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ABSTRACT

This paper proposes a Bayesian algorithm to estimate the parame-

ters of a smooth transition regression model. Within this modelling,

time series are divided into segments and a linear regression anal-

ysis is performed on each segment. Unlike piecewise regression

model, smooth transition functions are introduced to model smooth

transitions between the sub-models. Appropriate prior distributions

are associated with each parameter to penalize a data-driven crite-

rion, leading to a fully Bayesian model. Then, a reversible jump

Markov Chain Monte Carlo algorithm is derived to sample the pa-

rameter posterior distributions. It allows one to compute standard

Bayesian estimators, providing a sparse representation of the data.

Results are obtained for real-world electrical transients with a view

to non-intrusive load monitoring applications.

Index Terms— Bayesian segmentation, Smooth transition re-

gression, Reversible Jump MCMC, Non Intrusive Load Monitoring

1. INTRODUCTION

Piecewise regression models are a flexible class of regression models

that has been widely used for abrupt changes detection [1], or seg-

mentation [2, 3] problems. Within this modelling, time series are di-

vided into several segments. Each segment is associated with a spe-

cific regime that appears during a time interval. A classical regres-

sion analysis is independently performed on each segment. Thus,

piecewise regression analysis often reduces to a changepoint detec-

tion problem.

However, in many applications, the change among two regimes

is not abrupt but rather smooth and classical piecewise regression

methods may produce oversegmentated representation of the sig-

nal. To avoid this problem, some parametric transition functions are

considered for modelling the smooth switch between two regimes.

These transition functions are introduced to continuously mix the

different regression models associated with neighboring segments.

Some similar models have already been studied in econometrics [4,

5], or in railway monitoring applications [6] (note that in this case,

the smooth switch process is hidden). However these approaches

require the number of regimes to be fixed a priori.

When the number of ruptures is unknown, the estimation of the

model parameters is a difficult problem. Indeed, it appears to be ill-

posed and requires some regularization to be solved. To circumvent

these difficulties, a fully Bayesian framework is introduced. Appro-

priate priors are associated with each parameter in order to penalize a

likelihood-based criterion. As the resulting posterior density appears

to be too complex to allow an analytic computation, a reversible

jump Markov Chain Monte-Carlo (RJMCMC) sampling method [7]

is investigated. Classical Bayesian estimators are then derived from

the MCMC sample, leading to a quite sparse modelling of the origi-

nal time series. The RJMCMC algorithm is eventually used to pro-

vide an accurate and sparse representation of real-world electrical

transient data.

This communication is organized as follows. In section 2, the

smooth transition regression model is introduced. Section 3 presents

the proposed hierarchical Bayesian framework. In section 4, the

RJMCMC algorithm is derived for parameters estimation. Results

on real-world electrical transients are reported and discussed in 5.

Conclusions are drawn in section 6.

2. SMOOTH TRANSITION REGRESSION MODEL

2.1. Model and notations

A sequence of n samples x = (xi)i=1,..,n is considered. The time

instant sequence associated with the observations x is denoted as

t = (ti)i=1,..,n, while ts is the sampling period. Let τ1 < τ2 <

· · · < τK−1 be a configuration of K − 1 changepoint locations in

the signal, K being the number of segments. For notational conve-

nience, the convention that τ0 = t0 and τK = tn is adopted. In

this work, a polynomial regression analysis is performed on each

segment. More precisely, the mean value at time ti of the regime

associated with the kth segment [τk−1 τk] is

mi,k =
X

0≤p≤P

β
(p)
k t

p
i , ∀ 1 ≤ i ≤ n, (1)

where P is the order of the polynomial, and β
(0)
k , . . . , β

(P )
k de-

notes the polynomial coefficients associated with the kth segment

[τk−1 τk].
A transition function denoted as πηk (t) is associated with the

kth rupture τk, for all 0 < k < K. This function is chosen to be

monotonically increasing from 0 to 1 and is governed by the vec-

tor of parameters ηk i.e the rupture locations τk, and possibly other

kind of parameters that characterize the smoothness, or the shape

(i.e. sigmoidal, exponential,...) of the rupture. By convention, the

transitions associated with the first and last ruptures τ0 and τK are

the step functions such that πη0(t) = 1 and πηK (t) = 0 for all

t0 ≤ t ≤ tn. It yields the following expression of the observation at

time ti

xi =
X

1≤k≤K

ˆ
πηk−1(ti) − πηk (ti)

