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Abstract 

 

The modelling of signal in the context of multiple components, few samples, strong 

non-stationarity and non-linearity is a difficult problem. For signals in this category, 

classical methods such as Fourier-based techniques, time-frequency representation, and 

high order ambiguity function suffer from limitations of various kinds. For this concern, 

some other techniques which avoid these limitations should be applied. A model based 

on polynomial approximation of both the instantaneous amplitude and frequency had 

been proved to be a favorable choice. With consideration of adapting to ambient 

vibration signals where the amplitude is damped, we propose to use a new model of 

which the amplitude is approximated by damped exponentials. Meanwhile, the 

instantaneous frequency is represented by low-order orthonormal polynomials in order 

to track the strong local variations. Then the parameters estimation is carried out via a 

maximum likelihood procedure followed by a stochastic optimization method. For the 

purpose of faster convergence, the adaptive simulated annealing is employed which 

permits a more flexible temperature tuning. In order to study the behavior of the 

proposed algorithm, we then detail its performance based on simulated multi-

component signals. Cramer-Rao bounds are recalculated and compared with those 

obtained by the model previously proposed, where the amplitude is based on 

polynomial approximation. Analysis of the frequency resolution between two closely 

spaced components is also shown as another important evidence of performance. In 

order to achieve a direct physical interpretation in real world applications, the proposed 

amplitude-frequency model is transformed to the physical damping model, under which 

the estimated signal is decomposed into time-varying resonance frequencies and 

damping ratios. The algorithm is further applied on ambient vibrations of buildings as a 

local analysis. Results are discussed in agreement with the model of a dissipative 

dynamic system, which corresponds to the ambient vibrations of a building. 

 

1.  Introduction 
 

In earthquakes, the number of casualties is closely correlated to the structural damage of 

the building. The project URBASIS aims to evaluate the vulnerability of urban 

buildings by signal processing techniques. In this paper, the modal parameters, such as 

mailto:pgueg@obs.ujf-grenoble.fr


 2 

the resonance frequency and the damping ratio, are estimated from ambient vibration 

signals of buildings recorded by accelerometers simultaneously at longitudinal, 

transverse and vertical directions.  

 

Figure 1 shows that the modal parameters of the ambient vibration signals present local 

variations. In this paper, the modal parameters are no longer assumed to be time-

invariant values as for Frequency Domain Decomposition (FDD) and peak-picking 

methods based on power spectral density, instead, they are regarded as time-varying 

functions even in a few seconds. Thus, a method which permits the tracking of their 

local variations is required. 

 

 
Figure 1. Example of ambient vibration signal: the vertical recording measured at 

the top of Grenoble City Hall. Spectrogram calculated with Hann window of 32 s. 

 

In this paper, a damped-amplitude model is proposed in the context of multi-component 

ambient vibration signals, and further for seismic signals where the variation of the 

modal parameters is more intense. The signal is represented as a sum of components 

with time-varying frequency and exponentially damped amplitude. This model is of 

great interest thanks to a faster computation and a direct extraction of the damping 

factor. For the purpose of comparison, referred to as an indirect approach in this paper, 

the polynomial amplitude model we proposed in [4] will be applied as well, the 

parameters being transformed in order to finally model a damped amplitude. 

 

Therefore, we address the issue of modeling short-time signals having both strong non-

stationary frequency and damping amplitude. Classical techniques, which are simple 

and fast, have limitations in this context [2][3]. Instead, a maximum likelihood approach 

is applied for parameter estimation. The non-linearity of the likelihood function 

compels the use of stochastic optimization techniques such as simulated annealing, 

implemented by Monte-Carlo random sampling combined with a Metropolis acceptance 

rule. In [4][5][6], this optimization has been proved to be quite efficient as a solution for 

short-time polynomial models. 

 

To speed up the estimation and to solve the non-linear optimization problem, we 

consider the Adaptive Simulated Annealing (ASA). Each multi-dimensional search 

must take into account the varying sensitivities of different parameters. At any given 
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annealing-time, the adaptive simulated annealing described in [7] stretches out the range 

over which the relatively insensitive parameters are being searched, with respect to the 

ranges of the more sensitive parameters. In addition, this way of doing induces a gain in 

computing time. 
 

