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Abstract 

 

Cell-cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest 

for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate 

interaction but is not yet fully understood, although the first model dates back to the nineteen fifties. This review will 

update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technologies 

to measure the forces involved in single carbohydrate-lectin interactions, are discussed. The Flo1 protein has been 

extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the 

detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could 

be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, 

with a strong emphasis towards its structure.  
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The Flo adhesin family is involved in cell-cell and cell surface adhesion 

 

A broad spectrum of biological processes requires controlled cell adhesion. In microbiology, this includes fungal, viral 

and bacterial infections or the formation of organised cell structures such as biofilms. Other examples are the assembly of 

tissues and the nervous system, cell culturing, embryonic development, cellular communication and tumor metastasis. 

Cell adhesion in general is commonly defined as the binding of a cell to a substrate, which can be another cell, a surface 

or an organic matrix. The process is regulated by specific cell adhesion molecules.  

 Many fungi contain a family of cell wall glycoproteins, called "adhesins" that confer unique adhesion properties 

(Teunissen and Steensma 1995, Guo et al. 2000, Hoyer 2001). These molecules are required for the interactions of fungal 

cells with each other (flocculation and filamentation) (Teunissen and Steensma 1995, Lo and Dranginis 1998, Guo et al. 

2000, Vyas et al. 2003), inert surfaces such as agar and plastic (Gaur and Klotz 1997, Lo and Dranginis 1998, Reynolds 

and Fink 2001) and mammalian tissues (Cormack et al. 1999, Li and Palecek 2003). They are also crucial for the 

formation of fungal biofilms (Baillie and Douglas 1999, Reynolds and Fink 2001, Green et al. 2004).  

 The adhesin protein family in Saccharomyces cerevisiae strain S288C can be subdivided into two groups. The first 

group of proteins is encoded by genes including FLO1, FLO5, FLO9 and FLO10. These proteins are called flocculins 

(Caro et al. 1997) because they promote cell-cell adhesion by interacting with the cell wall of adjacent cells. This binding 

event leads to the formation of multicellular clumps (flocs), which sediment out of solution. The FLO1, FLO5, FLO9 and 

FLO10 genes share considerable sequence homology. The second group of the Flo family, including Flo11p, Fig2p and 

Aga1p, has quite unrelated amino acid sequences. These last two proteins are induced during mating (Roy et al. 1991, 

Erdman et al. 1998), while Flo11p is required for diploid pseudohyphal formation and haploid invasive growth 

(Lambrechts et al. 1996, Lo and Dranginis 1998). In haploid invasive growth, cells adhere to the agar surface, so that 

they do not wash off (Roberts and Fink 1994). In diploid pseudohyphal growth, cells adhere to each other after division 

and form long chains or filaments (Gimeno et al. 1992). When yeast cells are grown on semi-solid (0.3% agar) medium, 

they form ―mats‖: complex multicellular structures composed of yeast cells (Reynolds and Fink 2001, Reynolds et al. 

2008). Yeast mat formation, as well as the attachment of cells to plastic surfaces, requires Flo11p.  

 These morphogenetic events (flocculation, filamentation and invasive growth) are tightly regulated (Verstrepen and 

Klis 2006, Fichtner et al. 2007, Dietvorst and Brandt 2008). Flocculation often occurs upon depletion of sugar during 

late-exponential or stationary phases of growth (Stewart and Russel 1981), whereas filamentation requires starvation for 

nitrogen (Gimeno et al. 1992, Braus et al. 2003, Granek and Magwene 2010). The FLO8 gene is a transcriptional 

activator of FLO1 (Kobayashi et al. 1996) and FLO11 (Rupp et al. 1999) and essential for their expression. In commonly 
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used laboratory strains a nonsense mutation in the FLO8 gene leads to transcriptionally silencing of the FLO genes. 

Moreover, it was shown that one FLO gene may compensate for another in diverse morphogenetic events (Guo et al. 

2000). 

 The dominant FLO1 gene was identified and localised at the very end of the right arm of chromosome I (Russell et al. 

1980, Teunissen et al. 1993b). Flo1p is a cell wall protein responsible for flocculation of Flo1-expressing cells and its 

presence is directly related to the degree of flocculation (Bidard et al. 1995, Bony et al. 1997, Bony et al. 1998). The 

FLO5 gene is responsible for the strong flocculation of Flo5-expressing cells (Johnston and Reader 1983). This gene is 

not allelic with the FLO1 gene but shows 96% identity (Jin and Speers 1998). It is located on the very end of 

chromosome VIII (Teunissen et al. 1995). When the FLO5 gene is incorporated in a non-flocculent yeast strain, this 

strain acquires flocculation properties (Vezinhet et al. 1991, Bidard et al. 1995). Flo5p is, like Flo1p, a cell wall protein 

and the expression of Flo5p is correlated with the degree of flocculation (Bony et al. 1998). Not all yeast strains contain 

the dominant FLO9 gene, which is located on chromosome I, but at the other end of the chromosome, when compared to 

