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Abstract Phylogenetic networks have now joined phylogenetic trees in the
center of phylogenetics research. Like phylogenetic trees, such networks canon-
ically induce collections of phylogenetic trees, clusters, and triplets, respec-
tively. Thus it is not surprising that many network approaches aim to re-
construct a phylogenetic network from such collections. Related to the well-
studied perfect phylogeny problem, the following question is of fundamental
importance in this context: When does one of the above collections encode (i.e.
uniquely describe) the network that induces it? For the large class of level-1
(phylogenetic) networks we characterize those level-1 networks for which an
encoding in terms of one (or equivalently all) of the above collections exists.
In addition, we show that three known distance measures for comparing phy-
logenetic networks are in fact metrics on the resulting subclass and give the
diameter for two of them. Finally, we investigate the related concept of indis-
tinguishability and also show that many properties enjoyed by level-1 networks
are not satisfied by networks of higher level.
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1 Introduction

An improved understanding of the complex processes that drive evolution has
lent support to the idea that reticulate evolutionary events, such as lateral
gene transfer or hybridization, are more common than originally thought, ren-
dering a phylogenetic tree (essentially a rooted leaf labelled graph-theoretical
tree) too simplistic a model to fully understand the complex processes that
drive evolution. Reflecting this, phylogenetic networks have now joined phy-
logenetic trees in the center of phylogenetics research. Influenced by the di-
versity of questions posed by evolutionary biologists that can be addressed
with a phylogenetic network, various alternative definitions of these types of
networks have been developed over the years (see e. g. (Huson et al, 2011) for
a recent overview). These include split networks (Bryant and Moulton, 2004;
Bandelt et al, 1995; Holland et al, 2004) as well as ancestral recombination
graphs (Song and Hein, 2005), TOM networks (Willson, 2006), level-k net-
works1 with k a non-negative integer that in a some sense captures how com-
plex the network structure is, networks for studying the evolution of polyploid
organisms (Moulton and Huber, 2006), tree-child and tree-sibling networks
(Cardona et al, 2008), to name just a few.

Apart from split networks which aim to give an implicit model of evolution
and are not the focus of this paper, all other phylogenetic networks mentioned
above aim to provide an explicit model of evolution. Although slightly different
in detail, they are all based on the concept of a leaf-labelled rooted connected
directed acyclic graph (see the next section for a definition). For the conve-
nience of the reader, we depict an example of a phylogenetic network in the
form of a level-1 network in Fig. 1(a). Concerning these types of phylogenetic
networks, it should be noted that they are closely related to galled trees (Wang
et al, 2001; Gusfield et al, 2003) and that, in addition to constituting the first
layer of the hierarchy of level-k networks, they also give rise to a large subclass
of the class of tree-sibling networks (Arenas et al, 2008).

Due to the rich combinatorial structure of phylogenetic networks, different
combinatorial objects have been used to reconstruct them from biological data.

1 Note that these networks were originally introduced in Choy et al (2004), but the def-
inition commonly used now is slightly different with the main difference being that every
vertex of the network with indegree 2 must have outdegree 1 (see e.g. Jansson et al (2006)).
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(a) (b) (c)

Fig. 1 (a) A level-1 network N . (b) and (c) The phylogenetic trees that form the tree
system T (N).

For a set X of taxa (e.g. species or organisms), these include cluster systems of
X , that is, collections of non-empty subsets of X (Bandelt and Dress, 1989; Hu-
son and Rupp, 2008), triplet systems on X , that is, collections of phylogenetic
trees with just three leaves which are generally called (rooted) triplets (Jansson
and Sung, 2006; To and Habib, 2009), and tree systems, that is, collections of
phylogenetic trees which all have leaf set X (Semple, 2007). The underlying
rationale being that any phylogenetic network N induces a hardwired cluster
system C(N), a triplet system R(N) and a tree system T (N). Again we defer
the precise definitions to later sections of this paper, and remark that for the
level-1 network N with leaf set X = {a, b . . . , e} depicted in Fig. 1(a), the clus-
ter system C(N) is the set

⋃

x∈X{{x}} ∪ {{a, b}, {c, d}, {b, c, d}, Y, X}, where
Y = X − {e}, and the tree system T (N) consists of the phylogenetic trees
depicted in Fig. 1(b) and (c), respectively. Denoting a phylogenetic tree t on
x, y, z such that the root of t is the parent vertex of z and the parent vertex
of x and y by z|xy (or equivalently by xy|z) then the triplet system R(N)
consists of all triplets of the form e|xy with x, y ∈ Y distinct, plus the triplets
a|cd, b|cd, c|ab, a|bc, d|ab and a|bd.

Although undoubtedly highly relevant for phylogenetic network reconstruc-
tion, the following fundamental question has however remained largely unan-
swered so far (the main exception being the case where N is in fact a phylo-
genetic tree in which case this question is closely related to the well-studied
perfect phylogeny problem – see e.g. Grünewald and Huber (2007) for a recent
overview): When do the systems C(N), R(N), or T (N) induced by a phylo-
genetic network N encode N , that is, there is no other phylogenetic network
N ′ for which the corresponding systems for N and N ′ coincide?

Complementing the insights for when N is a phylogenetic tree alluded to
above, answers were recently provided for R(N) in case N is a very special
type of level-k network, k ≥ 2, (van Iersel et al, 2009b) and for T (N) for the
special case that N is a regular network (Willson, 2010). Undoubtedly these
are important first results. However, there are many types of phylogenetic net-
works which are encoded by the tree system they induce but which are not
regular. Similarly, there are many types of phylogenetic networks which are
encoded by the triplet system they induce but they do not belong to that
special class of level-k networks considered in van Iersel et al (2009b). An ex-
ample for both cases is the level-1 network depicted in Fig. 1(a) modified by
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subdividing the incoming arc of the parent of b by a new vertex v and then
adding an arc from v to a new labelled leaf. Although one might be tempted
to speculate that all level-1 networks enjoy this property, this is not the case
since the level-1 networks depicted in Fig. 1(a) and Fig. 3(b), respectively,
induce the same tree system and the same triplet system. The main result of
this paper shows that these observations are not a coincidence. More precisely,
in Theorem 1 we establish that a level-1 network N is encoded by the triplet
system R(N) (or equivalently by the tree system T (N) or equivalently the
softwired cluster system S(N) = S(T (N)) :=

⋃

T∈T (N) C(T ) which arises in

the context of the softwired interpretation of N (Huson and Rupp, 2008) and
contains C(N)) if and only if, when ignoring directions, N does not contain a
cycle of length 4. Consequently the number of non-isomorphic (see below) phy-
logenetic networks which all induce the same tree system as N (or equivalently
the same triplet system or the same cluster system S(N)) grows exponentially
in the number of cycles of N of length 4. Furthermore, Theorem 1 implies that
three known distance measures for phylogenetic networks are in fact metrics
on the resulting subclass of level-1 networks and for two of them we establish
their diameter on that class. It is of course highly tempting to speculate that
a similar characterization might hold for higher values of k. However as our
analysis of level-2 networks shows this is not the case. Moreover, we show that
it is possible for a level-2 network to be encoded by some of the above systems
without being encoded by the others.

The paper is organized as follows. In the next section, we present the
definition of a level-1 network plus surrounding and relevant terminology. In
Section 3, we present the definitions of the cluster system C(N) and the tree
system T (N) induced by a phylogenetic network N . This also completes the
definition of the cluster system S(N) given in the introduction. Subsequent
to this, we show that for any level-1 network N , the cluster systems S(N)
and C(N) are weak hierarchies (Proposition 1) which are well-known objects
in cluster analysis. In addition, we show that, in general, this property is not
enjoyed by level-k networks with k ≥ 2. In Section 4, we present the definition
of the triplet system R(N) induced by a phylogenetic network N . Subsequent
to this, we first investigate the system R(N) in case N is a structurally very
simple level-1 network and then establish that the triplet system induced by a
phylogenetic tree T is contained in the triplet system of a level-1 network N if
and only if T ∈ T (N) holds (Proposition 2). In Section 5, we prove our main
result (Theorem 1) and, in Section 6, we study the restriction of three known
distance measures to the resulting subclass of level-1 networks. In Section 7, we
turn our attention to higher level networks and show that an encoding of such
a network in terms of one of the above systems does not imply that it is also
encoded by the other systems (Proposition 5). In Section 8, we conclude with
some general remarks concerning the accurate reconstruction of phylogenetic
networks from triplets and phylogenetic trees in general and level-k networks
in particular.
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To ease the presentation of our results, in all figures the (unique) root of a
network is the top vertex and all arcs are directed downwards, away from the
root.

