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Around Nash inequalitiesDominique Bakry∗ †, François Bolley‡ and Ivan Gentil§September 10, 2010
Introdu
tionIn the Eu
lidean spa
e R

n, the 
lassi
al Nash inequality may be stated as(0.1) ‖f‖1+n/2
2 ≤ Cn‖f‖1‖∇f‖n/2

2for all smooth fun
tions f (with 
ompa
t support for instan
e) where the norms are
omputed with respe
t to the Lebesgue measure. This inequality has been introdu
edby J. Nash in 1958 (see [9℄) to obtain regularity properties on the solutions to paraboli
partial di�erential equations. The 
omputation of the optimal 
onstant Cn has beenperformed more re
ently in [6℄.This inequality may be stated in the general framework of symmetri
 Markov semi-groups, where it is a simple and powerful tool to obtain estimates on the asso
iated heatkernel. In this 
ontext, one repla
es ‖∇f‖2
2 by the Diri
hlet form E(f, f) asso
iated withthe semigroup, and the Lebesgue measure by its reversible measure. Moreover, the powerfun
tion xn in the inequality is repla
ed by a more general 
onvex fun
tion Φ, and un-der this form it 
an be valid (and useful) even in in�nite dimensional situations su
h asthose whi
h appear in statisti
al me
hani
s. One 
an also give weighted forms of theseinequalities : they also lead to pre
ise estimates on the semigroup, or on the spe
tralde
omposition of the generator.The aim of this short note is to explain how Nash inequalities lead to su
h estimates ina general setting and also to show simple te
hniques used to establish the required Nashinequalities. There is no 
laim for originality, most of the material in
luded here may befound in various papers su
h as [1, 2, 5, 7, 13℄.
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Nash inequalitiesNash inequalities belong to the very large family of fun
tional inequalities for symmet-ri
 Markov semigroups whi
h have led to many re
ent works. Many of these inequalities
ompare Lp norms of fun
tions to the L2 norms of their gradients, whi
h in this 
on-text is 
alled the Diri
hlet form; this is the 
ase of the simplest ones, the spe
tral gap(or Poin
aré) inequalities. But one may also 
onsider L1 norms of the gradients, in thearea of isoperimetri
 inequalities, or Lp norms, even L∞ norms, when one is 
on
ernedwith estimates on Lipshitz fun
tions, for instan
e in the area of 
on
entration of measurephenomena.Here, we shall 
on
entrate only on L2 norms of gradients. Even in this setting, thereexists a wide variety of inequalities, whi
h are adapted to the kind of measure one wantsto study on one side, and to the properties they des
ribe on the other. For example,measures with polynomial de
ay are not 
overed by the same inequalities as measureswith exponential, or square exponential de
ay.The family of Nash type inequalities we present here belongs to the wide family ofthe Sobolev type inequalities. Their main interest is that they easily provide good (andsometimes almost optimal) 
ontrol on heat kernels. Starting from the 
lassi
al inequality,we shall show how to extend them �rst by the introdu
tion of a rate fun
tion Φ, andthen by the extra introdu
tion of a weight fun
tion V (a Lyapunov fun
tion). As we shallsee, the link between Nash inequalities and estimates on the semigroup spe
trum is verysimple and, as usual in the �eld, roughly relies on derivation along time and integrationby parts. This is why it is tempting to use it in a wide range of situations.Then, we shall show how to obtain these inequalities in the simplest models on thereal line. Restri
ting ourselves to the real line may be thought as looking only at the easy
ase. In fa
t, by 
hoosing various measures, one may produ
e a lot of di�erent model
ases whi
h really illustrate what may or may not be expe
ted from these inequalities.Then the extension to higher dimensional situations (like R
n or manifolds) is very oftena pure matter of te
hni
alities, extending in a dire
t way the one-dimensional methods.The paper is organized as follows. In the �rst se
tion, we brie�y present the 
ontextof symmetri
 Markov semigroups, and parti
ularly di�usion semigroups. Then, we showdi�erent variations of Nash inequalities and how to get estimates on heat kernels fromthem. Then, in �ne, we show how to produ
e su
h Nash inequalities on the basi
 modelson the real line we are interested in.1 Symmetri
 Markov semigroups and difusionsTo understand the general 
ontext of Markov semigroups, we �rst 
onsider a measurespa
e (E,B, µ), where B is a σ-�eld and µ is a σ-�nite measure on it. Although we shallalways fo
us on examples where (E,B) is R

n equipped with the usual Borel sets (or someopen set in it, or a �nite dimensional manifold with or without boundaries), it may be anin�nite dimensional spa
e, as we already mentioned, in whi
h 
ase one has to be 
areful2 September 10, 2010



Nash inequalitiesabout the measurable stru
ture of the spa
e. In any 
ase, one should always suppose that
(E,B, µ) is a "reasonable" measure spa
e : we shall not say in details what we mean by"reasonable", but results su
h as the de
omposition of measure theorems should be valid,whi
h 
overs all 
ases one 
ould look at in pra
tise.Given (E,B, µ) a symmetri
 Markov semigroup is a family (Pt)t≥0 of linear operatorsmapping the set of bounded measurable fun
tions into itself with the following properties:(i) Preservation of positivity : if f ≥ 0, so is Ptf .(ii) Preservation of 
onstant fun
tions : Pt 1 = 1.(iii) Semigroup property : Pt ◦ Ps = Pt+s.(iv) Symmetry : Pt maps L2(µ) into itself and, for any pair (f, g) ∈ L2(µ), one has