FLO1 (Teunissen and Steensma 1995). This gene shows 94% identity with FLO1 and 74% identity with the FLO5 gene 

(Bossier et al. 1997). The FLO10 gene product has 58% identity with FLO1 and is located at chromosome XI (Teunissen 

and Steensma 1995). Overexpressing the FLO10 gene in S. cerevisiae leads to weak flocculation compared to the 

overexpression of the FLO1 gene. Flo10p is also responsible for filamentation and the adhesion to agar or plastic (Guo et 

al. 2000). The Flo11p protein has the same domain structure as the other Flo proteins, but has a totally different amino 

acid sequence. The protein is responsible for flocculation, pseudohyphae formation, agar invasion, adhesion to substrates 

as well as for filamentation (Lambrechts et al. 1996, Lo and Dranginis 1996, 1998, Guo et al. 2000).  

 Generally, flocculation can be governed by the different FLO genes except by FLO11. But, when overexpressed, 

many of these proteins can substitute for each other in diverse morphogenic events: flocculation, mating, haploid 

invasion and filamentation (Guo et al. 2000). Indeed, yeast cells expressing Flo11p showed flocculation behaviour 

(Douglas et al. 2007) but the flocculation ability of yeast cells carrying the FLO11 gene depends on the strain in which 

this gene is expressed. The yeast strain S. cerevisiae var. diastaticus exhibits Flo11 dependent flocculation and biofilm 

formation but did not invade agar or form pseudohyphae, whereas the strain with the ∑1278b background required 

Flo11p to form pseudohyphae, invade agar, adhere to plastic and develop biofilms, but did not flocculate (Douglas et al. 

2007). These results clearly show that adhesin properties are influenced by the yeast strain in which they are studied. 

Specific glycosylation of the adhesin, or auxiliary factors influencing adhesin conformation on the cell wall may thus be 

responsible for differences in biophysical properties. This has also been investigated by Govender et al. (2010). They 

explain that the adhesion phenotype after expressing individual FLO genes is different depending on the yeast strain in 
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which they are expressed. This is due to the high allele heterogeneity of the FLO genes and to the fact that those genes 

are subjected to epigenetic regulation. So it can be concluded that care has to be taken when extrapolating data obtained 

in laboratory strains to industrial strains and that the optimization of the flocculation pattern of individual commercial 

strains will have to be based on a strain-by-strain approach (Govender et al. 2010). 

 

Flo protein cell-cell adhesion mechanism 

 

Flocculation was first defined as the phenomenon wherein yeast cells adhere in clumps, and sediment rapidly from the 

medium in which they are suspended (Stewart and Goring 1976). Further refinement led to the present definition: 

―flocculation is the asexual, reversible and calcium-dependent aggregation of yeast cells to form flocs containing 

thousands of cells that rapidly sediment to the bottom of the liquid growth substrate‖ (Stratford 1989, Bony et al. 1997). 

Other yeast strains, called ale yeasts, show a biofilm at the air-liquid interface at the end of the fermentation. The model 

for this biofilm formation is based on an increase in cell surface hydrophobicity and the fact that the multicellular 

aggregates effectively entrap carbon dioxide (Zara et al. 2005). The flocculation behaviour is of great importance for 

yeast cells as it is a way to escape from harsh conditions in the growth medium. It was suggested that cells in the middle 

of the floc could lyse and act as a source of new nutrients for the other cells (Stewart and Russell 1981, Iserentant 1996). 

Therefore, flocculation enhances the survival rate of yeast cells in starvation conditions.  

 In an attempt to elucidate the phenomenon of flocculation, Eddy and Rudin (1958) proposed the lectin hypothesis. In 

the presence of calcium, flocculins are able to bind highly branched mannose polymers located in the cell wall of 

adjacent cells (Eddy and Rudin 1958, Miki et al. 1982). Moreover, it was shown that flocculation could be reversibly 

inhibited by the presence of sugars (Taylor and Orton 1978, Miki et al. 1980, Nishihara and Toraya 1987, Stratford and 

Assinder 1991), which is validating the hypothesis. This flocculation model is now widely accepted. 