2 Basic terminology and results concerning level-1 networks

In this section we present the definitions of a phylogenetic network and of a
level-k network, k ≥ 0. In addition we also provide the basic and relevant
terminology surrounding these structures.

Suppose X is a non-empty finite set. For any directed graph G, we denote
the vertex set of G by V (G), the set of leaves of G (i. e. the vertices of G
with indegree 1 and outdegree 0) by L(G) and the set of arcs of G by A(G).
Furthermore, we put V −(G) := V (G)−L(G). The arcs in A(G) whose removal
disconnect G in the sense that for any two vertices in the resulting graph there
does not exist a (possibly undirected) path between them are called the cut-
arcs of G. A cut-arc of G that is incident with a leaf of G is called trivial
trivial.

A phylogenetic network N on X is a rooted directed acyclic graph (DAG)
that satisfies the following additional properties:

(P1) L(N) = X .
(P2) Exactly one vertex of N , called the root and denoted by ρN , has indegree

0 and outdegree 2.
(P3) All vertices of N that are not contained in L(N) ∪ {ρN} are either split

vertices, that is, have indegree 1 and outdegree 2 or reticulation vertices,
that is, have indegree 2 and outdegree 1.

The set of reticulation vertices of N is denoted by r(N). A phylogenetic net-
work N with r(N) = ∅ is called a (rooted) phylogenetic tree (on X). Two
phylogenetic networks N and N ′ which both have leaf set X are said to be
isomorphic if there exists a bijection from V (N) to V (N ′) which is the identity
on X and induces a graph isomorphism between N and N ′.

To present the definition of a level-k network, we need to introduce some
terminology concerning rooted DAGs first. Suppose G is a rooted connected
DAG with at least 2 vertices. Then we denote the graph obtained from G by
ignoring the directions on G by U(G). If H is a graph with at least 2 vertices
then we call H biconnected if H does not contain a vertex whose removal
disconnects it. A biconnected component of H is a maximal subgraph of H
that is biconnected. If G is a phylogenetic network and B is a rooted sub-
DAG such that U(B) is a biconnected component of U(G) then we call B a
block.
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Following Choy et al (2004), we call a phylogenetic network N a level-k
(phylogenetic) network for some non-negative integer k if each block of N con-
tains at most k reticulation vertices. The quantity k is sometimes referred to as
the level of N . Note that some authors define a level-1 network N to be a phy-
logenetic network without the above outdegree requirement on the elements
in r(N) (see e.g. Jansson and Sung (2006); Choy et al (2005)) or the above
indegree requirement on the elements in r(N) (see e. g.Rosselló and Valiente
(2009)). Also the requirement that each block contains at most k reticulation
vertices is sometimes replaced for level-1 networks by the requirement that the
cycles in U(N) are node disjoint (see e.g. Jansson et al (2006)). Although in
spirit capturing the same idea, the difference between these definitions is that,
according to Choy et al (2005), the structure depicted in Fig. 2 is a level-1 net-
work whereas according to van Iersel et al (2009a) it is not. See also Rosselló
and Valiente (2009) for more on this.

Fig. 2 Using the definition in Choy et al (2005) or in Jansson and Sung (2006), N is a
level-1 network. However, using the definition in Jansson et al (2006) or in van Iersel et al
(2009a), N is not a level-1 network. In fact, it is not even a phylogenetic network.

Regarding the definition of a level-k network sensu van Iersel et al (2009a),
it should be noted that the phylogenetic network depicted in Fig. 3(a) is a level-
1 network. However the alternative level-1 network N depicted in Fig. 3(b) is a
less parsimonious representation of the same biological information (expressed
in terms of the systems T (N), R(N), C(N), and S(N)) than the former in
the sense that the arcs in gray are redundant for displaying that information.
To avoid these types of level-1 networks which cannot be encoded by any of
the 4 systems of interest in this paper, we follow van Iersel et al (2009b) and
require that every block in a level-1 network which is not a cut-arc contains
at least 4 vertices.

(a) (b)

Fig. 3 The level-1 network N depicted in (a) induces and thus represents the same triplet
system R(N), cluster systems C(N) and S(N), and tree system T (N) as the level-1 network
N ′ presented in (b). However, N ′ is a less parsimonious representation of those 4 systems.
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For k = 1, 2, it was shown in van Iersel et al (2009a) (see also Jansson
and Sung (2006) for the case k = 1) that level-k networks can be built up by
chaining together structurally very simple level-k networks called simple level-
k networks (see also (Gambette et al, 2009) for more on this). More precisely, a
level-k network N , k ≥ 0, is called simple if every cut-arc of N is a trivial cut-
arc. For example, the network obtained by first contracting the outgoing arcs
of the root of the level-1 network N ′ depicted in Fig. 3(b) and then contracting
the incoming arcs of c and d (retaining the label c), is a simple level-1 network
on {a, b, c}.

From now on and unless stated otherwise, X is a non-empty finite set and
all phylogenetic networks have leaf set X .

3 The systems C(N), T (N), and S(N)

In this section, we introduce for a phylogenetic network N the associated
systems C(N), T (N), and S(N) already mentioned in the introduction. In
addition, we prove that in case N is a level-1 network the associated systems
C(N) and S(N) are weak hierarchies. We conclude with presenting an example
that shows that higher level networks do not enjoy this property in general.
We start with some definitions.

Suppose N is a phylogenetic network. Then we say that a vertex a ∈ V (N)
is below a vertex b ∈ V (N), denoted by a �N b, if there exists a path Pba

(possibly of length 0) from b to a. In this case, we also say that b is above a.
Every vertex v ∈ V (N) therefore induces a non-empty subset C(v) = CN (v) of
X which comprises of all leaves of N below v (see e.g. Semple and Steel (2003,
page 51)). We collect the subsets C(v) induced by the vertices v of N this way
in the set C(N), i.e. we put C(N) =

⋃

v∈V (N){C(v)}. For convenience, we refer

to any collection C of non-empty subsets of X as a cluster system (on X) and
to the elements of C as clusters of X . It should be noted that in case N is a
phylogenetic tree, the cluster system C(N) is a hierarchy (on X), that is, for
any two clusters C1, C2 ∈ C(N) we have that C1∩C2 ∈ {∅, C1, C2}. Hierarchies
are sometimes also called laminar families, and it is well-known that the cluster
systems C(T ) induced by a phylogenetic tree T uniquely determines that tree
(see e.g. Semple and Steel (2003, page 51)).

In the context of phylogenetic network construction, the concept of a weak
hierarchy (on X) was introduced in Bandelt and Dress (1989). These objects
are defined as follows. Suppose C is a cluster system on X . Then C is called a
weak hierarchy (on X) if

C1 ∩ C2 ∩ C3 ∈ {C1 ∩ C2, C2 ∩ C3, C1 ∩ C3}(1)
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holds for any three elements C1, C2, C3 ∈ C. Note that any hierarchy is in
particular a weak hierarchy and that any subset of a weak hierarchy is again
a weak hierarchy. Also note that weak hierarchies are well-known objects in
classical hypergraph and abstract convexity theory (Bandelt and Dress, 1989)
(see also the reference therein and Barthélémy et al (2004)), and that they
where originally introduced into cluster analysis as medinclus in Batbedat
(1988).

We will establish the main result of this section (Proposition 1) by showing
that the cluster system S(N) associated to a level-1 network N is a weak
hierarchy. To do this, we first need to complete the definition of the softwired
cluster system S(N) given in the introduction, which relies on the definition
of the system T (N). We will do this next.

