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Chapitre d'équation 1 Section 1 

Abstract— Off-line robot dynamic identification methods are 

mostly based on the use of the Inverse Dynamic Identification 

Model (IDIM), which calculates the joint force/torque that is 

linear in relation to the dynamic parameters, and on the use of 

linear least squares technique to calculate the parameters 

(IDIM-LS technique). The joint forces/torques are calculated as 

the product of the known control signal (the current reference) 

by the joint drive gains. Then it is essential to get accurate 

values of joint drive gains to get accurate identification of 

inertial parameters. In this paper it is proposed a new method 

for the identification of the total joint drive gains in one step 

using available joint sampled data given by the standard 

controller of the moving robot and using only the weighted mass 

of a payload, without any CAD values of its inertial parameters. 

A new inverse dynamic model calculates the current reference 

signal of each joint j that is linear in relation to the dynamic 

parameters of the robot, to the inertial parameters of a known 

mass fixed to the end-effector, and to the inverse of the joint j 

drive gain. This model is calculated with current reference and 

position sampled data while the robot is tracking one reference 

trajectory without load on the robot and one trajectory with the 

known mass fixed on the robot. Each joint j drive gain is 

calculated independently by the weighted LS solution of an 

over-determined linear systems obtained with the equations of 

the joint j. The method is experimentally validated on an 

industrial Stäubli RX-90 robot. 

I. INTRODUCTION 

EVERAL schemes have been proposed in the literature to 

identify the dynamic parameters of robots [1]–[8]. Most 

of the dynamic identification methods have the following 

common features: 

- the use of an Inverse Dynamic Identification Model 

(IDIM) which calculates the joint force/torque linear in 

relation to the dynamic parameters, 

- the construction of an over-determined linear system of 

equations obtained by sampling IDIM while the robot is 

tracking some trajectories in closed-loop control, 

- the estimation of the parameter values using least 

squares techniques (LS).  

This procedure is called the IDIM-LS technique. 

The experimental works have been carried out either on 

prototypes in laboratories or on industrial robots and have 
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shown the benefits in terms of accuracy in many cases. Good 

results can be obtained provided two main conditions are 

satisfied: 

- a well-tuned derivative band-pass filtering of joint 

position is used to calculate the joint velocities and 

accelerations, 

- the accurate values of joint drive gains g  are known to 

calculate the joint force/torque as the product of the 

known control signal calculated by the numerical 

controller of the robot (the current references) by the 

joint drive gains [9].  

This needs to calibrate the drive train constituted by a 

current controlled voltage source amplifier with gain iG  

which supplies a permanent magnet DC or a brushless motor 

with torque constant 
tK  coupled to the link through direct or 

gear train with gear ratio N .  

Because of large values of the gear ratio for industrial 

robots, ( N >50), joint drive gain, i tg NG K  , is very 

sensitive to errors in iG and tK  which must be accurately 

measured from special, time consuming , heavy tests, on the 

drive chain [9]. 

In this paper it is proposed a new method for the 

identification of the total joint drive gains in one step, using 

current reference and position sampled data while the robot 

is tracking one reference trajectory without load fixed on the 

robot and one trajectory with a known mass fixed on the 

robot whose inertial parameters are measured l. Each joint j  

drive gain is calculated independently by the weighted LS 

solution of an over-determined linear system obtained with 

the equations of the joint j .  

The method is experimentally validated on an industrial 

Stäubli RX-90 robot. 

The paper is organized as follows: section 2 recalls the 

dynamic modelling and identification procedures. Section 3 

deals with the new modelling and identification method for 

the robot drive gains parameters. Section 4 presents the 

experimental validations. Finally, section 5 gives the 

conclusion. 

II. USUAL INVERSE DYNAMIC MODELS AND IDENTIFICATION  

A. Dynamic Modelling 

In the following, all mechanical variables are given in SI 

units on the joint side. All forces/torques, positions, 

velocities and accelerations have a conventional positive sign 
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in the same direction. That defines a motor convention for 

the mechanical behaviour. 

