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Experimental investigations of the dynamics of a deformable bubble rising in a uniform turbulent flow are
reported. The turbulence is characterized by fast PIV. Time-resolved evolutions of bubble translation, rotation
and deformation are determined by three-dimensional shape recognition from three perpendicular camera
views. The bubble dynamics involves three mechanisms fairly decoupled: (i) average shape is imposed by
the mean motion of the bubble relative to liquid; (ii) wake instability generates almost periodic oscillations
of velocity and orientation; (iii) turbulence causes random deformations that sometimes lead to breakup.
The deformation dynamics is radically different from that observed in the absence of a significant sliding
motion due to buoyancy. Large deformations that lead to breakup are not axisymmetric and correspond to
elongations in the horizontal direction. The timescale of decay of shape oscillations is of the same order as
their natural frequency f2, so that breakup always results from the interaction with a single turbulent eddy.
This overdamping causes the statistics of large deformations and the statistics of breakup identical to the
statistics of turbulence. The bubble response time f−1

2 however controls the duration of individual breakup
events.

I. INTRODUCTION

In the absence of a strong rise velocity of the bubble
due to buoyancy, the deformation of a bubble in a tur-
bulent flow results from the response of surface modes
to the turbulent forcing1,2. The deformation is well de-
scribed by axisymmetric mode two3, the shape of which
corresponds to the spherical harmonic of order 2, the fre-
quency and damping rate of which are well predicted by
the linear theory4,5. The turbulent forcing is well de-
scribed by the instantaneous turbulent Weber number
experienced by the bubble along its trajectory. Further-
more, the breakup is observed to occur when the instan-
taneous deformation reaches a critical value. Due to the
major role played by the bubble dynamics, the statistics
of bubble shape and breakup occurrence are radically dif-
ferent from those of turbulence.
One open question is whether this description is still

valid for a large bubble rising in water. Even in the
absence of turbulence, a large rising bubble is no more
spherical but flattened in the vertical direction. This
may change the natural frequency and the damping rate
of the oscillations6–8. Moreover, due to the instability of
its wake, the bubble does not rise on a straight path but
follows helical or zigzagging path9. Shape oscillations
also occur and are observed to involve non-axisymmetric
modes10,11.
When a rising bubble is immersed in a turbulent flow,

the action of the turbulent fluctuations is thus com-
bined to both a non-zero average deformation and self-
sustained oscillations.
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This paper reports an experimental investigation on
the dynamics of a rising bubble in a turbulent flow. The
objective is to determine how a bubble moves and de-
forms under the combined action of its rise velocity, wake-
induced oscillations and turbulent fluctuations. First,
this requires an experimental set-up in which a rising
bubble can be observed over a long time. Following the
idea of Wichterle et al.

12, this has been obtained by im-
mersing a bubble in a slightly rotating downward flow
through a slightly divergent pipe. Second, it also re-
quires to generate a calibrated turbulent flow with an
intensity large enough to cause the bubble breakup. Ide-
ally, this flow should be as uniform as possible to avoid
considering changes in turbulence properties as the bub-
ble moves. Third, we need to track the three-dimensional
motion and shape of the bubbles, which requires time-
resolved records of at least three perpendicular view of
the bubble.
The experimental setup is presented in § II. An origi-

nal technique of image processing has been developed to
track the three-dimensional dynamics and is presented in
§ III. The turbulent flow has been characterized with fast
Particle Image Velocimetry and the results are presented
in § IV. The section V is devoted to the study of bubbles
dynamics at moderate deformations. The breakup pro-
cess is finally analyzed in § VI and concluding remarks
are given in § VII.

II. EXPERIMENTAL SETUP

The experimental device consists of a closed flow loop.
A sketch is shown in Fig. 1. The test section is a ver-
tical conical pipe out of Plexiglas in which water flows
downward. It is of height 320mm with an inner diameter
of 50mm at inlet, and 80mm at outlet (half-angle of the
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cone is thus 2.7◦). Perturbations are generated in the
flow with a rotating grid, made with four blades (right
trapezoid of height 45mm, top side 40mm and bottom
side 22mm). This impeller is surrounded by a converg-
ing conical casing, leaving a layer of 2mm between the
blade tips and the wall. The bottom of this conical hous-
ing is the z reference (see Fig. 1). The grid consists of
3mm holes every 5mm in an hexagonal pattern, and thus
has a solidity (ratio of blocked area and unit area) of 0.67.
The grid is rotated between 1 and 3Hz, corresponding to
tip speeds in the range 0.25 — 0.75m·s−1.
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FIG. 1. Sketch of the experimental setup. Left: top view.
Camera 1 gives two side views in the planes x−z and y−z with
the help of a 45◦ mirror. The visualization area is surrounded
by a square glass box filled with water. Right: side view.
Camera 2 gives the bottom view in a plane x − y with the
help of another 45◦ mirror. Two LED plates of 120× 120mm
are used for lighting of the vertical planes, and the horizontal
plane is illuminated with the help of an halogen lamp above
the experiment. The rotating grid is covered with luminescent
paint and is illuminated from its sides in order to have as
bright as possible a background for the horizontal plane.

