Z Li 
  
IEEE member, N Martin 
  
M Vieira 
  
P Gueguen 
  
PARAMETER ESTIMATION OF SHORT-TIME MULTI-COMPONENT SIGNALS USING DAMPED-AMPLITUDE & POLYNOMIAL-FREQUENCY MODEL

Keywords: Damped amplitude, Polynomial phase signal, Time-frequency, Maximum likelihood, Adaptive simulated annealing

This paper concerns the parameter estimation of multicomponent damped oscillations having non-linear frequency. In this paper, the instantaneous frequency is approximated by polynomials while the amplitude is characterized by damped exponentials to connect directly to its physical interpretations. A maximum likelihood procedure is developed via an adaptive simulated annealing technique which helps to speed up the convergence. Results on simulated signals show that the proposed algorithm is more efficient than the algorithm based on polynomial amplitude models, and allows the estimation of damping coefficients over a very short time duration. Finally, the proposed algorithm is applied for characterizing the ambient vibrations of a building.

INTRODUCTION

This paper deals with multi-component signals contaminated with a white Gaussian noise. The signal is represented as a sum of components with time-varying frequency and exponentially damped amplitude. Similar signals had been investigated in [START_REF] Zhou | On damped harmonics and polynomial phase signals[END_REF], where the parameters are estimated by analytical techniques, such as Fourier-transform-based methods, high-resolution Kumaresan-Tufts, MUSIC, and matrix pencil methods. Classical estimation methods are often simple and fast by providing analytical solutions [START_REF] Cohen | Time-frequency distribution-a review[END_REF] [START_REF] Maragos | Energy separation in signal modulations with application to speech analysis[END_REF], but they fail to correctly estimate such signals.

In this paper, we address the issue of modeling short-time signals having strong non-stationarities both in amplitude and frequency, and then a Maximum Likelihood approach is investigated. The non-linearity of the likelihood function compels the use of stochastic optimization techniques such as simulated annealing, implemented by Monte-Carlo random sampling combined with a Metropolis acceptance rule.

This work has been supported by French Research National Agency (ANR) through RISKNAT program (project URBASIS ANR-09-RISK-009).

In [START_REF] Martin | Frequency and amplitude tracking for short nonstationary and nonlinear signals[END_REF][5] [START_REF] Jabloun | Multicomponent signal: Local analysis and estimation[END_REF], this optimization has been proved to be quite efficient as a solution for short-time polynomial models.

In this paper, we consider the adaptive simulated annealing. Each multi-dimensional search must take into account the varying sensitivities of different parameters. At any given annealing-time, the adaptive simulated annealing described in [START_REF] Ingber | Adaptive simulated annealing (asa): lessons learned[END_REF] stretches out the range over which the relatively insensitive parameters are being searched, with respect to the ranges of the more sensitive parameters. In addition, this way of doing induces a gain in computing time.

Therefore, a damped-amplitude model is proposed with the interest of exploring its pros and cons in the context of signals studied. This model is of great interest thanks to a faster computation and a direct extraction of the damping factor. For the purpose of comparison, referred to as an indirect approach in this paper, the polynomial amplitude model we proposed in [START_REF] Martin | Frequency and amplitude tracking for short nonstationary and nonlinear signals[END_REF] will be applied as well, the parameters being transformed in order to finally model a damped amplitude.

In section 2, the model is defined and the constraints of the modulation functions are discussed. Section 3 is focused on the parameter estimation as well as the extraction of components. The new Cramer-Rao bounds are given in section 4. In section 5, the performance is analyzed on simulated signals and versus the indirect approach. Section 6 presents the application on real-world signals. Finally, the conclusion is drawn in section 7.