∫

E

Ptfg dµ =

∫

E

fPtg dµ.(v) Continuity at t = 0 : P0 = Id and Ptf → f when t → 0 in L2(µ).Su
h semigroups naturally appear in probability theory as Ptf(x) = E(f(Xt)/X0 = x)where (Xt)t≥0 is a Markov pro
ess. The symmetry property does not always hold andit is equivalent to the reversibility of the pro
ess. They also appear in many situationswhen one solves a "heat equation" of the form
∂tF (x, t) = LF, F (x, 0) = f(x);here L is a se
ond order sub-ellipti
 (or hypo-ellipti
) di�erential operator, in whi
h 
ase

Ptf is the solution F (x, t) at time t when the initial value is F (x, 0) = f(x).Let us start with some elementary preliminary remarks.(a) Sin
e Pt is symmetri
, and Pt 1 = 1, one gets ∫

E
Ptfdµ =

∫

E
fdµ by taking g = 1 inthe property (iv): µ is invariant under the semigroup.(b) Sin
e Pt is linear and positivity preserving, |Ptf | ≤ Pt|f |. This implies that Pt is a
ontra
tion in L1(µ) by invarian
e of the measure.(
) By the same argument, Pt is also a 
ontra
tion in L∞(µ) and therefore, by interpola-tion, Pt is a 
ontra
tion in Lp(µ) for any p ∈ [1,∞].(d) Sin
e (Pt)t is a semigroup of 
ontra
tions in L2(µ), by the Hille-Yoshida theory, itadmits an in�nitesimal generator L, whi
h is densely de�ned by Lf = ∂tPtf at t = 0.Then Ptf is the solution at time t of the heat equation ∂tF = LF , given F (x, 0) = f(x)at time t = 0. 3 September 10, 2010



Nash inequalitiesFormally, any property of the semigroup may be translated into a property of thegenerator L, and vi
e versa. For instan
e, the preservation of 
onstants propertytranslates into L1 = 0. Also, the symmetry translates into the fa
t that L is self-adjoint, that is,
∫

E

fLg dµ =

∫

E

gLfdµ.The positivity preserving property is more subtle. In general, it is translated intoa maximum prin
iple of the generator. But this requires a bit more than just ameasurable stru
ture on the spa
e, and we prefer to translate this into the positivityof the 
arré du 
hamp operator, see point (k) below.(e) The measure µ being symmetri
 (or "reversible") is in general unique up to a nor-malizing 
onstant (it is however a restri
tive 
ondition that su
h a measure exists :see formula (1.3) below). When the measure is �nite, we may therefore normalize itas to be a probability measure, and we shall always do it. In this 
ase, the 
onstantfun
tion 1 is always a normalized eigenve
tor, asso
iated with the eigenvalue 0 whi
his the smallest value of the spe
trum of −L. In the in�nite 
ase, there is no 
anoni
alway of 
hoosing a good normalization.(f) Sin
e the measure spa
e (E,B, µ) is a "reasonable" spa
e, any su
h operator Pt whi
hpreserves the 
onstants and positivity may be represented as
Ptf(x) =

∫

E

f(y)Pt(x, dy),where Pt(x, dy) is a kernel of probability measures, that is, a probability measure on
E depending on the parameter x ∈ E in a measurable way. This enables for exampleto apply to Pt any generi
 property of probability measures, su
h as the varian
einequality Pt(f

2) ≥ (Ptf)2.(g) Very often (and we shall see that Nash inequalities provide a useful 
riterium for this),this kernel has a density with respe
t to the reversible measure µ, that is
Pt(x, dy) = pt(x, y)µ(dy);here pt(x, y) is a non negative fun
tion whi
h is de�ned almost everywhere (withrespe
t to µ ⊗ µ) on E × E. Then the symmetry property (iv) is equivalent to thesymmetry of this kernel pt(x, y) = pt(y, x). Mu
h attention has been brought over thelast de
ades to various estimates on this kernel density (in parti
ular in Riemanniangeometry, for heat kernels on Riemannian manifolds, using tools from geometry like
urvature, Riemannian distan
e, et
). On
e again, Nash inequalities may providegood su
h estimates, as we shall see later on.(h) When we have su
h densities, the semigroup property translates into the Chapman-Kolmogorov equation

pt+s(x, y) =

∫

E

pt(x, z)ps(z, y)µ(dz).4 September 10, 2010



Nash inequalitiesHen
e, by the Cau
hy-S
hwarz inequality,
p2t(x, y)2 ≤ p2t(x, x) p2t(y, y).As the 
onsequen
e, the maximum of pt(x, y) is always obtained on the diagonal.(i) The generator L being self-adjoint has a spe
tral de
omposition with a spe
trum in

(−∞, 0] a

ording to (1.2).(j) It may be the 
ase that the spe
trum is dis
rete, and that we have a 
omplete se-quen
e of orthonormal eigenve
tors (fn) in L2(µ), with eigenvalues −λn for L. In thissituation, the kernel density pt(x, y) is given by
pt(x, y) =

∑

n

e−λntfn(x)fn(y).Then we have the tra
e formula
∫

E

pt(x, x)dµ(x) =
∑

n

e−λnt.On
e again, Nash inequalities will provide uniform (or non uniform) bounds on thedensities, and therefore bounds on the 
ounting fun
tion of the sequen
e (λn).(k) By derivation at t = 0 the varian
e inequality Pt(f
2) ≥ (Ptf)2 gives the inequality

L(f 2) ≥ 2fLf.In parti
ular(1.2) ∫

E

fLfdµ ≤ 0by invarian
e of µ. Of 
ourse, one has to take 
are about whi
h fun
tions these doapply. In general, we assume that there is an algebra of fun
tions A dense in thedomain of L, for whi
h this is valid. In this 
ase, one de�nes the 
arré du 
hamp asthe bilinear form
Γ(f, g) =

1

2

(

L(fg) − fLg − gLf
)