 The flocculation phenotypes of yeast strains can be divided into two groups: the Flo1-phenotype and the NewFlo-

phenotype (Stratford and Assinder 1991, Sieiro et al. 1995). This partition is based on the type of carbohydrate that 

inhibits flocculation. Flocculation of the Flo1-phenotype can be inhibited by mannose, but not by glucose, maltose, 

sucrose or galactose. Therefore, Flo1p is considered as the most specific adhesion protein of the Flo-family (Kobayashi et 

al. 1998, Govender et al. 2008, Van Mulders et al. 2009). Flocculation of the NewFlo-phenotype can be inhibited by 

mannose, glucose, maltose and sucrose, but not by galactose. This flocculation phenotype is governed by a Flo1p 

homologue, named Lg-Flo1p. Considering the current research about the capacity of different sugars to inhibit the 

flocculation, the clear distinction of two flocculation phenotypes is questioned. Not all flocculation phenotypes can be 
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classified in either the Flo-phenotype or the NewFlo-phenotype. For example, the expression of FLO5, FLO9 or FLO10 

does not lead to a specific flocculation phenotype making them less selective adhesins. They were strongly inhibited by 

mannose but also weakly inhibited by a range of sugars (Van Mulders et al. 2009). Although, based on the sequence 

homology with Flo1p, it was found that Flo5p and Flo9p were exclusively mannose-binding flocculins (Teunissen and 

Steensma 1995). More detailed research about the inhibition of flocculation by sugars has been performed. Miki et al. 

have quantified the inhibition of flocculation (1980). Up to 500 mM D-mannose was required to completely inhibit 

flocculation. Later, the sugars were ranked according to their inhibition capacity (Smit et al. 1992). It was shown that α-

D-mannose could disrupt the flocs at a concentration of only 25 mM. This experiment has been repeated recently using a 

yeast strain overexpressing Flo1p (Van Mulders et al. 2009). It was observed that the flocculation mediated by Flo1p was 

only inhibited by mannose at the high concentration of 1 M.  

 More detailed research regarding the flocculation of yeast cells has been performed recently.  A high concentration of 

flocculins is found on the yeast cell surface (Bony et al. 1997). Where they can all interact with mannan chains of other 

cells, leading to multipoint attachments between yeast cells. When one interaction is in the range of millimolar affinities, 

it becomes micromolar affinity with two attachments. In this way the interaction strength of flocculation is increased 

dramatically (Dranginis et al. 2007). The first and only quantitative measurement of the affinity between a Flo protein 

and a carbohydrate was done for the interaction of Lg-Flo1p to mannose. The value for the dissociation constant was 

calculated to be 0.77 mM (Groes et al. 2002). Compared to the affinity of other lectin carbohydrate interactions, this is 

indeed a very low value. This two-way interaction has been confirmed by looking carefully at the cells part of a floc 

resulting from multiple stresses. While analysing the flocs, it was observed that most of the cells were FLO1-expressing 

cells. In other words, FLO1-expressing cells preferentially aggregate with other FLO1 expressers (Smukalla et al. 2008). 

This was explained by the fact that the two-way interaction, which occurs when two FLO1-expressers are binding, is 

stronger than the one-way interaction of a FLO1-expresser with a non-FLO1-expresser. A more striking observation has 

been described about the Flo11 proteins. When secreted Flo11p was covalently attached to microscopic beads, it 

conferred the ability to specifically bind to S. cerevisiae var. diastaticus, but not to ∑1278b cells, which do not flocculate. 

They were not able to bind cells from another yeast strain expressing Flo11p or cells with a deletion of FLO11 (Douglas 

et al. 2007). This Flo11p - Flo11p interaction points to a homotypic adhesive mechanism. A further quantitative 

investigation on the molecular level of the self-binding properties of Flo11p and the other Flo proteins is necessary to 

complete the flocculation mechanism.  
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Structural features of S. cerevisiae flocculins  

 

The member proteins of the adhesin family have a modular configuration that consists of three domains (N-terminal, 

central and C-terminal domain) and an amino-terminal secretory sequence that must be removed when the protein moves 

to the plasma membrane through the secretory pathway (Hoyer et al. 1998, Hoyer 2001, Verstrepen et al. 2004). Until 

now, no atomic structure of any Flo protein has been determined. However, the N-terminal part of a homolog of Flo1p 

(Lg-Flo1p) has been crystallised and diffracted to high-resolution using X-ray radiation (Groes et al. 2002), but the 

structure has not been solved yet. However, some structural information about the Flo-proteins has already been obtained 

from structural bioinformatics. The prediction of the secondary structure of Flo1p shows that the protein is mainly 

composed of β-sheets alternated with coils (Nishikawa and Noguchi 1991). α-Helices are only found at the very end of 

the N- and C-terminal parts of the protein. The study of the hydrophobicity of the Flo1p protein showed that the N- and 

C-terminal parts of the protein were more hydrophobic than the middle part (Kyte and Doolittle 1982). An overview of 

the general gene pattern of the Flo family in strain S288C is represented in Fig. 1a. The length of each domain varies 

according to each FLO gene, which is visualised in Fig. 1b and described in Table 1. The Flo1p has been studied most 

extensively of all Flo proteins and will be discussed in more detail. 