DAMPED-AMPLITUDE & POLYNOMIAL-FREQUENCY MODEL

Let y[n] be a discrete time process consisting of a deterministic multi-component process s[n] embedded in an additive white Gaussian noise e[n] with zero mean and variance σ 2 .

y[n] = s[n] + e[n] with s[n] = K i=1 A i [n]e j•Φi[n] (1) Φ i [n] = 2π   n k=-N/2 F i [k] - 0 k=-N/2 F i [k]   + φ 0,i (2) and F i [n] = M f m=0 f m,i • g m [n] M f ≤ 3 (3) 
where -N 2 ≤ n ≤ N 2 with N even, K is the number of components. A i [n] is the time-varying amplitude and Φ i [n] is the instantaneous phase of the i th component. As in [START_REF] Jabloun | Estimation of the amplitude and the frequency of nonstationary short-time signals[END_REF], this model is centered in the middle of the observation window to minimize the error of estimation, thus φ 0,i = Φ i [0]. The instantaneous frequency F i [n] is approximated by discrete orthonormal polynomial functions at maximum third order. At m th order, f m,i and g m are the parameter and the orthonormal polynomial respectively.

In this paper, we intend to study a new model for the amplitude in correspondence with many real-world signals where A i [n] = β i e -αin . The initial amplitude β i and the damping coefficient α i characterize the amplitude of the i th component. In order to proceed with estimation of β i , α i , φ 0,i and the M f +1 frequency parameters f m,i , the following constraints are imposed:

0 < F i [n] < Fs 2 with F s the sampling frequency, N + 1 > M f + 4 and Φ i [n]
does not include any discontinuities. With regard to real-world data, β i and α i are both constrained to be strictly positive.

An intrinsic error of the complex model with damped amplitude has to be mentioned. The model defined in (1) does not always satisfy Bedrosian conditions because the exponential amplitude can present a wide-band spectrum. However, in actual problems that we investigate, frequencies are at about 1Hz, and damping coefficients α i are usually trivial (< 10 -1 ) [START_REF] Michel | On an ambiguity in the definition of the amplitude and phase of a signal[END_REF], then the -3 dB spectral bandwidth of the damped amplitude (8.08α i Hz) is very narrow. This error is thus negligible even for the low frequency signal that we process.

PARAMETER ESTIMATION ALGORITHM

We discuss the parameter estimation of a low-order polynomial model which intends to track locally highly nonstationary modulations. The signals are of short time length of approximately 30 to 100 samples. Let us consider the instantaneous frequency (3) be approximated by an orthonormal polynomial at M th f order, the parameters of each component in (1) form a vector:

θ i = [θ Ai , φ 0,i , θ Fi ] = β i , α i , φ 0,i , f 0,i , . . . , f M f ,i , (4) 
where 1 ≤ i ≤ K, so that the parameters of all the components are

θ = [θ i,j ] K×(M f +4) = θ T 1 , . . . , θ T K T . (5) 
Each element θ i,j in θ corresponds to the j th parameter of the i th component. The estimation of θ leads to a problem of Maximum Likelihood which corresponds to a Least Square approach under the hypothesis of a white Gaussian noise,

θ = arg min θ∈R K×(M f +4) N 2 n=-N 2 |y[n] -s[n]| 2 . (6) 
In [START_REF] Jabloun | Multicomponent signal: Local analysis and estimation[END_REF], optimal and sub-optimal algorithms were developed to balance between the precision and the computation cost. The sub-optimal approach can be affected when one component has distinctly weaker amplitude than the others. So thereafter, only the optimal approach is considered. We assume that the number of components K and the polynomial order of each component M f are a priori known and remain unchanged. This assumption is justified by the short-time duration.

