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 

Abstract— Off-line robot dynamic identification methods are 
mostly based on the use of the Inverse Dynamic Identification 
Model (IDIM), which calculates the joint force/torque that is 
linear in relation to the dynamic parameters, and on the use of 
linear least squares technique to calculate the parameters 
(IDIM-LS technique). The joint forces/torques are calculated as 
the product of the known control signal (the current reference) 
by the joint drive gains. Then it is essential to get accurate 
values of joint drive gains to get accurate identification of 
inertial parameters. In this paper it is proposed a new method 
for the identification of the total joint drive gains in one step, 
using available joint sampled data given by the standard 
controller of the moving robot and using CAD or measured 
values of the inertial parameters of a known payload. A new 
inverse dynamic model calculates the current reference signal 
of each joint j that is linear in relation to the dynamic 
parameters of the robot, to the inertial parameters of a known 
payload fixed to the end-effector, and to the inverse of the joint 
j drive gain. This model is calculated with current reference 
and position sampled data while the robot is tracking one 
reference trajectory without load on the robot and one 
trajectory with the known payload fixed on the robot. Each 
joint j drive gain is calculated independently by the weighted 
LS solution of an over-determined linear systems obtained with 
the equations of the joint j. The method is experimentally 
validated on an industrial Stäubli RX-90 robot. 

I. INTRODUCTION 

EVERAL schemes have been proposed in the literature to 
identify the dynamic parameters of robots [1]–[8]. Most 
of the dynamic identification methods have the 

following common features: 
- the use of an Inverse Dynamic Identification Model 

(IDIM) which calculates the joint force/torque linear in 
relation to the dynamic parameters, 

- the construction of an over-determined linear system of 
equations obtained by sampling IDIM while the robot is 
tracking some trajectories in closed-loop control, 

- the estimation of the parameter values using least 
squares techniques (LS).  

This procedure is called the IDIM-LS technique. 
The experimental works have been carried out either on 
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prototypes in laboratories or on industrial robots and have 
shown the benefits in terms of accuracy in many cases. 
Good results can be obtained provided two main conditions 
are satisfied: 
- a well-tuned derivative band-pass filtering of joint 

position is used to calculate the joint velocities and 
accelerations, 

- the accurate values of joint drive gains g  are known to 

calculate the joint force/torque as the product of the 
known control signal calculated by the numerical 
controller of the robot (the current references) by the 
joint drive gains [9].  

This needs to calibrate the drive train constituted by a 
current controlled voltage source amplifier with gain iG  

which supplies a permanent magnet DC or a brushless motor 
with torque constant tK  coupled to the link through direct 

or gear train with gear ratio N .  
Because of large values of the gear ratio for industrial 

robots, ( N >50), joint drive gain, i tg NG K  , is very 

sensitive to errors in iG and tK  which must be accurately 

measured from special, time consuming , heavy tests, on the 
drive chain [9], [10]. 

In this paper it is proposed a new method for the 
identification of the total joint drive gains in one step, using 
current reference and position sampled data while the robot 
is tracking one reference trajectory without load fixed on the 
robot and one trajectory with a known payload fixed on the 
robot, whose inertial parameters are measured or calculated 
by a CAD model. Each joint j  drive gain is calculated 

independently by the weighted LS solution of an over-
determined linear system obtained with the equations of the 
joint j .  

The method is experimentally validated on an industrial 
Stäubli RX-90 robot. 

The paper is organized as follows: section 2 recalls the 
dynamic modelling and identification procedures. Section 3 
deals with the new modelling and identification method for 
the robot drive gains parameters. Section 4 presents the 
experimental validations. Finally, section 5 gives the 
conclusion. 

II. USUAL INVERSE DYNAMIC MODELS AND IDENTIFICATION  

A. Dynamic Modelling 

In the following, all mechanical variables are given in SI 
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units on the joint side. All forces/torques, positions, 
velocities and accelerations have a conventional positive 
sign in the same direction. That defines a motor convention 
for the mechanical behaviour. 

The inverse dynamic model (IDM) of a rigid robot 
composed of n  moving links calculates the motor 
force/torque vector, as a function of the generalized 
coordinates and their derivatives. It can be obtained from the 
Newton-Euler or the Lagrangian equations [6]: 

dyn in f     (1) 

where: 
τdyn is the ( 1)n vector of dynamic forces/torques due to 

the inertial, centrifugal, Coriolis, and gravitational effects: 
( ) ( ) ( )dyn = M q q +C q,q q+Q q     (2) 

  q, q, q,   are respectively the ( 1)n  vectors of generalized 

joint positions, velocities and accelerations, 
(M q )  is the ( )n n  robot inertia matrix,  

C( q,q ) is the ( )n n  matrix of centrifugal and Coriolis 

effects,  
Q( q )  is the ( 1)n  vector of gravitational forces/torques. 