.It satis�es Γ(f, f) ≥ 0, and in some sense this 
hara
terizes the positivity preservingproperty of Pt.The Diri
hlet form asso
iated to Pt is �nally de�ned by
E(f, g) = −

∫

gLfdµ = −
∫

fLg dµ =

∫

Γ(f, g)dµ.5 September 10, 2010



Nash inequalitiesThe last identity is based on the identity ∫

E
L(fg)dµ = 0 and is 
alled the integrationby parts formula. The Diri
hlet form is in general de�ned on a larger domain than theoperator L itself (formally, it requires only one derivative of the fun
tion to be in L2(µ)instead of 2 for the generator).The knowledge of the measure and of the 
arré du 
hamp (or of the Diri
hlet form)entirely des
ribes the operator L (and therefore the semigroup), sin
e L may be de�nedfrom Γ and µ through the integration by parts formula (see (1.3)).The basi
 example of su
h semigroups is of 
ourse the standard heat kernel in theEu
lidean spa
e R

n; for t > 0, its density pt(x, y) with respe
t to the Lebesgue measure
dy is

pt(x, y) =
1

(4πt)n/2
exp(−|x − y|2

4t
).Here, µ(dy) = dy, L = ∆ and

Γ(f, f) = |∇f |2.This 
orresponds to the 
ase studied by Nash in [9℄. It is one of the very few exampleswhere one expli
itly knows Pt, sin
e in general we only know L, and the issue is to dedu
eas mu
h information as possible on Pt from the knowledge of L.Another model 
ase is the Ornstein-Uhlenbe
k semigroup on R
n, for whi
h

Lf(x) = ∆f(x) − x · ∇f(x), Γ(f, f) = |∇f |2, µ(dx) =
1

(2π)n/2
exp(−|x|2/2)dx.Its density with respe
t to the Gauss measure µ(dy) is

pt(x, y) = (1 − e−2t)−n/2 exp

[

− 1

2(1 − e−2t)
(|y|2e−2t − 2 x · ye−t + |x|2e−2t)

]and it behaves in a very di�erent way from the previous example as long as fun
tionalinequalities are 
on
erned.In the two previous 
ases, the 
arré du 
hamp is the same (and the semigroups onlydi�er by the measure µ(dx)). Observe that Γ(f, g) is in both 
ases a �rst order di�erentialoperator in its two arguments. They both belong to the large 
lass of di�usion Markovsemigroups, whi
h are semigroups su
h that for all smooth fun
tions φ

Γ(φ(f), g) = φ′(f)Γ(f, g)or equivalently
Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f, f).This property is 
alled the 
hange of variable formula for L and is an intrinsi
 way ofsaying that L is a se
ond order di�erential operator. The fa
t that L(1) = 0 says thatthere is no 0-order term in L. One may easily 
he
k that among all di�erential operatorson R

n (or a manifold) with smooth 
oe�
ients, only the se
ond order ones may satisfy6 September 10, 2010



Nash inequalities
Γ(f, f) ≥ 0, provided the matrix of the se
ond order terms is positive-semide�nite at anypoint.Non di�usion 
ases are of 
onsiderable interest sin
e they are related to Markov pro-
esses with jumps and also naturally appear when one looks at subordinators. Howeverwe shall 
on
entrate here on the di�usion 
ase, even though the Nash te
hniques may beused in the same way in the general 
ase.In general, a se
ond order di�erential operator without 0-order terms of the form

Lf =
∑

ij

aij(x)∂2
ijf +

∑

i

bi(x)∂ifhas a 
arré du 
hamp given by
Γ(f, g) =

∑

ij

aij(x)∂if∂jg = ∇f · A(x)∇g.Therefore the positivity of Γ is equivalent to the fa
t that at any point x the matrix
A(x) = (aij(x)) is positive-semide�nite. Conversely, when the 
arré du 
hamp is given(on a open set in R

n or on a smooth manifold in lo
al 
oordinates) by
Γ(f, g) =

∑

ij

aij(x)∂if∂jg,with positive-semide�nite matri
es (aij(x)) having smooth 
oe�
ients, and when the ref-eren
e measure µ(dx) has a smooth positive density ρ(x) with respe
t to the Lebesguemeasure, it 
orresponds to a unique symmetri
 di�usion operator L whi
h is(1.3) Lf =
1

ρ(x)

∑

i

∂i

(

ρ(x)
∑

j

aij(x)∂jf
)

.In other words, Γ 
odes for the se
ond order part of the operator while µ 
odes for the�rst order terms. Observe also that ea
h (Γ, µ) leads to unique symmetri
 L, but possiblyseveral non symmetri
 L.A model 
ase on whi
h we shall fo
us is the 
ase when E = R and Γ(f, f) = f ′2. Weshall look at the measures(1.4) µ(dx) = C exp(−|x|a)dx,where a > 0 and C is a normalizing 
onstant. In order to avoid irrelevant di�
ulties dueto the non smoothness of |x| at 0, we shall repla
e |x| by √
1 + x2. Depending on thevalue of a, the 
orresponding semigroups present diverse behaviours.For a = 2, the 
elebrated Nelson theorem [10℄ asserts that the Ornstein-Uhlenbe
ksemigroup is "hyper
ontra
tive", whi
h means that Pt is bounded from L2(µ) to Lq(t)(µ)7 September 10, 2010



Nash inequalitiesfor all t > 0 and some q(t) > 2. This is equivalent to the also famous Gross logarithmi
Sobolev inequality [8℄(1.5) ∫

f 2 log f 2dµ ≤
∫

f 2dµ log
(

∫

f 2dµ
)

