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ON SHAPE OPTIMIZATION FOR AN EVOLUTION COUPLED SYSTEM

G. LEUGERING, A.A. NOVOTNY?2, G. PERLA MENZALAZ?, AND J. SOKOLOWSK?

ABSTRACT. A shape optimization problem in three spatial dimensiarsah elasto-dynamic piezoelectric body
coupled to an acoustic chamber is introduced. Well-posedoithe problem is established and first order necessary
optimality conditions are derived in the framework of theibdary variation technique. In particular, the existence
of the shape gradient for an integral shape functional iginbtl, as well as its regularity, sufficient for applicagon
e.g. in modern loudspeaker technologies. The shape gtadiem given by functions supported on the moving
boundaries. The paper extends results obtained by theratith[€] where a similar problem was treated without
acoustic coupling.

AMS (MOS) subiject classification: 49 Q 10; 35 K 05; 73 R 05; 35598 B 07; 93 B 05

1. INTRODUCTION

Shape optimization for coupled models is an emerging fieldséarch required for applications in modern
key-technologies. In the present paper a model for intemrestbetween elastic, piezo-electric and acoustic
fields with non stationary partial differential equatiossproposed and analyzed. The geometrical domain
is decomposed into regions with different physical prdpertand the sub-domains are coupled by means of
appropriate transmission conditions for the equation®uodnsiderations. The problem is chosen in such a
way, that the results can be applied for a broad class of mpdiéh the appropriate modifications, if necessary.
The configuration is viewed e.g. as a loudspeaker in an dcalsimber. The question asked in applications
concerning loudspeakers, beepers or energy harvesteboig the shape and the topology of the material
components involved. Se€e]13] 14] 15, 16] for the origingimeering problem formulation along with topology
optimization results based on the classical SIMP methodedd, a main objective is e.g. to maximize the
acoustic pressure in the chamber by choosing appropriatelped elasto-piezo-systems. However, in these
articles the problem was concerned with optimizing the kg of the piezo-patches only. Moreover, only a
time-harmonic solution was considered. Time dependerbpiéectric coupled systems have been investigated
in the literature before, e.g. in[10,111]. Multilayered zoeactuator devices have been studied e.g.lin [5]. In
[@], the dynamic problem without acoustic coupling was fitsidied with respect to well-posedness and shape-
sensitivity analysis. See the referenced_ In [9] for furihémrmation about the literature in this context. In this
paper the same authors consider the fully coupled dynarstesyinvolving also the acoustic chamber. For the
mathematical theory concerning the evolution problemséhder may refer to e.glL1[8].

In order to avoid additional difficulties with respect to geetrical singularities, and in order to have a
simpler presentation of the results, we decide to use addygystem as in figl. 1.

Topological sensitivity analysis is not performed in thep@a however we can refer to the related papers
which include the topological derivatives for the statignanodels. The shape and topological sensitivity
analysis of partial differential equations is an efficiesaltin numerical solution of optimum design problems
for distributed parameter systems. We are interested ipesbensitivity analysis in three spatial dimensions of
the complete model of the interaction between elastic,qgilextric and acoustic fields. There is a difference
between stationary problems and evolution problems irréisigect. To be more precise, the difference concerns
the singular domain perturbations, e.g. the analysis ahflwence of nucleation of small voids on the solutions
of the mathematical model. Such an analysis can be perfoim#te framework compound and matched
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asymptotic expansions for stationary models, and it is anknin the case of full evolution model. The
asymptotic analysis is not, however, our principal agtivit the present paper, we refer the readei o [2] for
some results in this direction for piezoelectric elastidibs.

The techniques of boundary variations, which we employ éhper, is the speed method. By this method,
material and shape derivatives are determined for thegpditferential equations involved, and the Hadamard
structure theorem for shape gradients is used in order tdifgéhe boundary density function of the shape
gradient which, in turn, can be used in numerical methodstiape optimization.

This means that the first part of our analysis in the framevadrkhape sensitivity analysis is devoted to
the so-called material derivatives of solutions to the lolaup value problems in the stationary case or to the
evolution initial-boundary value problems in the evolatioase. The analysis which leads to the material
derivatives is usually performed in the fixed domain sethiggan application of the implicit function theorem.
To this end transport mapping for the family of admissiblend@ns is constructed, and by construction the
mapping is a diffeomorphism in three spatial dimensiong/beh admissible domains. We need some regularity
of domains and of the mappings to assure all necessary piexpef the diffeomorphism.

In optimum design of elastic structures the topologicaivd¢ives can be determined by asymptotic analysis
with respect to the small parameter which governs pertimmatof coefficients in a regular case or singular
domain perturbations in limit cases of small voids and/gidriinclusions. We point out that for evolution
problems that case of singular domain perturbations isaatil of the reach, however regular perturbations in
coefficients make no additional difficulties compared wite shape sensitivity analysis.

In the paper the shape gradieni($.48) is obtained for shaypiénal [Z8) defined for the model introduced
in SectioZIL. We need the expression of the shape gradidet given by a function, for the purposes of nu-
merical methods of shape optimization. Therefore, thelagijyissue we adress in the paper can be described
as follows. Under minimal regularity assumptions for thedeloand for the shape functional, determine the
expressions for Eshelby tensdrsS(%.36) dnd {5.37) in suchyathat the traces of tensors on moving boundaries
are given by functions. Therefore, the shape gradient isngy a function and the levelset methods of shape
optimization can be applied in order to solve numerically @issociated optimization problems.

2. THE PROBLEM FORMULATION

Let us consider an open bounded dom@imf R? with smooth boundary). We assume thd® has the
form Q = D\.D,, whereD and D, are open bounded domains withy ¢ D and(2 denotes the closure of
Q. In addition, letB3;, withi = 0,1, 2, 3, be open subsets with smooth boundBfysuch that, forj = 0,1, 2,
B;j C Bji1,with By = Dy andB; = D. We sef2” = B\ By, @M = By\ By andQ? = B3\ Bs. In summary,
as shown in figur&l1, the mutually disjoints open domdls QM. Q4 have boundarie®Q?” = I'y U T,
IOM =T, UTy anddQ? = T'y U T3, respectively. We remark that the order of domains can bearthin
reverse order such that the acoustic part is inside andseqmigan acoustic chamber.