˜
mi,k + ǫi, (2)

for all 1 ≤ i ≤ n, where πηk−1(ti) accounts for the transi-

tion from mi,k−1 to mi,k and πηk (ti) accounts for the transi-

tion from mi,k to mi,k+1 (see figure 1(a)). The noise vector

ǫ = (ǫ1, . . . , ǫn)T
is composed of i.i.d. centered Gaussian ran-

dom variables with variance σ2. Let η = [η1, . . . ηK−1]
T

be



the parameter vector of the whole configuration of transitions, while

β =
h
β

(0)
1 , . . . , β

(P )
1 , · · · , β(0)

K , . . . , β
(P )
K

iT

denotes theK(P+1)-

length column vector of the regression coefficient parameters. An

equivalent matrix formulation of the observation model (2) is given

by

x = Z(η)β + ǫ, (3)

where Z(η) is a n ×K(P + 1) matrix of regressors whose entries

are the

Zi,(k−1)(P+1)+p+1 =
ˆ
πηk−1(ti) − πηk (ti)

˜
t
p
i , (4)

for all k ∈ {1 . . .K} and p ∈ {0 . . . P}. Note that the columns

of the matrix Z(η) represents the temporal evolution of the regres-

sors. An example of a configuration of transition functions, and the

corresponding regressors are depicted in Fig. 1.
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Fig. 1. Configuration of transition functions and matrix of regres-

sors Z(η) for K = 3 segments. (a) transition functions associated

with the two ruptures. (b) columns of the n × K(P + 1) matrix

of regressors Z(η) for a first order polynomial (P = 1) regression

analysis on each segment. The same color is used for the regressors

associated with the same segment k, while solid and dashed lines

corresponds to the zero (p = 0) and first (p = 1) order monomial

regressors respectively.

2.2. Constraint on the configuration of ruptures

Eq. (2) induces an additional assumption on the rupture configura-

tion. Indeed, for each segment [τk−1 τk], only the transition func-

tions associated with the (k − 1)th rupture τk−1 and the kth rupture

τk are taken into account. Thus, all the previous transition functions

must be close to 1 after τk−1, and all the next ones must be close to

0 before τk. More precisely, the following constraints are added


1 − πηk−2(τk−1) < ε

πηk+1(τk) < ε
∀k ∈ [2,K − 2], (5)

where ε is some very low threshold (basically, ε = 10−10).

2.3. Transition function choice and parameterization

A large number of transition function πη are possible, depending

on the application. In this paper, the following class of Kohlrausch

function [8] is considered

πη(t) =

(
1 − exp

ˆ
−
`
h(α) t−τ

λ
+ g(α)

´α˜
for t > τ − λ

g(α)
h(α)

0 for t < τ − λ
g(α)
h(α)

(6)

where

g(α) =

(
0 if 0 < α ≤ 1
`

α−1
α

´ 1
α if α > 1,

(7)

h(α) =

(
1
α
Γ( 1

α
) if 0 < α ≤ 1h

(α−1
α

)
1
α + 1

α
Γ( 1

α
)
`
1 − 2P ( 1

α
, α−1

α
)
´i

if α > 1.

(8)

with P (a, x) = 1
Γ(a)

R x

0
ta−1e−tdt being the incomplete gamma

function. Such a family of functions is able to describe a wide range

of shapes, from exponential to more symmetric functions such as

sigmoids. This specific parameterization ensures that τ and λ match

the following definitions :

τ = argmax
t

dπη

dt
(t), (9)

λ =

Z τ

−∞

πη(t)dt+

Z +∞

τ

[1 − πη(t)]dt. (10)

Finally, by introducing τ = (τ1, . . . , τK−1), λ = (λ1, . . . , λK−1)
and α = (α1, . . . , αK−1), the parameter vector associated with the

configuration of transitions is η = (τ ,λ,α), and the resulting vec-

tor of the model parameters is θ = (η,β,K, σ2).