+ CE(f, f).When a > 2, the semigroup is "ultra
ontra
tive", whi
h means that Pt maps L1(µ)into L∞(µ) for any t > 0, while it is not even hyper
ontra
tive for a < 2. Nevertheless,for 1 < a < 2, it has a dis
rete spe
trum and it is Hilbert-S
hmidt, and we shall see belowhow to get estimates on the spe
trum through weighted Nash inequalities.For a = 1, the spe
trum is no longer dis
rete and the only property left is the existen
eof a spe
tral gap : the spe
trum of −L lies in {0} ∪ [A,∞) for some A > 0, and thisproperty is equivalent to a spe
tral gap (or Poin
aré) inequality(1.6) ∫

f 2dµ ≤
(

∫

fdµ
)2

+
1

A
E(f, f).When a < 1, even the spe
tral gap property is lost.Of 
ourse, one may look at similar models in R

n, or on Riemannian manifolds withdensity measures (with respe
t to the Riemann measure) depending on the distan
e tosome point. In this latter 
ase, one would get more 
ompli
ated results, sin
e in generalone has to take into a

ount lower bounds on the Ri

i 
urvature, and even more if oneworks with boundaries (with Neumann boundary 
onditions). We shall not develop thishere.2 Nash inequalitiesIn the 
ontext of Diri
hlet forms asso
iated to symmetri
 Markov semigroups as des
ribedabove, a Nash inequality is an inequality of the form(2.7) ‖f‖1+n/2
2 ≤ ‖f‖1‖

[

C1‖f‖2
2 + C2E(f, f)

]n/4
;here the norms Lp are of 
ourse 
omputed with respe
t to the reversible measure µ and nis any positive parameter (that we 
all the dimension in the Nash inequality, sin
e in the
lassi
al 
ase the unique possible value for n is really the dimension of the spa
e). Thisinequality should apply for any f in the Diri
hlet domain, but it is enough to 
he
k itin a dense subspa
e of it whi
h, in many examples, will be the set of smooth 
ompa
tlysupported fun
tions.It is worth mentioning that when µ is a probability measure, then C1 ≥ 1 (as 
an beseen by 
hoosing f = 1), while for example in R

n with the Lebesgue measure, one mayhave C1 = 0, as it is the 
ase for the 
lassi
al Nash inequality.8 September 10, 2010



Nash inequalitiesWhen µ is a probability measure and C1 = 1, we say that the inequality is tight. Itthen implies a spe
tral gap inequality, as one may see by applying the inequality to 1+ ǫfand letting ǫ go to 0.Conversely, if (2.7) is valid with C1 > 1 and with µ being a probability measure,together with a spe
tral gap inequality, then a tight Nash inequality holds (see [1℄ forexample). In general, we say that a fun
tional inequality is tight when one may dedu
efrom the inequality that {E(f, f) = 0}=⇒{f = 
onstant}. Here, when C1 = 1, this isensured by the equality 
ase in the inequality ‖f‖1 ≤ ‖f‖2. As we shall see, tightnessmay be used to 
ontrol the 
onvergen
e to equilibrium, that is the asymptoti
 behaviourwhen t → ∞, while the general inequality is useful to 
ontrol the short time behaviour.Most of fun
tional inequalities may be tightened in presen
e of a spe
tral gap inequality,as it is the 
ase here.In the 
ase of an in�nite measure, tightness 
orresponds to the 
ase when C1 = 0, asin the Eu
lidean 
ase.However, there is a strong di�eren
e between the forms that the Nash inequalitiesmay take a

ording to whether the measure is �nite or not. We know that a tight Nashinequality holds true in the Eu
lidean spa
e, but it 
an be proved that the tight Nashinequality (2.7) may not be valid on a �nite measure spa
e unless the spa
e is 
ompa
t.More pre
isely, when one has a tight Nash inequality (2.7) on a �nite measure spa
e, onemay get a bound on the os
illation of Lip
hitz fun
tions, when
e a bound on the diameterof the spa
e (this diameter being measured in terms of an intrinsi
 distan
e asso
iatedwith the 
arré du 
hamp [4℄). This explains why below we introdu
e the extended Nashinequalities (2.9) and (2.10), whi
h may be valid on �nite measure spa
es with unboundedsupport, as we shall see.When n > 2, the Nash inequality (2.7) is one of the many forms of the Sobolevinequality
‖f‖2

2n/(n−2) ≤ C1‖f‖2 + C2E(f, f).Indeed, observe �rst that this and Hölder's inequalities lead to the Nash inequality (2.7)with the same "dimension" n and the same 
onstants C1 and C2. The way ba
k is alittle more subtle: the argument in [3℄ is based on applying the Nash inequality to thesequen
e of fun
tions fn = min{(f − 2n)+, 2n}, adding the obtained estimates and usingthe identity ∑

n E(fn, fn) = E(f, f). This enables to keep the same dimension n, but notthe 
onstants C1 and C2.In the 
ontext of Diri
hlet forms, su
h Sobolev inequalities may appear under di�erentforms su
h as Energy-Entropy, Gagliardo-Nirenberg, Faber-Krahn et
 inequalities. Werefer to [3℄ for full details. The 
onne
tion between Sobolev (and Nash) inequalities andvarious bounds on heat kernels has been explored by many authors, see [1, 7, 11℄ forexample.We have the following 9 September 10, 2010



Nash inequalitiesTheorem 2.1. Assume that inequality (2.7) holds. Then,(2.8) ‖Ptf‖2 ≤ C(t)‖f‖1,where
C(t) =

(

max{2C1,
2nC2

t
}
)n/4

.Conversely, if (2.8) holds with C(t) ≤ a + bt−n/4, then a Nash inequality (2.7) holdswith the same dimension n and 
onstants C1 and C2 depending only on n, a and b.Proof � Let us rewrite the inequality under the form
(‖f‖2