Suppose N is a phylogenetic network. Then we say that a phylogenetic
tree T is displayed by N if the leaf set of T is X and T can be obtained from
N via a series of vertex deletions, arc deletions, and vertex suppressions (see
also (Huson et al, 2011)). For a vertex v the latter operation is defined as
deleting v plus its incoming and outgoing arcs a1 and a2, respectively, from N
and adding an arc from the tail of a1 to the head of a2. The set T (N) is then
the collection of all phylogenetic trees that are displayed by N . Note that in
addition to the cluster CN (v), a cluster system

SN (v) = {CT (v) : T ∈ T (N)}

can be associated to every vertex v ∈ V (N). Clearly, CN (v) ∈ SN (v) holds for
every v ∈ V (N) and S(N) =

⋃

v∈V (N) SN (v).

To link clusters of X with level-1 networks on X , we say that a cluster C on
X is level-1-consistent if there exists a level-1 network N such that C ∈ S(N).
More generally, we say that a cluster system C is level-1-consistent if there
exists a level-1 network N such that C ⊆ S(N) holds. Thus, the cluster system
S(N) associated to any level-1 network N is level-1-consistent.

Proposition 1 A level-1-consistent cluster system is a weak hierarchy. In
particular, the systems S(N) and C(N) associated to a level-1 network N are
weak hierarchies.

Proof: Suppose C is a level-1-consistent cluster system. Let N denote a level-1
network such that C ⊆ S(N). Since, as was remarked above, a subset of a
weak hierarchy is again a weak hierarchy, it clearly suffices to show that S(N)
is a weak hierarchy. To observe this, consider the phylogenetic tree T1 on X
obtained from N by randomly deleting for each reticulation vertex of N one of
its incoming arcs and suppressing any resulting degree 2 vertex. If this renders
the root ρN of N to have degree 1, identify ρN with its unique child. Construct
a phylogenetic tree T2 on X in a similar way but this time deleting for each
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reticulation vertex the other incoming arc. Clearly, S(N) = C(T1) ∪ C(T2).
Since C(Ti), i = 1, 2, is a hierarchy and the union of two hierarchies is a weak
hierarchy (Bandelt and Dress, 1989, page 149), the proposition follows.

In general the number of elements in a weak hierarchy on X is at most
(

|X|+1
2

)

(Bandelt and Dress, 1989). However Proposition 1 combined with
(Kanj et al, 2008, Lemma 6.8) trivially implies that for the special case of
level-1-consistent cluster systems this general bound for weak hierarchies can
be improved to a bound that is linear in |X |.

We remark in passing that a similarity measure DC : X × X → R can
be associated to any cluster system C of X by putting DC(a, b) = |{C ∈
C : a, b ∈ C}|, a, b ∈ X . Proposition 1 combined with the main result from
Bandelt and Dress (1989) implies that any level-1-consistent cluster system
C can be uniquely reconstructed from its associated similarity measure DC .
Using the well-known Farris transform (see e. g. Semple and Steel (2003, page
149), and Dress et al (2007) for a recent overview) a similarity measure can
be canonically transformed into a distance measure DC on X . For a set Y
such a measure is defined as a map from Y × Y into the non-negative reals
that is symmetric, satisfies the triangle inequality, and vanishes on the main
diagonal. Distance measures were investigated in Chan et al (2006) from an
algorithmical point of view in the context of representing them in terms of an
ultrametric level-1 network. These networks are generalizations of ultrametric
phylogenetic trees in the sense that every path from the root of the network
to any of its leaves is of the same length.

We conclude this section with remarking that as the example of the level-2
network N presented in Fig. 4 shows, the result analogous to Proposition 1 does
not hold for level-2 networks in general since {{a, b, c}, {a, b, d}, {b, c, d}} ⊆
S(N) and {a, b, c} ∩ {a, b, d} ∩ {b, c, d} = {b} but the intersection of any 2 of
the participating 3-sets is of size 2.

Fig. 4 A level-2 network N for which S(N) is not a weak hierarchy.
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4 Triplet systems induced by simple level-1 networks and by
cluster systems

In this section, we turn our attention to triplet system induced by simple level-
1 networks and also by cluster systems. In particular, we establish a property
of these networks (Lemma 1) which, with regards to the encoding problem for
level-1 networks, has turned out to be fundamental. Furthermore we show that
a triplet system induced by a phylogenetic tree T is contained in the triplet
system induced by a level-1 network N if and only if T is displayed by N
(Proposition 2). Along the way, we establish various relationships between the
triplet system, the softwired cluster system and the tree system induced by a
level-1 network. We start with presenting the definition of the triplet system
R(N) induced by a phylogenetic network N .

For a phylogenetic network N , we say that a triplet x|yz is consistent
with N if x, y, z ∈ X and there exist two vertices u, v ∈ V (N) and pairwise
internally vertex-disjoint paths in N from u to y, u to z, v to u and v to x. Note
that a triplet system R is called consistent with a phylogenetic network N if
every triplet in R is consistent with N . For convenience, we will sometimes
say that a phylogenetic network N is consistent with a triplet t (or a triplet
system R) if t (or R) is consistent with N . The set of all triplets consistent
with a phylogenetic network N is denoted by R(N), and we say that N reflects
a triplet system R if R = R(N). For example and ignoring the arc labels for
the moment, each of the three simple level-1 networks Li(R) on X = {a, b, c},
i ∈ X , depicted in Fig. 5 reflects the triplet system R = {a|bc, c|ab}.

La(R) Lb(R) Lc(R)

Fig. 5 Ignoring the arc labels for the moment, the three non-isomorphic simple level-1
networks on {a, b, c} that all reflect the triplet system R = {a|bc, c|ab}.

Now suppose that N is one of the simple level-1 networks Li(R), i ∈ X =
{a, b, c}, on X depicted in Fig. 5. Assume that d 6∈ X and let e = uv ∈ A(N)
denote a non-cut arc of N , that is, e is not a cut arc of N . Then we denote
by Ne ⊕ d the level-1 network obtained from N by adding a new vertex w to
V (N) ∪ {d} and replacing e by the arcs uw, wv, and wd. If the knowledge of
e is of no relevance, then we will write N ⊕ d rather than Ne ⊕ d.
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The next result is fundamental to the proof of our main result (Theorem 1)
as it assures us that although all three simple level-1 networks depicted in
Fig. 5 reflect the same triplet system, this property is lost when attaching an
additional leaf to a non-cut arc of each of them.

Lemma 1 Suppose X = {a, b, c, d} and R = {a|bc, c|ab}. Then, the triplet
systems

R(La(R) ⊕ d), R(Lb(R) ⊕ d), and R(Lc(R) ⊕ d).

are all distinct.

Proof: For each of the simple level-1 networks Lx(R), x ∈ {a, b, c}, consider
the arc labeling indicated in Fig. 5. With r := a|bc and r′ := c|ab, we detail
the triplet systems induced by the simple level-1 networks obtained from them
by attaching a new leaf d in Table 1. Since no two of those systems are the
same, the lemma follows.

simple level-1 network replaced arc induced triplet system
La(R) x {r, r′, a|bd, a|cd, d|ab, d|ac, d|bc}

y {r, r′, a|bd, a|cd, c|ad, c|bd, d|ab}
z {r, r′, a|bd, a|cd, b|ad, c|ad, c|bd}
t {r, r′, b|ad, c|ad, d|ab, d|ac, d|bc}

Lb(R) x {r, r′, b|ad, c|ad, c|bd, d|ab, d|bc}
y {r, r′, a|bd, a|cd, b|cd, d|ab, d|bc}
z {r, r′, a|bd, b|ad, c|ad, c|bd, d|bc}
t {r, r′, a|bd, a|cd, b|cd, c|bd, d|ab}

Lc(R) x {r, r′, c|ad, c|bd, d|ab, d|ac, d|bc}
y {r, r′, a|bd, a|cd, c|ad, c|bd, d|bc}
z {r, r′, a|bd, a|cd, b|cd, c|ad, c|bd}
t {r, r′, a|cd, b|cd, d|ab, d|ac, d|bc}

Table 1 The triplet system induced by attaching a new leaf to one of the non-cut arcs of
the simple level-1 networks depicted in Fig. 5.