The inverse dynamic model (IDM) of a rigid robot 

composed of n  moving links calculates the motor 

force/torque vector, as a function of the generalized 

coordinates and their derivatives. It can be obtained from the 

Newton-Euler or the Lagrangian equations [6]: 

dyn in f     (1) 

where: 

τdyn is the ( 1)n vector of dynamic forces/torques due to 

the inertial, centrifugal, Coriolis, and gravitational effects: 

( ) ( ) ( )dyn = M q q+C q,q q+Q q  (2) 

  q, q, q, are respectively the ( 1)n  vectors of generalized 

joint positions, velocities and accelerations, 

(M q )  is the ( )n n  robot inertia matrix,  

C( q,q ) is the ( )n n  matrix of centrifugal and Coriolis 

effects,  

Q( q )  is the ( 1)n  vector of gravitational forces/torques. 

τin is the ( 1)n  input electromagnetic force/torque vector 

of the drive chain, in SI units on the joint side. 

( )in idm 0= g v v     (3)  

where: 

idmv is the ( 1)n  vector of current references of the 

current amplifiers,  

vτ0 is the ( 1)n  vector of amplifier offsets,  

gτ is the ( )n n  matrix of the drive gains, 

i tg NG K   (4) 

 N  is the ( )n n  gear ratios matrix of the joint drive 

chains such as, 
mq Nq , with mq  the ( 1)n  vector of 

motor velocities on  the motor side, 

iG  is the ( )n n  static gains diagonal matrix of the 

current amplifiers, assuming a large current loop bandwidth, 

usually close to 1KHz. 

tK  is the ( )n n  diagonal matrix of the electromagnetic 

motor torque constants.  

It should be mentioned that the components of matrices  

N , iG  and tK  are data that are generally given by the 

manufacturers, but with a quite important inaccuracy. They 

can also be independently identified using the methods 

presented in [9]. However, these methods involve special 

tests on the joint drive train of the robot which are heavy and 

time consuming procedures. 

f  is the ( 1)n  vector of the loss force/torque due to 

frictions and motor iron losses, eddy currents and hysteresis 

effect. Usually, it is approximated with a viscous friction 

coefficient and a Coulomb friction force/torque: 

signf v c coffF q F ( q ) F      (5) 

where: 

 vF  is the ( )n n  diagonal matrix of viscous parameters,  

cF  is the ( )n n  diagonal matrix of dry friction 

parameters, and sign(.) denotes the sign function,  

coffF  is a ( 1)n  vector of asymmetrical Coulomb friction 

force/torque between positive and negative velocities.  

Thus (1) becomes: 

sign( )dyn idm v c offF q F q       (6) 

where: 

 off coff 0F g v     is the ( 1)n  vector of offset 

force/torque that regroups the amplifier offset and the 

asymmetrical Coulomb friction coefficient. 

idm idmg v    defines the motor force/torque which 

includes  the amplifier offset component. 

Then the inverse dynamic model (IDM) is given by: 

= ( )  + ( , )idmτ M q q N q q  (7) 

( , )N q q  regroups the ( 1)n vector of centrifugal, 

Coriolis, gravitational, friction and offset forces/torques: 

(  )= ( ) ( ) sign( )v c offN q, q C q,q q Q q F q F q      (8) 

B. Identification Model 

The modified Denavit and Hartenberg notation allows 

obtaining a dynamic model (7) that is linear in relation to a 

set of standard dynamic parameters, 
stχ : 

( ) ( )idm st st stq,q,q, q,q,q     (9)   

where: 

st ( q,q,q )  is the  stn n jacobian matrix of 
idmτ , with 

respect to the  1stn   vector 
stχ  of the standard parameters 

given by 1 2  ... 
T

T T nT

st st st st       : 

j

st is the (14×1) vector of standard dynamic parameters of 

joint and link j : 

j

j T

st j j j j j j j j j j j j j off  XX XY XZ YY YZ ZZ MX MY MZ M Ia Fv Fc    
 

 (10) 

where: 

     j j j j j jXX , XY , XZ , YY , YZ , ZZ  are the 6 components of 

the inertia matrix of link j  at the origin of frame j . 