The flow rate, produced with a centrifugal pump is
measured with a Bürker flow transmitter, and can be set
in the range 0.5 — 0.7L·s−1, corresponding to average
velocities in the range 0.10 —0.35m·s−1 in the test sec-
tion.
Air bubbles are injected at the bottom of the test sec-

tion, with a pipe of inner diameter 4mm, at the end of
which different pipe elbows can be connected. A way to
get regular sized bubbles is to inject a known quantity
of air with a motorized syringe and to have the exit of
the elbow pointing down. In the study reported here, the

bubbles have an equivalent diameter of d = 9.3±0.3mm.

The visualization volume extends from z = −100mm
to z = −180mm and is surrounded by a square glass box
filled with water to minimize optical distortions. Two
cameras and two mirrors are used to get three differ-
ent views of the bubble in the visualization volume (see
Fig. 1). Two components of the flow field have been mea-
sured in several planes with fast Particle Image Velocime-
try (PIV). More details about the PIV measurements are
given in § IV.

III. IMAGE PROCESSING

Every experiment with bubbles consists of a sequence
of 2000 images taken simultaneously by the two cameras,
at a rate of 300Hz. In order to extract quantitative in-
formation about the bubble shape and its dynamics, the
three images taken by the two cameras are processed un-
der Matlab software following the procedure illustrated
in Figs. 2 and 3. This procedure can be decomposed into
three steps: ellipses that are equivalent to the side views
of the bubble on camera 1 are first defined using simple
algorithm, then an ellipse equivalent to the bottom view
on camera 2 is fitted with a different algorithm, and at
last a resulting ellipsoid is rebuilt from these three per-
pendicular projection contours. Quantities such as the
velocity of the center of mass or the large-scale deforma-
tion, that is relevant in the context of breakup mecha-
nism, are then computed from the equivalent ellipsoid.
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FIG. 2. Normalized gray level profile along constant height
z = −146.5mm for view 1 of image 39 of sequence B5 (see also
top left quadrant in Fig. 3). Horizontal dotted line: threshold
used for binarization. Bubble corresponds to values below the
threshold. Calibration factor: 6.5 pixels corresponds to 1mm.
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FIG. 3. Illustration of image processing on image 39 of sequence B5 (see Tab. I). Top left: side view in the plane x − z
(camera 1) with the equivalent ellipse (red line), its center of mass (red dot) and major (blue line) and minor axes (green line).
Top right: side view in the plane y − z (camera 1) with the same conventions. Bottom left: bottom view of camera 2 in the
plane x − y with the Snake active contour (blue line) and the ellipse fitted on this contour (red line) with its center of mass
(red dot) and major (blue line) and minor axes (green line). Bottom right: ellipsoid reconstructed with the three projections.
The ellipses used to compute the ellipsoid are plotted as solid lines on the three planes together with the three projections of
the reconstructed ellipsoid, which are displayed as dashed lines. Solid green line gives the direction of the ellipsoid minor axis.

A. Algorithm for side views detection

For the two side views of camera 1, we use simple bina-
rization after subtraction and normalization by a back-
ground image taken without bubbles. The stability of
the LED plates illumination is very good, and a single
threshold of −0.20 has been used for all the images. An
example showing the sharpness of the gray level profile
at the bubble boundary can be found in Fig. 2. The
typical number of pixels inside the detected bubble is
around 3000. The center of mass and the second-order
moments of the shape are then computed. That defines
an equivalent ellipse displayed with red lines in the up-
per quadrants of Fig. 3. We have compared this method
with some edge detection algorithms, to test the accu-
racy of the measured features. For the Canny method
implemented in Matlab, the mean discrepancy between
the two techniques is less than 1% for the area and for
the length of the equivalent ellipse axes. The discrepancy
is moreover less than 0.3◦ for the orientation of the axes.
The simple binarization has been retained because it is

more robust and the threshold can be chosen once and
for all.

B. Algorithm for bottom view detection

For the bottom view of camera 2, the problem is
slightly different because of the lighting from the top with
an halogen lamp and because of the presence of the ro-
tating grid in the field of view. These constraints lead
to poor contrast and render simple binarization with a
single threshold impossible. The images of camera 2 are
thus treated with the following procedure.
We first take a set of pictures without bubbles, and

have thus a moving background which we synchronize
and then subtract from the images, as shown in the lower
left quadrant of Fig. 3. One can still guess the position
of the rotating grid which is blurred in the background
of the resulting image. The background is non-uniform
and the contrast between the bubble and the background
is not very high. However one can distinguish the con-
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tour of the bubble, finding sharp edges and rebuilding
the contour by extrapolation.
We have implemented such a method with Matlab.