 

Modular configuration of the Flo proteins 

 

The C-terminal domain contains a glycosylphosphatidylinositol (GPI)-attachment site. The adhesins are covalently linked 

to the β-1,6-glucans of the yeast cell wall through the GPI-remnant (De Nobel and Lipke 1994, Caro et al. 1997, Hamada 

et al. 1998a, Hamada et al. 1998b, De Groot et al. 2003).  

 The central domain of Flo1p contains many tandem repeats and 46% of the amino acids are serine and threonine 

residues (Teunissen et al. 1993a, Caro et al. 1997) (see Fig. 2). These amino acids are prone to extensive O-glycosylation 

during the post-translational modification of the protein and the O-linked oligosaccharide side-chains then enable the 

flocculins to attain a long, semi-rigid rod-like structure (Jentoft 1990) that might be stabilised by Ca
2+

 ions (Verstrepen 

and Klis 2006). The proline residues, which are common in this region, may also prevent the central domain to form a 

compact domain (Dranginis et al. 2007). All together, this leads to the general idea that the protein is attached to the cell 

wall and sticks out, reaching for mannose chains to interact with. Along the amino acid sequence, many Asn-Xaa-Thr/Ser 

sequences are found, where Xaa represents any amino acid except proline. This is the consensus sequence for N-
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glycosylation (Kornfeld and Kornfeld 1985), hence, both O-glycosylation and N-glycosylation are present (Bony et al. 

1997). 

 The N-terminal domain is the lectin domain, which interacts with mannose residues. This interaction is responsible 

for flocculation. This was discovered by expressing a truncated form of Flo1p (deletion of amino acids 50 to 278). It was 

observed that this truncated protein could not trigger flocculation (Bony et al. 1997). These results are in agreement with 

those of Kobayashi and co-workers (1998), who also reported that the N-terminal region of Flo1p contains the sugar 

recognition domain. Indeed, the replacement of the N-terminus of the Flo1 protein by the corresponding region of the Lg-

Flo1 protein, caused conversion of the Flo1 flocculation phenotype to the NewFlo flocculation phenotype (Kobayashi et 

al. 1998).  

 

The Flo protein at molecular level 

 

Iterative database searches using a domain insert sequence from bacterial β-glucosidases revealed the presence of a 

conserved domain, called the PA14 domain. It is shared by a wide variety of bacterial and eukaryotic proteins, which 

include many glycosidases, glycosyltransferases, proteases, amidases, bacterial toxins such as anthrax protective antigen 

(PA), and also yeast adhesins (Rigden et al. 2004). This conserved domain is named PA14 after its location in the PA20 

pro-peptide of the anthrax toxin protective antigen. The crystal structure of the anthrax toxin protective antigen (shown in 

Fig. 3a) indicates that the PA14 domain consists of a series of antiparallel β–strands. These correspond roughly to the 

conserved regions of the domain and are separated by loops that coincide with the variable region (Petosa et al. 1997). 

Most of the experimentally characterised PA14-containing proteins are involved in carbohydrate binding and/or 

metabolism. As mentioned before, in the S. cerevisiae flocculins, carbohydrate binding is associated with the N-terminal 

third of the protein. For Flo1p, this part has been assigned as a new domain (PF07691) in the Pfam database (Finn et al. 

2010; http://pfam.sanger.ac.uk), covering residues 86-249, which overlaps the PA14 domain. The flocculin N-terminal 

domain might, therefore, be considered as one of the many PA14 domain variants. Based on the sequence alignment of 

the N-terminal domain of Flo1p and the anthrax toxin protective antigen, a model was proposed for the structure of N-

Flo1p, considering amino acids 85 to 261 (Fig. 3b).  

 The amino acids that are responsible for the carbohydrate recognition in Flo1p and Lg-Flo1p, have also been 

described. It was suggested that the tryptophan residue on position 228 is involved in mannose-recognition in the Flo1 

flocculation phenotype. This tryptophan 228 must be replaced by leucine to produce a flocculation phenotype inhibited 

by glucose. The following model for sugar recognition was proposed: tryptophan 228 in Flo1p recognises the C2-
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hydroxyl group of mannose but does not recognise the C2-hydroxyl group of glucose. In the Lg-Flo1 protein, a leucine 

instead of a tryptophan at position 228 is required for the NewFlo flocculation phenotype. Also position 226 affects the 

flocculation phenotype: for NewFlo-type flocculation a glycine or arginine is needed at that position. Generally, the 

carbohydrate binding activity of Flo1p can be attributed to the VSWGT motif, a pentapeptide encompassing amino acids 

226 to 230 (Kobayashi et al. 1998). 

