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Around Nash inequalitiesDominique Bakry∗ †, François Bolley‡ and Ivan Gentil§September 10, 2010
IntrodutionIn the Eulidean spae R

n, the lassial Nash inequality may be stated as(0.1) ‖f‖1+n/2
2 ≤ Cn‖f‖1‖∇f‖n/2

2for all smooth funtions f (with ompat support for instane) where the norms areomputed with respet to the Lebesgue measure. This inequality has been introduedby J. Nash in 1958 (see [9℄) to obtain regularity properties on the solutions to parabolipartial di�erential equations. The omputation of the optimal onstant Cn has beenperformed more reently in [6℄.This inequality may be stated in the general framework of symmetri Markov semi-groups, where it is a simple and powerful tool to obtain estimates on the assoiated heatkernel. In this ontext, one replaes ‖∇f‖2
2 by the Dirihlet form E(f, f) assoiated withthe semigroup, and the Lebesgue measure by its reversible measure. Moreover, the powerfuntion xn in the inequality is replaed by a more general onvex funtion Φ, and un-der this form it an be valid (and useful) even in in�nite dimensional situations suh asthose whih appear in statistial mehanis. One an also give weighted forms of theseinequalities : they also lead to preise estimates on the semigroup, or on the spetraldeomposition of the generator.The aim of this short note is to explain how Nash inequalities lead to suh estimates ina general setting and also to show simple tehniques used to establish the required Nashinequalities. There is no laim for originality, most of the material inluded here may befound in various papers suh as [1, 2, 5, 7, 13℄.
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Nash inequalitiesNash inequalities belong to the very large family of funtional inequalities for symmet-ri Markov semigroups whih have led to many reent works. Many of these inequalitiesompare Lp norms of funtions to the L2 norms of their gradients, whih in this on-text is alled the Dirihlet form; this is the ase of the simplest ones, the spetral gap(or Poinaré) inequalities. But one may also onsider L1 norms of the gradients, in thearea of isoperimetri inequalities, or Lp norms, even L∞ norms, when one is onernedwith estimates on Lipshitz funtions, for instane in the area of onentration of measurephenomena.Here, we shall onentrate only on L2 norms of gradients. Even in this setting, thereexists a wide variety of inequalities, whih are adapted to the kind of measure one wantsto study on one side, and to the properties they desribe on the other. For example,measures with polynomial deay are not overed by the same inequalities as measureswith exponential, or square exponential deay.The family of Nash type inequalities we present here belongs to the wide family ofthe Sobolev type inequalities. Their main interest is that they easily provide good (andsometimes almost optimal) ontrol on heat kernels. Starting from the lassial inequality,we shall show how to extend them �rst by the introdution of a rate funtion Φ, andthen by the extra introdution of a weight funtion V (a Lyapunov funtion). As we shallsee, the link between Nash inequalities and estimates on the semigroup spetrum is verysimple and, as usual in the �eld, roughly relies on derivation along time and integrationby parts. This is why it is tempting to use it in a wide range of situations.Then, we shall show how to obtain these inequalities in the simplest models on thereal line. Restriting ourselves to the real line may be thought as looking only at the easyase. In fat, by hoosing various measures, one may produe a lot of di�erent modelases whih really illustrate what may or may not be expeted from these inequalities.Then the extension to higher dimensional situations (like R
n or manifolds) is very oftena pure matter of tehnialities, extending in a diret way the one-dimensional methods.The paper is organized as follows. In the �rst setion, we brie�y present the ontextof symmetri Markov semigroups, and partiularly di�usion semigroups. Then, we showdi�erent variations of Nash inequalities and how to get estimates on heat kernels fromthem. Then, in �ne, we show how to produe suh Nash inequalities on the basi modelson the real line we are interested in.1 Symmetri Markov semigroups and difusionsTo understand the general ontext of Markov semigroups, we �rst onsider a measurespae (E,B, µ), where B is a σ-�eld and µ is a σ-�nite measure on it. Although we shallalways fous on examples where (E,B) is R

n equipped with the usual Borel sets (or someopen set in it, or a �nite dimensional manifold with or without boundaries), it may be anin�nite dimensional spae, as we already mentioned, in whih ase one has to be areful2 September 10, 2010



Nash inequalitiesabout the measurable struture of the spae. In any ase, one should always suppose that
(E,B, µ) is a "reasonable" measure spae : we shall not say in details what we mean by"reasonable", but results suh as the deomposition of measure theorems should be valid,whih overs all ases one ould look at in pratise.Given (E,B, µ) a symmetri Markov semigroup is a family (Pt)t≥0 of linear operatorsmapping the set of bounded measurable funtions into itself with the following properties:(i) Preservation of positivity : if f ≥ 0, so is Ptf .(ii) Preservation of onstant funtions : Pt 1 = 1.(iii) Semigroup property : Pt ◦ Ps = Pt+s.(iv) Symmetry : Pt maps L2(µ) into itself and, for any pair (f, g) ∈ L2(µ), one has