FIGURE 1. Layered domain represented Qy
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According to our above motivatiof)™ andQ” represent the regions where mechanical and piezoelectric
devices are located, respectively, & represents the acoustic chamber.

2.1. The model. We are interested in the following system

c%gptt — AQO = f in QA X (O,T)
Wit — divS = g in QJ\J X (0, T) (2 1)
Ut — divo = h . P )
_divip = 0 } in QY x(0,7)

where the first equation describes the acoustic wave prtipagéhe second one is the linear elasticity sys-
tem and the last coupled system represents the electronieghiteraction phenomenon. The equations are
coupled at layerd’; (j = 1,2). In particular, ¢ is the acoustic potential scalar field,is the mechanical
stress tensorr is the electromechanical stress tensor arttie electrical displacement field. The constitutive
laws describing the elastic behavior and piezoelectriectsf both in the linearised case of small mechanical
deformations and electric fields, are

S(w) = As(w),
o(u,q) = Ce(u) — Pe(q) ,
P(u,q) = Ple(u)+ De(q),

wherew = w(z, t) andu = u(x,t) are the mechanical and electromechanical displacemesisctively, and

qg = q(z,t) is the electric potential. In additiomd andC are the elasticity fourth-order tensors respectively
associated to the elastic and electromechanical partise piezoelectric coupling third-order tensor andhe
dielectric second-order tensor. As usuglC' and D satisfy the symmetry conditiond;;i; = Ajini = Ak
Cijri = Cjim = Criij andD;; = Dj;, whereasP satisfiesP;;, = Pj;,. Furthermore, there exist nonnegative
constantsiy, ¢y anddy such that

2.2)

2 2
AijraXig X > ao X5,  CijraYijYi > COYZ], Dijzizy > dozy,

where Einstein’'s summation convention is used. It is assufoesimplicity that all constitutive tensors are
piecewise constant, i.e., constant in each layer. The méiastrain tensors(u), (w) and the electric vector
field e(q) are given by

1 1
e(u) = Viu = §(Vu +vu), e(w)=Vw:= §(Vw +Vw') and e(q) =—-Vq, (2.3)
We complement the systefn{P.1) with the following initiahditions

gp(.%',O) 800(1')7 “Pt( ) 901('%')7
0(1‘), w ( ) = wl(x)v (24)
u( €T, ) (1‘), ut( ) = ul(x)v

and boundary conditions of the form

onTy x (0,7), =— =——ps0onl'3x (0,T 2.5
{ u = 0 0 ( ) )7 on Cgpt 3 ( ) )7 ( )
wheren is the outward unit normal vector pointing toward the extedf €. Finally, we consider the following
transmission conditions

U = w _ 680
on = Sn onT;x(0,7) and { Ween = 75, onTyx (0,7), (2.6)
q = qP STL = —pn
wheren = n(® = —n(—Y js the unit normal vector pointing toward the exterior&f We also assume the

compatibility conditiong” (z,0) = ¢/ (z,0) = 0.
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2.2. Shape functional. We consider a shape functional of the form

T
Jolge,w) = /0 Ja(ge,w) 2.7)

with Jq (¢, w) defined as

1

Jalpnw) = ag / 5 / (div(w)y +w - V), (2.8)

wherep* is a target acoustic pressurgjs an arbitrary scalar functiony = 1 — § andg € [0, 1]. By taking
nlr, = 0andy[p, = 1, we have

1

Toterw) =ag [ (== 5 [ wen, (29)
QA Ty

wherew - n is the normal component of the mechanical displacement @mtbrfacel’s between the acous-

tic chamber and the mechanical device, respectively repted byQ4 and QM. It means that we want to

maximize the mechanical displacement and the acoustisyme$y takingy™ large enough.

3. STATE EQUATIONS

In this section the existence and the regularity of weaktsmia to the model of coupled equations in multi-
layered domain is established by Theofdm 1. The same resaltglid for other coupled systems introduced
in the paper, including the material and shape derivatigesedl as the adjoint state equations.

3.1. Weak solutions. In order to derive a weak formulation of the piezoelectriopem [Z1){Z6) we intro-
duce the following bilinear forms

aa(p, ) = (Ve Vp)aa
ay(w,w) = (AViw,Viw)qum ,
apm(u,u) = (CVu, Viu)gr ,
app(¢,q) = (DVq,Vq)qr,
amg(u,q) = (PTV°u,Va)gr
agym(q,u) = (PVq,Viu)gr ,
and spaces
Wa = HQY), W = [H(QY)], Wp = [HY(Q")]P, We = H'(Q"), (3.1)
as well as
W = {(o,w,u,q)(t) € Wa x Wy x Wp X Wg :
u=00nTy,w=uonl;andg = ¢"'(t) onTy, foreacht € (0,7}, (3.2
W = {(3,@,1,q) € Wax Wy x Wp x Wg :
u=0onTy,w=wuonTyandg=0o0onTy}. (3.3)

Then the weak formulation of{2.1-{2.6) is obtained by npling the equations with test functions
(p,w,u,q)e W(R), respectively, followed by integration by parts. It readsr eacht € (0,7") and any

(3, @,u,3)€ W(RQ), find the acoustic potentiat, the mechanical displacement the electromechanical dis-
placement; and the electric potentiagl, with (¢, w,u, q) € W, such that

Z{ou(t), yaa + aalp(t),d) — (we(t) - n, @)ry + (@1 (t), By
+un(t), Bow + ag(w(t). ©) + (D), @ n)r, .
+(uge (t), wyar + ann (ult), w) + apn(q(t), u)
+aprp(q(t),q) —ame(u(t),q) = 0.
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In order to put this into a more convenient format, we intrelthe variabléV := (¢, w, u, ¢) and the bilinear
forms