τin is the ( 1)n  input electromagnetic force/torque vector 

of the drive chain, in SI units on the joint side. 
( )in idm 0= g v v     (3)  

where: 

idmv is the ( 1)n  vector of current references of the 

current amplifiers,  
vτ0 is the ( 1)n  vector of amplifier offsets,  

gτ is the ( )n n  matrix of the drive gains, 

i tg NG K   (4) 

 N  is the ( )n n  gear ratios matrix of the joint drive 

chains such as, mq Nq  , with mq  the ( 1)n  vector of 

motor velocities on  the motor side, 

iG  is the ( )n n  static gains diagonal matrix of the 

current amplifiers, assuming a large current loop bandwidth, 
usually close to 1KHz. 

tK  is the ( )n n  diagonal matrix of the electromagnetic 

motor torque constants.  
It should be mentioned that the components of matrices  

N , iG  and tK  are data that are generally given by the 

manufacturers, but with a quite important inaccuracy. They 
can also be independently identified using the methods 
presented in [9]. However, these methods involve special 
tests on the joint drive train of the robot which are heavy 
and time consuming procedures. 

f  is the ( 1)n  vector of the loss force/torque due to 

frictions and motor iron losses, eddy currents and hysteresis 
effect. Usually, it is approximated with a viscous friction 
coefficient and a Coulomb friction force/torque: 

signf v c coffF q F ( q ) F       (5) 

where: 
 vF  is the ( )n n  diagonal matrix of viscous parameters,  

cF  is the ( )n n  diagonal matrix of dry friction 

parameters, and sign(.) denotes the sign function,  

coffF  is a ( 1)n  vector of asymmetrical Coulomb friction 

force/torque between positive and negative velocities.  
Thus (1) becomes: 

sign( )dyn idm v c offF q F q        (6) 

where: 
 off coff 0F g v     is the ( 1)n  vector of offset 

force/torque that regroups the amplifier offset and the 
asymmetrical Coulomb friction coefficient. 

idm idmg v    defines the motor force/torque which 

includes  the amplifier offset component. 
Then the inverse dynamic model (IDM) is given by: 

= ( )  + ( , )idmτ M q q N q q   (7) 

( , )N q q  regroups the ( 1)n vector of centrifugal, 

Coriolis, gravitational, friction and offset forces/torques: 
(  )= ( ) ( ) sign( )v c offN q, q C q,q q Q q F q F q          (8) 

B. Identification Model 

The modified Denavit and Hartenberg notation allows 
obtaining a dynamic model (7) that is linear in relation to a 
set of standard dynamic parameters, stχ : 

( ) ( )idm st st stq,q,q, q,q,q        (9)   

where: 

st ( q,q,q )    is the  stn n jacobian matrix of idmτ , with 

respect to the  1stn   vector stχ  of the standard parameters 

given by 1 2  ... 
TT T nT

st st st st       : 

j
st is the (14×1) vector of standard dynamic parameters 

of joint and link j : 

j

j T
st j j j j j j j j j j j j j offXX XY XZ YY YZ ZZ MX MY MZ M Ia Fv Fc       (10) 

where: 

    j j j j j jXX , XY , XZ , YY , YZ , ZZ  are the 6 components of 

the inertia matrix of link j  at the origin of frame j . 

  j j jMX , MY , MZ   are the 3 components of the first 

moment of link j .  

jM  is the mass of link j ,  

jIa  is a total inertia moment for rotor and gears of 

actuator j .  

jFv , jFc ,
joff are the coefficients of the vF , cF , off , 

matrices, respectively. 
The columns (: )st ,i  of the matrix ( )st q,q,q    can be 

obtained using the recursive algorithm of Newton-Euler, 
which calculates idm  (7) in terms of the standard dynamic 

parameters, such that: 



  

(: ) ( with 1 0 for )
i kst idm st st,i q,q,q, , , k i         (10) 

To increase the efficiency of this algorithm, we use the 
customized symbolic technique [6], [15]. 

The identifiable parameters are the base parameters which 
are the minimum number of dynamic parameters from which 
the dynamic model can be calculated. They are obtained 
from the standard inertial parameters by regrouping some of 
them by means of linear relations [16], which can be 
determined for the serial robots using simple closed-form 
rules [3], [6], or by numerical method based on the QR 
decomposition [14].  