∫

E

Ptfg dµ =

∫

E

fPtg dµ.(v) Continuity at t = 0 : P0 = Id and Ptf → f when t → 0 in L2(µ).Suh semigroups naturally appear in probability theory as Ptf(x) = E(f(Xt)/X0 = x)where (Xt)t≥0 is a Markov proess. The symmetry property does not always hold andit is equivalent to the reversibility of the proess. They also appear in many situationswhen one solves a "heat equation" of the form
∂tF (x, t) = LF, F (x, 0) = f(x);here L is a seond order sub-ellipti (or hypo-ellipti) di�erential operator, in whih ase

Ptf is the solution F (x, t) at time t when the initial value is F (x, 0) = f(x).Let us start with some elementary preliminary remarks.(a) Sine Pt is symmetri, and Pt 1 = 1, one gets ∫

E
Ptfdµ =

∫

E
fdµ by taking g = 1 inthe property (iv): µ is invariant under the semigroup.(b) Sine Pt is linear and positivity preserving, |Ptf | ≤ Pt|f |. This implies that Pt is aontration in L1(µ) by invariane of the measure.() By the same argument, Pt is also a ontration in L∞(µ) and therefore, by interpola-tion, Pt is a ontration in Lp(µ) for any p ∈ [1,∞].(d) Sine (Pt)t is a semigroup of ontrations in L2(µ), by the Hille-Yoshida theory, itadmits an in�nitesimal generator L, whih is densely de�ned by Lf = ∂tPtf at t = 0.Then Ptf is the solution at time t of the heat equation ∂tF = LF , given F (x, 0) = f(x)at time t = 0. 3 September 10, 2010



Nash inequalitiesFormally, any property of the semigroup may be translated into a property of thegenerator L, and vie versa. For instane, the preservation of onstants propertytranslates into L1 = 0. Also, the symmetry translates into the fat that L is self-adjoint, that is,
∫

E

fLg dµ =

∫

E

gLfdµ.The positivity preserving property is more subtle. In general, it is translated intoa maximum priniple of the generator. But this requires a bit more than just ameasurable struture on the spae, and we prefer to translate this into the positivityof the arré du hamp operator, see point (k) below.(e) The measure µ being symmetri (or "reversible") is in general unique up to a nor-malizing onstant (it is however a restritive ondition that suh a measure exists :see formula (1.3) below). When the measure is �nite, we may therefore normalize itas to be a probability measure, and we shall always do it. In this ase, the onstantfuntion 1 is always a normalized eigenvetor, assoiated with the eigenvalue 0 whihis the smallest value of the spetrum of −L. In the in�nite ase, there is no anonialway of hoosing a good normalization.(f) Sine the measure spae (E,B, µ) is a "reasonable" spae, any suh operator Pt whihpreserves the onstants and positivity may be represented as
Ptf(x) =

∫

E

f(y)Pt(x, dy),where Pt(x, dy) is a kernel of probability measures, that is, a probability measure on
E depending on the parameter x ∈ E in a measurable way. This enables for exampleto apply to Pt any generi property of probability measures, suh as the varianeinequality Pt(f

2) ≥ (Ptf)2.(g) Very often (and we shall see that Nash inequalities provide a useful riterium for this),this kernel has a density with respet to the reversible measure µ, that is
Pt(x, dy) = pt(x, y)µ(dy);here pt(x, y) is a non negative funtion whih is de�ned almost everywhere (withrespet to µ ⊗ µ) on E × E. Then the symmetry property (iv) is equivalent to thesymmetry of this kernel pt(x, y) = pt(y, x). Muh attention has been brought over thelast deades to various estimates on this kernel density (in partiular in Riemanniangeometry, for heat kernels on Riemannian manifolds, using tools from geometry likeurvature, Riemannian distane, et). One again, Nash inequalities may providegood suh estimates, as we shall see later on.(h) When we have suh densities, the semigroup property translates into the Chapman-Kolmogorov equation

pt+s(x, y) =

∫

E

pt(x, z)ps(z, y)µ(dz).4 September 10, 2010



Nash inequalitiesHene, by the Cauhy-Shwarz inequality,
p2t(x, y)2 ≤ p2t(x, x) p2t(y, y).As the onsequene, the maximum of pt(x, y) is always obtained on the diagonal.(i) The generator L being self-adjoint has a spetral deomposition with a spetrum in

(−∞, 0] aording to (1.2).(j) It may be the ase that the spetrum is disrete, and that we have a omplete se-quene of orthonormal eigenvetors (fn) in L2(µ), with eigenvalues −λn for L. In thissituation, the kernel density pt(x, y) is given by
pt(x, y) =

∑

n

e−λntfn(x)fn(y).Then we have the trae formula
∫

E

pt(x, x)dµ(x) =
∑

n

e−λnt.One again, Nash inequalities will provide uniform (or non uniform) bounds on thedensities, and therefore bounds on the ounting funtion of the sequene (λn).(k) By derivation at t = 0 the variane inequality Pt(f
2) ≥ (Ptf)2 gives the inequality

