and that all estimated damping coefficients are trivial

(< 2.5%), the intrinsic defect of the model mentioned in sec-

tion 2 is therefore negligible.

7. CONCLUSION

In this paper, a damped-amplitude & polynomial-frequency

model is proposed. This model is applied on short-time multi-

component signals and the parameter estimation is based on

the maximization of the likelihood function optimized by

adaptive simulated annealing. By calculating and analyz-

ing the Cramer-Rao bounds, it is shown that the estimation

of both the amplitude and frequency modulation functions

are improved compared to a polynomial-amplitude model.

The proposed method is capable to track the variation of

multi-component signals and directly identify the damping

coefficient for each component. By that way, the ambient

vibrations of a building and more particularly their damping

coefficients have been characterized over a very short time of

12 s (60 samples), which has never been done before.

In future, we intend to study the performance of the pro-

posed algorithm compared to other techniques. Moreover, the

adaptability of this method could be enhanced by an auto-

matic management of component births and deaths, and of

the number of components. A long-time observation can thus

be modeled by merging the estimation of short-time segments

as in [6].
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