The first step uses a SuSan edge detection algorithm13

that has been implemented in C for efficiency. The val-
ues for the kernel radius (3 pixels) and for the thresh-
old (10%) that are used are claimed to be optimal and
universal13. Only sharp edges are captured by this al-
gorithm and there are still holes in the contour. We
then use active contours to capture the bubble interface.
We use a greedy snake algorithm14, with weighting pa-
rameters α = 0.3 for continuity/elasticity, β = 0.7 for
curvature/rigidity and γ = 3 for the attraction to edge
map. The snake is initialized by hand for the first im-
age of a sequence, and then dilated in every direction
by an amount of 10 pixels from the converged state to
give an initial value for the next image. These parameters
were modified by hand for images close to breakup where
the projection of the bubble on the horizontal plane has
strong concave curvatures. An ellipse is then fitted on
the converged snake contour (see blue and red lines in
the lower left quadrant of Fig. 3).

C. Ellipsoid reconstruction and relevant parameters

The ellipses that have thus been fitted on the projec-
tions of the bubble in three perpendicular planes give 9
parameters. An ellipsoid has 6 independent parameters
(3 lengths and 3 orientations). It is thus possible to re-
construct an equivalent ellipsoid by minimization15. The
lower right quadrant of Fig. 3 presents the reconstructed
ellipsoid, the three ellipses used to determine it, and the
three back projections of the ellipsoid onto the planes.
One can notice that they hardly distinguish from each
other. We have defined an error function for the recon-
structed shape as the maximum of the radial distance be-
tween the fitted ellipses and the back-projected ellipses.
The point is rejected when the error exceeds 0.8mm, i.e.
roughly 10% of the semi major axis length.
The whole process requires ten hours of computation

on a desktop computer for the first pass on a sequence
of 2000 images. After this first pass, typically 5% of the
images have been rejected and are retreated by hand in
a second pass. The final rate of rejection excluding the
breakup phase is below 1% for all the sequences.
The physical quantities that are extracted from the

image processing may help to understand how the tur-
bulence affects the deformation of the bubble. The rising
bubbles that are studied are relatively large and are thus
no more spherical. Their wake is moreover unstable and
this leads to a complicated path9 that may also affect
the deformation dynamics. The extracted quantities are
thus the lengths of the three semi-axes of the ellipsoid
(a, b and c), the velocity of the center of mass V that is
computed as the derivative of the position, and the ori-
entation θ of the short axis of the ellipsoid with respect
to the vertical axis.

IV. CHARACTERIZATION OF THE FLOW FIELD

A. Mean features of the large-scale flow

The flow field has been measured in the absence of bub-
bles with 2D-2C fast PIV in one vertical plane contain-
ing the symmetry axis, then in eight horizontal planes,
10mm apart from each other. The data acquisition rate is
600Hz and time series of 6000 images have been recorded.
The PIV analysis consists of standard correlation of two
successive images on windows of 32 × 32 pixels with an
overlap of 50% in a first pass, and then on windows of
16 × 16 pixels with 0% overlap in two successive passes.
Normalized median test16 has been used to discard out-
liers, which were reconstructed with a bilinear interpola-
tion. The rate of outliers is always below 4%.
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FIG. 4. Velocity profiles at z = −140mm along x-axis, for
a flow rate of 0.62L·s−1 and a rotation rate of 1.5Hz. Blue:
vertical velocity uz (solid line) and its standard deviation σuz

(dashed line). Red: tangential velocity uy (solid line) and
its standard deviation σuy (dashed line). The vertical dashed
lines stand for the core region of diameter 15mm.

The mean flow consists of an axial spreading jet super-
imposed with rotation. We have studied three cases: a
case with rotating grid and no mean flow rate, a second
case with an imposed mean flow rate and no rotation,
and the case with both pumping and rotation which is
relevant for bubble dynamics and breakup studies. In the
experiments reported here, the flow rate is 0.62L·s−1 and
if so, the rotation rate of the rotating grid is 1.5Hz.
The first two cases are first briefly discussed. The flow

is turbulent in every case. On the one hand, when the
grid does not rotate the mean vertical particle displace-
ment is of the order of 6 pixels —or −300mm·s−1— in the
middle of the test section, and the mean flow is axisym-
metric. The standard deviation of the vertical component
of the velocity σuz

is around 8% of the time-averaged ve-
locity everywhere, while a typical PIV evaluation error
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FIG. 5. Standard deviation of the velocity measured in one vertical plane and eight horizontal planes superimposed with the
trajectory of bubble B5 (black) and mean positions of the six bubbles (blue squares).

of 0.1 pixel corresponds to a fluctuation rate of 2%. On
the other hand, when the grid rotates alone it creates
an upward pumping of typical velocity 45mm·s−1 on the
center line with recirculation cells close to the cone edges.
The flow is moreover no more axisymmetric. And last,
the flow in the center line is very fluctuating (fluctuation
rate 35%).

The Figures 4, 5 and 6 present velocity measurements
that have been performed in the relevant case with pump-
ing and rotation. The vertical and horizontal veloc-
ity profiles along the x-axis at z = −140mm are plot-
ted in Fig. 4. The mean axial jet is directed down-
ward and has a flat profile of constant velocity around
uz ≃ −300mm·s−1. The fluctuation rate of the vertical
component of the velocity is above 10% and even exceeds
20% in the core region.