  j j jMX , MY , MZ   are the 3 components of the first 

moment of link j .  

jM  is the mass of link j ,  

jIa  is a total inertia moment for rotor and gears of 

actuator j .  

jFv , jFc ,
joff are the coefficients of the 

vF , 
cF , off , 

matrices, respectively. 

The columns (: )st ,i  of the matrix ( )st q,q,q  can be 

obtained using the recursive algorithm of Newton-Euler, 

which calculates idm  (7) in terms of the standard dynamic 

parameters, such that: 

(: ) ( with 1 0 for )
i kst idm st st,i q,q,q, , , k i        (10) 



  

To increase the efficiency of this algorithm, we use the 

customized symbolic technique [6], [14]. 

The identifiable parameters are the base parameters which 

are the minimum number of dynamic parameters from which 

the dynamic model can be calculated. They are obtained 

from the standard inertial parameters by regrouping some of 

them by means of linear relations [15], which can be 

determined for the serial robots using simple closed-form 

rules [3], [6], or by numerical method based on the QR 

decomposition [13].  

The minimal dynamic model can be written using the 
bn  

base dynamic parameters   as follows: 

( )idm q,q,q    (11)  

where  is obtained from st  by eliminating the columns 

corresponding to the non identifiable parameters. 

Because of perturbations due to noise measurement and 

modelling errors, the actual force/torque   differs from idmτ  

by an error, e , such that: 

( )idmτ e q,q,q e       (12) 

where: 

g v    (13) 

v  is the ( 1)n  vector of the actual current references of 

the current amplifiers. Equation (12) represents the Inverse 

Dynamic Identification Model (IDIM).   

C. Identification of the Dynamic Parameters 

The off-line identification of the base dynamic parameters 

  is considered, given measured or estimated off-line data 

for τ and    q, q, q , collected while the robot is tracking 

some planned trajectories.  

(   )q, q, q  in (12) are estimated with (   )ˆ ˆq̂, q, q , 

respectively, obtained by band-pass filtering the measure of 

q [16]. The principle is to sample the identification model 

(12) at a frequency 
mf  in order to get an over-determined 

linear system of ( )mn n  equations and bn
 
unknowns such 

that: 

   fm fm fm
ˆ ˆˆY τ W q,q,q χ ρ   (14)

 
In order to cancel the high frequency torque ripple in 

 fmY τ  and  to window the identification frequency range 

into the model dynamics, a parallel decimation procedure 

low-pass filters in parallel fmY  and each column of  fmW  and 

resamples them at a lower rate, keeping one sample over dn . 

This parallel filtering procedure can be carried out with the 

Matlab decimate function [16]. It is obtained: 

   ˆ ˆˆY τ W q,q,q χ ρ   (15)  

ρ is the ( x1)r  vector of errors, with 
m dr n n / n     , 

   ˆ ˆˆW q, q, q  is the ( x )br n  observation matrix. 

In Y  and W , the equations of each joint j  are grouped 

together such that: 

1 1( ) ( ) ( ) ( )
T T

T n T T n TY Y ... Y ,W W ... W         (16) 

jY and jW  represent the 
m dn / n    equations of joint j . 

The ordinary LS (OLS) solution χ̂  minimizes ρ

.  

Using the base parameters and tracking “exciting” 

reference trajectories, a well conditioned matrix W is 

obtained. The LS solution χ̂  of (15) is given by: 

  
1

T Tχ̂ W W W Y W Y


   (17) 

Standard deviations 
î

 , are estimated assuming that W  

is a deterministic matrix  and  , is a zero-mean additive 

independent Gaussian noise, with a covariance matrix C , 

such that: 
T 2( ) rC E ρρ I    (18) 

E is the expectation operator and Ir, the ( )r r  identity 

matrix.  An unbiased estimation of the standard deviation 

  is: 

22 ( )ˆˆ Y -W r b    (19) 

The covariance matrix of the estimation error is given by: 
T 2 T 1[( )( ) ] ( )ˆ ˆ

ˆˆ ˆC E χ χ χ χ W W 
    . 