AW, W) := aalp, @) + anr(w, @) + anrar(u, @) + app(q. @) + apar(g, @) — anp(u, 9), (3.9)
—~ " " 1 »
BW,W) = —(w-n,@)r, + (¢, w0 - n)r, + — (¢, @)rs, (3.6)
where the symba(, -) k- denotes the usual inner product for elements of functiopatess defined in a domain
K. Notice that

1
PRLNE
The spac@ can be seen as the form-domain4f, -). The weak systeni{3.4) can be rewritten as
(MW, W)hg + B(We, W) + AW, W) =0, YW € W, (3.7)
whereM = diag(c%l, I,1,0). Still, (33) is not a standard vectorial dissipative wageaion in weak form,
the mass matrix-operata¥1 is singular. Therefore, a proof of well-posedness seeme tit brder.
Theorem 1. Givenf € L?(0,T; L2(Q4)), g € L?(0, T; [L2(QM)]?), h € L2(0,T; [L?(27)]?), (¢o, wo, ug, 0) €
W, (¢1,w1,u1,0) € L2(Q4) x [L2(QM)]? x [L2(QF)]3 x {0} and compatibility conditiony” (x,0) =
qf (x,0) = 0, then, there exists a unique weak solutior(fal(3.4) belantprthe class
@ € L>®(0,T; H'(Q4)) , @r € L=(0,T; L2(Q4))
w e L0, T; [HYQM))?), w, € L*°(0,T; [L*(QM)]3) ,
u € L0, T; [HY QD)) , uy € L=(0,T; [L?(QF)]3)
q € L=(0,T; H(QF)) .
In addition, if we assume that”(t) € C?(I';) and the initial data satisfy the compatibility conditions
(0, wo, uo, p1,w1,u1) € W, with
W = {(go,wo,u0) € H*(Q) x [HXQM)* x [HX Q) (1, w1, u1,0) € W(Q) :
u=0,Yy-n=00nTy,w=1u,oqn = SygnonI'y andg=0onTIy

AW, W) = aalp, @) + ap(w,w) + aprnr (u,w) + app(q,q), BW,W) =

(3.8)

0 0 1
wy-n = —2@g, Son = —pnonly, —pg=——p; onls}, (3.9)
On on c

then the solution belongs to the (more regular) class

€ L0, T; H2(Q4), ¢ € L0, T; HY(QY),  ou € L®(0,T; L2(Q4)) ,
w e L0, T; [HXHQM)]3) , w, € L0, T5 [HY(QM)]3) . wy € L°(0,T; [L2(QM))]?) |

] ]
we L2075 HAQO) . w e IO QM) e e L0, 1522@)f), 10
q € L>=(0,T; H*(QF)) .
Proof. The proof of Theorerfil1 is relegated to the Appendix. O

Remark 2. We can replace with ¢ in &4) which amounts to multiplying the first equation@@) by ¢?.
This is the form used in the sequel.

3.2. Outlines of the shape sensitivity analysisTheoren]L implies the existence and the regularity of solu-
tions to the model as well as to the systems which are obtdoradaterial and shape derivatives as well as for
the adjoint state.

e If the solution of state equation belongs to the class13th@n all boundary conditions for the shape
derivatives are well defined.

e For the shape functional under consideration the shaperéiiffiability is achieved for the material
derivatives belonging to the clagsT3.8).

e Once the existence of the material derivatives is estadidbr the model, the existence of shape
derivatives follows from the relatiof {4.110).

e If material derivatives belong to the cla§s{3.10), thensthape derivatives belong to the cldss](3.8).

¢ If material derivatives belong to the clags{3.8) then, mwbf (£.10), the shape derivatives are given
by very weak solution of the system.
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Therefore, what we really need for the proof of shape diffgability of the functional, is the existence of
the regular solution to the model, and the existence of sefffily smooth material derivatives which can be
used in order to obtain the shape differentiability of thactional. The adjoint state allows us to simplify
the form of the shape gradient, but there is no implicatiothefadjoint state on the shape differentiability of
the functional. The existence of material derivatives iegplthe existence of the shape derivatives as well as
the differentiability of the shape functional by means af thadamard structure Theoreml[12] for the shape
gradient.

4. SHAPE SENSITIVITY ANALYSIS

Formal derivation of the coupled equations for shape divies of solutions to the model under consider-
ations leads to the shape gradient of the cost functionathisnderivation the transmission conditions on the
interfaces should be taken into account, it means that ttieatiges with respect to the shape parametes 0
are evaluated from both sides of the interface. In our model exterior boundary'y and one interfacé’;
move according to the boundary perturbations rule definethdgpeed velocity method. In formal derivation
no attention is payed to the regularity of solutions, howeve are interested in the resulting shape gradient
regularity since the regularity has the important impimag on the numerical methods. If the shape gradient is
given by a distribution which lives on the moving boundaesnterfaces, this property should be taken into
account when computing numerically the descent directiomyfadient type numerical methods of shape opti-
mization. On the other hand the levelset methods for shatmiaption require the shape gradient of the cost
given by a function, the shape gradient becomes the coeifiofethe associated Hamilton-Jacoby equations
for the levelset function.

On the other hand, the proof of the shape differentiabilftthe cost functional relies on the material deriva-
tives of solutions to the model. The stability analysis @ thodel which results in the material derivatives
is performed in the fixed domain setting. In this way the shagnaelient of the continuous shape functional is
precisely determined and it can be used for numerical coatipus.

For sake of simplicity, in this section we consider that they and i in (1) are identically zero. We
also consider that the initial conditiorS{R.4) are homegers. \We observe that the only source in the system
is given byq = ¢"(x,t) onT'; x (0,7, which satisfies the compatibility condition, namedy, (x,0) =
Qf(wv 0) = 0.