L(f 2) ≥ 2fLf.In partiular(1.2) ∫

E

fLfdµ ≤ 0by invariane of µ. Of ourse, one has to take are about whih funtions these doapply. In general, we assume that there is an algebra of funtions A dense in thedomain of L, for whih this is valid. In this ase, one de�nes the arré du hamp asthe bilinear form
Γ(f, g) =

1

2

(

L(fg) − fLg − gLf
)

.It satis�es Γ(f, f) ≥ 0, and in some sense this haraterizes the positivity preservingproperty of Pt.The Dirihlet form assoiated to Pt is �nally de�ned by
E(f, g) = −

∫

gLfdµ = −
∫

fLg dµ =

∫

Γ(f, g)dµ.5 September 10, 2010



Nash inequalitiesThe last identity is based on the identity ∫

E
L(fg)dµ = 0 and is alled the integrationby parts formula. The Dirihlet form is in general de�ned on a larger domain than theoperator L itself (formally, it requires only one derivative of the funtion to be in L2(µ)instead of 2 for the generator).The knowledge of the measure and of the arré du hamp (or of the Dirihlet form)entirely desribes the operator L (and therefore the semigroup), sine L may be de�nedfrom Γ and µ through the integration by parts formula (see (1.3)).The basi example of suh semigroups is of ourse the standard heat kernel in theEulidean spae R

n; for t > 0, its density pt(x, y) with respet to the Lebesgue measure
dy is

pt(x, y) =
1

(4πt)n/2
exp(−|x − y|2

4t
).Here, µ(dy) = dy, L = ∆ and

Γ(f, f) = |∇f |2.This orresponds to the ase studied by Nash in [9℄. It is one of the very few exampleswhere one expliitly knows Pt, sine in general we only know L, and the issue is to dedueas muh information as possible on Pt from the knowledge of L.Another model ase is the Ornstein-Uhlenbek semigroup on R
n, for whih

Lf(x) = ∆f(x) − x · ∇f(x), Γ(f, f) = |∇f |2, µ(dx) =
1

(2π)n/2
exp(−|x|2/2)dx.Its density with respet to the Gauss measure µ(dy) is

pt(x, y) = (1 − e−2t)−n/2 exp

[

− 1

2(1 − e−2t)
(|y|2e−2t − 2 x · ye−t + |x|2e−2t)

]and it behaves in a very di�erent way from the previous example as long as funtionalinequalities are onerned.In the two previous ases, the arré du hamp is the same (and the semigroups onlydi�er by the measure µ(dx)). Observe that Γ(f, g) is in both ases a �rst order di�erentialoperator in its two arguments. They both belong to the large lass of di�usion Markovsemigroups, whih are semigroups suh that for all smooth funtions φ

Γ(φ(f), g) = φ′(f)Γ(f, g)or equivalently
Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f, f).This property is alled the hange of variable formula for L and is an intrinsi way ofsaying that L is a seond order di�erential operator. The fat that L(1) = 0 says thatthere is no 0-order term in L. One may easily hek that among all di�erential operatorson R

n (or a manifold) with smooth oe�ients, only the seond order ones may satisfy6 September 10, 2010



Nash inequalities
Γ(f, f) ≥ 0, provided the matrix of the seond order terms is positive-semide�nite at anypoint.Non di�usion ases are of onsiderable interest sine they are related to Markov pro-esses with jumps and also naturally appear when one looks at subordinators. Howeverwe shall onentrate here on the di�usion ase, even though the Nash tehniques may beused in the same way in the general ase.In general, a seond order di�erential operator without 0-order terms of the form

Lf =
∑

ij

aij(x)∂2
ijf +

∑

i

bi(x)∂ifhas a arré du hamp given by
Γ(f, g) =

∑

ij

aij(x)∂if∂jg = ∇f · A(x)∇g.Therefore the positivity of Γ is equivalent to the fat that at any point x the matrix
A(x) = (aij(x)) is positive-semide�nite. Conversely, when the arré du hamp is given(on a open set in R

n or on a smooth manifold in loal oordinates) by
Γ(f, g) =

∑

ij

aij(x)∂if∂jg,with positive-semide�nite matries (aij(x)) having smooth oe�ients, and when the ref-erene measure µ(dx) has a smooth positive density ρ(x) with respet to the Lebesguemeasure, it orresponds to a unique symmetri di�usion operator L whih is(1.3) Lf =
1

ρ(x)

∑

i

∂i

(

ρ(x)
∑

j

aij(x)∂jf
)

.In other words, Γ odes for the seond order part of the operator while µ odes for the�rst order terms. Observe also that eah (Γ, µ) leads to unique symmetri L, but possiblyseveral non symmetri L.A model ase on whih we shall fous is the ase when E = R and Γ(f, f) = f ′2. Weshall look at the measures(1.4) µ(dx) = C exp(−|x|a)dx,where a > 0 and C is a normalizing onstant. In order to avoid irrelevant di�ulties dueto the non smoothness of |x| at 0, we shall replae |x| by √
1 + x2. Depending on thevalue of a, the orresponding semigroups present diverse behaviours.For a = 2, the elebrated Nelson theorem [10℄ asserts that the Ornstein-Uhlenbeksemigroup is "hyperontrative", whih means that Pt is bounded from L2(µ) to Lq(t)(µ)7 September 10, 2010