In section 2, the model is defined and the constraints of the modulation functions are 

discussed. Section 3 sums up the parameter estimation and the new Cramer-Rao bounds. 

In section 4, the performance of the proposed algorithm is analyzed on simulated 

signals; the frequency resolution limit and the ability to separate components of 

differents amplitudes are also presented. Section 5 presents the application on real-

world ambient vibration signals measured on the top of the Grenoble City Hall; the 

results are compared to classical methods used in seismic analysis. Finally, the 

conclusion is drawn in section 6. 

 

2.  Damped amplitude & polynomial frequency model 
 

Let  y n be a discrete time process consisting of a deterministic multi-component 

process  s n  embedded in an additive white Gaussian noise  e n  with zero mean and 

variance 2σ , 
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where 
2 2

N N
n    with N even, K the number of components.  iA n  is the time-

varying amplitude. As in [7],  Φi n is the instantaneous phase of the thi component 

centered in the middle of the observation window to minimize the error of estimation, 

thus  0, Φ 0i iφ . The instantaneous frequency is approximated by discrete orthonormal 

polynomial functions at maximum third order. At thm order, ,m if  and  mg n  are the 

frequency parameter and the orthonormal polynomial respectively.  

 

In this paper, we intend to study a new model for the amplitude in correspondence with 

many real-world signals where   
 iα n

i iA n β e . The initial amplitude 
iβ  and the 

damping coefficient 
iα  characterize the amplitude of the 

thi  component. In order to 

proceed with estimation of 
iβ , 

iα , 
0φ  and of the  1fM   frequency parameters ,m if , 

i.e.  4fM   parameters, the following constraints are imposed:  0
2

  s
i

F
F n  with Fs 

the sampling frequency,  1 4fN K M    , and  Φi n  does not include any 

discontinuities.  With regard to real-world data, 
iβ  and 

iα  are constrained to be strictly 

positive. 

 

An intrinsic error of the complex model with damped amplitude has to be mentioned. 
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The model defined in (1) does not always satisfy Bedrosian conditions because the 

exponential amplitude can present a wide-band spectrum. However, in actual problems 

that we investigate, frequencies are at about 1 Hz, and damping coefficients 
iα  are 

usually trivial ( 110 ) [9], then the -3 dB spectral bandwidth of the damped amplitude 

(8.08 iα  Hz) is very narrow. This error is thus negligible even for the low frequency 

signal that we process. 

 

3. Parameter estimation and Cramer-Rao bounds 

 
For the signals that this paper deals with, classical methods as in [10] are hardly 

applicable in the short time context. More sophisticated methods should be used in 

order that parameters can be correctly estimated with very few samples. We proposed to 

use the maximum likelihood approach and the adaptive simulated annealing to solve the 

non-linear optimization problem which is impossible to be done by classical methods. 

The Cramer-Rao bounds of the modulation functions under the proposed model are also 

discussed. 

 

3.1 Parameter estimation algorithm 

 

In this section, we discuss the approximation of a model by low order polynomials 

which intend to track locally highly non-stationary modulations. The signals are of short 

time duration, the sample number N ranges approximately from 30 to 100. Let us 

consider the instantaneous frequency  iF n  (1) to be approximated by an orthonormal 

polynomial at 
th

fM order. Then the parameters of each component in (1) form a vector 

 

 0, 0, 0, ,, , , , , , ,      i i fi A i F i i i i M iφ β α φ f fθ θ θ , (2) 

 

where 1 i K  , so that the parameters of all the components are 

 

 
, 1( 4)

, , .
f

i j KK M
θ

 
      

T Tθ θ θ  (3) 

 

Each element ,i jθ  in θ̂  corresponds to the thj parameter of the thi  component. We 

consider a maximum likelihood estimation of θ , which corresponds to a least square 

approach under the hypothesis of a white Gaussian noise,  

 

 
 

   
4

/ 2
2

/ 2

ˆ arg min
  

 
K M f

N

n N

y n s n
θ

θ . (4) 

 

In [6], optimal and sub-optimal algorithms were developed to balance between the 

precision and the computation cost. The sub-optimal approach can be affected when one 

component has distinctly weaker amplitude than the others. So thereafter, all examples 

are calculated by the optimal approach. We assume that the number of components 

K and the polynomial order of each component fM  are a priori known and remain 
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unchanged. This assumption is justified by the short-time duration. 