2

‖f‖2
1

)1+2/n

≤ C1
‖f‖2

2

‖f‖2
1

+ C2
E(f, f)

‖f‖2
1

.Now, 
hoose a positive fun
tion f and apply the pre
eding bound to Ptf . We know frominvarian
e of µ that ∫

E
Ptfdµ =

∫

E
fdµ.Let us set H(t) =

‖Ptf‖2

2

‖Ptf‖2

1

=
‖Ptf‖2

2

‖f‖2

1

. We have
∂t‖Ptf‖2

2 = 2

∫

PtfLPtf dµ = −2 E(Ptf, Ptf).Therefore, H is de
reasing and
H ′(t) = −2

E(Ptf, Ptf)

‖Ptf‖2
1

,and the Nash inequality (2.7) be
omes
H1+2/n ≤ C1H − 2C2H

′.Now, as long as H ≥ (2C1)
n/2, one has H1+2/n ≥ 2C1H , and we get

H1+2/n ≤ −4C2H
′,and this di�erential inequality (with the fa
t that H is de
reasing) gives the result.To see the reverse way, we may observe that, for a general symmetri
 Markov semi-group, the fun
tion t 7→ K(t) = log ‖Ptf‖2

2 is 
onvex. Indeed, the derivative of K1(t) =
‖Ptf‖2

2 is −2
∫

PtfLPtfdµ, while the se
ond derivative is 4
∫

(LPtf)2dµ, and therefore byCau
hy-S
hwarz inequality one has
K

′2
1 ≤ K1K

′′
1 ,whi
h says that log K1 = K is 
onvex. Then so is the fun
tion h(t) = log

‖Ptf‖2

2

‖Ptf‖2

1

= log H(t),so that
H ′(0) ≤ H(0)

t
log

H(t)

H(0)
.10 September 10, 2010



Nash inequalitiesNow, if we have a bound of the form H(t) ≤ a + bt−n/2, we may plug this upper boundin the previous inequality, and then optimise in t to get the result.In fa
t, having a bound for Pt as an operator from L1 into L2, we are very 
lose froma uniform bound on the kernel pt. Indeed, if Pt is bounded from L1 into L2 with norm
C(t), then by symmetry and duality, it is also bounded from L2 into L∞ with norm C(t),and therefore by 
omposition and semigroup property P2t is bounded from L1 into L∞with norm C(t)2.Conversely, by the Riesz-Thorin theorem, if Pt is bounded from L1 into L∞ with norm
C1(t), being bounded from L1 into itself with norm 1, it is also bounded from L1 into L2with norm C1(t)

1/2. In the end, we have obtained the followingTheorem 2.2. A Nash inequality (2.7) holds with dimension n if and only if Pt is boundedfrom L1 into L∞ with norm bounded above by a + bt−n/2.Of 
ourse, in the 
ase when C1 = 0, whi
h 
orresponds to the 
lassi
al Eu
lidean Nashinequality, the equivalen
e is valid with a bound of the form C(t) = at−n/2.Moreover, a very general fa
t (valid on "reasonable measure spa
es" (E,B, µ)) assertsthat an operator K is bounded from L1(µ) into L∞(µ) if and only if it may be representedby a bounded kernel density k : K(f)(x) =
∫

E
k(x, y)f(y)µ(dy). Moreover, the normoperator of K is exa
tly the L∞ norm of k (on E × E).So we have seen that a Nash inequality is equivalent to a uniform bound on the kernelof Pt (and also 
arries the existen
e of su
h kernel), with very few assumptions on thespa
e.Observe that there is no reason why we should restri
t ourselves to the 
ase of powerfun
tions in Nash inequalities. One may 
onsider extensions of the form(2.9) Φ

(‖f‖2
2

‖f‖2
1

)

≤ E(f, f)

‖f‖2
1

,valid say whenever ‖f‖2 > M‖f‖1. Here Φ is a smooth 
onvex in
reasing fun
tion de�nedon an interval (M,∞). (It does not require formally to be 
onvex in
reasing, but it isreally useful only in this 
ase).Su
h inequalities have been introdu
ed by F.-Y. Wang in [12℄ under the form
‖f‖2

2 ≤ aE(f, f) + b(a)‖f‖2
1,
alled super Poin
aré inequalities. These inequalities may be optimized under the param-eter a to give

‖f‖2
2

‖f‖2
1

≤ Ψ
(E(f, f)

‖f‖2
1

)with some 
on
ave fun
tion Ψ, whi
h is equivalent to inequality (2.9).Then, one 
an write the argument of Theorem 2.1 with (2.9) instead of (2.7) and wesee that the key assumption is ∫ ∞ 1
Φ(s)

ds < ∞ :11 September 10, 2010



Nash inequalitiesTheorem 2.3 (Wang). Assume that an extended Nash inequality (2.9) is valid with arate fun
tion Φ de�ned on some interval (M,∞) and su
h that ∫ ∞ 1
Φ(s)

ds < ∞. Then wehave
‖Ptf‖2 ≤ K(2t) ‖f‖1for all t > 0 and all fun
tions f ∈ L2(µ); here the fun
tion K is de�ned by

K(x) =

{
√

U−1(x) if 0 < x < U(M),√
M if x ≥ U(M)where U denotes the (de
reasing) fun
tion de�ned on (M, +∞) by

U(x) =

∫ ∞

x

1

φ(u)
du.In parti
ular, the density pt(x, y) is bounded from above by K(t)2.Conversely, if there exists a positive fun
tion K de�ned on (0,∞) su
h that