Nash inequalitiesfor all t > 0 and some q(t) > 2. This is equivalent to the also famous Gross logarithmiSobolev inequality [8℄(1.5) ∫

f 2 log f 2dµ ≤
∫

f 2dµ log
(

∫

f 2dµ
)

+ CE(f, f).When a > 2, the semigroup is "ultraontrative", whih means that Pt maps L1(µ)into L∞(µ) for any t > 0, while it is not even hyperontrative for a < 2. Nevertheless,for 1 < a < 2, it has a disrete spetrum and it is Hilbert-Shmidt, and we shall see belowhow to get estimates on the spetrum through weighted Nash inequalities.For a = 1, the spetrum is no longer disrete and the only property left is the existeneof a spetral gap : the spetrum of −L lies in {0} ∪ [A,∞) for some A > 0, and thisproperty is equivalent to a spetral gap (or Poinaré) inequality(1.6) ∫

f 2dµ ≤
(

∫

fdµ
)2

+
1

A
E(f, f).When a < 1, even the spetral gap property is lost.Of ourse, one may look at similar models in R

n, or on Riemannian manifolds withdensity measures (with respet to the Riemann measure) depending on the distane tosome point. In this latter ase, one would get more ompliated results, sine in generalone has to take into aount lower bounds on the Rii urvature, and even more if oneworks with boundaries (with Neumann boundary onditions). We shall not develop thishere.2 Nash inequalitiesIn the ontext of Dirihlet forms assoiated to symmetri Markov semigroups as desribedabove, a Nash inequality is an inequality of the form(2.7) ‖f‖1+n/2
2 ≤ ‖f‖1‖

[

C1‖f‖2
2 + C2E(f, f)

]n/4
;here the norms Lp are of ourse omputed with respet to the reversible measure µ and nis any positive parameter (that we all the dimension in the Nash inequality, sine in thelassial ase the unique possible value for n is really the dimension of the spae). Thisinequality should apply for any f in the Dirihlet domain, but it is enough to hek itin a dense subspae of it whih, in many examples, will be the set of smooth ompatlysupported funtions.It is worth mentioning that when µ is a probability measure, then C1 ≥ 1 (as an beseen by hoosing f = 1), while for example in R

n with the Lebesgue measure, one mayhave C1 = 0, as it is the ase for the lassial Nash inequality.8 September 10, 2010



Nash inequalitiesWhen µ is a probability measure and C1 = 1, we say that the inequality is tight. Itthen implies a spetral gap inequality, as one may see by applying the inequality to 1+ ǫfand letting ǫ go to 0.Conversely, if (2.7) is valid with C1 > 1 and with µ being a probability measure,together with a spetral gap inequality, then a tight Nash inequality holds (see [1℄ forexample). In general, we say that a funtional inequality is tight when one may deduefrom the inequality that {E(f, f) = 0}=⇒{f = onstant}. Here, when C1 = 1, this isensured by the equality ase in the inequality ‖f‖1 ≤ ‖f‖2. As we shall see, tightnessmay be used to ontrol the onvergene to equilibrium, that is the asymptoti behaviourwhen t → ∞, while the general inequality is useful to ontrol the short time behaviour.Most of funtional inequalities may be tightened in presene of a spetral gap inequality,as it is the ase here.In the ase of an in�nite measure, tightness orresponds to the ase when C1 = 0, asin the Eulidean ase.However, there is a strong di�erene between the forms that the Nash inequalitiesmay take aording to whether the measure is �nite or not. We know that a tight Nashinequality holds true in the Eulidean spae, but it an be proved that the tight Nashinequality (2.7) may not be valid on a �nite measure spae unless the spae is ompat.More preisely, when one has a tight Nash inequality (2.7) on a �nite measure spae, onemay get a bound on the osillation of Liphitz funtions, whene a bound on the diameterof the spae (this diameter being measured in terms of an intrinsi distane assoiatedwith the arré du hamp [4℄). This explains why below we introdue the extended Nashinequalities (2.9) and (2.10), whih may be valid on �nite measure spaes with unboundedsupport, as we shall see.When n > 2, the Nash inequality (2.7) is one of the many forms of the Sobolevinequality
‖f‖2