The perturbed domain, parameterizedrbg R* small enough, is denoted as

Qr={z, eR®:z,=2+7V, 2€Q, >0}, 4.1)
whereV is a smooth vector field defined in that represents the shape change velocity. Thus, the akigin
domain is retrieved by setting = 0, that isQ2g = 2. In particular, we are interested in the perturbations ef th
boundaryI'y of the electromechanical device and of the interfRgdbetween the mechanical and electrome-
chanical devices. It means that the shape change velodiyche be defined as

V=00nT,UT3 =004, (4.2)

The shape functional defined in the perturbed domain reads

T
To(prswr) = / Jo (o) .3)
0

wherep, = ¢ (z,,t) andw, = w,(z,,t), together withu, = u.(x,,t) andq, = ¢.(x,,t), are solu-
tions of the following variational problem defined in the foebed domair(),: for eacht € (0,7") and any
(3,0,7,q) € W(Q), find (o7, wr, ur, ;) € W(,), such that
<§07,tta SB>QA + CQ <VSDT7 v¢>QA - CQ <wT,t - n, ¢>F2 + C<§07,t’ &>F3
+<w7—7tt, @>QM + <AV19FU)T, Vfr@>QM + <§07—,t, w - n>p2
+<u7—,tt,ﬂ>QP + <CVfru7—, Vf_ﬂ>QP + <PV7—q7—, Vfr17>QP = 0, (4.4)

<DVTQT’ vT@QP - <Pva'uT, vT~>QP = 0.

with homogeneous initial conditions. In addition, the sE#§,) and W(f2,) are defined analogously as
before.
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4.1. Material derivatives of solutions. We are going to evaluate material and shape derivativehéostate
system, and two formulae for the shape gradient includirgdistributed representation and the boundary
representation. Before start, let us introduce the folhgaiotation for material derivative of a functi@iz)

£(z) = %&(%) . (4.5)

=0
We assume for the sake of simplicity that the only source @ dpstem is given by = ¢7(z,t) on
I'; x (0,7), which satisfies the compatibility conditiop’’(z,0) = ¢/’ (z,0) = 0. In addition, we have
the nonhomogeneous initial conditions for all functions.
For eacht € (0,7) and any(p, w, u, q) € W, find the acoustic potential, the mechanical displacement
the electromechanical displacemerand the electric potential, with (o, w, u, q) € W, such that

(‘Ptt, ¢>QA + 62<v~g0, v¢>QA —c? <wt '~n’ QZ>I‘2 + C(ftv ¢>F3
+{wy, w)am + (AV3w, Viw)om + (r, W - n)pr,
+(uy, w)yqp + (CV3u, V¥u)gr + (PVq, Viu)gr = 0, (4.6)

(DVq,V)or — (PTV*u,Vi)gr = 0.
Beside the above system, for the state equation the initthbaundary conditions are imposed, and the poten-
tial ¢” is prescribed o'y x (0, 7).
The material derivatives are given by the solutions to thleviong system
( (1t Pyoa + A (Vp, VP)ga — (i - n, @)1y + (P, P)ry
+<wtt7 @>QM + <AVS’U}, VS{,D>QM + <Sbt7 @ . 7’L>F2
+ (g, w)qr + (CV50, Viu)qr + (PVq, Viu)or
= (Vw' (AV*0) + Vo (AV3w), VV)qu
_<wtt -w + AViw - VS@, diVV>QM
+(VuT (CV*) + Vu' (AV3u) + Vq® PTV3 4+ Vu' PVq, VV)gr (4.7
—(ug - u+ CVou - Vou+ PVq-Vou,divV)qgr

(DV§, V) or — (PTV*u, V) qr
=(Vq® DVG+Vq® DVq—Vu' PVG—VGg® P'Vu, VV)qr
\ —(DVq-Vq— PV Vg, divi)gr .
The system becomes closed provided we complement the s@&f#nhwith the following initial conditions

{ Sb(x70) = tho(l') ’ V(.%',O), @t(l',O) = Vgpl(x) ’ V(I‘,O),

w(x,0) = Vwy(z)V(x,0), w(z,0) = Vwi(x)V(z,0), (4.8)
u(z,0) = Vug(z)V(x,0), 4 (z,0) = Vui(x)V (x,0),

and boundary conditions

eon o= —¢-n a9 1
{ i — 0 onTy x (0,7), o Cgpt onTs x (0,7) . (4.9)
In addition, the potential¢*’ (z,t) - V(z,0) is prescribed o’y x (0,T) for the material derivative of the
electric potential.

Theorem 3. The material derivatives of solutions for the sysi@nfl) are given by®. 1) along with the initial
conditions(@.8) and boundary condition§L.9).

Proof. The proof of Theorerfil3 is given in Sectibnls.3. O

4.2. Shape derivatives of solutions.The system of equations with the initial and boundary camat is
derived for the shape derivatives of solutions to the modéle shape derivatives lead to the shape gradient
of the cost functional. By the Hadamard representation fidracof the shape gradient, it follows that it is
a distribution which lives on the moving boundary. From thoeénp of view of humerical methods of shape
optimization, it is preferable to have the shape gradievgrgby a function. The shape derivatives are given
by solutions to the linearized equations with respect tostegpe by using the speed method. The initial and
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boundary value problem for the linearized equations, invvidé the shape functional under considerations,
lead to appropriate adjoint state equations. All togetherdbtained system defines the regularity of the shape
gradient which is expressed in terms of the shape derigtihe adjoint state and the integrand of the shape
functional. By the regularity assumptions on the data, tificgent regularity of the shape gradient can be
achieved. In fact, the regularity of the data is also reglfioe derivation of the shape gradient using the material
derivatives. Roughly speaking, the proof of shape diffeaility is performed in the material derivatives
framework in the fixed domain setting. However, in genefa, shape gradient identification is possible with
the shape derivatives.