2.4. Likelihood model

Based on eq. (3), the Gaussian assumption on the noise vector leads

to the following expression of the observation likelihood

L(x|θ) =
1

(2πσ2)n
e
− 1

2σ2 (x−Z(η)β)T (x−Z(η)β)
. (11)

When the number of segments K is given, the estimation of the pa-

rameters θ reduces to a classical non-linear least mean square prob-

lem. However, in the more general case where K is unknown, the

problem is obviously ill-posed. In fact, a direct optimization of (11)

w.r.t. θ leads to degenerated solutions with possibly as many pa-

rameters as observations. Following [2, 3], a hierarchical Bayesian

approach is proposed to regularize the problem thanks to a fully data-

driven criterion.

3. HIERARCHICAL BAYESIAN MODEL

In a Bayesian framework, the estimation problem is solved by as-

suming that θ is a random vector whose a priori distribution is

known. The same framework as in [9] is followed.

3.1. Parameter priors

A binomial distribution is chosen for the number of segments param-

eter K

f(K|µ) = µ
K(1 − µ)n−K

, (12)

where n is the number of samples, and µ is an hyperparameter. For

the parameters β and σ2, it is convenient to choose among the family

of conjugate prior distributions with respect to the likelihood (11).

The inverse gamma distribution for σ2 is

σ
2|(ν, ρ) ∼ IG(

ν

2
,
ρ

2
), (13)

where ρ is an hyperparameter, the inverse gamma shape parameter

ν being fixed to 2. The polynomial coefficients β are characterized

through the following conjugate multivariate Gaussian distribution

β|(η, σ2
, δ

2) ∼ N

„
0, δ

2
ρ
h
Z(η)T

Z(η)
i−1
«
. (14)

The main advantage of this parameterization is that the resulting pos-

terior distribution is now invariant to the choice of the polynomial

time basis. Moreover, the hyperparameter δ2 is then recognizable as

a signal to noise ratio since

δ
2 =

E[(Z(η)β)T (Z(η)β)]

nσ2
. (15)



Unfortunately, it is not possible to choose some conjugate distribu-

tions for the parameter vectors λ and α, as the dependence of the

likelihood from the parameters is non-standard. Since λ character-

izes the spreading times of the ruptures according to (10), a higher

bound λmax = tn − t0 is given. Then a truncated inverse-gamma

prior is chosen

λk|(ν
′
, ω) ∼ IG[0 λmax](

ν′

2
,
ω

2
) ∀0 < k < K, (16)

where the shape parameter ν′ is fixed to 2. Moreover, the values

of interest on the stretch exponential shape parameters αk can be

bounded such that αk < αmax. Thus, the prior for the parameter

αk is chosen to be uniform between 0 and αmax: αk ∼ U[0 αmax]

for all 0 < k < K. In this work, αmax is set to 20. Eventually the

hyperparameter vector is φ = {µ, ρ, δ2, ω}.

3.2. Hyperparameter priors

A second level of hierarchy is introduced on the hyperparameter

vector φ. It consists of considering some hyperpriors on these

hyperparameters. As no further information is available on these

hyperparameters, an uniform distribution is chosen for µ, while a

vague gamma prior is chosen for ω ∼ G (χ, ψ) (with χ = 1 and

scale parameter ψ = 100). For the parameter ρ, an improper non-

informative Jeffreys prior is introduced such that f(ρ) = 1
ρ
IR+(ρ).

The overall model is then a so called hierarchical Bayesian model.

Finally, a vague conjugate inverse-gamma distribution could be

chosen for δ2 such that δ2 ∼ IG(∆,Ξ). However, a given value

should be prefered in some cases. Indeed, according to equation

(15), δ2 is a signal-to-noise ratio and is then related to the recon-

struction error. Setting δ2 to a given value allows one to control

the signal fitting, preventing for example the emergence of too many

ruptures.

3.3. Joint posterior distribution

The posterior distribution of the parameters θ expresses as

f(θ|x) =

Z
f(θ,φ|x)dφ ∝

Z
L(x|θ)f(θ|φ)f(φ)dφ (17)

In the expression of the joint posterior distribution, the parameters µ,

σ2 and β can be integrated out, yielding the following expression:

f(η,K, ρ, δ2|x) ∝

„
e
−

∆
δ2

(δ2)Ξ+1

« 
QK−1
k=1

λ
−2
k

h

1
ψ

+
PK−1
k=1

1
2λk

i(χ+n−2)

!