Concerning the horizontal velocities, the grid creates
solid body rotation within an annulus of diameter 15mm.
The horizontal velocities are of the order of 2/3 of the ver-
tical velocity, and in the center, their fluctuation rates are
of the order of 35% of the maximal horizontal speed, i.e.
of the order of 20% of the vertical speed. The mean flow

is not axisymmetric as can be seen in Fig. 5 where the
center-line of the vortex slightly deviates from the z-axis.
The bubbles are however trapped inside the vortex an-
nular core in a zone that extends from z ≃ −110mm to
z ≃ −160mm (see Fig. 5). The rotation rate inside the
vortex core that is deduced from velocity measurements
is bigger than the impeller rotation rate of 1.5Hz: the ve-
locity measured 20mm away from the center corresponds
to 2Hz at z = −100mm, and to 1.6Hz at z = −180mm.
This can be due to the fact that the impeller is a trape-
zoid tightly enclosed in a housing.

A time signal of the vertical velocity at a point close to
the center of the region where the bubbles are trapped is
plotted in Fig. 6 together with the corresponding power
spectrum. The flow is turbulent and the spectrum ex-
hibits a large inertial range with a −5/3 power law. The
integral time scale Θ that could be estimated from the
autocorrelation function of the time signal in Fig. 6 is
Θ ≃ 0.10s, i.e. an integral length scale Λ ≃ 30mm de-
duced from the Taylor’s hypothesis of frozen turbulence.
This approximately corresponds to three times the bub-
ble diameter, which is close to 10mm. The estimated
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FIG. 6. Velocity measurements for a flow rate of 0.62L·s−1

and a rotation rate of 1.5Hz. (a): time signal of the vertical
velocity uz at point x = −0.3, y = 0, z = −140 (in mm).
(b): corresponding power spectrum. Arrows stand for corre-
sponding length scales using Taylor’s hypothesis.

Taylor micro-scale is roughly 0.016s, that corresponds to
λ ≃ 5mm, i.e. half the bubble diameter. The arrows
in Fig. 6b that stand for three length scales surround-
ing the mean bubble diameter are in the inertial range of
the spectrum. The bubble thus locally experiments the
turbulent nature of the flow.
In conclusion, the bubbles are trapped within a core

region of 15mm width where they experience a turbulent
flow that is roughly isotropic: the fluctuations of velocity
are of the same order of magnitude (60mm·s−1) for the
three components of the velocity. The mean axial flow is
moreover homogeneous in this region, and the horizontal
velocity resembles solid-body rotation.

B. Consequences on the bubbles

With these velocity measurements, we can now esti-
mate the ratio of deforming forces and stabilizing forces
acting on the bubbles. For our air bubbles in water, the
viscous shear is negligible: a capillary number Ca based

on the measured shear rate of the mean flow, on the vis-
cosity of water and on the interfacial tension between air
and water σ = 70mN·m−1 is Ca ≤ 5 × 10−4. The rele-
vant numbers are thus Weber numbers comparing inertia
to capillarity.

The bubble of mean diameter d = 9.3 ± 0.3mm has
a mean rising velocity Ub = 300mm·s−1 and is in a re-
gion where the fluid is in solid body rotation at angular
velocity Ω = 9.4rad·s−1. The bubble Reynolds num-
ber is Reb = Ubd/ν ≃ 2800 with ν = 10−6m2·s−1 the
kinematic viscosity of water. The Weber number based
on the mean rising velocity is We = ρdU2/σ ≃ 11.6,
with ρ = 103kg·m−3 the density of the continuous phase.
These values of Reb and We correspond to a situation
with a large mean deformation of the bubble that should
be an elongated ellipsoid rising with an oscillating path8,9

as confirmed by the results discussed in § V. The Weber
number WeΩ based on the solid body rotation is very
small: WeΩ = ρd(dΩ/2)2/σ ≃ 0.25. The solid body ro-
tation plays no role in the deformation of the bubble. It
will actually maintain the bubble in the central zone of
the flow (see Fig. 5).

The eigenfrequency of the mode 2 for the deforma-

tion of the bubble4,5 is ω2 =
√

96σ
ρd3 ≃ 92.7rad·s−1

(f2 = 14.8Hz). In the following, all the temporal fea-
tures will be compared to this time scale. The Reynolds
number based on this oscillation frequency is Reosc =
1/2 d2ω2/ν ≃ 3900. It is fairly high, which implies a
small damping rate of the free oscillations of a bubble
at rest4,5: β = 80ν

d2 ≃ 0.9s−1. The rising velocity of the
bubble is thus of the same order of magnitude as the
shape oscillation velocity: Reb/Reosc = 0.7. The rising
velocity may thus have significant effects on the shape
dynamics. Finally, the level of turbulent fluctuations in
the velocity field is high (σu/Ub ≃ 1/5) and may also
have a significant impact on the shape dynamics.

To take into account the contribution of turbulent fluc-
tuations, we define an instantaneous turbulent Weber
number Wet(x, t) at each point, based on the velocity
scale δû2(x, t) = max(u′(x+ b, t) − u′(x− b, t))2. This
velocity scale δû is the maximum of the second order
structures functions computed for distance d (b is a vec-
tor of length d/2 and various orientations, the maximum
being taken on these orientations). The spatial distribu-
tion of this turbulent Weber number is very similar to the
distribution of the velocity fluctuations that is presented
in Fig. 5, and the time-averaged value of the turbulent
Weber number is less than 1.8 in the test region.