In this paper, the steps of the parameter initialization and of the estimation procedure, close to [START_REF] Martin | Frequency and amplitude tracking for short nonstationary and nonlinear signals[END_REF], take into account the damped amplitude model and use the adaptive simulated annealing proposed in [START_REF] Ingber | Adaptive simulated annealing (asa): lessons learned[END_REF]. Let N acc , N gen , c be factors a priori fixed, ∆ = [∆ i,j ] K×(M f +4) be a constant matrix of parameter search step, matrix T gen = [T gen i,j ] K×(M f +4) and variable T acc be the temperatures which control the generation of parameter candidates and the decision of acceptance respectively. In addition, the temperatures are regulated by a variable τ acc and a matrix τ gen = [τ gen i,j ] K×(M f +4) . At the t th iteration, the algorithm steps are: i) Generation of parameter candidates: the candidate matrix θcan is drawn element-wise from the parameter matrix at previous iteration θt-1 . The (i, j) th element of the candidate matrix is θcan i,j

= θt-1 i,j + u∆ i,j T gen i,j ; iii) Update of temperatures: iii-a) Cooling: Every N gen number of loops, τ acc and each element of τ gen are increased by 1. T acc and each element of T gen are decreased

T acc = exp -c(τ acc ) 1/K(M f +4) , T gen i,j = exp -c(τ gen i,j ) 1/K(M f +4)
; iii-b) Re-annealing: When every N acc candidate matrices are accepted, define θbest = arg min k∈1,...,t MSE( θk ), and q = max (i,j) (q best ) with q best = q best i,j

K×(M f +4) = ∂MSE(θ) ∂θ θ=
θbest as its convergence speed matrix. T acc , τ acc and each element of T gen and τ gen are updated:

T gen i,j = qT gen i,j q best i,j , τ gen i,j = 1 c -log T gen i,j K(M f +4) , T acc = MSE( θbest ), τ acc = 1 c log T acc /MSE( θt ) K(M f +4)
. At this step, t is increased by 1. The algorithm stops when t reaches its pre-defined limit or when the estimation error is close enough to a white Gaussian noise.

CRAMER-RAO LOWER BOUNDS

The Cramer-Rao Bounds had been calculated in [START_REF] Zhou | On polynomial phase signals with time-varying amplitude[END_REF] for a damped polynomial phase signal. We propose to recalculate these bounds for the model defined in (1,2,3) under the discrete orthonormal polynomial base we used as in [START_REF] Jabloun | Multicomponent signal: Local analysis and estimation[END_REF]. Further we derive these bounds not only for the parameters but also for the modulation functions. The Fisher information matrix of an arbitrary component defined by ( 1) is given as

I θ A i ,F i = 1 σ 2 ℜ{ I θA i 0 0 I θF i } (7) 
I θA i =      N/2 n=-N/2 2e -2αin - N/2 n=-N/2 2nβ i e -2αin - N/2 n=-N/2 2nβ i e -2αin N/2 n=-N/2 2n 2 β 2 i e -2αin      Denote η m [n] = n k=-N/2 g m [k]
as the numerical integration of the orthonormal polynomial, I θ F i is a block matrix of (M f + 1) × (M f + 1) dimension, with elements

I h,l = N/2 n=-N/2 2η h [n]η l [n]β 2 i e -2αin ; 1 ≤ h, l ≤ M f + 1.
(8) Then, in the non-biased case, CRBs of the instantaneous amplitude denoted as CRB Ai[n] and of the instantaneous frequency denoted as CRB Fi[n] are

CRB Ai[n] = σ 2 2 d i † {I † θA i I θA i }d i (9) CRB Fi[n] = σ 2 2 h i † {I † θF i I θ F i }h i ( 10 
)
where

d i = [e -αin , -β i ne -αin ] T , h i = g 0 [n], . . . , g M f [n]
T ,

[•] † denotes the conjugated transpose. These bounds will be used to compare the performance of the proposed algorithm to what we defined the indirect approach.

RESULTS ON SIMULATED SIGNALS

We consider the case of 2 components over 33 samples. In accordance with real-world data, the damping ratios are taken in the order of several percent. Fig. 1 shows the results of the proposed algorithm with K = M f = 2 and a signal-to-noise ratio (SNR) of 15 dB. It is important to notice that this global SNR can be drastically different from the local SNR due to the non-stationarity. In this example, the local SNR varies from 18.82 dB to 9.46 dB. Table 1 shows the normalized root mean square errors for the algorithm proposed compared to the indirect approach. The proposed algorithm gives better estimation results for all parameters, especially for the amplitude.