( )
i

2
ˆ ˆ ˆC i,i    is the i

th
 diagonal coefficient of ˆ ˆC  (20) 

The relative standard deviation 
ri
ˆ%   is given by: 

100
ri i
ˆ ˆ i

ˆ%     , for î ≠ 0 (21) 

The OLS can be improved by taking into account different 

standard deviations on joint j  equations errors [16]. Each 

equation of joint j  in (15) is weighted with the inverse of 

the standard deviation of the error calculated from OLS 

solution of  the equations of joint j  , given by: 

 j j j jY τ W χ ρ   (22) 

This weighting operation normalises the errors in (15) and 

gives the weighted LS (WLS) estimation of the parameters. 

III. GLOBAL IDENTIFICATION OF THE JOINT DRIVE GAINS 

A. Inverse Dynamic identification Model of the robot and 

the payload 

The payload is considered as a link 1n 
 
fixed to the link 

n  of the robot. The model (11) becomes: 

idm uL kL uL

kL



    



 
 

    
  

 (23) 

where: 

kL  is the ( 1)Ln   vector of the known inertial parameters 

of the payload;  

uL  is the ((10 ) 1)Ln   vector of the unknown inertial 



  

parameters of the payload, 

kL  is the ( )Ln n  jacobian matrix of 
idm , with respect 

to the vector 
kL , 

uL  is the ( (10 ))Ln n   jacobian matrix of 
idm , with 

respect to the vector 
uL . 

The model (12) becomes: 

uL kL uL

kL

e



    



 
 

    
  

 (24) 

Taking into account that the joint j  force/torque depends 

only on parameters j ,n  of links j  to n , the IDIM joint j
 

model is given by: 

j ,n

j j j j ,n j j j

uL kL uL

kL

g v e 



    



 
 

     
 
 

 (25) 

where    j j ,n j j

uL kL, , ,    , are the respective non zero 

elements of line j
 
in (24), 

jv  is the actual joint j
 
current reference given by the 

numerical controller of the robot. 

  Equation (25) can be rewritten as: 

1

j ,n j

j j ,n j j j j j

uL kL kL uL

j

g

v g e g

g



  





    

 
 

    
 
 

 (26) 

Equation (26) is the minimal model IDIM used to identify 

the drive gain of joint j . 

B. Identification of the drive gains 

Considering now that the robot has carried out two 

trajectories: (a) without the payload and (b) with the payload 

fixed to the end-effector, the sampling and filtering of the 

model IDIM (26) can be written as: 

0 0

1

*

j ,n j

j
j j j ja

uLj j j
jb uL uL kL kL

j * *

j

g
W

V g / g
W W W

g

W



 







 
 

 

 
   

    
   

 

 

  (27) 

where: 
jV  is the vector of  jv  samples, 

j

aW  is the observation matrix of joint j in the unloaded 

case, 
j

bW  is the observation matrix of joint j in the loaded case, 

j

uLW  is the observation matrix for joint j corresponding to 

the unknown payload inertial parameters, 
j

kLW  is the observation matrix for joint j corresponding to 

the known payload inertial parameters, 
*̂  is the weighted LS solution of the over-determined 

system (27). The last coefficient of vector *̂  gives the 

estimation of the inverse of the joint j
 
drive gain. 

Using this global approach, it is possible to only use the 

knowledge we can have on the payload mass value 
LM  in 

order to identify the robot drive gains. This mass can 

generally be accurately measured using a weighting machine. 