The temporal features of this signal at a point close to
the center of the visualization volume are given in Fig. 7.
At this point, the mean turbulent Weber number is 1.3
and the standard deviation is 1.2. One can notice in
Fig. 7b that the probability density function of Wet is
skewed towards high values: very rare events with high
values of the turbulent Weber number arise. One event
is highlighted in the inset of Fig. 7a: we notice that the
Weber number exceeds a significant value (Wet ≥ 5)
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for a non negligible time with respect to the time scale
given by f2, that is roughly Wet ≥ 5 during 0.75f2

−1.
The distribution of the waiting times between these high
Wet events resembles a Poisson process as can be seen in
Fig. 7c where the distribution of time intervals between
two successive events with Wet ≥ 2 is reported. The
distribution is exponential with a time constant of 0.04s
or 0.6f2

−1 in this case.
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FIG. 7. Measurement of the turbulent Weber number
Wet(x, t) at point x = −0.3, y = 0, z = −140 (in mm) for a
flow rate of 0.62L·s−1 and a rotation rate of 1.5Hz. (a): time
signal. (b): corresponding probability density function, in red
(left and bottom axis). The black curve (top and right axis)
is the probability density function of major axis a for bubble
B5. (c): distribution of time intervals between two successive
events corresponding to Wet ≥ 2. This threshold is high-
lighted by the vertical dotted line in (b). All the times are
made non-dimensional with f2 ≃ 15Hz.

Introduction to the study of bubble dynamics

The mean features of the large-scale flow and the tur-
bulent statistics that may be relevant towards the shape
dynamics of bubbles of mean diameter 9.3mm have thus
been characterized. The following two sections deal with
the bubble shape dynamics. As described thereafter, the
breakup rate is very low and the breakup process does not
seem to depend on the history of the bubble —in other
words no resonant breakup is observed. The dynamics
during moderate deformations phases is thus first pre-
sented (§ V), and the breakup phase is then specifically
analyzed (§ VI).

V. DYNAMICS OF MODERATE DEFORMATIONS

This section is devoted to the behavior of bubbles of
typical diameter d = 9.3±0.3mm that are injected in the
previously described velocity field, excluding the breakup
phase. The results reported hereafter concern six se-
quences of 2000 images taken at 300Hz for six indepen-
dent bubbles which dimensions are presented in Tab. I.
These values have been extracted from the images with
the procedure described in § III. A sequence of 25 side
view images in the plane x − z (camera 1) is displayed
in Fig. 8 and may be considered as a typical example
to illustrate the deformations and motion of the bubble.
This sequence has been chosen because the major axis
of the equivalent ellipsoid lies in this x− z plane during
the selected time interval. The time series of the three
ellipsoid semi-axis, of the horizontal velocity Vx and of
the orientation of the short axis θ for sequence B5 are
moreover plotted in Fig. 9.

Bubble 〈a〉 〈b〉 〈c〉 〈(abc)1/3〉 χ σa σb σc σabc1/3

B1 6.05 4.98 3.05 4.49 1.83 0.48 0.38 0.29 0.07

B2 6.10 4.94 3.04 4.49 1.84 0.52 0.40 0.30 0.09

B3 6.22 5.13 3.14 4.62 1.84 0.52 0.41 0.33 0.09

B4 6.50 5.24 3.11 4.71 1.92 0.67 0.45 0.34 0.12

B5 6.65 5.39 3.19 4.82 1.92 0.62 0.49 0.35 0.13

B6 7.03 5.49 3.00 4.84 2.14 0.75 0.55 0.38 0.13

TABLE I. Fitted ellipsoids dimensions in mm for six bubbles.
Mean half major axis 〈a〉, half medium axis 〈b〉, half short

axis 〈c〉. Equivalent radius 〈(abc)1/3〉. Aspect ratio χ = 〈(a+
b)/2c〉. Standard deviations σa, σb, σc and σabc1/3 .

Mean shape

The instantaneous shape of the bubble strongly differs
from an ellipsoid as can be seen in Fig. 8. The semi-
axis lengths are moreover strongly fluctuating (Fig. 9c):
the fluctuating rate of the three axes are of the order of
10%. One can also notice in Tab. I that the volume of
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FIG. 8. Illustration of a deformation sequence on case B5. Side view in the plane x − z (camera 1) with the center of mass
(red dot), the major (blue line) and minor axes (green line) of the equivalent ellipse. One image over 5 is displayed and the
time lag between each image thus corresponds to 1/60s ((4f2)

−1). Please note that the sequence reads from top left to top
right then the second line reads from right to left, and so on, following the arrows.
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FIG. 9. Time signals of (a): horizontal velocity Vx, (b): orientation θ of the short axis relative to vertical direction, and (c):
semi-axis lengths (black: a, blue: b, green: c) for sequence B5. All the times are made non-dimensional with f2 ≃ 15Hz. The
vertical dashed lines stand for the time interval corresponding to the sequence depicted in Fig. 8.

the equivalent ellipsoid is not conserved: the fluctuation
rate of (abc)1/3 is nevertheless small, around 2%. Finally,
the following observations can be drawn:

• the mean shape of the bubbles is an ellipsoid with
a symmetry axis around the short axis;

• the mean aspect ratio of this ellipsoid χ is 1.91 ±
0.11 and seems to increase with the equivalent ra-
dius;

• the short axis is pointing in the vertical direction
on average, as can be seen in Fig. 9b.