Turning our attention to cluster systems of X , note that any cluster C ( X
induces a triplet system

R(C) = {c1c2|x : c1, c2 ∈ C distinct and x ∈ X − C}

on X . Thus, any non-empty cluster system C on X induces the triplet system
R(C) :=

⋃

C∈C−{X} R(C) on X . Note that R(C) is dense on X , where a triplet
system R on X is called dense if for any three distinct elements a, b, c ∈ X
there exists a triplet t ∈ R such that L(t) = {a, b, c}.

The next result is central for establishing the main result of this section
(Proposition 2).
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Lemma 2 Suppose N is a level-k network, k ≥ 0, with at least 3 leaves. Then
the following holds

(i) If t ∈ R(N) then there exists a phylogenetic tree T ∈ T (N) with t ∈ R(T ).
(ii) R(N) =

⋃

T∈T (N) R(T ) =
⋃

C∈S(N) R(C).

Proof: (i) Suppose t ∈ R(N) and assume that x1, x2, x3 ∈ X with t = x1x2|x3.
Then there exist distinct vertices u, v ∈ V (N) such that among the paths from
u to x1, u to x2, v to u and v to x3 no two of them share an interior vertex. Then
the phylogenetic tree obtained from N by deleting, for any vertex v ∈ r(N),
one of the incoming arcs as specified below and suppressing the resulting degree
two vertex is clearly contained in T (N) and t ∈ R(T ) holds. If v is a vertex
on one of the four paths above, call it P , then delete that incoming arc of v
that is not also an arc on P . Otherwise, delete one of the two incoming arcs
of v making sure that the resulting graph is a phylogenetic tree on X .

(ii) Clearly
⋃

T∈T (N) R(T ) =
⋃

T∈T (N)

⋃

C∈S(T ) R(C) =
⋃

C∈S(N) R(C)

holds and it is straightforward to see that
⋃

T∈T (N) R(T ) ⊆ R(N). The con-

verse set inclusion follows from (i).

To establish Proposition 2, we require some more terminology. Suppose R
is a triplet system on X and C is a cluster system on X . Then we associate to
R the cluster system

S(R) = {C ( X : x1, x2 ∈ C distinct and x3 ∈ X − C implies x1x2|x3 ∈ R}

on X and to C the tree system

T (C) = {T ∈ T (X) : C(T ) ⊆ C}

on X where T (X) denotes the space of all phylogenetic trees on X .

Next, suppose that N is a phylogenetic network and that a, b, c ∈ V (N) are
vertices of N with a �N b and c �N b. Then we call b a common ancestor of a
and c. A lowest common ancestor lcaN(a, c) of a and c is a common ancestor
of a and c and no other vertex below lcaN(a, c) is a common ancestor of a and
c. Note that in a level-0 or level-1 network N , the lowest common ancestor
between any two distinct leaves of N is always unique whereas this need not
be the case for level-k networks with larger k. More generally, suppose C is
cluster of X . Then a vertex v ∈ V (N) is called a lowest common ancestor of C
if v is a common ancestor of every pair of elements in C and no other vertex in
N below v satisfies this property. In view of the fact that this vertex is again
unique in a level-1 network we will denote it by lcaN(C).

Proposition 2 Suppose N is a level-k network, k ≥ 0, with at least 3 leaves.
Then S(N) ⊆ S(R(N)) and T (N) ⊆ T (S(N)). Moreover, if k ≤ 1 we have
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(i) S(N) = S(R(N)).
(ii) T (N) = T (S(N)).
(iii) A phylogenetic tree T is displayed by a level-k network N if and only if

R(T ) ⊆ R(N).

Proof: Suppose C ∈ S(N). Then x1x2|x3 ∈ R(C) holds for any two dis-
tinct elements x1, x2 ∈ C and any x3 ∈ X − C. By Lemma 2, x1x2|x3 ∈
⋃

C′∈S(N) R(C′) ⊆ R(N) and so C ∈ S(R(N)), as required. That T (N) ⊆

T (S(N)) holds is trivial.

Assume for the remainder of the proof that k ≤ 1. Clearly (i) – (iii) hold
in case k = 0. So assume k = 1.

(i) Suppose C ∈ S(R(N)). Then C 6= X and there exist distinct elements
a, b ∈ C such that lcaN(C) = lcaN(a, b). Let x ∈ X − C. Then since C ∈
S(R(N)), we have ab|x ∈ R(N). By Lemma 2(i) there exists a phylogenetic
tree T ∈ T (N) with ab|x ∈ R(N). Since lcaN(C) = lcaN(a, b) ∈ V (T ) it
follows that C ∈ C(T ) ⊆ S(N).

(ii) Suppose T ∈ T (S(N)). For all v ∈ V (N) put EN (v) = {w ∈ V (N) :
CN (v) = CN (w)}. Note that |EN (v)| = 2 if and only if v is a reticulation
vertex of N or the unique child of such a vertex of N and that |EN (v)| = 1
holds otherwise. Consider the map φ : V (T ) → V (N) that maps every vertex
v ∈ V (T ) to a vertex wv := φ(v) in V (N) such that C(v) = C(wv) and every
element w ∈ EN (wv) distinct from wv lies on a path from the root ρN of N to
wv. By the definition of T (S(N)) it follows that φ is well-defined. Moreover,
φ is clearly injective. In fact, since wv is never a reticulation vertex of N ,
the map φ induces a bijection between the vertices of T and the vertex set
V (N) − r(N).

Let x, y ∈ V (T ) such that xy is an arc in T and φ(x) and φ(y) are joined
in N by a path Pxy of length 2. Then the interior vertex rxy of Pxy must
be a reticulation vertex of N and every reticulation vertex of N must be the
interior vertex of such a path. Let arxy

denote that incoming arc of rxy whose
tail is x. Then deleting for all reticulation vertices r of N the incoming arc
distinct from ar (suppressing any resulting degree 2 vertices) results in a tree
T ′ ∈ T (N) that is isomorphic with T (in fact T ′ is T ).

(iii) That R(T ) ⊆ R(N) holds whenever a phylogenetic tree T is dis-
played by a level-1 network N follows from Lemma 2(ii). Conversely, suppose
T is a phylogenetic tree with R(T ) ⊆ R(N). By (i) and (ii) it suffices to
show that T ∈ T (S(R(N))). Thus, we need to show that C(T ) ⊆ S(R(N)).
So suppose C ∈ C(T ) and let x1, x2 ∈ C distinct, and x3 ∈ X − C. Then
x1x2|x3 ∈ R(T ) ⊆ R(N). Hence, C ∈ S(R(N)).
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Note that as the example of the level-2 network depicted in Fig. 6 shows,
the analogous relationships (i. e. Proposition 2(i) and (iii)) do not hold in
general for the corresponding systems.

Fig. 6 A level-2 network N with bc|d, bc|a ∈ R(N) but {b, c} 6∈ S(N) and so S(R(N)) 6=
S(N). A phylogenetic tree T with C(T ) ⊆ S(N) and R(T ) ⊆ R(N) but T 6∈ T (N). For ease
of verification, we have labelled an arc by the softwired cluster(s) its head induces and also
write xyz for a cluster {x, y, z}.

5 Encodings of level-1 networks

In this section, we characterize those level-1 networks N that are encoded by
the triplet system R(N), or equivalently the tree system T (N), or equivalently
the cluster system S(N) they induce (Theorem 1). Note in this context that
the cluster system C(N) induced by a level-1 network N is in general not an
encoding of N . To see this, consider for example a simple level-1 network N
with n ≥ 3 leaves such that the parent of each leaf lies on the same path from
the root ρN of N to its reticulation vertex hN . Then ρNhN is an arc of N and
C(N) = C(T ) holds for the phylogenetic tree T ∈ T (N) obtained via deleting
the arc ρNhN from N and identifying ρN with its unique child.