2n/(n−2) ≤ C1‖f‖2 + C2E(f, f).Indeed, observe �rst that this and Hölder's inequalities lead to the Nash inequality (2.7)with the same "dimension" n and the same onstants C1 and C2. The way bak is alittle more subtle: the argument in [3℄ is based on applying the Nash inequality to thesequene of funtions fn = min{(f − 2n)+, 2n}, adding the obtained estimates and usingthe identity ∑

n E(fn, fn) = E(f, f). This enables to keep the same dimension n, but notthe onstants C1 and C2.In the ontext of Dirihlet forms, suh Sobolev inequalities may appear under di�erentforms suh as Energy-Entropy, Gagliardo-Nirenberg, Faber-Krahn et inequalities. Werefer to [3℄ for full details. The onnetion between Sobolev (and Nash) inequalities andvarious bounds on heat kernels has been explored by many authors, see [1, 7, 11℄ forexample.We have the following 9 September 10, 2010



Nash inequalitiesTheorem 2.1. Assume that inequality (2.7) holds. Then,(2.8) ‖Ptf‖2 ≤ C(t)‖f‖1,where
C(t) =

(

max{2C1,
2nC2

t
}
)n/4

.Conversely, if (2.8) holds with C(t) ≤ a + bt−n/4, then a Nash inequality (2.7) holdswith the same dimension n and onstants C1 and C2 depending only on n, a and b.Proof � Let us rewrite the inequality under the form
(‖f‖2

2

‖f‖2
1

)1+2/n

≤ C1
‖f‖2

2

‖f‖2
1

+ C2
E(f, f)

‖f‖2
1

.Now, hoose a positive funtion f and apply the preeding bound to Ptf . We know frominvariane of µ that ∫

E
Ptfdµ =

∫

E
fdµ.Let us set H(t) =

‖Ptf‖2

2

‖Ptf‖2

1

=
‖Ptf‖2

2

‖f‖2

1

. We have
∂t‖Ptf‖2

2 = 2

∫

PtfLPtf dµ = −2 E(Ptf, Ptf).Therefore, H is dereasing and
H ′(t) = −2

E(Ptf, Ptf)

‖Ptf‖2
1

,and the Nash inequality (2.7) beomes
H1+2/n ≤ C1H − 2C2H

′.Now, as long as H ≥ (2C1)
n/2, one has H1+2/n ≥ 2C1H , and we get

H1+2/n ≤ −4C2H
′,and this di�erential inequality (with the fat that H is dereasing) gives the result.To see the reverse way, we may observe that, for a general symmetri Markov semi-group, the funtion t 7→ K(t) = log ‖Ptf‖2

2 is onvex. Indeed, the derivative of K1(t) =
‖Ptf‖2

2 is −2
∫

PtfLPtfdµ, while the seond derivative is 4
∫

(LPtf)2dµ, and therefore byCauhy-Shwarz inequality one has
K

′2
1 ≤ K1K

′′
1 ,whih says that log K1 = K is onvex. Then so is the funtion h(t) = log

‖Ptf‖2

2

‖Ptf‖2

1

= log H(t),so that
H ′(0) ≤ H(0)

t
log

H(t)

H(0)
.10 September 10, 2010



Nash inequalitiesNow, if we have a bound of the form H(t) ≤ a + bt−n/2, we may plug this upper boundin the previous inequality, and then optimise in t to get the result.In fat, having a bound for Pt as an operator from L1 into L2, we are very lose froma uniform bound on the kernel pt. Indeed, if Pt is bounded from L1 into L2 with norm
C(t), then by symmetry and duality, it is also bounded from L2 into L∞ with norm C(t),and therefore by omposition and semigroup property P2t is bounded from L1 into L∞with norm C(t)2.Conversely, by the Riesz-Thorin theorem, if Pt is bounded from L1 into L∞ with norm
C1(t), being bounded from L1 into itself with norm 1, it is also bounded from L1 into L2with norm C1(t)

1/2. In the end, we have obtained the followingTheorem 2.2. A Nash inequality (2.7) holds with dimension n if and only if Pt is boundedfrom L1 into L∞ with norm bounded above by a + bt−n/2.Of ourse, in the ase when C1 = 0, whih orresponds to the lassial Eulidean Nashinequality, the equivalene is valid with a bound of the form C(t) = at−n/2.Moreover, a very general fat (valid on "reasonable measure spaes" (E,B, µ)) assertsthat an operator K is bounded from L1(µ) into L∞(µ) if and only if it may be representedby a bounded kernel density k : K(f)(x) =
∫

E
k(x, y)f(y)µ(dy). Moreover, the normoperator of K is exatly the L∞ norm of k (on E × E).So we have seen that a Nash inequality is equivalent to a uniform bound on the kernelof Pt (and also arries the existene of suh kernel), with very few assumptions on thespae.Observe that there is no reason why we should restrit ourselves to the ase of powerfuntions in Nash inequalities. One may onsider extensions of the form(2.9) Φ

(‖f‖2
2

‖f‖2
1

)

≤ E(f, f)

‖f‖2
1

,valid say whenever ‖f‖2 > M‖f‖1. Here Φ is a smooth onvex inreasing funtion de�nedon an interval (M,∞). (It does not require formally to be onvex inreasing, but it isreally useful only in this ase).Suh inequalities have been introdued by F.-Y. Wang in [12℄ under the form
‖f‖2

2 ≤ aE(f, f) + b(a)‖f‖2
1,alled super Poinaré inequalities. These inequalities may be optimized under the param-eter a to give