The minimal dynamic model can be written using the bn  

base dynamic parameters   as follows: 

( )idm q,q,q      (11)  

where  is obtained from st  by eliminating the columns 

corresponding to the non identifiable parameters. 
Because of perturbations due to noise measurement and 

modelling errors, the actual force/torque   differs from idmτ  

by an error, e , such that: 
( )idmτ e q,q,q e        (12) 

where: 
g v    (13) 

v  is the ( 1)n  vector of the actual current references of 

the current amplifiers. Equation (12) represents the Inverse 
Dynamic Identification Model (IDIM).   

C. Identification of the Dynamic Parameters 

The off-line identification of the base dynamic parameters 
  is considered, given measured or estimated off-line data 

for τ and    q, q, q  , collected while the robot is tracking 

some planned trajectories.  

(   )q, q, q   in (12) are estimated with (   )ˆ ˆq̂, q, q  , 

respectively, obtained by band-pass filtering the measure of 
q [17]. The principle is to sample the identification model 
(12) at a frequency mf  in order to get an over-determined 

linear system of ( )mn n  equations and bn
 
unknowns such 

that: 

   fm fm fm
ˆ ˆˆY τ W q,q,q χ ρ    (14)

 
In order to cancel the high frequency torque ripple in 

 fmY τ  and  to window the identification frequency range 

into the model dynamics, a parallel decimation procedure 
low-pass filters in parallel fmY  and each column of  fmW  and 

resamples them at a lower rate, keeping one sample over dn . 

This parallel filtering procedure can be carried out with the 
Matlab decimate function [17]. It is obtained: 

   ˆ ˆˆY τ W q,q,q χ ρ    (15)  

ρ is the ( x1)r  vector of errors, with m dr n n / n     , 

   ˆ ˆˆW q, q, q   is the ( x )br n  observation matrix. 

In Y  and W , the equations of each joint j  are grouped 

together such that: 

       1 1
T TT T T Tn nY Y ... Y ,W W ... W          

 (16) 

jY and jW  represent the m dn / n    equations of joint j . 

The ordinary LS (OLS) solution χ̂  minimizes ρ.  
Using the base parameters and tracking “exciting” 

reference trajectories, a well conditioned matrix W is 
obtained. The LS solution χ̂  of (15) is given by: 

  1T Tχ̂ W W W Y W Y
    (17) 

Standard deviations 
i̂

 , are estimated assuming that W  

is a deterministic matrix  and  , is a zero-mean additive 

independent Gaussian noise, with a covariance matrix C , 

such that: 
T 2( ) rC E ρρ I    (18) 

E is the expectation operator and Ir, the ( )r r  identity 

matrix.  An unbiased estimation of the standard deviation 

  is: 
22 ( )ˆˆ Y -W r b    (19) 

The covariance matrix of the estimation error is given by: 
T 2 T 1[( )( ) ] ( )ˆ ˆ ˆˆ ˆC E χ χ χ χ W W 

    . 

( )
i

2
ˆ ˆ ˆC i,i    is the ith diagonal coefficient of ˆ ˆC  (20) 

The relative standard deviation 
riˆ%   is given by: 

100
ri iˆ ˆ i

ˆ%     , for i̂ ≠ 0 (21) 

The OLS can be improved by taking into account 
different standard deviations on joint j  equations errors 

[17]. Each equation of joint j  in (15) is weighted with the 

inverse of the standard deviation of the error calculated from 
OLS solution of  the equations of joint j  , given by: 

 j j j jY τ W χ ρ   (22) 

This weighting operation normalises the errors in (15) and 
gives the weighted LS (WLS) estimation of the parameters. 

III. GLOBAL IDENTIFICATION OF THE JOINT DRIVE GAINS 

A. Inverse Dynamic identification Model of the robot and 
the payload 

The payload is considered as a link 1n 
 
fixed to the link 

n  of the robot. The model (11) becomes: 

 idm L
L


  


 

  
 

 (23) 

Where: 

Lχ  is the (10 1)
 
vector of the inertial parameters of the 

payload which can be calculated with a CAD model of the 
payload. 



  

L  is the  10n  jacobian matrix of idmτ , with respect to 

the vector Lχ . 

The model (12) becomes: 

 L
L

e


  

 

  
 

 (24) 

Taking into account that the joint j force/torque depends 

only on parameters j ,n  of links j  to n , the IDIM joint j
 

model is given by: 
j ,n

j j j j ,n j j
L

L

g v e 


  


 
     

 
 (25) 

where   j j ,n j
L, ,   , are the respective non zero elements of 

line j
 
in (24), 

jv  is the actual joint j
 
current reference given by the 

numerical controller of the robot. 
  Equation (25) can be rewritten as: 

1

j ,n j
j j ,n j j j

L L j

g
v e g

g


 



  

 
    

 
 (26) 

Equation (26) is the minimal model IDIM used to identify 
the drive gain of joint j . 