 Recently, an EYDGA pentapeptide motif belonging to the PA14 domain was identified. The pentapeptide is involved 

in sugar recognition in the N-terminal domain of the Epa1p (epithelial adhesin) from Candida glabrata. This can be 

compared to the VSWGT pentapeptide in Flo1p (Zupancic et al. 2008). A multiple sequence alignment of various PA14 

domains showed convincingly that the VSWGT motif of Flo1p and the EYDGA motif of Epa1p are found in precisely 

the same position, within a hypervariable region of PA14 (Rigden et al. 2004). The VSWGT/KVLAR motif of Flo1p/Lg-

Flo1p, and the EYDGA motif of Epa1p, correspond to a surface loop between two β-strands (strands 9 and 10) in the 

anthrax toxin PA domain structure (Petosa et al. 1997) (see the blue loop in Fig. 3b). 

 The FLO genes posses internal tandem repeats located in the central region, that function as interchangeable modules 

(Watari et al. 1994). During DNA replication, the presence of internal tandem repeats is responsible for recombination 

events. Therefore, yeast cells show a highly variable adhesion phenotype as they are able to quickly adapt their adhesion 

properties to new environments. The removal or addition of repeat units results in a longer or shorter adhesin. This is 

immediately reflected in its flocculation behaviour: a longer adhesin showing a stronger flocculation phenotype. This can 

be explained by the fact that the N-terminal domain should be exposed clearly to the neighbouring cells to allow 

flocculation (Frieman et al. 2002, 2004, Verstrepen et al. 2005). Surprisingly, Liu et al. suggest that the deletion of 

tandem repeats can cause the conversion from Flo1- to NewFlo1-phenotype (Liu et al. 2007a, b). Moreover, for the Flo11 

protein, the length of the gene affects the biofilm-forming ability of the cells expressing Flo11p. This was demonstrated 

by cloning two alleles of the FLO11 gene with different sizes (3.1 and 5 kb) into S. cerevisiae strain BY4742 and 

analysing the corresponding phenotype (Zara et al. 2009). This is not in agreement with what is known so far about the 

specificity of the flocculin, which is believed to be on the N-terminal domain only (Bony et al. 1997, Kobayashi et al. 

1998, Van Mulders et al. 2009). Not only Flo proteins, but several other yeast adhesins such as Als and Epa proteins from 

C. albicans and C. glabrata respectively, contain tandem repeat (TR) regions. So far, their structures are unknown, but 

recently ab initio modeling with either Rosetta or LINUS generated consistent structures of three-stranded anti-parallel β-

sheet domains for the TR regions of Als5p (Fig. 3c) (Frank et al. 2010).  

 Searching the pool of all known yeast adhesins using the TANGO program (http://tango.crg.es/), many adhesins were 

found to contain sequences with high β–aggregation potential, including Flo1p and Flo11p (Ramsook et al. 2009). When 
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a peptide from the central domain of Flo1p (aa 305 to 315) was suspended in neutral buffer, it readily formed amyloids. It 

was proposed that amyloid formation plays a role in cell adhesion by increasing the avidity of the adhesins by ―bundling‖ 

the adhesins. Therefore, amyloid formation can greatly increase the intercellular binding strength by increasing avidity 

(Otoo et al. 2008, Frank et al. 2010, Ramsook et al. 2010). 

 

Glycosylation of Flo proteins 

 

Flo proteins are heavily O- and N-glycosylated (Straver et al. 1994a, Bony et al. 1997). Glycosylation is an enzyme-

directed and site-specific process, which is required for proper functioning of the protein. It is a post-translational 

modification and the protein is glycosylated on its way through the endoplasmic reticulum and the Golgi apparatus. N-

glycosylation is the addition of oligosaccharides to the amide group of asparagines and results in highly branched and 

extended high mannose structures (Dean 1999). O-glycosylation occurs at a later stage during protein processing and 

short linear chains up to five mannose residues are added to the β-hydroxyl group of serine and threonine residues 

(Tanner and Lehle 1987, Aikawa 1995, Goto 2007). Proteins of diverse yeast species contain other O- and N-linked 

oligosaccharide structures (glycans). The differences found in various yeast species, has been reviewed (Gemmill and 

Trimble 1999). Sugar analysis of a homolog of Flo1p revealed the presence of 64% carbohydrate, in the molar ratio of 

60:27:1, which corresponds to mannose, glucose and N-acetylglucosamine respectively. However, the exact glycan 

profile of cell wall Flo proteins is not yet known (Straver et al. 1994b, Bony et al. 1997, Douglas et al. 2007).  

 The role of direct carbohydrate-carbohydrate interactions has not yet been explored in yeast flocculation. Recently, it 

was shown that these interactions can be important for cell adhesion phenomena since glycans occur on the outermost 

cell periphery and therefore are likely involved in the first intercellular contact (Bucior and Burger 2004, Bucior et al. 