Position and motion of the bubble

The mean positions of the six bubbles are displayed
with blue squares in Fig. 5. The trajectory of bubble B5
is also diplayed in this figure. The trajectory of a bubble
is quite complicated and frequently exhibits loops but the
six bubbles are however trapped inside the vortex annular
core as described in § IV. The fluctuations of the position
are of the same order of magnitude for every bubble: the
standard deviation of the vertical position is σz ≃ 7mm
and the fluctuations in the horizontal positions are σx =
σy ≃ 4mm. These last two could be translated in polar
coordinates centered on the mean bubble position and
would give a fluctuation of radial position σr ≃ 2.5mm.

Though the bubble path seems erratic, the time series
of the horizontal velocity (Fig. 9a) and of the short axis
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orientation (Fig. 9b) are more regular and may exhibit a
periodic behavior. The horizontal velocity has a standard
deviation of the order of 100mm·s−1. The temporal spec-
tra of horizontal velocity and of orientation are plotted in
Fig. 10. Some peaks are clearly visible and give a typical
harmonic component for the path at 8.5Hz. The cross-
correlation between Vx and θ moreover shows a peak at
−0.73, with a time delay between two successive peaks
in the cross-correlation function that corresponds to this
frequency of 8.5Hz. This behavior is consistent with a
wake instability. The strouhal number built with this
frequency, the mean bubble rising velocity and the bub-
ble diameter is St = fd

Ub
≃ 0.27. According to the works

of Lindt17, the prediction for the strouhal number of the
wake is St = 0.28.
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FIG. 10. Power spectra of (black): Vx, (red): θ, (blue): a for
sequence B5 (please see also the time signals in Fig. 9) and
(green): Wet at point x = −0.3, y = 0, z = −140mm (please
see the time signal in Fig. 7). The frequencies are made non-
dimensional with f2 ≃ 15Hz. The different spectra have been
vertically shifted for the sake of clarity.

Dynamics of deformation

The significant deformations that the bubbles undergo
on the contrary do not exhibit any periodic behavior, as
can be seen in Fig. 9c on the time series of the three
semi-axes of the equivalent ellipsoid and in Fig. 10 where
no peak is visible in the power spectrum of a. There
thus seem to be no trace of a periodic shape oscillation
at the eigenfrequency f2 at first glance, contrary to what

is observed without buoyancy1,2. The deformations still
have a part of deterministic dynamics that is highlighted
with the analysis of the cross-correlations between the
three axes lengths.
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FIG. 11. Cross-correlation functions of (blue dash-dotted):
a − b, (red dashed): a − c, and (black): b − c. An average
has been made on all the sequences excluding breakup phases.
The time lag is made non-dimensional with f2 ≃ 15Hz.

The Figure 11 presents an average on all sequences ex-
cluding breakup phases of the cross-correlation functions
of the two largest axes lengths a − b (blue dash-dotted
line), of the big and short axes lengths a− c (red dashed
line) and of the medium and short axes lengths b − c
(black line). The cross-correlation function is defined as:

Ca−b(τ) =
〈a(t) b(t− τ)〉

σa σb

where 〈〉 stands for time average, τ is a time lag, and σ
is the standard deviation. The short axis is significantly
anti-correlated to the two biggest axes, at 0 time-lag. The
cross-correlation coefficient of a and c, and b and c is in-
deed close to −0.6 at τ = 0 (Ca−c(τ = 0) ≃ −0.62 and
Cb−c(τ = 0) ≃ −0.54). Concerning the two biggest axes,
they have very few correlation: their cross-correlation co-
efficient at τ = 0 is Ca−b(τ = 0) ≃ 0. The deformations
of the bubbles are thus non-axisymmetric, as already ob-
served for large rising bubbles10,11. The cross-correlation
function Ca−b presents two local maxima around 0.15 for
τ ≃ −0.6 and τ ≃ 0.5. This may be a trace of exchanges
between a and b when the two main axes are close in
length. Finally, one can notice that the cross-correlation
function goes to zero rapidly with increasing time lags:
one can estimate that the dynamics of the three axes is
uncorrelated after 1 to 2 f−1

2 .
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The short axis thus seems to play a particular role
with respect to the deformations. As previously noticed,
it is pointing in the vertical direction on average, i.e. it
is aligned with the gravity. The analysis of the correla-
tions suggest that the significant deformations take place
in the horizontal direction and are not axi-symmetric,
and that though no oscillations are observed, the char-
acteristic time based on the eigenfrequency f2 should be
present.
In order to check this hypothesis, the following section

will focus on the dynamics of the most intense deforma-
tions and on the breakup process.