‖Ptf‖2 ≤ K(t)‖f‖1for all t > 0, then the Nash inequality (2.9) holds with M = 0 and fun
tion
Φ(x) = sup

t>0

x

2t
log

x

K(t)2
, x ≥ 0.With the te
hniques presented in the next se
tion, we may see that su
h extendedNash inequalities with fun
tions Φ of the form x(log x)α are adapted to the study of thethe measures µa des
ribed in (1.4) for a > 2 : as we already mentioned, be
ause of non
ompa
tness, there is no hope in this 
ase to have a 
lassi
al Nash inequality (2.7) witha power fun
tion Φ.In the 
ase when the measure is �nite (and therefore a probability measure), then weknow that ‖f‖2/‖f‖1 ≥ 1. For su
h a general inequality, tightness 
orresponds to thefa
t that Φ(x) → 0 when x → 1. (Of 
ourse, this supposes that M = 1 in the previoustheorem).In this situation, assume that Φ(x) ∼ λ(x − 1) when x → 1 and 1/Φ is integrable atin�nity. This is the 
ase in parti
ular for the tight form of the 
lassi
al Nash inequal-ity (2.7). Then K(t) ∼ 1 + Ce−λt when t → ∞. This shows that the kernel pt(x, y) isbounded from above by a quantity whi
h 
onverges exponentially fast to 1 as t goes toin�nity. This is what may be expe
ted, sin
e Ptf → µ(f) when t → ∞. In the 
ase ofa 
lassi
al tight Nash inequality (whi
h 
an only o

ur when the measure has a boundedsupport), then one may also dedu
e a lower uniform bound on the kernel pt whi
h alsogoes exponentially fast to 1, but this requires some other te
hniques (see [1℄).The di�erent Nash inequalities introdu
ed so far may only 
arry information on theheat kernel in 
ase of ultra
ontra
tivity, that is, when the kernel density is bounded. In12 September 10, 2010



Nash inequalitiesthe general 
ase when it is not bounded we may still use this method with the tri
k ofintrodu
ing an auxiliary Lyapunov fun
tion V and weighted Nash inequalities.For us, a Lyapunov fun
tion V is simply a positive fun
tion V on E su
h that LV ≤ cVfor some 
onstant c. We shall require those fun
tions V to be in L2(µ) and in the domainto get interesting results, but it is not formally ne
essary.Being a Lyapunov is not a very restri
tive requirement for smooth fun
tions in theexamples below, as long as we do not ask c < 0 (in whi
h 
ase it 
annot be true for anyfun
tion V in the domain).The weighted Nash inequality takes then the form(2.10) Φ

( ‖f‖2
2

‖fV ‖2
1

)

≤ E(f, f)

‖fV ‖2
1for all fun
tions f in the domain of the Diri
hlet form su
h that ‖f‖2

2 > M ‖fV ‖2
1, wherethe rate fun
tion Φ is de�ned on (M,∞) and su
h that Φ(x)/x is in
reasing.Theorem 2.4 (Wang). Assume that a weighted Nash inequality (2.10) holds with a ratefun
tion Φ de�ned on some interval (M,∞) su
h that ∫ ∞ 1

Φ(s)
ds < ∞. Then

‖Ptf‖2 ≤ K(2t)ect ‖fV ‖1for all t > 0 and all fun
tions f ∈ L2(µ), where K is de�ned as in Theorem 2.3. Inparti
ular, the kernel density pt(x, y) satis�es
pt(x, y) ≤ K(t)2ectV (x)V (y).Conversely, if there exists a positive fun
tion K de�ned on (0,∞) su
h that

‖Ptf‖2 ≤ K(t)‖fV ‖1for all t > 0, then the weighted Nash inequality (2.10) holds with M = 0 and rate fun
tion
Φ(x) = sup

t>0

x

2t
log

x

K(t)2
, x ≥ 0.Proof � It is given in detail in [2℄. It follows the proof of Theorem 2.1 by repla
ing thefun
tion K(t) =

‖Ptf‖2
2

‖f‖2
1

by K̂(t) =
‖Ptf‖2

2

‖V f‖2
1

. Now, the quantity ∫

PtfV dµ is no longerinvariant in time. But by properties of the Lyapunov fun
tion we have(2.11) ∂t

∫

E

V Ptfdµ = ∂t

∫

PtV fdµ =

∫

PtLV fdµ ≤ c

∫

E

V Ptfdµ,from whi
h we get
∫

E

PtfV dµ ≤ ect

∫

V fdµ.13 September 10, 2010



Nash inequalitiesUsing this, we get again a di�erential inequality on K̂ when we apply the Nash in-equality (2.10) to Ptf , and the L1 → L2 boundedness result follows.To get the (non uniform) bound on the kernel, it remains to observe that if a symmetri
operator K satis�es ‖Kf‖2 ≤ ‖fV ‖1, the norms being 
onsidered with respe
t to ameasure µ, then the operator K1 de�ned by
K1(f) =

1

V
K(fV )is a 
ontra
tion from L1(ν) into L2(ν), where dν = V 2dµ. Moreover, K1 is symmetri
 in

L2(ν), and therefore K1 ◦ K1 is a 
ontra
tion from L1(ν) into L∞(ν). It follows that ithas a density kernel bounded by 1 with respe
t to ν; and this amounts to say that K hasa density kernel with respe
t to µ bounded above by V (x)V (y), sin
e the kernel of K1with respe
t to ν is k(x, y)