2009). Carbohydrate chains offer a rich supply of potential low-affinity binding sites, arranged in a polyvalent array that 

may create a flexible and versatile carbohydrate-carbohydrate recognition system (Misevic and Burger 1986). This then 

allows cells to explore surrounding surfaces, and to form or reinforce interactions before subsequent steps in the cell that 

are mediated by tight and stable covalent bonds (Mallinson et al. 2003). The interaction between individual 

carbohydrates is fairly weak, and biologically relevant high affinities are achieved by the organisation of cell surface 

proteoglycans, glycoproteins or glycolipids into clusters or superstructures (Hakomori 2003, Yoneda and Couchman, 

2003, Todeschini and Hakomori 2008). These provide avidities that can attach cells to each other under physiological 

conditions. Carbohydrate self-recognition takes place through surfaces determined by carbohydrate epitopes and is based 
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on non-covalent bonds: van der Waals contacts, hydrogen bonds, electrostatic forces and interactions with cations 

(Spillmann and Burger 1996).  

 Carbohydrate self-interactions have been recently well described for sponge proteoglycans. Dissociated sponge cells 

from two different species have the capacity to recognise specifically their own species and reaggregate through cell-

surface proteoglycans, termed aggregation factors (AFs) (Fernàndez-Busquets et al. 2003). In a calcium-independent 

process the AFs adhere to the cell surface, and in a calcium-dependent process they exhibit AF self-association (Jarchow 

et al. 2000, Haseley et al. 2001, Fernàndez-Busquets et al. 2003, Carvalho de Souza et al. 2009). AFs are large molecules 

(2 x 10
4
 to 2 x 10

7
 Da) that are composed of 30-60% carbohydrates. Atomic Force Microscope (AFM) visualisation has 

revealed either a linear or a sunburst-like core structure with 20-25 radiating arms (Dammer et al. 1995). Single-molecule 

force spectroscopy measurements reported equally strong adhesion forces between glycan molecules (190-310 pN) as 

between proteins in antibody-antigen interactions (244 pN) (Bucior et al. 2004). This observation suggested the existence 

of intermolecular carbohydrate adhesion domains (Garcia-Manyes et al. 2006). 

 

Cell-cell adhesion biophysics 

 

Molecular and genetic approaches have identified various cell adhesion molecules (CAMs) with their ligand specificities, 

and have determined the processes in which they are involved. However, the molecular mechanisms by which CAMs 

regulate different types of adhesion are open debates (Morgan et al. 2007, Ludwig et al. 2008). To understand cell 

adhesion, the vast amount of qualitative data that is available must be augmented with quantitative data of the biophysics 

of adhesion. Historically, the strength of cell adhesion to a substrate has been studied using simple washing assays (Klebe 

1974). Washing assays have proven to be versatile and useful in identifying CAMs, important extra-cellular-matrix 

components and other proteins that are involved in various forms of cell adhesion. To estimate the force to which cells 

are subjected, various assays that are based on the regulated flow of media have been implemented, including flow 

chamber methods (Kaplanski et al. 1993). However, these assays only give estimates of adhesion forces, since the shear 

force that is exerted on the cells depends on parameters such as cell size, cell shape and how the cell is attached to the 

substrate. Recently, single-cell and single-molecule techniques have been developed to obtain more controlled and 

quantitative measurements of adhesion strength.  

 Single-cell force spectroscopy assays on living cells have been applied to measure the strength of cell adhesion down 

to single-molecule levels (Helenius et al. 2008). A living cell can be attached to a tipless cantilever of an AFM and the 

interacting partner (molecule or cell) on a substrate-coated surface. Alternatively, the living cell can be fixed on a surface 
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and the tip functionalised with the interacting molecule. AFM force spectroscopy with a single cantilever-bound cell can 

be used to investigate cell-cell and cell matrix interactions. The approach and withdrawal of this cell to and from its 

surface can be precisely controlled by parameters such as applied force, contact time and pulling speed by benefiting 

from the AFM's high-force sensitivity and spatial resolution. The data collected in these experiments include information 

on repulsive forces before contact, cell deformability, maximum unbinding forces, individual unbinding events, and the 

total work required to remove a cell from the surface (Table 2). Force spectroscopy can identify cell subpopulations and 

characterise the regulation of cell adhesion events with single-molecule resolution (Taubenberger et al. 2007). Analysis 

of discrete cell adhesion forces demonstrated a dynamic increase of adhesion over time. 