B. Identification of the drive gains 

Considering now that the robot has carried out two 
trajectories: (a) without the payload and (b) with the payload 
fixed to the end-effector, the sampling and filtering of the 
model IDIM (26) can be written as: 

0
*

j j ,n j
j j j j * *a

jj j j
b L L

W / g
V / g W

W W 1 / g


 



  


   

      
   

  (27) 

where: 

( )j jV v  is the vector of  jv  samples, 
j

aW  is the observation matrix of joint j
 
in the unloaded 

case, 
j

bW  is the observation matrix of joint j
 
in the loaded case, 

j
LW  is the observation matrix for joint j  corresponding to 

the known payload inertial parameters, 
*̂  is the weighted LS solution of the over-determined 

system (27). The last coefficient of vector *̂  gives the 

estimation of the inverse of the joint j
 
drive gain. 

Using this global approach and assuming that all the 
exciting payload dynamic parameters for each joints are 
known (using experimental measurements or computed with 
a CAD software), the drive gain identification can be carried 
out independently for each joint.  

The advantage of this method is its simplicity compared 
with the usual measurement of each gain of the drive train 
elements. As the drive gains identification is decoupled, i.e. 
the identification is carried out for each joint independently, 
there is no cumulative estimation errors for the drive gains.  

 

Its main drawback is that the identification requires the 
knowledge of all the payload inertial parameters that can be 
difficult to get with a sufficient accuracy, even using CAD 
software. But the experimental results obtained in section IV 
confirm the efficiency of the proposed approach.  

IV. CASE STUDY 

A. Description of the RX 90 kinematics  

The Stäubli RX-90 robot (Fig. 1) has a serial structure 
with six rotational joints. Its kinematics is defined using the 
modified Denavit and Hartenberg notation (MDH) [11]. In 
this notation, the link j  fixed frame is defined such that the 

jz  axis is taken along joint j   axis and the jx  axis is along 

the common normal between jz  and j 1z   (Fig. 1). The 

geometric parameters defining the robot frames are given in 
Table 1. The payload is denoted as the link 7. The parameter 

0j  , means that joint j  is rotational, j
 

and jd
 

parameterize the angle and distance between j 1z   and jz   

along j 1x  , respectively, whereas j  and jr  parameterize 

the angle and distance between j 1x   
and jx  along jz , 

respectively. For link 7, 2j 
 
means that the link 7 is 

fixed on the link 6. Since all the joints are rotational then j  

is the position variable of joint j . We note that the variables 

of joints 2 and 3 in our notation are obtained from the 
measured values of joints 2 and 3 using the relations, 

22 2staubli /     23 3staubli /    . 

The main advantage of using the MDH notation is that the 

x3 

x4, x5, x6 

z6

z3

z2z0, z1

z5

x0, x1, x2

D3
RL4 

z4

Fig. 1. Link frames of the RX-90 robot 

TABLE I 
GEOMETRIC PARAMETERS OF THE RX-90 ROBOT WITH THE PAYLOAD 

j j j dj j rj

1 0 0 0 θ1 0 
2 0  0 θ2 0 
3 0 0 D3 = 0.45 m θ3 0 
4 0  0 θ4 RL4 = 0.45 m 
5 0  0 θ5 0 
6 0  0 θ6 0 
7 2 0 0 0 0 



  

identifiable inertial parameters can be determined 
symbolically using simple closed-form rules [3], [6], [12] 
and it is possible to generalize the proposed methods for tree 
structure robots and closed loop robots [5], [6], [13], [14].   

B. Identification of the drive gains 

The  method is validated using a calibrated payload (Fig. 2). 
Its mass has been measured with a weighting machine ( LM  

= 7.025 Kg ± 0.050 Kg). The other parameters have been 
estimated using CAD software. They are given in table 2. 
Their values are accurate due to the simplicity of the 
payload shape (Fig. 2).  

 For the RX 90, it can be shown that: 
- the torques of joints 1 to 3 depends on all payload 

parameters; 
- the torques of joints 4 and 5 do not depend on 

parameter LM ; 

- the torques values of joint 6 do not depend on 
parameters LM  and LMZ . 