Condition 4. In this section the normal component
v =V -n

of the velocity vector field is nonnull only on the boundBgyand on the interfacé’;. It means that only’y
andT’; are perturbed by an action of the shape velocity fiéld

We have the following relation between material and shapivatives, since in general case the material
derivative of a functiorf can be written as

E=¢+(VEV) . (4.10)

From relation[[4.70) it follows that the shape derivativesses the spatial regularity compared to the material
derivatives. For hyperbolic problems this property shdaddaken into account in order to assure the regularity
of shape derivatives in terms of the regularity of the dathéostate equation.

The shape derivatives satisfy the homogeneous sy&iehofalg form

oy — AP = 0 in Q4 x(0,7)
wy, —divs” = 0 in QM x (0,7) (4.11)
uy —dive’ =0 : p '
_divY = 0 in QY x(0,7)

along with the homogeneous initial conditions,

Qpl(x>0) =0, ng(x>0) =0,
w'(z,0) =0, wy(x,0) =0, (4.12)
o' (x,0) =0, uj(xz,0)=0.

and nonhomogeneous boundary and interface conditiongnettaelow from [Zb) o’y and from [Z5) on
T'y, respectively.
The constitutive relation§{d.2) are in the same form forsthepe derivatives, therefore are not repeated here.

Boundary conditions for shape derivatives orl’'g. Now, we derive the boundary conditions bp.

¢ The homogeneous Dirichlet boundary condition for the dispient field: = 0 leads to the homoge-
neous boundary condition for the material derivative, andiéw of (£.10) becomes the nonhomoge-
neous boundary condition for the shape derivative

ou
r_  —
u = _8nv n Ung onTy x (0,7, (4.13)

¢ The homogeneous Dirichlet boundary condition for the ndicoenponent of the vector field written
in the form,(z;) - n-(z,) = 0 becomes the nonhomogeneous boundary condition for theahorm
component of the shape derivative vector field after difféagion with respect ta,

Y n+wvyn-DY-n—yr- Vv, =00nTy x (0,7), (4.14)

where we denote byr := ¢ — (¢-n)n the tangential component of the fieldon the moving boundary
FQ X (O,T)

e The third condition in[(ZJ) is just repeated fpfsince the boundary/; x (0, T) is independent of the
shape parameter.
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Boundary conditions for shape derivatives ol";. Now, we derive the transmission conditions on the interface
I.
e The transmission condition for displacement fields= w leads to nonhomogeneous transmission
condition for the shape derivatives obtained in the sameagafpr homogeneous Dirichlet boundary
condition, actually

u —H)n@ = +Un8_w onT'y x (0,7, (4.15)
on on
¢ In the similar way the boundary value for the shape derieatiof the potential; is obtained
P
q + vnaain =0onTly x (0,7), (4.16)

e The equality of normal stresses. = Sn on the interfacd’; x (0,7") leads to the nonhomogeneous
transmission conditions for normal stresses of shapeat&sos'n, S'n,

o'n — v, (h + 268n) + divp (v,or) = S'n — v,(g + 2k0n) + divp (v, Sr) onT'y x (0,T), (4.17)

wherex is the mean curvatrure @f;, or = on — (on - n)n is the tangential stress dh, divr is the
tangential divergence dny, andSr = Sn — (Sn - n)n is the tangential stress dn .

Therefore, we complement the systdm (#.11) with the folhgaboundary and transmission conditions

Y n = —wvyn-Dy-n+ir-Vro,
, ou only x (0,7, (4.18)
o= —vp—
on
U ow
v+, — = w + Ung
n n
o'n — vy (h + 2kSn) +divr(vpor) = S'n—v,(g + 2kon) + dive (v, Sr) onT'y x (0,7) (4.19)
T
qg = "an
/ o anl
We=n = 75 only x (0,7T), (4.20)
S'n = —¢in
oy’ 1
a—fl = —?p; onTs x (0,T). (4.21)

wheren is the outward unit normal vector pointing toward the extedf (2.

Theorem 5. For the shape derivatives of the solutions to the coupledaindekcribed in Sectidn 2.1, we have:

e The shape derivativeg’, w’, v, ¢’, of the solutionsp, w, u, q, for the systenf@d.8) are given by@.11)
#12) @I18)E21)in the strong formulation.

e For the regularity of the weak solutions to this system itdguired that the following assumption
qP € L>=(0,T; H*(QF)) is satisfied, which implies the regularity of the nonhomeges Dirichlet
boundary condtion for the shape derivatiye

8(ZD &) . rl/2
e According to[(310) [[4130) an@{41R2), there exist shapiévdtves of the solutions to the systdm13.4)
with the following regularity
¢ e L0, T;H' (QY), ) € L0, T; L2 (QY))
w' € L0, T; [HY(QM)]3) , wj € L=(0,T;[L2(QM))]?),
u' € L0, T; [HY(QP)P) . uf € L=(0,T;[L*(Q7)]%)
¢ € L>(0,T; H'(Q)),
given by weak solutions to the following system:
— equations are given b 11)
— initial conditions are homogeneo@.12)
— boundary and and transmission conditions are giverf¥8)@21)

(4.23)
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Proof. The proof is standard, taking into account the specificitthefhyperbolic systems, the simplest case of
the wave equation is covered in details e.g., by Cagnol afiesito[1], see also Sokolowski and Zolédiol[12] as
well as Delfour and Zolésid [3]. Formally, the equationstfe shape derivatives are derived by an application
of the Reynolds’ Transport Theorem to the variational fdatian of the model in variable domain setting.
Then, the boundary conditions on moving boundary and mokiterface are found from the results given
in [L2] for the shape derivatives of the elasticity boundeajue problems. The initial conditions are derived
from the assumption that the initial conditions for the maate shape independent i.e., the shape derivatives
of initial conditions are null. O