‖f‖2
2

‖f‖2
1

≤ Ψ
(E(f, f)

‖f‖2
1

)with some onave funtion Ψ, whih is equivalent to inequality (2.9).Then, one an write the argument of Theorem 2.1 with (2.9) instead of (2.7) and wesee that the key assumption is ∫ ∞ 1
Φ(s)

ds < ∞ :11 September 10, 2010



Nash inequalitiesTheorem 2.3 (Wang). Assume that an extended Nash inequality (2.9) is valid with arate funtion Φ de�ned on some interval (M,∞) and suh that ∫ ∞ 1
Φ(s)

ds < ∞. Then wehave
‖Ptf‖2 ≤ K(2t) ‖f‖1for all t > 0 and all funtions f ∈ L2(µ); here the funtion K is de�ned by

K(x) =

{
√

U−1(x) if 0 < x < U(M),√
M if x ≥ U(M)where U denotes the (dereasing) funtion de�ned on (M, +∞) by

U(x) =

∫ ∞

x

1

φ(u)
du.In partiular, the density pt(x, y) is bounded from above by K(t)2.Conversely, if there exists a positive funtion K de�ned on (0,∞) suh that

‖Ptf‖2 ≤ K(t)‖f‖1for all t > 0, then the Nash inequality (2.9) holds with M = 0 and funtion
Φ(x) = sup

t>0

x

2t
log

x

K(t)2
, x ≥ 0.With the tehniques presented in the next setion, we may see that suh extendedNash inequalities with funtions Φ of the form x(log x)α are adapted to the study of thethe measures µa desribed in (1.4) for a > 2 : as we already mentioned, beause of nonompatness, there is no hope in this ase to have a lassial Nash inequality (2.7) witha power funtion Φ.In the ase when the measure is �nite (and therefore a probability measure), then weknow that ‖f‖2/‖f‖1 ≥ 1. For suh a general inequality, tightness orresponds to thefat that Φ(x) → 0 when x → 1. (Of ourse, this supposes that M = 1 in the previoustheorem).In this situation, assume that Φ(x) ∼ λ(x − 1) when x → 1 and 1/Φ is integrable atin�nity. This is the ase in partiular for the tight form of the lassial Nash inequal-ity (2.7). Then K(t) ∼ 1 + Ce−λt when t → ∞. This shows that the kernel pt(x, y) isbounded from above by a quantity whih onverges exponentially fast to 1 as t goes toin�nity. This is what may be expeted, sine Ptf → µ(f) when t → ∞. In the ase ofa lassial tight Nash inequality (whih an only our when the measure has a boundedsupport), then one may also dedue a lower uniform bound on the kernel pt whih alsogoes exponentially fast to 1, but this requires some other tehniques (see [1℄).The di�erent Nash inequalities introdued so far may only arry information on theheat kernel in ase of ultraontrativity, that is, when the kernel density is bounded. In12 September 10, 2010



Nash inequalitiesthe general ase when it is not bounded we may still use this method with the trik ofintroduing an auxiliary Lyapunov funtion V and weighted Nash inequalities.For us, a Lyapunov funtion V is simply a positive funtion V on E suh that LV ≤ cVfor some onstant c. We shall require those funtions V to be in L2(µ) and in the domainto get interesting results, but it is not formally neessary.Being a Lyapunov is not a very restritive requirement for smooth funtions in theexamples below, as long as we do not ask c < 0 (in whih ase it annot be true for anyfuntion V in the domain).The weighted Nash inequality takes then the form(2.10) Φ

( ‖f‖2
2

‖fV ‖2
1

)

≤ E(f, f)

‖fV ‖2
1for all funtions f in the domain of the Dirihlet form suh that ‖f‖2

2 > M ‖fV ‖2
1, wherethe rate funtion Φ is de�ned on (M,∞) and suh that Φ(x)/x is inreasing.Theorem 2.4 (Wang). Assume that a weighted Nash inequality (2.10) holds with a ratefuntion Φ de�ned on some interval (M,∞) suh that ∫ ∞ 1

Φ(s)
ds < ∞. Then

‖Ptf‖2 ≤ K(2t)ect ‖fV ‖1for all t > 0 and all funtions f ∈ L2(µ), where K is de�ned as in Theorem 2.3. Inpartiular, the kernel density pt(x, y) satis�es
pt(x, y) ≤ K(t)2ectV (x)V (y).Conversely, if there exists a positive funtion K de�ned on (0,∞) suh that

‖Ptf‖2 ≤ K(t)‖fV ‖1for all t > 0, then the weighted Nash inequality (2.10) holds with M = 0 and rate funtion
Φ(x) = sup

t>0

x

2t
log

x

K(t)2
, x ≥ 0.Proof � It is given in detail in [2℄. It follows the proof of Theorem 2.1 by replaing thefuntion K(t) =