 

In this paper, an enhanced version of the simulated annealing, referred to as adaptive 

simulated annealing [7], is applied to solve (4). For this meta-heuristic method, the steps 

of the parameter initialization and of the estimation procedure is close to simulated 

annealing [4]. Compared to previous publications, the enhancements are not only in 

taking into account the damped amplitude model, but also in introducing some extra 

data-driven configurations. The method is “adaptive” since the temperatures which 

control the generation and acceptation of the candidates are dependent of the data 

during the convergence process. This contributes to a faster convergence to the global 

optima and a simpler parameter tuning. 

 

Moreover, a step named “re-annealing” is included in adaptive simulated annealing, in 

order that an uniform search range of all parameters could be attained by regulating the 

parameter generation temperature. Important temperature-control configurations are 

Ngen, Naccept and c, which control the temperature of parameter generation, the 

temperature of candidate parameter acceptance and the speed of temperature decrease 

respectively. The details of the method can be found in [13]. 

 

3.2 Cramer-Rao Lower Bounds 

 

We propose to calculate the Cramer-rao bounds for the model defined in (1,2,3) under 

the discrete orthonormal polynomial base we used as in [6], not only for the parameters 

but also for the modulation functions. The Fisher information matrix of the thi  

component defined by (1) is given as  
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[ ] [ ]
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η n g k


  as the numerical integration of the orthonormal polynomial, 

Fi
θ

I is a block matrix of    1 1f fM M   dimension, with elements 
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Then Cramer-Rao bounds of the amplitude [ ]
iACRB n and of the frequency [ ]

iFCRB n  in 

the non-biased case are 

 

  
2

† †[ ]
2i A Ai i

A i i

σ
CRB n 

θ θ
d I I d  and  

2
† †[ ]

2i F Fi i
F i i

σ
CRB n 

θ θ
h I I h , (7) 

with 
†

,i iα n α n

i ie β ne
    d , 

†

0[ ], , [ ]
fi Mg n g n 

 
h , and †[ ]  the conjugated transpose. 
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In the next section, these bounds will be used to compare the performance of the 

proposed algorithm to what we defined the indirect approach. 

 

4. Analysis based on simulated signals 

 
In this section, the performance of the proposed algorithm is compared to the indirect 

one in the sense of Cramer-Rao bounds (7) via Monte-Carlo simulations. Given the 

property of signals dealt in this paper, signals of which the component frequencies can 

be very close, and at the same time, a component can be relatively much weaker than 

the others, the frequency resolution limit and the weak amplitude tolerance limit are 

developed as a reference of adaptability for real-world applications. 

 

4.1 Performance of the algorithm compared to the indirect one 

 

The Cramer-Rao Bounds (7) of the proposed method are compared the results got with 

a 2-component signal, with quadratic frequency modulation and damped amplitude. In 

accordance with real-world data, the damping ratios are taken in the order of several 

percent. Figure 2 shows Cramer-Rao bounds of both components with a SNR varying 

from 0 to 25 dB, averaged among 100 noise runs. We observe that these bounds of the 

algorithm proposed are lower than those obtained by the indirect algorithm which 

induced an extra error caused by amplitude regression. 

 

  
(a) First component                                              (b) Second component 

Figure 2. MSEs and CRBs in dB for a 2-component simulated signal, 33 points 

sampled at 1Hz. MSEs (-.o blue). CRBs of the algorithm proposed (– red) and of 

the indirect algorithm (- - green). 

 

4.2 Frequency resolution limit 
 

In real-world applications, it is usual that signals are composed of components which 

are closely spaced in frequency. Therefore, the frequency resolution limit of the 

proposed algorithm is explored in this section using a signal simulated by 9-parameter 

sets. Each signal consists of two components with constant amplitude and quadratic 

frequency modulation. For each component, the parameter vectors as defined in (2) are 

1 1,010,0,0.4, , 0.2, 0.5f    θ ,
2 2,010,0,0.8, , 0.2, 0.5f    θ . 
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In order to approach gradually to the frequency resolution limit, 1,0f  is fixed at 2, while 

2,0f  is variable from 1.55 to 1.95 in step of 0.05. The simulation is carried out with a 

SNR of 15 dB, N equal to 32 and a sampling frequency of 1 Hz. 