- Fig. 2 shows Cramer-Rao bounds of both components obtained by the proposed algorithm under the SNR varying from 0 to 25 dB, averaged among 100 noise realizations. We observe that these bounds are lower than those obtained by the indirect algorithm since the error caused by amplitude regression is avoided. 

RESULTS ON BUILDING AMBIENT VIBRATIONS

The analyzed real-world signal is an ambient vibration recorded at the top of the Grenoble City Hall in France.

The purpose is to evaluate the natural structural variation of the building, which is directly related to the damping coefficients and the frequencies of vibrations in all directions.

The proposed algorithm permits a local analysis which has never been done before. Based on the priori knowledge that the signal has 3 main directions of observation: longitudinal, transverse and vertical, K is fixed to 3. Fig. 3 shows the results of a segment of 12 s of the vertical measurement, sampled at 200 Hz and decimated by 40. The calculation is executed by both the proposed and the indirect algorithm with N acc = 60, N gen = 80, c = 3. From Fig. 3, we can conclude that these components and their variations are correctly identified using both algorithms [START_REF] Michel | On an ambiguity in the definition of the amplitude and phase of a signal[END_REF] [START_REF] Michel | Full-scale dynamic response of an RC building under weak seismic motions using earthquake recordings, ambient vibrations and modelling[END_REF]. Meanwhile, the proposed algorithm performs better than the indirect approach, indeed the normalized root mean square error of the reconstructed signal is about two times smaller than the indirect approach. In this application, seeing that the lowest frequency is sufficiently far away from the null frequency as illustrated by Fig. 3, and that all estimated damping coefficients are trivial (< 2.5%), the intrinsic defect of the model mentioned in section 2 is therefore negligible.

CONCLUSION

In this paper, a damped-amplitude & polynomial-frequency model is proposed. This model is applied on short-time multicomponent signals and the parameter estimation is based on the maximization of the likelihood function optimized by adaptive simulated annealing. By calculating and analyzing the Cramer-Rao bounds, it is shown that the estimation of both the amplitude and frequency modulation functions are improved compared to a polynomial-amplitude model. The proposed method is capable to track the variation of multi-component signals and directly identify the damping coefficient for each component. By that way, the ambient vibrations of a building and more particularly their damping coefficients have been characterized over a very short time of 12 s (60 samples), which has never been done before.

In future, we intend to study the performance of the pro-posed algorithm compared to other techniques. Moreover, the adaptability of this method could be enhanced by an automatic management of component births and deaths, and of the number of components. A long-time observation can thus be modeled by merging the estimation of short-time segments as in [START_REF] Jabloun | Multicomponent signal: Local analysis and estimation[END_REF].
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 1 Fig. 1. Estimated modulations (-) and original modulations (--) of the simulated signal sampled at 1 Hz -SNR=15 dB.

Fig. 2 .

 2 Fig. 2. MSEs and CRBs in dB for the simulated signal. CRBs of the algorithm proposed (-red) and of the indirect algorithm (--green), MSEs (-.o blue)

Fig. 3 .

 3 Fig. 3. Results for the building ambient vibration. Left: proposed algorithm. Right: indirect algorithm As another advantage, the proposed algorithm requires smaller parameter space to track the amplitude variations, which induces a 25% saving in calculation time (Thinkpad x200 lap-top).In this application, seeing that the lowest frequency is sufficiently far away from the null frequency as illustrated by Fig.3, and that all estimated damping coefficients are trivial (< 2.5%), the intrinsic defect of the model mentioned in section 2 is therefore negligible.

Table 1 .

 1 Normalized root mean square errors in %

	Algorithm	α 1	A 1 [n] F 1 [n] α 2 A 2 [n] F 2 [n]
	Proposed 0.67	1.38	0.66 3.4	1.92	1.07
	Indirect	7	7.73	1.31 8.2	4.17	2.04
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