VI. LARGE DEFORMATIONS AND BREAKUP

The probability distribution function (PDF) of a for
bubble B5 is plotted in black in Fig. 7b. This PDF is
clearly not Gaussian and is asymmetric: the PDF has
a positive skewness 0.5. A number of events that corre-
spond to high values of a should thus be detectable. We
propose a ≥ 〈a〉+ 1.5σa, i.e. a ≥ 7.5mm for bubble B5,
as an arbitrary threshold to qualify a large deformation.
One question is to what extent these events are rare or
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tion of time intervals between two successive overtakings of
a threshold for a (a ≥ 7.5mm), for sequence B5. Black solid
line, top and right axis: distribution of bubbles breakup times,
for 76 breakup time measurements. (Please note that for
breakup statistics, the velocity field is the same but the equiv-
alent diameter of the bubbles has been increased to 12mm, in
order to increase breakup rate. In that case, the time-scale
that has been used to present dimensionless times is based on
f2 ≃ 10Hz).
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FIG. 13. Superposition of large deformation phases (a) and
breakup events (b) for the different bubbles. The sequences
have been synchronized on the maximum of a. The time is
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frequent.
The distribution of the waiting times between two over-

takings of this threshold is plotted in red in Fig. 12. The
statistics is exponential with a characteristic time around
7 f−1

2 . This behavior is reminiscent of the statistics for
the turbulent Weber number that have been shown in
Fig. 7c. For bubbles of equivalent diameter 9.3mm, the
breakup rate is however very low, of the order of 50s−1.
In order to allow the determination of breakup statistics
in a reasonable time, experimental measurements for the
same flow conditions, but with larger bubbles, have been
carried out. The black curve in Fig. 12 shows the statis-
tics of breakup time of bubbles of equivalent diameter
12mm. These measurements show that the distribution
of the life-time before breakup is also an exponential law.
This is consistent with waiting for an instantaneous tur-
bulent Weber number bigger than a certain threshold to
lead to breakup.
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FIG. 14. Illustration of a large deformation sequence that do not lead to breakup on case B4. Bottom view in the plane x− y
(camera 2) with the detected contour in blue. The time lag between each image corresponds to 1/300s ((20f2)

−1). Please note
that the sequence reads from top left to top right then the second line reads from right to left, and so on, following the arrows.
The maximum deformation is reached in picture #1434 with a ≃ 9mm and thus corresponds to time t0 in Fig. 13.



13

X (mm)

Im#1876

−20 −10 0 10 20

20

10

0

−10

−20

Y
 (

m
m

)

X (mm)

Im#1878

−20 −10 0 10 20

X (mm)

Im#1880

−20 −10 0 10 20

X (mm)

Im#1882

−20 −10 0 10 20

X (mm)

Im#1884

−20 −10 0 10 20

X (mm)

Im#1886

−20 −10 0 10 20

X (mm)

Im#1888

−20 −10 0 10 20

X (mm)

Im#1890

−20 −10 0 10 20

Y
 (

m
m

)

X (mm)

Im#1892

−20 −10 0 10 20

X (mm)

Im#1894

−20 −10 0 10 20

20

10

0

−10

−20

X (mm)

Im#1896

−20 −10 0 10 20

20

10

0

−10

−20

Y
 (

m
m

)

X (mm)

Im#1898

−20 −10 0 10 20

X (mm)

Im#1900

−20 −10 0 10 20

X (mm)

Im#1902

−20 −10 0 10 20

X (mm)

Im#1904

−20 −10 0 10 20

X (mm)

Im#1906

−20 −10 0 10 20

X (mm)

Im#1908

−20 −10 0 10 20

X (mm)

Im#1910

−20 −10 0 10 20

Y
 (

m
m

)

X (mm)

Im#1912

−20 −10 0 10 20

X (mm)

Im#1914

−20 −10 0 10 20

20

10

0

−10

−20

Im#1916

−20 −10 0 10 20

20

10

0

−10

−20

Y
 (

m
m

)

Im#1918

−20 −10 0 10 20

Im#1920

−20 −10 0 10 20

Im#1922

−20 −10 0 10 20

Im#1924

−20 −10 0 10 20

FIG. 15. Illustration of a breakup on case B2. Bottom view in the plane x− y (camera 2) with the detected contour in blue.
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Some large deformations that do not lead to breakup
have been identified and selected for the six experiments.
They correspond to maximum deformations 8.3 . a .
9.5mm. The time series of a have been synchronized to a
reference time t0 that corresponds to the maximum of a
and are gathered in Fig. 13a. They are plotted between
t0−3 f2 and t0+1 f2. The corresponding serie of images
in the plane x−y (camera 2) for the sequence concerning
bubble B4 is displayed in Fig. 14.
These series show the following common features for

the large deformations. Firstly there are neither succes-
sive amplifications of the deformation nor periodic shape
oscillations at the eigenfrequency f2 as observed when
stochastic resonance occurs1. A strong increase of a is
immediately followed by a decrease back to the mean
level. Once synchronized to the maximum deformation,
the phases of growth and decay nevertheless exhibit a
distinct time-scale around f−1