 Single S. cerevisiae cells have been attached to a tipless AFM cantilever, and used as a living single-cell probe to 

perform single-cell force spectroscopy (Kang and Elimelech 2009). The contributions of several galectin family members 

in cell-substratum adhesion of Madin-Darby canine kidney cells have been studied using quantitative single cell AFM 

force spectroscopy (Friedrichs et al. 2007) (Table 2). Optical tweezers have been used to orient uropathogenic 

Escherichia coli (which present a FimH lectin at the tip of their type 1 pilus) relative to a mannose-presenting surface, 

and thus, limit the number of points of attachment (Liang et al. 2000) (Table 2). It was possible to quantify the forces 

required to break a single interaction between pilus and mannose groups.  

 The Flo proteins Flo1p, Lg-Flo1p, Flo5p, Flo9p and Flo10p are lectins, since they have an affinity towards specific 

sugar moieties. Recently, AFM force spectroscopy has been used to directly measure the forces involved in single 

carbohydrate-lectin interactions (Table 3). AFM force spectroscopy has been used to determine the unbinding force of 

oligoglucose carbohydrates and Lg-Flo1p present on the cell wall of industrial brewer's yeast strains (Touhami et al. 

2003a). AFM force probes functionalised with carboxymethyl-amylose were used to record force-distance curves on 

living cells. Flocculation cells showed adhesion forces of 121 ± 53 pN. Unbinding forces of other lectin-carbohydrate 

interactions range from 30 pN to 200 pN (Table 2 and 3).  

 

Medical and industrial significance of S. cerevisiae flocculation phenotype  

 

In hazardous environmental conditions, S. cerevisiae cells possess the remarkable properties to adhere to other cells or to 

substrates like agar or plastics. Adhesion to surfaces is a mechanism that may lead to biofilm formation. It is often used 

as a model to study biofilm formation of pathogenic yeasts, responsible for 41% of the mortality rate in hospitals 

(Wisplinghoff et al. 2004). Biofilms give protection to yeast cells, e.g. by conferring resistance to antifungal drugs. 

Adhesion to abiotic surfaces as catheters or prostheses can serve as a reservoir of pathogenic cells ready to gain access to 
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the bloodstream of patients (Jabra-Rizk et al. 2001, Donlan and Costerton 2002, Jabra-Rizk et al. 2004, Kojic and 

Darouiche 2004). A detailed study of this mechanism is necessary in the search for an adequate antifungal treatment.  

 The flocculation phenomenon is exploited in the brewery industry as an easy, convenient and cost-effective way to 

separate the aggregated yeast cells from the beer at the end of the primary fermentation. The timing of flocculation is 

crucial for brewers as the quality of beer highly depends on it. When cells start to flocculate too early, the fermentation 

will be incomplete with undesirable aromas and too many residual sugars. On the other hand, when the flocculation is 

delayed, problems can arise during beer filtration (Willaert 2007a). A good understanding of the underlying mechanism 

and the factors affecting flocculation is of crucial importance for the performance and control of the brewing process 

(Verstrepen et al. 2003). Another application is the self-aggregation of yeast cells, which can be classified as a type of 

cell immobilisation (Willaert and Baron 1996, Willaert 2007b). Flocculent yeast strains can be selected to obtain a high 

cell density during the beer fermentation process (Nedovic et al. 2005, Willaert and Nedovic, 2006, Verbelen et al. 2010). 

Consequently, the volumetric productivity can be increased considerably.  

 Altogether, elucidating the structure and the physical binding properties of adhesins will allow controlling yeast 

adhesion more efficiently in medical and biotechnological applications. 
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Lg-Flo1 1300 1-24 25-245 59-222 nn  

Flo1 1537 1-24 25-272 86-249 1519-1536 

Flo5 1075 1-24 25-272 85-249 1057-1074 

Flo9 1322 1-23 24-272 85-249 1304-1321 

Flo10  1169 1-24 25-296 112-271 1144-1168 

Flo11 1367 1-21 22-208 nn nn 
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Table 2: Carbohydrate-lectin interactions studied by single-cell (SCFS) and single-molecule (SMFS) force spectroscopy. 

Cell type Lectin Carbohydrate SCFS SMFS SCFS Reference 

   rupture rupture Technique 

   force (pN) force (pN) 

CHO SGLT1  Glucose 51 — AFM Puntheeranurak et al., 

(SLC5A1)      (2006, 2007) 

E. coli FimH Mannose   Optical Liang (2000) 

     tweezers 

NIH3T3 Concanavalin A Surface-expressed  86 — AFM Chen (2000) 

  mannose residues  

NIH3T3 Concanavalin A Not specified/known 80 95 AFM Baumgart and          

      Offenhäusser (2003) 

PMN E-selectin Not specified/known 140 — AFM Hanley (2004) 

PMN L-selectin Not specified/known 80 — AFM Hanley (2004) 