‖Ptf‖2
2

‖f‖2
1

by K̂(t) =
‖Ptf‖2

2

‖V f‖2
1

. Now, the quantity ∫

PtfV dµ is no longerinvariant in time. But by properties of the Lyapunov funtion we have(2.11) ∂t

∫

E

V Ptfdµ = ∂t

∫

PtV fdµ =

∫

PtLV fdµ ≤ c

∫

E

V Ptfdµ,from whih we get
∫

E

PtfV dµ ≤ ect

∫

V fdµ.13 September 10, 2010



Nash inequalitiesUsing this, we get again a di�erential inequality on K̂ when we apply the Nash in-equality (2.10) to Ptf , and the L1 → L2 boundedness result follows.To get the (non uniform) bound on the kernel, it remains to observe that if a symmetrioperator K satis�es ‖Kf‖2 ≤ ‖fV ‖1, the norms being onsidered with respet to ameasure µ, then the operator K1 de�ned by
K1(f) =

1

V
K(fV )is a ontration from L1(ν) into L2(ν), where dν = V 2dµ. Moreover, K1 is symmetri in

L2(ν), and therefore K1 ◦ K1 is a ontration from L1(ν) into L∞(ν). It follows that ithas a density kernel bounded by 1 with respet to ν; and this amounts to say that K hasa density kernel with respet to µ bounded above by V (x)V (y), sine the kernel of K1with respet to ν is k(x, y)

V (x)V (y)
, where k is the kernel of K with respet to µ.Observe that Theorem 2.4 produes non uniform bounds on the kernel. Moreover,when V ∈ L2(µ), then the operator P2t is Hilbert-Shmidt so has a disrete spetrum andwe get an estimate on the eigenvalues −λn of L :
∑

n

e−λnt ≤ K2(t)ect‖V ‖2
2.3 Weighted Nash inequalities on the real line.As already mentioned, we shall mainly onentrate on model examples on the real line,and show elementary tehniques to obtain weighted Nash inequalities for measures withdensity ρ with respet to the Lebesgue measure and the usual arré du hamp Γ(f, f) =

|∇f |2 = f
′2. These tehniques may be easily extended to the n-dimensional Eulideanspae, and with some extra work to Riemannian manifolds.Let us �rst state a universal weighted Nash inequality in the Eulidean spae. Weonsider the ase when Γ(f, f) = |∇f |2 and µ(dx) = ρ(x)dx. We are mainly interestedin the ase when µ is a probability measure. Reall that in this situation, there may notexist any lassial Nash inequality (lassial means with a power funtion as rate funtion

Φ) unless the measure is ompatly supported.Here, the symmetri operator assoiated with the orresponding Dirihlet form is
Lf = ∆f + ∇ log ρ · ∇f.We may always hoose V = ρ−1/2 : it is not hard to hek that LV ≤ cV for someonstant c to get the universal weighted Nash inequality (with respet to µ)

||f ||2+
4

n
2 ≤ C

4

n
n ||f V ||

4

n
1

(

E(f, f) + c

∫

Rn

f 2 dµ

)

.14 September 10, 2010



Nash inequalitiesHere Cn is the onstant for the Nash inequality in the Eulidean spae with the Lebesguemeasure.To see this, we just apply the Eulidean Nash inequality (0.1) to g = f
√

ρ, where f isa smooth ompatly supported funtion, and observe that
∫

Rn

|∇g|2 dx =

∫

|∇f |2ρdx +

∫

Rn

LV

V
f 2 dµ = E(f, f) +

∫

Rn

LV

V
f 2 dµ,through integration by parts. Unfortunately, this bound is not very useful sine V /∈

L2(µ). Nevertheless, with some are to justify the integration by parts in (2.11), (withextra hypotheses like uniform upper bounds on the Hessian of log ρ), it may lead to anupper-bound on the kernel density.Of ourse, this method has nothing partiular to do with the Eulidean ase. Itextends a Nash inequality (without weight) with respet to a measure µ to a weightedNash inequality with respet to the measure ρdµ with weight V = ρ−1/2, as soon as theinequality LV ≤ cV is satis�ed.For example, one gets with this simple argumentCorollary 3.1. In R
n, with ρ(x) = (1+ |x|2)−β with β > n or ρ(x) = exp(−(1 + |x|2)a/2)with a > 0, there exists a onstant C suh that for all t > 0 and x, y ∈ R

n the kerneldensity pt satis�es
pt(x, y) ≤ C

tn/2
eCtρ−1/2(x) ρ−1/2(y).But sine V /∈ L2(µ), this may never produe any bound on the spetrum for example.So one has to look for more preise Lyapunov funtions.This is what we now perform on our model examples on the real line : we write

T (x) =
√

1 + x2 and onsider the measure
µa(dx) = Ca exp(−T (x)a)dx,where a > 0 and Ca is a normalizing onstant. We denote by ρa the density exp(−T a).Here, the assoiated operator is

L(f) = f ′′ − aT a−1T ′f ′.In this ontext, it is not hard to hek that, for any β ∈ R,(3.12) V = T−β/
√