Bearing in mind that there exist triplet systems which can be reflected by
more than one level-1 network, we denote the collection of all level-1 networks
that reflect a triplet system R by L1(R). Clearly, if R is reflected by a level-1
network N then N ∈ L1(R(N)) and so |L1(R(N))| ≥ 1. Similarly, we denote
for a tree system T the collection of all level-1 networks N for which T = T (N)
holds by L1(T ), and for a cluster system C the collection of all level-1 networks
N for which C = S(N) holds by L1(C). As in the case of triplet systems, there
exist tree systems T and cluster systems C with |L1(T )| > 1 and |L1(C)| > 1,
respectively.

The next lemma serves as a stepping stone in the proof of Theorem 1 and is
concerned with analyzing level-1 networks N that have a large enough leaved
block B, that is, B is a block of N and every arc that starts at a vertex in B
ends either in a vertex of B or a leaf of N . Calling those leaves of N also the
leaves of B, we remark that a leaved block is a simple level-1 network on its
set of leaves.
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To present the proof of the lemma, we require some more notation and
definitions. Suppose N is a phylogenetic network with at least 3 leaves. Then
we call a subset {x, y} ⊆ X a cherry of N if there exists a vertex v ∈ V (N) such
that vx, vy ∈ A(N). Now suppose N is a level-1 network and x is either (i) a
leaf of a leaved block B of N that is adjacent with a parent of the reticulation
vertex of B or (ii) a leaf in a cherry of N . Then we denote by N −x the level-1
network obtained from N by removing x and, in case of (i), its parent y and all
their incident arcs and, in case of (ii), its incident arc, both times suppressing
resulting degree 2 vertices and, if the roof of N has been rendered a degree 1
vertex, identifying it with its unique child. Also, we say that N is a strict level-
1 network if N is not a phylogenetic tree and associate to a triplet system R
and some x ∈

⋃

t∈R L(t), the triplet system Rx := {t ∈ R : x 6∈ L(t)}. Recall
that for a directed graph G, we put V −(G) = V (G) − L(G).

Obviously, a level-1 network N that has a leaved block B with at least
5 non-leaf vertices must have at least 4 leaves. Also one of the two distinct
parent vertices y′

1, y
′
2 ∈ V (B) of the reticulation vertex p′ of B could be the

root ρ = ρB of B. Note however that y′
i is adjacent with a leaf of B whenever

y′
i 6= ρ, i = 1, 2. We denote that leaf by yi. Also note that since |V −(B)| ≥ 5,

at least one of the paths Pρy′

i
from ρ to y′

i, i = 1, 2, must contain a vertex
y′ distinct from ρ and yi. Let y denote the leaf of B adjacent with y′. Note
that without loss of generality we may assume that i = 1 and that y′ is the
predecessor of y′

1 on the path Pρy′

1
. Let p denote the leaf of B adjacent with

p′. We depict the two possible configurations for B for the case |V −(B)| = 5
in Fig. 7.

(a) (b)

Fig. 7 The two possible configurations for B in case |V −(B)| = 5 (see text for details).

Lemma 3 Suppose N is a level-1 network with at least 3 leaves such that, in
addition to every block having at least 5 vertices, N also has a leaved block.
Then |L1(R(N))| = 1.

Proof: We prove the lemma by induction on the number n of leaves of N .
Suppose that B is a leaved block of N and assume that the notations and
assumptions made above for a leaved block of a level-1 network apply to B.
To see the base case of the induction assume that n = 4. Then B must equal N
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and that |L1(R(N))| = 1 holds is a straightforward consequence of Lemma 1.
To establish the induction step, assume that the induction hypothesis holds
for all level-1 networks on n − 1 leaves, as specified in the statement of the
lemma. We distinguish the cases that |V −(B)| > 5 and that |V −(B)| = 5.

Suppose first that |V −(B)| = 5. Then either ρ = y′
2 and so B has, in

addition to the leaves y1, y, p, precisely one more leaf z, or ρ 6= y′
2 and the

leaves of B are y1, y2, y and p (cf Fig. 7). We only consider the case ρ 6= y′
2 since

the arguments for the case ρ = y′
2 are similar. Then B − y1 is a phylogenetic

tree on the leaves y, p, y2, i.e. the triplet t := y|py2. Put t′ = y2|py ∈ R(N)
and Rt′ := Ry1

− t′. Since N − y1 is either a phylogenetic tree or a strict level-
1 network such that each of its blocks has at least 5 vertices, the induction
hypothesis implies |L1(R(N − y1))| = 1. Thus, N − y1 is the unique level-1
network that reflects Rt′ . Note that the only way to turn N − y1 into a level-
1 network that, in addition to reflecting Rt′ , is also consistent with t′ is to
replace t by one of the 3 level-1 networks depicted in Fig. 5 with y playing the
role of a, p playing the role of b and y2 playing the role of c. If with R = {t, t′}
we had that that simple level-1 network B′ were the network Lc(R) then the
triplet p|y1y would not be contained in R(N) which is impossible. Also since
{p|yy1, y1|py2, y|py1} ⊆ R(N) it is impossible for B′ to be the network La(R).
Consequently B′ must be the network Lb(R). Since y1|py, y|py1, and y2|y1p
are triplets in R(N), Lemma 1 implies that the only way to transform N − y1

into a level-1 network that in addition to including y1 in its leaf set also reflects
R(N) is to subdivide the arc y2p of B′ by a vertex v and adding the arc vy1

to the arc set of N − y1. But that network is N and so |L1(R(N))| = 1 must
hold.

Now assume that |V −(B)| > 5 holds. Let N⊖y1 denote the level-1 network
obtained from N by adding an arc from the tail of the incoming arc a of y′

1 to
p′ and deleting y1, y′

1 and the arcs y′
1y1, y′

1p
′ and a. Then since every block in

the level-1 network N⊖y1 clearly has at least 5 vertices, the induction hypoth-
esis implies |L1(R(N ⊖ y1))| = 1. Combined with the fact that y|y1p, y1p|y2

and y1|py2 are triplets in R(N) it follows that |L1(R(N))| = 1 in case ρ 6= y′
2.

If ρ = y′
2 then |L1(R(N))| = 1 follows from the fact that y|y1p, p|yy1 ∈ R(N).

We are now ready to prove our main result.

Theorem 1 Suppose N is a level-1 network with at least 3 leaves. Then the
following statements are equivalent

(i) N has a block with four vertices.
(ii) |L1(R(N))| > 1.
(iii) |L1(S(N))| > 1.
(iv) |L1(T (N))| > 1.
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Proof: (i) ⇒ (iv): This is an immediate consequence of the fact that all simple
level-1 networks depicted in Fig. 5 induce the same set of phylogenetic trees.

(iv) ⇒ (iii): Suppose that N is a level-1 network with |L1(T (N))| > 1. Then
there exists a level-1 network N ′ ∈ L1(T (N)) distinct from N with T (N) =
T (N ′). But then S(N) =

⋃

T∈T (N) C(T ) =
⋃

T∈T (N ′) C(T ) = S(N ′) and so

N ′ ∈ L1(S(N)). Thus, |L1(S(N))| > 1.

(iii) ⇒ (ii): Suppose that N is a level-1 network with |L1(S(N))| > 1. Then
there exists a level-1 network N ′ ∈ L1(S(N)) distinct from N such that
S(N) = S(N ′). But then Lemma 2(ii) implies

R(N) =
⋃

C∈S(N)

R(C) =
⋃

C∈S(N ′)

R(C) = R(N ′)

and so N ′ ∈ L1(R(N)). Hence, |L1(R(N))| > 1.

(ii) ⇒ (i) We will show by induction on the number n of leaves of N that if
every block in N has at least 5 vertices then |L1(R(N))| = 1. Suppose N is a
level-1 network with n leaves such that every block of N has at least 5 vertices.
Note that we may assume that N has at least one such block since otherwise
N is a phylogenetic tree and so |L1(R(N))| = 1 clearly holds. But then n ≥ 4.
If n = 4 then |L1(R(N))| = 1 is a straightforward consequence of Lemma 1.

Suppose n > 4. Assume for every level-1 network N0 with n0 < n leaves
that |L1(R(N0))| = 1 holds whenever N0 is a phylogenetic tree or every block
in N0 has at least 5 vertices. We distinguish the cases that N has a cherry
and that it does not. Clearly, if N does not have a cherry then it must have a
leaved block and so |L1(R(N))| = 1 follows by Lemma 3.