It is assumed that parameter 
LM  appears explicitly in the 

expression of several joint torques (at least one; if not, the 

approach cannot be achieved), i.e. 0j

kL LW M  for all these 

joints.  

For all of them, the drive gains can be identified using the 

previous approach. Then, using the global identification 

models for the same joints, other exciting payload inertial 

parameters (such as the static moments 
LMX , 

LMY  or 

LMZ ) can be estimated and will be used in order to identify 

the drive gains for the other joints. 

The advantage of this method is its simplicity. But its 

main drawback is that the identification is carried out 

sequentially and the estimation errors will be cumulated. As 

a result, it could be preferable to have a complete knowledge 

of all payload inertial parameters (e.g. using data obtained 

from CAD software) in order to decouple the drive gain 

identification for each joint. But, as it will be shown in the 

next section, the experimental results confirm the efficiency 

of the proposed approach. 

IV. CASE STUDY 

A. Description of the RX 90 kinematics  

The Stäubli RX-90 robot (Fig. 1) has a serial structure 

with six rotational joints. Its kinematics is defined using the 

modified Denavit and Hartenberg notation (MDH) [10]. In 

this notation, the link j  fixed frame is defined such that the 

jz  axis is taken along joint j   axis and the jx  axis is along 

the common normal between jz  and j 1z   (Fig. 1). The 

geometric parameters defining the robot frames are given in 

Table 1. The payload is denoted as the link 7. The parameter 

0j  , means that joint j  is rotational, j
 

and jd
 

parameterize the angle and distance between j 1z   and jz   

along j 1x  , respectively, whereas j  and jr  parameterize 

the angle and distance between j 1x   
and jx  along jz , 

respectively. For link 7, 2j 
 
means that the link 7 is fixed 

on the link 6. Since all the joints are rotational then j  is the 

position variable of joint j . It should be mentioned that the 

variables of joints 2 and 3 in the present notation are 

obtained from the measured values of joints 2 and 3 using 

the relations, 22 2staubli /     23 3staubli /    .The 

main advantage of using the MDH notation is that the 

identifiable inertial parameters can be determined 



  

symbolically using simple closed-form rules [3], [6], [11] 

and it is possible to generalize the proposed methods for tree 

structure robots and closed loop robots [5], [6], [12], [13].  

B. Identification of the drive gains 

The method is validated using a calibrated payload (Fig. 

2). Its mass has been measured with a weighting machine 

( LM  = 7.025 Kg± 0.050 Kg). The other parameters have 

been estimated using CAD software. They are given in table 

2. Their values are accurate due to the simplicity of the 

payload shape (Fig. 2).  

 For the RX 90, it can be shown that: 

- the torques of joints 1 to 3 depends on all payload 

parameters; 

- the torques of joints 4 and 5 do not depend on parameter 

LM ; 

- the torques values of joint 6 do not depend on 

parameters LM  and 
LMZ . 

Moreover, our experiments have shown that parameters 

LMZ , LXX , LYY  and LZZ  are too small to allow the correct 

calibration of the drive gains of joint 5 and 6. 

Therefore, the drive gains of joints 1 to 4 only are 

identified. In order to identify the other drive gains, more 

exciting payload should be designed, especially with large 

values for parameters 
LMX  and 

LMY . 

Staübli’s control software provides directly the value of 

the joint torque. Therefore, it is proceeded to a calibration of 

the drive gains compared with a priori values used in the 

controller which are taken equal to 1. A first identification of 

both the RX 90 dynamic parameters and the load inertial 

parameters is achieved using the IDIM-LS method with the 

model (25), as detailed in [17] (case 1). The results are 

presented in table 2. It can be observed that the mass LM  

and the first moment 
LMZ  are poorly identified with the 

manufacturer’s gains. 

  Then, the new drive gains for joints 1 to 4 are identified 

using our new approach (case 2). The identified drive gains 

are presented in table 3. It can be shown that there is an 

average of 8% error with respect to the a priori drive gains.  