×

 
Γ(K+1)Γ(n−1−K)(1+δ2)

−

K(P+1)
2

“

ρ
2
+ 1

2

h

x
T
x− δ2

1+δ2
(xTZ[ZTZ]−1ZT x)

i”n
2

+1

!
I∗(η),

(18)

where the indicator function I∗(η) is equal to 1 if αk ∈ [0αmax] and

λk ∈ [0λmax] for all 0 < k < K and if condition (5) is respected.

Closed-form expressions of the classical Bayesian estimators,

namely the maximum a posteriori (MAP) or the minimum mean

square error (MMSE), are not tractable from eq. (18). The approach

driven here is to use a Markov Chain Monte-Carlo (MCMC) algo-

rithm to generate samples from the posterior distribution (18). Bay-

sesian estimates can be then deduced from the empirical distribution

of the parameters. As the number of parameters of the model is not

given, a RJMCMC sampler is used.

4. REVERSIBLE-JUMP MCMC ALGORITHM

The RJMCMC algorithm, introduced in [7], is an extension of the

Metropolis-Hastings algorithm to the case where the number of vari-

ables is not given. In addition to the classical Metropolis-Hastings

moves for updating parameters values, changing-dimension moves

are proposed and accepted with arbitrary probabilities. In this paper,

the following moves are considered : 1) Birth or death of a rupture,

2) Update of the rupture parameters ηk, for all 1 < k < K − 1, 3)

Update of the hyperparameters φ.

To assess the probability of acceptance for the changing-

dimension moves, one must choose a probabilistic framework en-

compassing the whole model space. In this paper, a marked Poisson

point process framework is chosen [10]. The rupture position τ is

the point process, whereas (λ,α) are the associated marks. For each

rupture parameter, a reference probability density must be chosen.

A probability density l based on the discrete gradient of x is chosen

as a prior for the τk, 0 < k < K − 1. This density l represents the

intensity function of the marked Poisson point process. This specific

choice of reference density reflects the a priori knowledge that the

ruptures should coincide with high values of the gradient. This is

in agreement with the definition (9) of the parameter τ . In addition,

non-informative reference probability densities d(λ) = 1
λ

I[0 tn]

and m(α) = I[0 αmax](α) are chosen for the marks λ and α. Fi-

nally, the overall reference density for the parameter vector ηk is

Q(ηk) = l(τk)d(λk)m(αk).

4.1. Proposition distribution

To sample the λk, a method based on equation (10) is used. A sub-

set xs of the observation sequence x is extracted around τk and is

normalized to vary from 0 to 1. The following estimation of λ is

obtained

λ̂ =
1

ts

X

(t<τk)

(xs(t)) +
1

ts

X

(t>τk)

(1 − xs(t)) (19)

The proposition distribution d(λ|η) is then deduced as λ|x ∼

N (λ̂, s2), where s2 = var
h
xs − πτk,λ̂,αk

(t)
i
.

The rupture location τ and the rupture parameter λ are proposed

according to their reference densities l and d respectively. Finally,

the proposition distribution for the rupture parameters is P (η|η) =
l(τ)d(λ|η)m(α).

4.2. Birth/death moves

Let η(x) be the parameter vector associated to the current configu-

ration. In a birth move, a new marked point ηu = (τu, λu, αu) is

sampled according to the proposition distribution P (ηu|η
(x)). The

proposed new configuration is η(y) = η(x)S ηu, and the corre-

sponding acceptance rate R(η(x),η(y)) expresses as

R(η(x)
,η

(y)) =
f(η(y),K(y), ρ, δ2|x)

f(η(x),K(x), ρ, δ2|x)
pd(ηu|η

(y))
Q(ηu)

P (ηu|η(x))
,

where pd(ηu|η
(y)) is the probability for the rupture u to be se-

lected in the death move, when the current configuration is η(y):

pd(ηu|η
(y)) = 1

K(y)−1
.