Now suppose that N has a cherry {x, y} ⊆ X and assume for contradiction
that there exists a level-1 network N ′ in L1(R(N)) distinct from N . Without
loss of generality, we may assume that this cherry is as far away from the root
of N as possible. Then since N is a strict level-1 network all of whose blocks
have at least 5 vertices, N − x must enjoy the same property with regards
to its blocks. But then, by induction hypothesis, |L1(R(N − x))| = 1 and so
N − x is the unique level-1 network that reflects R(N − x) = Rx. Since by
the choice of x, for every leaf z in N distinct from x and y, only the triplet
z|xy out of the 3 possible triplets on {x, y, z} is contained in R(N) = R(N ′),
it follows that {x, y} must also be a cherry in N ′. But then N = N ′ which is
impossible. Thus, |L1(R(N))| = 1 must hold in this case too which completes
the proof of the theorem.

Note that the implication (ii) ⇒ (i) in the proof of Theorem 1 can also
be obtained using an alternative 2-phase strategy that is based on so called
SN-sets which were originally introduced in Jansson and Sung (2006). For any
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triplet system R on X and any subset Y ⊆ X , the SN-set associated to Y is
recursively defined as SN(Y ) = SN(Y ∪ {c}) if there exists some y, y′ ∈ Y
distinct and some c ∈ X −Y such that yc|y′ ∈ R, and SN(Y ) = Y otherwise.
In Jansson and Sung (2006), it was shown that in case R is dense, a rooted leaf-
labelled tree can be associated to the set ΣR of strongly connected components
of a certain graph GR that can be associated to the SN-sets of X of the form
SN({a, b}) with a, b ∈ X distinct. This tree is sometimes called the SN-tree
TR associated to R and is used in (Jansson and Sung, 2006) to compute a
level-1 network from such a triplet system in O(|X |3) time. Then the first step
of the alternative strategy consists of establishing that the edge set of TR(N)

is in bijective correspondence with the set of cut arcs of any level-1 network
N ′ with R(N ′) = R(N). Ignoring the blocks of N for the moment by viewing
each one of them as being collapsed into a single vertex this implies that the
structure of N is uniquely determined by R(N). The second and final step
is concerned with establishing the structure of the blocks of N . But this is
a consequence of Lemma 1 since by collapsing for each vertex v of a block
of N the set of vertices of N that are reachable from v by crossing the cut
arc of N incident with v into a single vertex, and making the corresponding
adjustments to the triplet system R(N), the block becomes a simple level-1
network and the triplet system a triplet system on the leaf set of that block.

Theorem 1 immediately implies the following corollary about the number
of networks that reflect R(N).

Corollary 1 Let N be a level-1 network with at least 3 leaves. Then the num-
ber of non-isomorphic level-1 networks N ′ that reflect R(N) (or equivalently
for which T (N) = T (N ′) or equivalently S(N) = S(N ′) holds) is 3b, where b
is the number of blocks of N that have 4 vertices.

Returning to the problem of encodings of level-1 networks, we remark that
phylogenetic trees on X can also be viewed as trees together with a bijective
labelling map between X and the leaf set of such trees. Taking this point
of view, phylogenetic trees were generalized in Moulton and Huber (2006) to
MUL-trees by allowing two or more leaves of such a tree to have the same label.
Note that in Fellows et al (2003) such trees are called rl-trees. For example, the
tree obtained from the phylogenetic tree depicted in Fig. 1(c) by replacing the
leaf labelled a by the cherry labelled {a, b} is such a tree. In fact, this MUL-
tree is the MUL-tree induced by the level-1 network N depicted in Fig. 3(b)
i. e. it contains all paths from the root of N to all leaves of N . For a level-1
network N it is easily seen that the MUL-tree M(N) induced by N this way
is in fact an encoding of N in the sense that N is the unique level-1 network
that can give rise to M(N).
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6 Metrics

The problem of comparing phylogenetic networks has recently received a con-
siderable amount of attention in the literature resulting in e.g. the definition of
metrics for so called time consistent tree child and time consistent tree sibling
networks see e.g. (Cardona et al, 2009a,b) and also (Huson et al, 2011) for
a recent overview). Denoting the class of all phylogenetic networks on X by
N , and the subclass of all level-1 network on X which do not contain a block
with 4 vertices by C−

1 , we carry this theme further by establishing in this sec-
tion that 3 distance measures that were originally introduced in (Huson et al,
2011) are in fact metrics on C−

1 . In addition we present the diameter of two of
them on that subclass. Before we start, we remark that since level-1 networks
contained in C−

1 are allowed to contain blocks B that contain an arc from the
root of B to the reticulation vertex of B, the class C−

1 is different from the
class of time consistent tree-child or time-consistent tree-sibling networks.

To start, recall that a distance measure D on N is called a metric if the
following property is satisfied for all networks N1, N2 ∈ N :

D(N1, N2) = 0 if and only if N1 and N2 are isomorphic.(2)

Note that Property 2 is called the separation property in (Cardona et al,
2009a,b). Also note that a distance measure is sometimes called a metric and
a distance measure that satisfies Property 2 a proper metric.

Two types of distance measures for phylogenetic networks that have their
origin in the problem of comparing phylogenetics trees are the triplet distance
Dtri and the Robinson-Foulds distance DRF . For T1 and T2 two phylogenetic
trees (i.e. level-0 networks) the former is defined as

Dtri(T1, T2) = |R(T1)∆R(T2)|/2

and the latter as
DRF (T1, T2) = |S(T1)∆S(T2)|/2.

where for any two set A and B the symmetric difference between A and B is
denoted by A∆B. Note however that both distance measures are different from
the Robinson Foulds distance and the triplet distance introduced in (Cardona
et al, 2009a) and (Cardona et al, 2009b), respectively. Also note that both can
be canonically extended to obtain distance measures Dtri and DRF on N by
replacing T1 and T2 by phylogenetic networks N1 and N2, respectively.

Complementing the above two distance measures, a further distance mea-
sure Dtree on N was introduced in Huson et al (2011). For two phylogenetic
networks N1 and N2 in N , this distance measure is defined as

Dtree(N1, N2) = |T (N1)∆T (N2)|/2.

In view of Theorem 1, we immediately obtain
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Corollary 2 The distance measures Dtri, DRF and Dtree are metrics on C−
1 .

To better understand the range of values a metric D on N (or a subclass
C of N ) can attain, the diameter diam(D, C) of D is sometimes used which is
defined as

diam(D, C) := max{D(N1, N2) : N1, N2 ∈ C}.

To establish our main result of this section (Theorem 2), we first introduce
a leaf-labelled rooted DAG that is central for establishing diam(DRF , C−

1 ).
Let G(n) = (G(n), φ) denote the leaf-labelled graph on n := |X | ≥ 3 leaves
with φ : X → L(G(n)) a bijective map and G(n) a rooted DAG that satisfies
the following property: In addition to enjoying Properties (P2) and (P3) (and
thus also (P1) once we have identified X with L(G(n))), G(n) consists of
precisely one leaved block on n leaves that has an arc joining its root and
its reticulation vertex. Note that once the aforementioned identification has
been carried out, G(n) is clearly a level-1 network. Also note that the networks
La(R) and Lc(R) on X = {a, b, c} depicted in Fig. 5 are examples of G(3). For
clarity of our arguments and in case the knowledge of the leaf-labelling map φ
is of no relevance, we omit it from our discussion. In this case we simply view
G(n) as a level-1 network.

Concerning S(G(n)), we remark that a phylogenetic tree T with n ≥ 3
leaves is known to have 2n−1 vertices and thus induces 2n−1 distinct clusters.
Since |T (G(n))| = 2 and the two trees contained in T (G(n)) only have n + 1
clusters in common (i.e. X and its singletons) it follows that |S(G(n))| = 3n−3.
Moreover, the following result holds.