V (x)V (y)
, where k is the kernel of K with respe
t to µ.Observe that Theorem 2.4 produ
es non uniform bounds on the kernel. Moreover,when V ∈ L2(µ), then the operator P2t is Hilbert-S
hmidt so has a dis
rete spe
trum andwe get an estimate on the eigenvalues −λn of L :
∑

n

e−λnt ≤ K2(t)ect‖V ‖2
2.3 Weighted Nash inequalities on the real line.As already mentioned, we shall mainly 
on
entrate on model examples on the real line,and show elementary te
hniques to obtain weighted Nash inequalities for measures withdensity ρ with respe
t to the Lebesgue measure and the usual 
arré du 
hamp Γ(f, f) =

|∇f |2 = f
′2. These te
hniques may be easily extended to the n-dimensional Eu
lideanspa
e, and with some extra work to Riemannian manifolds.Let us �rst state a universal weighted Nash inequality in the Eu
lidean spa
e. We
onsider the 
ase when Γ(f, f) = |∇f |2 and µ(dx) = ρ(x)dx. We are mainly interestedin the 
ase when µ is a probability measure. Re
all that in this situation, there may notexist any 
lassi
al Nash inequality (
lassi
al means with a power fun
tion as rate fun
tion

Φ) unless the measure is 
ompa
tly supported.Here, the symmetri
 operator asso
iated with the 
orresponding Diri
hlet form is
Lf = ∆f + ∇ log ρ · ∇f.We may always 
hoose V = ρ−1/2 : it is not hard to 
he
k that LV ≤ cV for some
onstant c to get the universal weighted Nash inequality (with respe
t to µ)

||f ||2+
4

n
2 ≤ C

4

n
n ||f V ||

4

n
1

(

E(f, f) + c

∫

Rn

f 2 dµ

)
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Nash inequalitiesHere Cn is the 
onstant for the Nash inequality in the Eu
lidean spa
e with the Lebesguemeasure.To see this, we just apply the Eu
lidean Nash inequality (0.1) to g = f
√

ρ, where f isa smooth 
ompa
tly supported fun
tion, and observe that
∫

Rn

|∇g|2 dx =

∫

|∇f |2ρdx +

∫

Rn

LV

V
f 2 dµ = E(f, f) +

∫

Rn

LV

V
f 2 dµ,through integration by parts. Unfortunately, this bound is not very useful sin
e V /∈

L2(µ). Nevertheless, with some 
are to justify the integration by parts in (2.11), (withextra hypotheses like uniform upper bounds on the Hessian of log ρ), it may lead to anupper-bound on the kernel density.Of 
ourse, this method has nothing parti
ular to do with the Eu
lidean 
ase. Itextends a Nash inequality (without weight) with respe
t to a measure µ to a weightedNash inequality with respe
t to the measure ρdµ with weight V = ρ−1/2, as soon as theinequality LV ≤ cV is satis�ed.For example, one gets with this simple argumentCorollary 3.1. In R
n, with ρ(x) = (1+ |x|2)−β with β > n or ρ(x) = exp(−(1 + |x|2)a/2)with a > 0, there exists a 
onstant C su
h that for all t > 0 and x, y ∈ R

n the kerneldensity pt satis�es
pt(x, y) ≤ C

tn/2
eCtρ−1/2(x) ρ−1/2(y).But sin
e V /∈ L2(µ), this may never produ
e any bound on the spe
trum for example.So one has to look for more pre
ise Lyapunov fun
tions.This is what we now perform on our model examples on the real line : we write

T (x) =
√

1 + x2 and 
onsider the measure
µa(dx) = Ca exp(−T (x)a)dx,where a > 0 and Ca is a normalizing 
onstant. We denote by ρa the density exp(−T a).Here, the asso
iated operator is

L(f) = f ′′ − aT a−1T ′f ′.In this 
ontext, it is not hard to 
he
k that, for any β ∈ R,(3.12) V = T−β/
√

ρais a Lyapunov fun
tion. If β > 1/2, this fun
tion is in L2(µa). The issue is then to 
hoosethe smallest possible V ∈ L2(µa) and still have a weighted Nash inequality with ratefun
tion Φ su
h that 1/Φ is integrable at in�nity.The main result on this example is the following15 September 10, 2010



Nash inequalitiesTheorem 3.2 ([2℄). If a > 1, then for any β ∈ R and V 
hosen as in (3.12), there exist
onstants C and λ ∈ (0, 1) su
h that(3.13) ‖f‖2
2 ≤ C

[

(
∫

|f |V dµa

)2

+

(
∫

|f |V dµa

)2(1−λ)

E(f, f)λ

]for all fun
tions f . This 
orresponds to the rate fun
tion
Φ(x) =

( x

C
− 1

)1/λ

, x > C.Although tra
table, the expli
it value of λ in terms of the parameters a and β is notso simple. The assumption a > 1 is ne
essary, sin
e for a ≤ 1 the spe
trum is no longerdis
rete (and therefore no weighted Nash inequality 
ould o

ur with any L2(µa) weight
V ). What has to be underlined here is that the introdu
tion of a weight allows us to getpolynomial rate fun
tions Φ, although we know that su
h polynomial growth is forbiddenfor non 
ompa
tly supported �nite measures in the absen
e of weights. Of 
ourse, to getthese polynomial growths, one has to 
hoose weights whi
h are quite 
lose to the universalweights 1/

√
ρ des
ribed before. If one 
hooses mu
h smaller weights, the rate fun
tionwill be smaller. For example, when a > 2, one may 
hoose V = 1, and in this 
ase onehas Φ(x) = x(log x)α.The argument of Theorem 3.2 is based on a tail estimate of the measure µa. If

qa(x) =
∫ ∞

x
µa(dy), then, for some 
onstant C, one has(3.14) qa(x) ≤ C

ρa(x)

T (x)a−1
.One �rst proves a Nash inequality for smooth 
ompa
tly supported fun
tions su
hthat f(0) = 0. We start withLemma 3.3. Let a ≥ 1, β ∈ R and V given in (3.12). For all smooth 
ompa
tly supportedfun
tions f su
h that f(0) = 0 one has