5. SHAPE DIFFERENTIABILITY OF A FUNCTIONAL

5.1. Adjoint system. In order to simplify further calculations, let us introdute adjoint stateg®, w*, v and
p, which are solutions of the following variational systenurBacht € (0,7) and any(3, @, 7, p) € W(),
find the adjoint acoustic potential®, the adjoint mechanical displacemaeunt, the adjoint electromechanical
displacement and the adjoint electric potential with (o, w®, v, p) € W, such that
<90gt’ ¢>QA + 62<V@a, v¢>QA - (w? "N, ¢>F2 - C<Q0;€1’ QZ>F3
+(w?t, ’&7>QJVI + (Avsw“, VS@>QNI + 62<g0?, w - ’rl>p2
+<Utt,5>QP + <CVSU, v85>QP — (PVp, v85>QP

= S ~ 51
= alpu — 7. Bhaa + B((n, div(@))gu + (Vi D)gar, 6.1
(DVp,Vp)or + (PTV*0,VD)gr = 0,
with the following final conditions
(2, T) = 0 and o¢f(z,T) = —a(pi(z,T) — p*(z,T)),
w(z,T) = wi(z,T)=0, v(z,T) =v(z,T) =0. (5.2)

From the above system, we can define the adjoint mechaniegaksensof?, the electromechanical stress
tensoro® and the adjoint electrical displacemettt as following

St(w*) = As(w®),
o’(v,p) = Ce(v)+ Pe(p), (5.3)
¥ (v,p) = —PTe(v) + De(p).
The strong system associated to the adjoint problem reddti@ss
o — AN = alew —pf) In Q1 x(0,T)
wl —dive® = 0 in QM x(0,T) (5.4)
vip — dive® =0 in QF x (0,7) '
—divyy* = 0 ’
with final conditions given by[{5]2), boundary conditions
¢a ‘n =0 agpa _ 1 a
{ v = 0 only x (0,7, o o onT's x (0,7, (5.5)
and transmission conditions of the form
{ vo= W g « (0,T)and{ Wi " = _2?3@& onTy x (0,T). (5.6)
(Ua _ S“)n — _ﬁnn 1 ) gay — (ﬂn _722%?)” 2 ) . .

In addition, we have(x,t) = 0onT'y x (0,7, which naturally satisfies the compatibility condition.

Remark 6. It is important to observe that the adjoint system is a tinversal problem, which should be solved
by takingt < T — t. In this case the boundary condition &3 becomes dissipative, namely
dp®
on
and for the adjoint system holds Theorgm 1.

1
=——pyonls x (0,7), (5.7)
C
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Proposition 7. There is a unique weak solutidp®, w®, v, p) satisfying the regularity3.g) of Theorenill for
the adjoint systene.4), &2), &.3), (&.8)
D

5.2. Shape derivative calculation. We are going to denote hy, , := ——" the time derivative of the function

ot
- which is defined irf)...
Let us perform the shape sensitivity analysis of the fumei¢7, (¢-+, w,). Thus, we need to calculate its
derivative with respect to the parameteatr = 0, that is

T
[ Jatenw) = dalorw) = 5o (oreu)| 58)
0 T =0

In order to proceed, it is convenient to introduce an anatogslassical continuum mechanics [6] whereby
the shape change velocity field is identified with the classical velocity field of a deformingntinuum and
7 is identified as an artificial time parameter (we refer td [fti2Janalogies of this type in the context of shape
sensitivity analysis). In this case, by making use of theceph of material derivative of a spatial field [6, 7]
and considering the Reynolds’ Transport Theorem, the stiapeative of the functionaln (¢, w) is given by

jﬂ(gphw) = <DQ(JQ(§Ot7w))7V> + <D<Pt(JQ((Pt7w))v“pt> + <Dw(JQ(§Otvw))7w> ) (59)
where
T T
| atratenan vy = 5[ [ @uTu+vaow)-vv
0 0 QM
T
- 5/0 /QM(dIV(w)n +w - Vn)divV
T
= ﬂ/ <VwT77 +Vn@w,VV)qu
OT
— ﬁ/o (div(w)n +w - Vn,divV)qm (5.10)
and

[ et = o[ [ G-

T T
= a/ (ot — ") —a/ / (u — py)¢
QA 0 0 QA

-~ a / (™)~ pT)(T) — / ' / (e =)y

T
= ol = D) —a [ (e =ri)dos. 61
T T
| @utatenwny = <5 [ [ @it +i- v

T
= —ﬂ/ ((n,div(w))om + (Vn,w)qnm) . (5.12)
0

Thus, since the acoustic chamber remains fixed, we have

T T
Jaolp,w) = ﬁ/ (Vw'n+Vnew, VV)gu — ﬁ/ (div(w)n +w - Vn,divV)qum
0 0

T T
- /0 o{(p — 1) D) — /0 B0, div(i)yam + (Y, )
T+ al(@(T) — (D)), H(T))a - (5.13)
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5.3. Proof of Theorem[3. Let us now calculate the derivative of the state systeni i¢) respect to the
parameter- at = 0. Thus, by making use again of the concept of material dévivatf a spatial field[[5]17]
and considering the Reynolds’ Transport Theorem, we obtain

e For the acoustic chamber

<80tt, > (ﬂptn >QA > (5.14)
(wy > = (- ,so>r2, (5.16)
<s0t, Ory = (PP - (5.17)
e For the mechanical device
<wtta >QI\1 — <wttaﬂj>QM + /]M (wtt . &;)dlvv s (518)
Q
<90ta w - n>F2 = <Sbt, w - TL>[‘2 ’ (519)
(AViw,Viw)ou = (AVw, Viw)qm +/ (AViw - Viw)divV
QM
- / (VwT (AV*®) + Vo ' (AV3w)) - VV . (5.20)
QM
e For the piezoelectric device
<utt,ﬂ>hp = <Z.Ltt,’lj>QP + /P(utt . ﬂ)leV 5 (521)
Q

OV, Vo) = (OV°0, Voi)ar + / (OV°u - Voi)divV
QP
- / (Vu" (CV*T) + Vi (AV®u))-VV , (5.22)
QP

(PVq, VW) r = (PV§,VoU)gr + / (PVq - V*@)divV
Or

N /Q (Vq& PTV'i+ Vi PVg)-VV (5.23)
(DVq,V@)qr = (DV§,Vq)qr +/QP(DVq.VZ[)diVV
_ /QP(Vq ® DVG+Vi® DVq)-VV , (5.24)
(PTV*u,Vi)or = (PTV%i, Vi)gr + /QP(PTVSU - V§)divV
_ /Qp(vquvqﬁr Vi® P V) -VV . (5.25)

where we have used the fact that the admissible variatfons, w and ¢ do not depend on the pa-
rameterr. Thus, the derivative with respect to the shape parametdrthe state system, after some
rearrangements, becomgs14.7).