Moreover, our experiments have shown that parameters 

LMZ , LXX , LYY  and LZZ  are too small to allow the 

correct calibration of the drive gains of joint 5 and 6. 
Therefore, the drive gains of joints 1 to 4 only are 

identified. In order to identify the other drive gains, more 
exciting payload should be designed, especially with large 
values for parameters LMX  and LMY . 

Staübli’s control software provides directly the value of 
the joint torque. Therefore, it is proceeded to a calibration of 
the drive gains compared with a priori values used in the 
controller which are taken equal to 1. A first identification 
of both the RX 90 dynamic parameters and the load inertial 
parameters is achieved using the IDIM-LS method with the 
model (25), as detailed in [18] (case 1). The results are 
presented in table 3. It can be observed that the mass LM  

and the first moment LMZ  are poorly identified with the 

manufacturer’s gains. 
Then, the new drive gains for joints 1 to 4 are identified 

using our new approach (case 2). The identified drive gains 
are presented in table 4. It can be shown that there is an 

 

 

 

 
 
Fig.3. Torque validation with identified drive gains, Case 2. 

TABLE 2 
THE INERTIAL PARAMETERS OF THE PAYLOAD. 

XXL XYL XZL YYL YZL ZZL MXL MYL MZL ML

0.161 0 0 0.161 0 0.035 0 0 1.003 7.025

 

 
 
Fig. 2. The 7.025 Kg payload 



  

average of 9% error with respect to the a priori drive gains.  
A new identification of the payload dynamic parameters 

is achieved with the identified gains. The results are 
presented in table 3. It can be observed that the mass LM  

and the first moment LMZ  are better identified using the 

new gains. 
In table 5, the quality of identification for the two studied 

cases in terms of reduction of the norm of the error vector ρ 
is shown. With the identified gains, the quality of 
identification is largely improved. 

Figure 3 shows that the reconstructed torques with the 
identified gains for joints 1 to 4 are close to the actual ones. 

In order to show the sensitivity of the identification 
results to the variation of the drive gain values, a 20% error 
on these gains (with respect to those identified in case 2) is 
simulated (case 3). The quality of identification is clearly 
worst in this case (table 5). The identified payload 
parameters are given in table 3. Their values are far from 
reality.  

Finally, in order to validate the new drive gain values, a 
new payload of 4.275 Kg ± 0.050 Kg, is identified. The 
identified mass is LM  = 4.34 Kg, with 2

i̂
 = 0.149, which 

is very close to the exact value. It is possible to conclude 
that the drive gains have been well identified. 

V. CONCLUSION 

This paper has presented a new method for the 

identification of the total drive gains for robot joints in one 
step. This is a method easy to implement which does not 
need any special test or measurement on elements inside the 
joint drive train. It is based on a IDIM-LS technique using 
current reference and position sampled data while the robot 
is tracking one reference trajectory without load fixed on the 
robot and one trajectory with a known payload fixed on the 
robot, whose inertial parameters are measured or calculated 
by a CAD model. The method has been experimentally 
validated on a Stäubli RX-90 robot. With the new identified 
drive gains, the identification of the total dynamic model of 
the robot has been improved and another payload has been 
accurately identified. This shows the effectiveness of the 
method. 
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TABLE 5 
QUALITY OF IDENTIFICATION. 

 Error norm ̂  Relative Error norm ˆ

Y

  ˆ   

Case 1 77.28 0.075643 1.16293 
Case 2 76.26 0.0746481 1.14648 
Case 3 86.35 0.0845219 1.3003 

ˆ ˆY W    is the minimal norm of error, ˆ  is given by (19). 

 
TABLE 4 

IDENTIFIED DRIVE GAINS. 

 Joint 1 Joint 2 Joint 3 Joint 4 

jg  0.9238 0.9533 1.1032 0.8737

2
i̂

  8.03e-2 3.55e-2 3.68e-2 4.81e-2

riˆ%   
4.3% 1.9% 1.7% 2.8% 

 

TABLE 3 
IDENTIFICATION OF THE PAYLOAD DYNAMIC PARAMETERS. 

 Parameter A priori value Estimated value 2
i̂

 
riˆ%   

Case 1 MZL 1.003 0.957 4.36e-2 2.3% 
 ML 7.025 6.61 1.55e-1 1.2% 

Case 2 MZL 1.003 0.936 4.18e-2 2.2% 
 ML 7.025 7.09 1.55e-1 1.1% 

Case 3 MZL 1.003 0.837 4.41e-2 2.6% 
 ML 7.025 8.61 1.96e-1 1.1% 

i̂
 is the standard deviation (20) and 

ri
ˆ%  its relative value  (21) 