In a death move, a rupture ηu to be suppressed is selected uni-

formly from the current configuration η(x). The proposed new con-

figuration is η(y) = η(x)\ηu and the acceptance rate becomes

R(η(x)
,η

(y)) =
f(η(y),K(y), ρ, δ2|x)

f(η(x),K(x), ρ, δ2|x)

1

pd(ηu|η(x))

P (ηu|η
(y))

Q(ηu)



4.3. Update of the rupture parameters

A rupture ηu is chosen uniformly among the current rupture con-

figuration η(x). This rupture is updated to ηv . The new configura-

tion becomes η(y) = η(x)\ηu

S
ηv . If ηv is sampled according to

P (ηv|η
(x)), then the acceptance rate is:

R(η(x)
,η

(y)) =
f(η(y),K(y), ρ, δ2|x)

f(η(x),K(x), ρ, δ2|x)

Q(ηv)

Q(ηu)

P (ηu|η
(x)\ηu)

P (ηv|η(y)\ηv)

4.4. Update of the hyperparameters

One can deduce from the joint posterior distribution the marginal

posterior distribution of each hyperparameter. Then the new values

of these hyperparameters are sampled from their true conditional

posterior, leading to an acceptance ratio equal to 1. These moves

correspond to the classical Gibbs moves.

5. APPLICATION ON ELECTRICAL TRANSIENT DATA

The algorithm introduced in this paper has been tested on modelling

electrical transient signals with a view to non-intrusive load mon-

itoring. In this context, electrical transients are analyzed to detect

the turned on appliances of an electrical network. The real-world

transients used in this work were provided by Electricité de France

(EDF), the French leading company for electricity distribution.

In this paper, an electrical transient due to a fridge turn on event

is considered. The transient envelope contains the information use-

ful for the classification task. Thus, the proposed MCMC algorithm

is applied to fit this envelope. A polynomial regression model of or-

der P = 0 is applied on each segment. It represents a regime with

a constant current consumption level. The following results are ob-

tained in two steps. First the RJMCMC algorithm was run with a

given value δ2 = 20, during 0.5× 104 iterations. This value reflects

the desired reconstruction error on the observed signal. Figure 2(e)

shows the resulting marginal posterior density of K. Then the same

algorithm was run again, but with K = bKmap = 4 (thus, without

birth/death moves), while δ2 was sampled according to his condi-

tional posterior distribution. During the second step 104 iterations

were performed. Fig. 2(b)-(c)-(d) show, for each rupture, the pos-

terior distributions for the transition parameters (αk, λk), while the

posterior distribution of the rupture locations τ , the observed time

series and the MMSE estimate bx = Z (bηmmse)
bβmmse of the observed

signal x are displayed on Fig. 2(a).

Although it slightly diverges from the observation around the

third rupture, one can see that the signal estimate bx provides an accu-

rate representation of the observed signal x and sparse as bx depends

on 13 parameters instead of initial 100 samples. The method pro-

posed in this paper has been used for 50 real-world transients with

similar results. The parameter estimates will be used in future works

as characteristic features of the transient for classification.

6. CONCLUSION

The development of a Bayesian framework for the joint estimation

of the number of segments and the parameters of the flexible smooth

transition regression model is the main contribution of this paper.

A RJMCMC algorithm is derived to fit a given time serie in a full

Bayesian framework. This method has been tested with promising

results on the envelope of real-world electrical transients in a non-

intrusive load monitoring context.
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[6] Faicel Chamroukhi, Allou Samé, Gérard Govaert, and Patrice Aknin, “Time series
modeling by a regression approach based on a latent process,” Neural Networks,
vol. 22, no. 5-6, pp. 593–602, 2009.

[7] Peter J. Green, “Reversible Jump Markov chain Monte Carlo computation and
Bayesian model determination,” Biometrika, vol. 52, pp. 711–732, 1995.

[8] Kohlrausch, “Theorie des elektrischen rückstandes in der leidener flasche,” Pogg.
Ann. Phys. Chem, vol. 91, pp. 179–214, 1854.

[9] Matthieu Sanquer, Florent Chatelain, Mabrouka El Guedri, and Nadine Martin,
“Bayesian curve fitting for transient signals by using smooth transition regression
models.,” in Conference on Condition Monitoring and Machinery Failure Preven-
tion Technologies. CM 2010 and MFPT 2010, Stratford-upon-Avon Royaume-
Uni, 06 2010.

[10] D.J Daley and D. Vera-Jones, An Introduction To The Theory Of Point Process,
Springer Series in Statistics, 2nd edition, 2003.