Proposition 3 Suppose N is a level-1 network with n ≥ 3 leaves. Then

|S(N)| ≤ |S(G(n))| = 3n − 3

Proof: We prove the proposition by induction on n. Clearly the stated inequal-
ity holds for n = 3. So assume that it holds up to and including some n ≥ 3
and let N be a level-1 network on n + 1 leaves. We distinguish the cases that
N has a cherry (i) and that N does not have a cherry (ii).

(i): Suppose {x, y} is a cherry of N . Then deleting x plus its incident arc
(suppressing the resulting degree 2 vertex) results in a level-1 network N− on
n leaves. Clearly |S(N)| = |S(N−)| + 2 and so, by induction hypothesis,

|S(N)| = |S(N−)|+2 ≤ |S(G(n))|+2 = 3n−3+2 ≤ 3(n+1)−3 = |S(G(n+1))|

(ii): Since N does not have a cherry it must contain a leaved block B
with |V (B)| ≥ 4. Consider first the case that |V (B)| ≥ 5. Let x be a leaf
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of N that is adjacent to a vertex of B that is not the reticulation vertex
hB of B. Then deletion of x plus its incident arc (suppressing the resulting
degree 2 vertex in B) results in a level-1 network N− on n leaves. Clearly
|S(N)| = |S(N−)| + 3. Arguments similar to the ones used in Case (i) imply
that |S(N)| ≤ |S(G(n + 1))|.

Finally assume that |V (B)| = 4. Let x be the leaf of N that is adjacent
with hB. Then deleting x and hB plus their incident arcs (suppressing result-
ing degree 2 vertices in B) results again in a level-1 network N− on n leaves.
Note that |S(N)| = |S(N−)| + 3 again holds. Proceeding as in the case that
|V (B)| ≥ 5 yields |S(N)| ≤ |S(G(n + 1))|.

We next introduce a leaf-labelled DAG that has turned out to be central
for establishing the diameter of Dtree. Let G′(n) = (G′(n), φ′) denote the leaf-
labelled graph on n := |X | ≥ 4 leaves with φ′ : X → L(G′(n)) a bijective map
and G′(n) a rooted DAG that satisfies the following property: In addition to
enjoying Properties (P2) and (P3) (and thus also (P1) once we have identified
X with L(G′(n))), G′(n) consists of l := ⌊n−1

3 ⌋ blocks Bi, 1 ≤ i ≤ l, with
|V (Bi)| = 5 and an arc joining the root ρi of Bi with its reticulation vertex hi

and hiρi+1 ∈ A(G′(n)), 1 ≤ i ≤ l− 1. In addition, G′(n) has ((n− 1) mod 3)
extra leaves one of which is a child of the root ρG′(n) of G′(n) and the distance
of the other leaf to ρG′(n) is 3. Note that once the aforementioned identifica-
tion has been carried out, G′(n) is clearly a level-1 network. We present two
examples of G′(12) with X = {x1, . . . , x12} in Fig. 8.

Fig. 8 Two examples of G′(12) on X = {x1, . . . , x12} – see the proof of Theorem 2 for
details.

We are now ready to establish the aforementioned diameter results.
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Theorem 2 Suppose n ≥ 4. Then

(i) diam(Dtree, C
−
1 ) = 2⌊

n−1

3
⌋.

(ii) diam(DRF , C−
1 ) = 2n − 4.

Proof: (i) We first establish that diam(Dtree, C
−
1 ) ≤ 2⌊

n−1

3
⌋ must hold. To this

end, note first that diam(Dtree, C
−
1 ) ≤ max{|T (N)| : N ∈ C−

1 }. Next note
that for any network N ∈ C−

1 we have |T (N)| ≤ 2b where b is the number of
blocks in N . Also note that every network N ∈ C−

1 can be transformed into a
(multifurcating) phylogenetic tree TN by collapsing every block B of N into a
vertex vB with |V (B)| − 1 outgoing arcs. Since a multifurcating phylogenetic
tree on n leaves can have at most ⌊n−1

3 ⌋ non-leaf vertices of outdegree 4 the
stated bound follows.

To see that this bound is sharp, put X = {x1, . . . , xn}, n ≥ 4, and as-
sume that G′(n) is embedded in the plane as indicated in either one of the
two networks depicted in Fig. 8 (ignoring the leaf labelling for the moment).
Moreover and starting from the unique leaf of G′(n) below the reticulation
vertex furthest away from the root ρG′(n) of G′(n), proceed in clockwise fash-
ion to enumerate the leaves of G′(n) by 1, 2, . . . , n with the leaf that is a child
of ρG′(n) receiving n (if it exists). As above, put l := ⌊n−1

3 ⌋.

Let N1 denote the graph G′(n) = (G′(n), φ′
1) with leaf labelling map φ′

1 :
X → L(G′(n)) defined as φ′

1(xi) := i, 1 ≤ i ≤ n. Let N2 denote the graph
G′(n) = (G′(n), φ′

2) with leaf labelling map φ′
2 : X → L(G′(n)) defined as

φ′
2(xi) = 3l + 2 − i, 1 ≤ i ≤ 3l + 1, and φ′

2(xi) = φ′
1(xi) otherwise. Note that

the latter case only applies if n 6= 3l + 1. (In Fig. 8, we depict N1 and N2 for
the case X = {x1, . . . , x12}). Then it is easy to see that T (N1) ∩ T (N2) = ∅.
Since |T (Ni)| = 2l, i = 1, 2, we have Dtree(N1, N2) = 2l.

(ii) That 2n−4 is an upper bound for diam(DRF , C−
1 ) follows from Proposi-

tion 3 as each level-1 network contained in C−
1 induces at most 3n−3 softwired

clusters (including X and its singletons). Hence, for any two level-1 networks
N1, N2 ∈ C−

1 we have |N1∆N2| ≤ 2(3n − 3) − 2 − 2n = 4n = 4n − 8 which
immediately implies the stated upper bound.

To see that the bound is sharp put X = {x1, . . . , xn}, n ≥ 4, and assume
that G(n) is embedded in the plane such that for every interior vertex v on
the path from the root ρG(n) of G(n) to the reticulation vertex hG(n) of G(n)
the left child of v always a leaf. Starting from the leaf below hG(n) proceed in
clockwise fashion to enumerate the leaves of G(n) by 1, 2, . . . , n.

Let N1 denote the graph G(n) = (G(n), φ1) with leaf-labelling map φ1 :
X → L(G(n)) defined as φ1(xi) = i, 1 ≤ i ≤ n. Let N2 denote the graph
G(n) = (G(n), φ2) with leaf-labelling map φ : X → G(n) defined as φ(xσ(i)) =
i, 1 ≤ i ≤ n, where σ : {1, . . . , n} → {1, . . . , n} is the permutation given by
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σ(i) = i/2 if i is even and ⌊n
2 ⌋ + i+1

2 otherwise. Then it is not difficult to see
that X and its singletons are the only clusters common to S(N1) and S(N2).
By Proposition 3, DRF (N1, N2) = (2(3n− 3) − 2n) − 2)/2 = 2n− 4 follows.

We remark that the bound for DRF is also attained for 2 rooted caterpillar
phylogenetic trees on n leaves (i. e. a rooted phylogenetic tree on n leaves with a
unique cherry) where the leaf ordering of one is the reverse of the leaf ordering
of the other.

7 Encodings and indistinguishability

In this section, we turn our attention to encodings of level-k networks with
k ≥ 2. Our main result is summarized in Proposition 5 where we present
examples of level-2 networks that are encoded by some of the induced systems
of interest in this paper but not by others.

To start, consider the two simple level-3 networks depicted in Fig. 9(i) and
(ii), respectively, which originally appeared in (Huson et al, 2011) in slightly
different form (see also (Moret et al, 2004)). As can be quickly checked, both
networks induce the same hardwired cluster system and also the same tree
system (and thus also the same softwired cluster system and the same triplet
system). Consequently, neither of them encodes those networks. By canonically
extending the definitions of the above four systems plus their surrounding
terminology to also apply to the leaf labelled rooted DAG depicted in Fig. 9(iii)
it is easy to check that the four systems induced by that graph coincide with
the corresponding systems induced by the networks in Fig. 9(i) and (ii).