ρais a Lyapunov funtion. If β > 1/2, this funtion is in L2(µa). The issue is then to hoosethe smallest possible V ∈ L2(µa) and still have a weighted Nash inequality with ratefuntion Φ suh that 1/Φ is integrable at in�nity.The main result on this example is the following15 September 10, 2010



Nash inequalitiesTheorem 3.2 ([2℄). If a > 1, then for any β ∈ R and V hosen as in (3.12), there existonstants C and λ ∈ (0, 1) suh that(3.13) ‖f‖2
2 ≤ C

[

(
∫

|f |V dµa

)2

+

(
∫

|f |V dµa

)2(1−λ)

E(f, f)λ

]for all funtions f . This orresponds to the rate funtion
Φ(x) =

( x

C
− 1

)1/λ

, x > C.Although tratable, the expliit value of λ in terms of the parameters a and β is notso simple. The assumption a > 1 is neessary, sine for a ≤ 1 the spetrum is no longerdisrete (and therefore no weighted Nash inequality ould our with any L2(µa) weight
V ). What has to be underlined here is that the introdution of a weight allows us to getpolynomial rate funtions Φ, although we know that suh polynomial growth is forbiddenfor non ompatly supported �nite measures in the absene of weights. Of ourse, to getthese polynomial growths, one has to hoose weights whih are quite lose to the universalweights 1/

√
ρ desribed before. If one hooses muh smaller weights, the rate funtionwill be smaller. For example, when a > 2, one may hoose V = 1, and in this ase onehas Φ(x) = x(log x)α.The argument of Theorem 3.2 is based on a tail estimate of the measure µa. If

qa(x) =
∫ ∞

x
µa(dy), then, for some onstant C, one has(3.14) qa(x) ≤ C

ρa(x)

T (x)a−1
.One �rst proves a Nash inequality for smooth ompatly supported funtions suhthat f(0) = 0. We start withLemma 3.3. Let a ≥ 1, β ∈ R and V given in (3.12). For all smooth ompatly supportedfuntions f suh that f(0) = 0 one has

∫

f 2dµa ≤ CE(f, f)γ

(
∫

|f |V dµa

)2(1−γ)where γ = 1 − 2
a − 1

3(a − 1) + 2β
∈

(1

3
, 1

]

.The proof is based on utting the integral on [0,∞) (for instane) as
∫ ∞

0

f 2dµa =

∫ ∞

0

f 21ln f
‖f‖ 2

≤V Z−1/2

odµa +

∫ ∞

0

f 21ln f
‖f‖ 2

>V Z−1/2

odµa.for a suitably hosen Z > 0. Then both terms are ontrolled by the estimate (3.14),replaing f 2 by 2
∫ x

0
f(t)f ′(t)dt in the seond integral and using Fubini's theorem.It remains to get rid of the assumption f(0) = 0. For this purpose, with the samekind of tehniques one may prove the following16 September 10, 2010



Nash inequalitiesLemma 3.4. Let a > 0, β > 3−a
2

and V given in (3.12). Then there exist θ ∈ (0, 1) and
C suh that

∫

|f − f(0)|V dµa ≤ C

[

∫

|f |V dµa +

(
∫

|f |V dµa

)1−θ

E(f, f)θ/2

]for all nonnegative smooth ompatly supported f on R.Although quite similar, this lemma is more restritive on the values of β than theprevious one. Passing from funtions whih vanish in 0 to the general ase is indeed thehard step. We refer the reader to [2℄ for details on the proofs. It remains to plug togetherthose inequalities to obtain Theorem 3.2.Corollary 3.5. Let a > 1 and let (Pt)t≥0 be the Markov generator on R with generator
Lf = f ′′ − aT a−1T ′f ′,and reversible measure dµa(x) = ρa(x)dx = Ca exp(−(1 + |x|2)a/2)dx.Then for all real β there exist δ > 0 and C suh that, for all t, Pt has a density ptwith respet to the measure µa, whih satis�es

pt(x, y) ≤ CeCt

tδ
ρ
−1/2
a (x)ρ

−1/2
a (y)

(1 + |x|2)β/2(1 + |y|2)β/2for almost every x, y ∈ R.Moreover, the spetrum of −L is disrete and its eigenvalues (λn)n∈N satisfy the in-equality
∑

n

e−λnt ≤ CeCt

tδfor all t > 0.When a > 2, the same tehniques also lead to a Nash inequality for µa with rate fun-tion Φ(x) = C x (log x)2(1−1/a), and weight V = 1. This reovers the ultraontrativityresult mentioned earlier. Reall that when a = 2 the semigroup is no longer ultraontra-tive, but only hyperontrative, the Nash inequality with rate Φ(x) = x log x orrespondsin fat to another form of the Logarithmi Sobolev inequality.Referenes[1℄ D. Bakry. L'hyperontrativité et son utilisation en théorie des semigroupes. InLetures on probability theory (Saint-Flour, 1992), Leture Notes in Math. 1581,pages 1�114. Springer, Berlin, 1994.17 September 10, 2010
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