 

 
Figure 3. Normalized bias (up) and mean square error (down) of frequency 

resolution test 

 

In figure 3, the normalized bias and the MSE of the amplitude and frequency 

modulations are shown as an average of 20 noise runs. Satisfying results can be 

obtained for 2,0 1,0 0.15f f  where the frequency distance is larger than 0.0261 Hz. In 

the extreme case, where 2,0 1,0 0.1f f  , the two simulated components are too close to 

be separated, therefore, one component is estimated in the middle of the two 

components with twice amplitude, while another is visible in lower frequency with very 

weak amplitude. 

 

In this paper, the minimum frequency distance of the signals presented in section 6 is 

about 0.06Hz ( 2,0 1,0 0.47f f  ), for which the frequency resolution of the proposed 

algorithm is sufficient according to figure 3. Furthemore, in this application, the 

resolution of a Fourier transform is 0.12 Hz and that of a spectrogram is only 0.225 Hz 

with a Hann window used in both cases. 

 

4.3 Weak amplitude tolerance limit 

 

In this paper, the signals of interest involve multiple components of which the 

amplitudes are drastically different. In this section, the weak amplitude tolerance limit is 

investigated using a two-component signal with constant amplitude and quadratic 

frequency modulation. For each component, the parameter vectors as defined in (2) 

are  1 1, 0.03, 0.4, 2, 0, 0 βθ ,  2 2 , 0.03, 0.8,1, 0, 0 βθ  ,
1β  is fixed at 10, 

2β  decreases 

from 9 to 1 in step of 1. The simulation is carried out with a SNR of 15 dB, N equal to 

32 and a sampling frequency of 1 Hz. Figure 4 shows the results averaged among 20 

noise runs. The distortion starts to clearly increase at an amplitude ratio 
1 2β β  of 5, 

which corresponds to a signal power ratio of 25. This value can be considered as a limit 
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in the same conditions. 

 

 
Figure 4. Normalized bias and mean square error of weak amplitude tolerance test. 

The “amplitude ratio” is calculated as 
1 2β β . 

 

5. Application on ambient vibration signals 
 

Civil architectures are permanently excited by some natural solicitation sources, for 

example, the background seismic noise from the earth, the wind and sea wave, and the 

internal sources (human steps, vehicles, rotating machines). These different excitations 

induce various types of vibrations in the building, which are referred to as ambient 

vibrations. The ambient vibration signal is the impulse response of a dissipative system 

under quasi-stationary excitations. The signal analysed in this section is recorded using 

multiple sensors placed in one or several stories to measure simultaneously the 

vibrations in three directions, longitudinal, transverse and vertical ones. The signals 

studied in this section are measured at the top of Grenoble City Hall in France [9][11]. 

 

 
Figure 5. Grenoble city hall, France. 

 

A physical model adapted to such signals can be written as [9][11] 

 

               2

0,

1 / 2

exp , 2 1 .
 

 
       

 
 

K n

i i i i i i i i

i k N

s n β jφ λ k λ k π ξ k υ k jυ k ξ k (8) 
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Under such model, the evaluation of the structural variation of the building focuses on 

two modal parameters: the time-varying damping ratio  iξ k  and the time-varying 

resonance frequency  iυ k . Methods usually used by seismologists are based on the 

assumption that the vibration signals are quasi-stationary, thus the temporal variation of 

the modal parameters are neglected. In a non-stationary approach as in [11], the 

proposed method permits the analysis of time varying modal parameters, where 

 iξ k and  iυ k  are functions of time. 

 

5.1 Seismic signal processing by Frequency Domain Decomposition 

 

Brincker et al. [12] described a frequency domain technique known as the Frequency 

Domain Decomposition (FDD) for the modal identification of output-only systems. The 

modal parameters are estimated as time-invariant values using all the available 

measurements. Belonging to the category of non-parametric method, the principle is to 

decompose the cross power spectral density matrix of the measurements into singular 

values which are further related to independent degrees of freedom. The first singular 

value is regarded as the power spectral density of all Single Degree Of Freedom (SDOF) 

responses, whose peaks locate the resonance frequencies [9]. Figure 6 shows the FDD 

results of the ambient vibration signals recorded on the top of Grenoble City Hall for a 

sampling frequency of 5 Hz. 