5.4. Distributed Shape Gradient.

Theorem 8. The form of distributed gradient of shape functio@l3) defined in variable domain setting, is
given by.38) (538) (&31) In addition, for the strong solutions we have the divergefnee Eshelby tensors
©.44)
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Proof. By setting in[4¥), = %, w = w*, u = v andq = p in the above, we obtain
( <90gt’ ¢>QA + c? (VQD, V¢Q>QA — (11)25 'n, SDG>F2 + C(Sbt’ ‘PG>F3
+(w?t, ’(b>Q]VI + (AVSZD, sza>QM + (gbt, w? - n>p2
—|—<Utt,ll>QP + <Cvsu, VS’U>QP + <qu, VSU>QP
= (Vw T (AV*uw?) + (Vw®) T (AV3w), VV)ou
_<wtt -w® 4+ AViw - sz“, diVV>QM
+(VuT(Cst) + VUT(AVSU) +Vq® PV + Vv PVg, VV)qr
—(ug - v+ CV3u - Vo + PVq - Vv, divV)qr
el Plaa — (P, p*)qa
+(w§5,u')>QM — (u’)tt,w“>QM

+(vit, Wyor — (e, v)gr

(5.26)

(DV§, Vp)or — (PTV*4, Vp)or
=(Vq® DVp+Vp® DVq—Vu' PVp—Vp® PV, VV)gr
—(DVq-Vp— PV - Vp,divV)gr

where we have introduced the ters$yy,, ©)qa, £(wf, w)qm, £{vy, 4)qr in the left hand side of the first
equality. Using integration by parts, we have

T T
| tetdtan = [ @ean = (b Ddaalt - (Gnelaals
0 0
= (Pt (1), ¢(T))ga
= —{a(e(T) = p*(T)), o(T))qa , (5.27)
T T
/<wgtaw>QM = /<wttawa>QM7 (5.28)
0 0
T T
/0 (Vig, Wop = / (g, v) P (5.29)
T T
/0 <u'}t-n,g0a>p2 = /O th’w nfza (530)
T T
/O<sbt,<ﬂ“>r3 = /O ©fsP)Ts 5 (5.31)
T T
/0 <“Pt7w 'n>F2 = /0 (532)

Thus, identity [5.26) can be re-written as

( <90?t7 “P>QA + 02<Vgpa7 VSO>QA - <wg M, P)ry — c(@ga ¢>F3

+(w, w)ogm + (AVSw?® Vi) qm + c? (F W - n)r,

+(vit, Wyqr + (CV30,Vou)qr — (PVp, V3U)qr

= (Vw T (AV*uw?) + (Vw®) T (AV3w), VV)ou

—(wy - w* + AVAw - Viw®, divV)om

+(Vu" (CV*0) + Vo (AV3u) + Vq®@ PTV + Vo PVq, VV)qr
—(ug - v+ CV3u - Vo + PVq- Vi, divV)gr (5.33)

_<VSU,PVQ.>QP - <Pvp’ v8u>QP )

(DVp,Vi)or + (PTV*0,Vi)gr
= (Vq® DVp+ Vp® DVq — Vu' PVp—Vp® PTV5u, VV)qr
—(DVq-Vp— P V3 - Vp,divV)qgr

+(Vp, PTVi)gr + (PTV50,Vi)gr
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where we have introduced the termgPVp, Vi)or and+(P Vv, V{)gr. In the same way, let us set
¢ = ¢, w=1w,v=uandp = ¢ in the adjoint systeni{3.1), to obtain

( <90gt7 ¢>QA + ¢ <v90a7 V¢>QA - <wg "N, @>F2 - C<90?7 L)Z)>F3

—l—(w%, w)om + (Avsw“, sz>QJVI + 02<g0§, w-n)r,

+ (v, '>QP + (CV5u, Vu)qr — (PVp, V* u>QP

= ooy — pi,0)aa + B((n,div(w))om + (Vn,w)qm (5.34)

(DVp,Vi)or + (PTV0,Vi)gr = 0,
By comparing[[5.:33) with{5.34), and usirig({3.13) we obsdiee

Ja(pr, w) =/OT </QM EM-VV+/QP zp-vv> , (5.35)

where the last term of{5.1.3) is absorbedBy (b.27) and we lise the fact thatvsv, PV{)or = (PTV*v, V{)or
and (PVp, Vi)or = (Vp, PTV*u)qr. In addition, the Eshelby tensors X} and ©F are respectively
given by

M= —(w- - Vow® + B(div(w)n + w - V)T
—(Vw Tsa (Vw V'S —B(Vw'n+Vnow), (5.36)
P = —(ug-ve —o-Vovu+1-Vp)I
—(Vu'o" + Vo' o —Vgeuy* - Vpa 1)), (5.37)
with o, ando®, ¢ given, respectively, by (2.2) and{b.3). O

5.5. Boundary Shape Gradient.

Theorem 9. By the structure theorem for a shape differentiable shapetfonals[12], from (&.33)the bound-
ary formulae of the shape gradient is obtained. In genera, ghape gradient on the boundary is given by a
distribution. However, for the strong solutions, in view(gi48) the boundary formula for the shape gradient
takes the fornfe.41) and in such a case the shape gradient on the moving bounsl@iyen by a function.