∫

f 2dµa ≤ CE(f, f)γ

(
∫

|f |V dµa

)2(1−γ)where γ = 1 − 2
a − 1

3(a − 1) + 2β
∈

(1

3
, 1

]

.The proof is based on 
utting the integral on [0,∞) (for instan
e) as
∫ ∞

0

f 2dµa =

∫ ∞

0

f 21ln f
‖f‖ 2

≤V Z−1/2

odµa +

∫ ∞

0

f 21ln f
‖f‖ 2

>V Z−1/2

odµa.for a suitably 
hosen Z > 0. Then both terms are 
ontrolled by the estimate (3.14),repla
ing f 2 by 2
∫ x

0
f(t)f ′(t)dt in the se
ond integral and using Fubini's theorem.It remains to get rid of the assumption f(0) = 0. For this purpose, with the samekind of te
hniques one may prove the following16 September 10, 2010



Nash inequalitiesLemma 3.4. Let a > 0, β > 3−a
2

and V given in (3.12). Then there exist θ ∈ (0, 1) and
C su
h that

∫

|f − f(0)|V dµa ≤ C

[

∫

|f |V dµa +

(
∫

|f |V dµa

)1−θ

E(f, f)θ/2

]for all nonnegative smooth 
ompa
tly supported f on R.Although quite similar, this lemma is more restri
tive on the values of β than theprevious one. Passing from fun
tions whi
h vanish in 0 to the general 
ase is indeed thehard step. We refer the reader to [2℄ for details on the proofs. It remains to plug togetherthose inequalities to obtain Theorem 3.2.Corollary 3.5. Let a > 1 and let (Pt)t≥0 be the Markov generator on R with generator
Lf = f ′′ − aT a−1T ′f ′,and reversible measure dµa(x) = ρa(x)dx = Ca exp(−(1 + |x|2)a/2)dx.Then for all real β there exist δ > 0 and C su
h that, for all t, Pt has a density ptwith respe
t to the measure µa, whi
h satis�es

pt(x, y) ≤ CeCt

tδ
ρ
−1/2
a (x)ρ

−1/2
a (y)

(1 + |x|2)β/2(1 + |y|2)β/2for almost every x, y ∈ R.Moreover, the spe
trum of −L is dis
rete and its eigenvalues (λn)n∈N satisfy the in-equality
∑

n

e−λnt ≤ CeCt

tδfor all t > 0.When a > 2, the same te
hniques also lead to a Nash inequality for µa with rate fun
-tion Φ(x) = C x (log x)2(1−1/a), and weight V = 1. This re
overs the ultra
ontra
tivityresult mentioned earlier. Re
all that when a = 2 the semigroup is no longer ultra
ontra
-tive, but only hyper
ontra
tive, the Nash inequality with rate Φ(x) = x log x 
orrespondsin fa
t to another form of the Logarithmi
 Sobolev inequality.Referen
es[1℄ D. Bakry. L'hyper
ontra
tivité et son utilisation en théorie des semigroupes. InLe
tures on probability theory (Saint-Flour, 1992), Le
ture Notes in Math. 1581,pages 1�114. Springer, Berlin, 1994.17 September 10, 2010



Nash inequalities[2℄ D. Bakry, F. Bolley, I. Gentil, and P. Maheux. Weighted Nash inequalities. Preprint.[3℄ D. Bakry, T. Coulhon, M. Ledoux, and L. Salo�-Coste. Sobolev inequalities indisguise. Indiana Univ. Math. J., 44(4):1033�1074, 1995.[4℄ D. Bakry and M. Ledoux. Sobolev inequalities and Myers's diameter theorem for anabstra
t Markov generator. Duke Math. J., 85(1):253�270, 1996.[5℄ A. Bendikov, T. Coulhon, and L. Salo�-Coste. Ultra
ontra
tivity and embeddinginto L∞. Math. Ann., 337(4):817�853, 2007.[6℄ E. A. Carlen and M. Loss. Sharp 
onstant in Nash's inequality. Internat. Math. Res.Noti
es, 7:213�215, 1993.[7℄ E. B. Davies. Heat kernels and spe
tral theory, volume 92 of Cambridge Tra
ts inMathemati
s. Cambridge University Press, Cambridge, 1990.[8℄ L. Gross. Logarithmi
 Sobolev inequalities. Amer. J. Math., 97(4):1061�1083, 1975.[9℄ J. Nash. Continuity of solutions of paraboli
 and ellipti
 equations. Amer. J. Math.,80:931�954, 1958.[10℄ E. Nelson. The free Marko� �eld. J. Fun
tional Analysis, 12:211�227, 1973.[11℄ N. Th. Varopoulos. Hardy-Littlewood theory for semigroups. J. Fun
t. Anal.,63(2):240�260, 1985.[12℄ F.-Y. Wang. Fun
tional inequalities for empty essential spe
trum. J. Fun
t. Anal.,170(1):219�245, 2000.[13℄ F.-Y. Wang. Fun
tional inequalities and spe
trum estimates: the in�nite measure
ase. J. Fun
t. Anal., 194(2):288�310, 2002.Institut de Mathématiques de Toulouse, UMR CNRS 5219Université de ToulouseRoute de Narbonne31062 Toulouse - Fran
ebakry�math.univ-toulouse.frCeremade, UMR CNRS 7534Université Paris-DauphinePla
e du Maré
hal De Lattre De Tassigny75016 Paris - Fran
ebolley�
eremade.dauphine.frInstitut Camille Jordan, UMR CNRS 5208Université Claude Bernard Lyon 118 September 10, 2010



Nash inequalities43 boulevard du 11 novembre 191869622 Villeurbanne 
edex - Fran
egentil�math.univ-lyon1.fr

19 September 10, 2010