 
Figure 6. Singular values (fisrt, second, third) and the modal parameters estimated 

of FDD approach for ambient vibrations of Grenoble City hall 

 

In figure 6 is calculated using all the three directions of measurement, the estimated 

resonance frequency coincide well with prior analysis [9]. In order to calculate the 

corresponding damping ratios, the “spectral bells” around the resonance frequency 

peaks in the first singular value are extracted using the Modal Assurance Criterion [9], 

and then taken back to the time domain by the inverse Fourier transform to generate the 

finite impulse response of the mode, namely the autocorrelation function of SDOFs. 

The estimation of the damping ratio of the transverse mode is illustrated in figure 7. 
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(b) Spectrogram (Hann window, 32 pts) 

                  
Figure 7. Left: Spectral bell belonging to the transverse mode in figure 6.  

Right: Inverse Fast Fourier transform (IFFT) of the bell. 

 

Each damping ratio is finally calculated from a regression of the envelop of such 

response in logarithmic scale with respect to time. The conclusion drawn by FDD had 

been proved to be a realiable global estimation under a stationary assumption [9].  

 

5.2 Analysis using the proposed algorithm 

 

One preliminary assumption taken by FDD is the stationarity of the signal. However, 

the correctness of such method can no longer be justified in non-stationary and short 

time cases. Being an advantage of great interest, the proposed method permits to track 

the local variation of these modal parameters within several seconds in each direction. 

Combined with the conclusions of sections 4.2 and 4.3, the proposed algorithm is 

qualified to attain a good estimation. According to (8), the parameters of each 

component in (1) are directly connected with the modal parameters of a mode, as 

 

       
2 21

[ ] 2 , 2
2

  i i i i i iυ k πF k α ξ k α πυ k
π

. (9) 

 

At each direction the signal from 536.6 s to 648.6 s is modelled using the proposed 

method with Ngen=80, Naccept=60, c=3. Figures 8 to 10 present the estimated modal 

parameters and the corresponding spectrogram of which frequency resolution is 0.225 

Hz and time resolution is 6.4 s, that in the three directions. 

 

(a) Estimation  by the proposed algorithm    
Figure 8. Results calculated on [536.6 s, 548.6 s] of the vertical recording.  

IFFT 
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(b) Spectrogram (Hann window, 32 pts) 

(b) Spectrogram (Hann window, 32 pts) 

(a) Estimation  by the proposed algorithm 

 

Normally, the most accurately estimated mode is the one recorded in its own direction. 

In figure 8, the vertical and the longitudinal modes are correctly identified whereas the 

estimation of the transverse mode is disturbed. In the vertical measurement, all the 

modes are visible in the same time. In other directions, only 2 modes are visible in this 

time segment. 

.  
(a) Estimation  by the proposed algorithm                

Figure 9. Results calculated on [536.6 s, 548.6 s] of the longitudinal recording.  

 

 
 

 

Figure 10. Results calculated on [536.6 s, 548.6 s] of the transverse recording.  

 

Figures 8 to 10 show results of the algorithm proposed over the time duration of 12s. 

The resonance frequencies coincide with the average values obtained by FDD and the 

modal parameters are varying throughout this time duration. The damping ratios 

estimated show differences compared with the average values estimated by FDD in 

figure 6. This is due to the existence of non-stationarity even in 12 s. 

 

6. Conclusion 
 

In this paper, the application of the damped-amplitude and polynomial-frequency model 

is studied in the context of ambient vibrations. This model is applied on a short-time 

segment of the entire signal. The parameter estimation is based on the maximization of 

likelihood function optimized by adaptive simulated annealing. By calculating and 

analyzing the Cramer-Rao bounds, it is shown that the estimation of both the amplitude 

and the frequency modulation functions are improved compared to a polynomial-

amplitude model. The frequency resolution limit is calculated from 2-component 
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simulated signals. The proposed method is capable to track the variation of multi-

component signals and directly identify the modal parameters for each component. By 

that way, the ambient vibrations of a building and more particularly their damping 

coefficients have been characterized over a very short time of 12 s (60 samples), which 

has never been done before. 
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