2 . This is reminiscent of
the behavior of a strongly damped oscillator. The large
deformations moreover correspond to strongly elongated
shapes of the bubble as can be seen in Fig. 14. In that
case, the three dimensional aspect ratio at maximum de-
formation in picture #1434 is χ ≃ 2.5, and the aspect
ratio in the horizontal plane is a/b ≃ 2.0. For all the
large deformations, the bubble is elongated in an almost
horizontal direction, the short axis being vertical within
±15◦. This shape is not axisymmetric and its decom-
position into spherical harmonics involves a major con-
tribution of mode n = 2,m = 2 where n stands for the
poloidal wave number and m stands for the azimuthal
wave number.
Finally, the breakup phases have been identified and

the time series of axis a synchronized to the breakup
time are gathered in Fig. 13b. The corresponding serie
of images in the plane x − y (camera 2) for bubble B2
is displayed in Fig. 15. The breakups are very similar
to the previously described large deformations. The four
bubbles break in a horizontal plane when a exceeds the
value abreak ≃ 10.5mm, which corresponds to approxi-
mately twice the equivalent bubble radius. This value of
the critical deformation leading to breakup is in agree-
ment with results obtained in the absence of buoyancy for
both a bubble in a homogeneous turbulence1 or a drop
in a strongly heterogeneous turbulence.2

The final phase of growth of a are surprisingly collaps-
ing for the four cases, with a characteristic time of rising
again on the order of f−1

2 .

VII. CONCLUDING REMARKS

The purpose of this study was to determine the dynam-
ics of a deformable bubble rising in a turbulent flow. In
particular, we are interested in understanding the role of
the sliding motion induced by buoyancy upon the bubble
deformation and breakup.
In the absence of significant sliding motion, the shape

dynamics of a bubble in a turbulent low-viscosity liquid

was already fairly well understood1,2. The bubble essen-
tially responds to turbulent eddies of scales comparable
to its diameter by experiencing deformations described
by the axisymmetric spherical harmonics n = 2,m = 0,
where n stands for the poloidal wave number and m
stands for the azimuthal wave number of the decomposi-
tion in spherical modes. After interaction with an intense
turbulent eddy, either the bubble breaks or performs
weakly-damped oscillation at the frequency f2 given by
the linear theory4,5 of shape oscillations for this mode.
The shape dynamics can be modeled by a linear oscil-
lator forced by turbulent fluctuations, which amplifies
frequencies close to f2 and filters out others. Deforma-
tion statistics are therefore radically different from those
of turbulence, and since breakup occurs whenever the
bubble elongation is larger than a certain threshold, the
breakup probabilities also strongly differ from those of
turbulence.
The present work reports an experimental investiga-

tion of an air bubble immersed in a uniform downward
turbulent flow of water, which has been characterized by
means of fast PIV. Thanks to rapid imaging of three per-
pendicular views combined with three-dimensional shape
recognition, temporal evolutions of bubble translation,
rotation and deformation have been measured.
The dynamics of the bubble involves three mechanisms

fairly decoupled:

• The average shape of the bubble is imposed by the
sliding between the phases. It is approximately a
oblate spheroid with its small axis in the direction
of motion. It therefore mainly involves spherical
harmonic n = 2,m = 0.

• The wake instabilities lead to quasi-periodic oscil-
lations of velocity and orientation but only cause
slight shape oscillations, which are not axisymmet-
ric in agreement with previous works dealing with
bubbles rising in a quiescent fluid.10,11 These de-
formations do not play a significant role in the
breakup.

• Turbulence generates random deformations that
may cause breakup when the bubble elongation
exceeds twice the equivalent diameter, a value in
agreement with results obtained in the absence of
buoyancy.

A large deformation occurs when the bubble encoun-
ters an intense turbulent eddy. It corresponds to an elon-
gation in a horizontal direction, which breaks the ax-
ial symmetry of the average shape and mainly involves
spherical harmonic n = 2,m = 2. After interaction with
the eddy, the bubble either breaks or relaxes towards
its average shape on a time scale close to f−1

2 , without
experiencing any oscillations. The existence of a large
sliding motion between the phases thus radically changes
the shape dynamics: it could still be modeled by an os-
cillator – which describes now the amplitude of mode
n = 2,m = 2 – with a proper frequency f2 but with
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a damping rate comparable to f2. With such an over-
damped oscillator, breakup cannot result from stochastic
resonance and is always caused by the interaction with a
single intense eddy.
This absence of memory of the shape dynamics has a

major consequence for breakup. The statistics of waiting
times between two large deformations and, similarly, the
statistics of bubble residence time before breakup, do not
involve the characteristic timescale f−1

2 of the bubble de-
formation and are identical to the statistics of turbulence.
The response time f−1

2 however controls the effectiveness
of turbulent bursts – through the Weber number – and
the duration of the breakup phenomenon.

Unexpectedly, breakup statistics in a turbulent flow
eventually turn out to be easier to model for a large bub-
ble rising on an oscillatory path than for a non-sliding
bubble in microgravity condition. It is due to the strong
enhancement of the damping of shape oscillations. The
reason of this enhancement and its relation with the ex-
istence of a significant sliding remains an open question
that deserves to be addressed in a future work.
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