A new identification of the payload dynamic parameters is 

achieved with the identified gains. The results are presented 

in table 2. It can be observed that the mass LM  and the first 

moment 
LMZ  are better identified using the new gains. 

In table 4, the quality of identification for the two studied 

cases in terms of reduction of the norm of the error vector ρ 

is shown. With the identified gains, the quality of 

identification is largely improved. 

Figure 3 shows that the reconstructed torques with the 

identified gains for joints 1 to 4 are close to the actual ones. 

In order to show the sensitivity of the identification results 

to the variation of the drive gain values, a 20% error on these 

gains (with respect to those identified in case 2) is simulated 

(case 3). The quality of identification is clearly worst in this 

case (table 4). The identified payload parameters are given in 

table 2. Their values are far from reality.  

TABLE 4 

QUALITY OF IDENTIFICATION. 

 Error norm ̂  Relative Error norm ˆ

Y

  ˆ
  

Case 1 77.28 0.075643 1.16293 

Case 2 76.11 0.0744996 1.14535 

Case 3 85.85 0.0840385 1.29288 

ˆ ˆY W    is the minimal norm of error, ˆ
 is given by (19). 

 

 

TABLE 3 

IDENTIFIED DRIVE GAINS. 

 Joint 1 Joint 2 Joint 3 Joint 4 

j
g


 0.9401 0.9619 1.1148 0.9146 

2
i

̂
 

8.17e-2 3.57e-2 3.72e-2 5.03e-2 

ri
ˆ%   

4.3% 1.9% 1.7% 2.8% 

 

TABLE 2 

IDENTIFICATION OF THE PAYLOAD DYNAMIC PARAMETERS. 

 Parameter A priori value Estimated value 2
î

 
ri
ˆ%   

Case 1 MZL 1.003 1.04 3.78e-2 1.8% 

 ML 7.025 6.71 1.58e-1 1.2% 

Case 2 MZL 1.003 0.934 4.49e-2 2.4% 

 ML 7.025 7.17 1.62e-1 1.1% 

Case 3 MZL 1.003 0.867 4.53e-2 2.6% 

 ML 7.025 8.65 1.98e-1 1.1% 

î
 is the standard deviation (20) and 

ri
ˆ

%


 its relative value  (21) 

 
 

Fig. 2. The 7.025 Kg payload 
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Fig. 1. Link frames of the RX-90 robot 

 

 TABLE I 

GEOMETRIC PARAMETERS OF THE RX-90 ROBOT WITH THE PAYLOAD 

j j j dj j rj 
1 0 0 0 θ1 0 

2 0  0 θ2 0 

3 0 0 D3 = 0.45 m θ3 0 

4 0  0 θ4 RL4 = 0.45 m 

5 0  0 θ5 0 

6 0  0 θ6 0 

7 2 0 0 0 0 

 

http://dico.isc.cnrs.fr/dico/tr/chercher_en?r=weighing%20machine


  

Finally, in order to validate the new drive gain values, a new 

payload of 4.275 Kg ± 0.050 Kg, is identified. The identified 

mass is LM  = 4.35 Kg, with 2
î

 = 0.150, which is very 

close to the exact value. It is possible to conclude that the 

drive gains have been well identified. 

V. CONCLUSION 

This paper has presented a new method for the 

identification of the total drive gains for robot joints in one 

step. This is a method easy to implement which does not 

need any special test or measurement on elements inside the 

joint drive train. It is based on a IDIM-LS technique using 

current reference and position sampled data while the robot 

is tracking one reference trajectory without load fixed on the 

robot and one trajectory with a known payload fixed on the 

robot, whose inertial parameters are measured or calculated 

by a CAD model. The method has been experimentally 

validated on a Stäubli RX-90 robot. With the new identified 

drive gains, the identification of the total dynamic model of 

the robot has been improved and another payload has been 

accurately identified. This shows the effectiveness of the 

method. 
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Fig.3. Torque validation with identified drive gains, Case 2. 

 

 

 
 

 