(i) (ii) (ii)

Fig. 9 Two indistinguishable simple level-3 networks (i,ii), and a multicombination network
resulting from a series of multicombination contractions applied to either one of them (iii).

To also include such graphs in our discussion, we now extend our definition
of a phylogenetic network N (and thus also the definition of the set r(N))
to allow reticulation vertices to have indegree 2 or more. However and in
case of ambiguity, we follow Huson et al (2011) and refer to a reticulation
vertex with indegree strictly greater than 2 as a multicombination, and to a
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phylogenetic network containing such reticulation vertices as a multicombining
network. In fact, any phylogenetic network N that contains arcs of the form
r2r1 with r1, r2 ∈ r(N) can be transformed into a multicombining network
using a series of multicombination contractions, that is, contractions of the
arcs r2r1. Extending the definition of a level of a phylogenetic network to
a multicombining network N by defining the level of N as the maximum
sum, among all blocks B of N , of the indegrees, minus one, of all vertices in
B ∩ r(N), it should be noted that this operation is level preserving. Within
this more general framework, we formalize the notion of indistinguishability
which was already indicated in (Huson et al, 2011) as follows: We say that two
phylogenetic networks N and N ′ are indistinguishable if C(N) = C(N ′) and
T (N) = T (N ′) hold and distinguishable otherwise. Note that S(N) = S(N ′)
and R(N) = R(N ′) must hold whenever two phylogenetic networks N and N ′

are indistinguishable.

It is easy to see, that the phylogenetic networks presented in Figs. 9(i)
and (ii) give rise to the multicombining network depicted in Fig. 9(iii) using a
series of multicombination contractions. That the observed indistinguishability
property holds is not a coincidence as the following result shows.

Proposition 4 Suppose N is a level-k network (possibly containing multi-
combination vertices) with k ≥ 2 and N ′ is a multicombining network that can
be obtained from N by a series of multicombination contractions. Then N and
N ′ are indistinguishable.

Proof: Since N ′ is a multicombining network that can be obtained from N by
a series of multicombination contractions, it suffices to show that at each step
the hardwired cluster system and the tree system induced by N is preserved.
Suppose r1, r2 ∈ r(N) with r2r1 ∈ A(N). Assume without loss of generality
that N ′ is the network resulting from a multicombination contraction of r2r1

and denote the generated vertex by r. Let y1, . . . , yt ∈ V (N), t ≥ 2, denote
the parents of r2, and let r2, z1, . . . , zt′ ∈ V (N), t′ ≥ 2, denote the parents
of r1. Furthermore, let x denote the (unique) child of r1. We illustrate these
configurations for the case t = 3 and t′ = 2 in Fig. 10(a) and (b), respectively.
For a positive integer m, put [m] := {1, . . . , m}.

(a) (b)

Fig. 10 The situation for the networks N and N ′ – see the proof of Proposition 4 for
details.
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To see that C(N) = C(N ′) holds, note that in N , the set of leaves simulta-
neously below yi, i ∈ [t], zi, i ∈ [t′], r1, and r2 equals the set of leaves below
x. In N ′, the set of leaves simultaneously below yi, i ∈ [t], zi, i ∈ [t′], and r
equals the set of leaves below x. Moreover, the set of leaves below x in N and
N ′ is the same. Hence C(N) = C(N ′).

We next show that T (N) = T (N ′) holds. Suppose T ∈ T (N) and assume
that yjr2 ∈ A(N) is the unique arc in N that was not deleted to obtain N ′.
For the arcs in N with head r1, we have the following two cases:

(i) If r2r1 is the arc that was not deleted in N then T is displayed by N ′

as all arcs yir ∈ A(N ′) with i ∈ [t] − j and all arcs zir ∈ A(N ′) with i ∈ [t′]
may be deleted from N ′.

(ii) If zj′r1 with j′ ∈ [t′] is the arc which was not deleted in N then T is
displayed by N ′, as all arcs yir ∈ A(N ′) with i ∈ [t] and all arcs zir ∈ A(N ′)
with i ∈ [t′] − j′ may be deleted from N ′.

Thus, T ∈ T (N ′) follows in both cases. Conversely, for any tree T ∈ T (N ′),
we need to delete all but one arc in

⋃

i∈[t]{yir}∪
⋃

i∈[t′]{zir} from N ′. For any

of the t + t′ possibilities and by reversing our arguments in the above anal-
ysis, we can determine which arcs to delete from N (i. e. all but one with
head r2 and all but one with head r1) to see that T ∈ T (N) holds. Hence,
T (N) = T (N ′), as required. Thus, N and N ′ are indistinguishable.

In consequence, two level-k, k ≥ 2, networks N1 and N2 are indistinguish-
able if the multicombining networks N ′

i obtained from Ni, i = 1, 2, at the
point when the respective multicombination contraction series stabilize are
isomorphic.

We next present 2 examples of distinguishable level-2 networks. For the
networks considered in each example the induced triplet system is the same.
However in one case the induced softwired cluster systems coincide whereas
in the other they do not (Proposition 5). The example presented in Proposi-
tion 5(ii) is of particular interest in the context of Theorem 1 as it implies that
our arguments for establishing that theorem do not readily translate into argu-
ments for level-k networks with k ≥ 2. More precisely, they show that adding
additional leaves to both networks that make up that example by subdividing
the arc from x1’s parent to x2’s, and attaching additional leaves, results in two
distinct level-2 networks that still reflect the same triplet system.

Proposition 5 (i) There exist two non-isomorphic distinguishable simple level-
2 networks N1 and N2 that have the same number of edges, vertices, and retic-
ulation vertices, and R(N1) = R(N2) and S(N1) 6= S(N2) hold.
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(ii) There exist two non-isomorphic distinguishable simple level-2 networks
N1 and N2 that have the same number of edges, vertices, reticulation vertices,
and R(N1) = R(N2) and S(N1) = S(N2) hold.

Proof: (i) The networks N1 and N2 depicted in Fig. 11 induce the same
triplet system {a|x1b, b|x1a, x1|ab, a|x2b, b|x2a, x2|ab, x1|x2a, a|x1x2, x1|x2b,
b|x1x2} but different softwired cluster systems. More precisely, S(N1) = {{a},
{b}, {x1}, {x2}, {a, x2}, {b, x2}, {x1, x2}, {a, b, x2}, {a, x1, x2}, {b, x1, x2}, {a, b, x1, x2}}
and S(N2) = S(N1) ∪ {{a, x2}}

(i) (ii)

Fig. 11 Two non-isomorphic distinguishable simple level-2 networks that induce the same
triplet systems but different softwired cluster systems.

(ii) The four networks presented in Fig. 12 induce the same triplet system
{a|bc, a|bd, a|cd, b|cd, c|ab, d|ab, d|ac, d|bc} and the same softwired cluster
system {{a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, b, c, d}}.

(i) (ii) (iii) (iv)

Fig. 12 Four non-isomorphic distinguishable simple level-2 networks that induce the same
triplet and softwired cluster systems. Again, the conventions from Fig. 6 apply.

8 Conclusion

In this paper we have investigated under what circumstances a level-1 network
N is encoded by the triplet system, softwired cluster system, or tree system
it induces. In particular we have shown that this is the case if and only if N
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does not have a block with 4 vertices. For the resulting subclass C−
1 of level-

1 networks this implies that three known distance measures for phylogenetic
networks are in fact metrics on C−

1 and for two of them we have established
their diameter. Along the way we have shown that a softwired cluster system
induced by a level-1 network is a weak hierarchy, that a phylogenetic tree T is
displayed by a level-1 network N if and only if R(T ) ⊆ R(N) holds and that
a level-2 network may be encoded by some of the systems of interest in this
paper without being encoded by the other ones. In fact our results show that
many of the properties that we establish for level-1 networks are not enjoyed
by level-2 networks and thus networks of higher level.

Regarding the accurate reconstruction of phylogenetic networks from triplets
or phylogenetic trees, our results have profound consequences as they imply
that any such network N that contains a block of size 4 cannot be encoded
by any one of the three systems of interest in this paper. Furthermore if N
contains one of the networks discussed in the context of Proposition 5 then N
is not encoded by R(N) and possibly S(N).
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