PMN and  P-selectin  

LS174T 

Red blood cells Helix pomatia Saccharides from 65 — AFM Grandbois et al. (2000) 

 lectin blood types O and A 

S. cerevisiae Concanavalin A Mannan 75-200 — AFM Gad et al. (1997) 

S. cerevisiae Concanavalin A Mannan/mannose 117 ± 41 — AFM Touhami et al. (2003b) 

S. cerevisiae Lg-Flo1p CM-amylose 121 ± 53 — AFM Touhami et al. (2003b) 

Madin-Darby  integrin collagen-I 86.42  — AFM Friedrichs et al. (2007) 

canine kidney  coated substrate 

cells 

Madin-Darby galectin-3 laminin-111 60.02 — AFM Friedrichs et al. (2007) 

canine kidney and -9 coated substrate 

cells 
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Table 3: Carbohydrate-lectin unbinding forces measured using single-molecule AFM force spectroscopy. 

Lectin Carbohydrate Component attached Interaction Unbinding Reference 

(origin)  to AFM probe partner force (pN) 

(AB)2 agglutinin Lactose Lactose (p-amino- Agglutinin bound to 58 ± 9 Dettmann et al. (2000) 

(Ricinus communis) phenyl lactoside) Sepharose 4B beads 

(AB)2 agglutinin Lactose Lactose (p-amino- Agglutinin bound to 47 ± 7 Dettmann et al. (2000) 

(Viscum album)  phenyl lactoside) Sepharose 4B beads 

ConA
a
 Amylose CM

c
-amylose Con A on gold  96 ± 55 Touhami et al. (2003a) 

(Jack bean)   surface 

Con A Mannose Con A Mannose bound to 47 ± 41 Ratto et al. (2004) 

(jack bean)   SAMs
d
 on gold- 

    coated silicon 

FimH Mannose BSA
b
-mannose FimH on polysty-    

(E. coli)   rene plates 

Galectin-1 Lactose Lactose (p-amino- Galectin-1 bound to  34 ± 6 Dettmann et al. (2000) 

(bovine heart)  phenyl lactoside) Sepharose 4B beads 

Galectin-3 Pectin galactan Galactan Galectin-derivatised 79 Gunning et al. (2009) 

(human)   glass surface 

a
 Con A: Concanavalin A; 

b
 BSA: Bovine serum albumin; 

c
 CM: carboxymethyl; 

d
 SAMs: self-assembled monolayers of 

16-mercaptohexadecanoic acid. 
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Figures legends 

 

Fig. 1 | (a) General domain structure of the flocculins from S. cerevisiae strain S288C, as explained in the text. The N-

terminal domain contains the PA14 domain which is responsible for the interaction with the sugar. (b) Domain structure 

for each Flo protein from the Pfam database (Finn et al. 2010; http://pfam.sanger.ac.uk). Table 1 gives the length of the 

domains for each specific protein.  

Fig. 2 | Schematic representation of Flo1p updated from Watari and co workers (1994), indicating the 3 domains and the 

signal sequence (in grey) as well as the beginning and the end of each domain marked as numbers on the line above the 

figure. The percentage of the serine (Ser) and threonine (Thr) content is given for each domain. The internal repeats and 

the PA14 domain are shown in different colors and their length is marked as numbers on the line under the domains. The 

amino acid sequence of the 135 nt repeat is shown. This repeat contains a sequence with high β-aggregation potential, 

which is underlined (Ramsook 2009). In the N-terminal domain, it was shown that the amino acids ranging from 197 to 

240 are important for binding to sugar (Kobayashi et al. 1998). Therefore, this region was zoomed in at the amino acid 

level. The pentapeptide involved in glycan specificity is shown in bold (Zupancic et al. 2008) and the amino acids 

contributing to sugar recognition have bigger size (Kobayashi et al. 1998).  

Fig. 3 | (a) Structure of the anthrax toxin protective antigen, revealing 5 domains (PDB 1ACC). The PA14 domain 

(amino acids 14-150) is part of domain 1 shown in blue. PA14 domain is part of domain 1 and is composed of beta sheets 

(Petosa et al. 1997). (b) Model proposed for the tertiary structure of the N-terminal domain of Flo1p based on a sequence 

alignment with the anthrax toxin protective antigen, using the Phyre server (Kelley and Sternberg 2009). Only amino 

acids 85-261 from N-Flo1p were considered. The pentapeptide responsible for the binding event as described by 

Kobayashi and co workers (1998), is shown in blue. (c) The tandem repeat region comprises multiple amino acid repeats 

that are thought to be arranged in antiparallel-sheets. A model was made with ROSETTA and LINUS and this 

consistently predicted independently folded three-stranded antiparallel-sheet domains for each repeat of the Als5 protein 

(Frank et al. 2009).  
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