Proof. After applying the divergence theorem [0.(3.35), we obsdnee

/ »M .y :/ EMn-V—/ diveM . v
QM oOM QM

= /EMn-V—/ EMn-V—/ diveM . v . (5.38)
T It oM
/ »P.ovv = / an-V—/ dive? . v
QF 0P QF
= /an.V—/ Epn-V—/ dive? - v . (5.39)
Iy T'o (9134
remembering that = n() = —n(i=1) js the unit normal vector pointing toward the exterior®f Let us
calculate the divergence of the tenst¥¥ andx” given by [5.36) and(5.37), respectively
divi™ = Vwiw® + (Vuw®) Twy — V' divs® — (Vw®) T divs . (5.40)

dive? = Vv + Voluy — (Vu'dive® — Vgdivy?®) — (Vo' dive — Vpdive) ,  (5.41)
sinceV (div(w)n +w - V) = div(Vw'n + Vi ® w). Integration by parts yields

T T
/ (tht)Tw“ = / (Vw)Twlfjt , (5.42)
0o JaM 0o JaM

T T
/ (V) T / (V) T (5.43)
0 Qr QF
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and after some arrangements, we obtain

diveM = (V)" (wd — divS?) + (V) T (wy — divs) , (5.44)
dive? = (Vu)" (vy — dive®) + (Vo) " (uy — dive) + Vadivy® 4+ Vpdivep . (5.45)

Finally, by taking into account the strong systefsl(2.1) &nd), we have the following important results
dive™ = dive? = 0. (5.46)

In addition, sincel” = 0 on Tz, and from these last results together wiEh {#.38]5.39), ttaio the final
expression for the shape derivative of the functiafia(¢;, w), namely

(pr,w / /n —EM)n-V—/OT/FOEPn-V. (5.47)

with XM andX” given respectively by[{5.86) and{5]137). The above form apghderivative of the distributed
functional can serve us to identify the shape gradient. O

Since the shape functional in question is differentiablth@sense of the shape sensitivity analysis_ in [12],
we can apply the structure theorem to this end. In particédam the boundary and transmission conditions,
namely, [Z5b),[[515) and(2.6]. (5.6), respectively, ittimightforward to verify that the above equation holds
the structure theorem. Therefore, it is sufficient to take consideration the speed vector fields normal to the
boundaries and the interfaces. This observation influemtiggwo boundary integrals with the Eshelby tensor,
and the result is the following.

Corollary 10. The density of the boundary shape gradient of the distributed shapetiimmal is given by the
following expression

(g, V -n) / / — M. n)V . n—/ / Pn.n)V.n. (5.48)
Iy o

As it is indicated before, in order to apply the level-seaiggy of shape optimization, it is required that
the densityg of the boundary shape gradient is given by functions supdooh the boundaries and on the
interfaces.

6. CONCLUSIONS

In this paper the shape optimization problem for coupled stationary partial differential equations is
analysed. Beside the existence of an optimal shape undgsticceonditions, the form of the shape gradient is
established in usual expressions necessary for apphcatibnumerical methods, say, for boundary integrals.
This means, that the shape optimization problem can be gdlyehe discretization of the continuous shape
gradient and the appropriate finite elements in spatiablabes and the finite differences in time variable, for
example. The numerical realization, however, will be sabije a forthcoming publication.

APPENDIXA. PROOF OFTHEOREM[]

Without lost of generality, in the proof we can assume that loundary condition for (i.e. ¢*) as
well as the nonhomogeneous termisg and h are identically equal to zero. We can use the Galerkin pro-
cedure. Thus, we mtroduce sequendés™, ™, i™, ™ )men} in W and the finite dimensional spaces
Wm = span{(3", @', @, ), ..., (Z™, @™, ™, ¢™)} so that the union over aII such spaces is densgVin
Clearly, if we take the test functlor(so wm u™ gm),with ™ = p =g, 0w =w =w, v =u=1u
and¢™ = g = ¢, and initial COﬂdItIOthO (0) = ¢p", ¢*(0) = o, wm(O) = w{]”, w;ﬂ(o) = w{”,
u™(0) = ug, u’{“(o) = uf", such that the sequencégy’, wy’, ui',0) and (7", wi*, uj*,0) are convergent
in W andL2(Q4) x [L2(QM)]3 x [L2(QF)]3 x {0} respectively, then, it follows that problefi{B.4) has aloca
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solution in an interval0,¢™). In order to extend the solution {6, +c0), the finite dimensional system of
ordinary differential equations associated[fo}(3.4) noadseas follows. For anfp, w, w, q) € W™,
L (G (1), Phaa + aa(@™ (1), §) — (w'(t) - n, Phr, + H(oP )y
+<ng(t)7 WJQM + a,M(wm(t), wl"" <“P?L(t)7 w - 7”L>£2 (A.l)
+(ugt (1), Wyor + anv (u™(t),w) + apr (g™ (t)au)
+app(@"(t),q) —anp™(t),q) = 0.
Taking as test functiongp}*(t), w*(t),0,0) in (A1) and integrating ove[() t] we obtain
a7 I 4 "l + (o™ (0,7 (0) + Jau (™ (0, 0™ (0) + Ly I8 Ty 4 n
= 502 [ (O" + 3 [wi (0)]° + 5aa(£™(0), ¢™ (0)) + aM( "(0), w™(0)) .

Now as test functions if{Al1) we tak®, 0, u;"(t),0), (0,0,0,¢/™(¢)) and(0,0,0,¢™(¢)) and to obtain the
identities

1d
2dt{Hu’{“H +apm (U™ u™)} +apm(g™, uf") =0, (A.3)
and
age(¢", ") = aye(w™, ¢") and app(¢™,q") = ame(W™, "), (A.4)
respectively. Then, it follows that
d
EGEE(qm’qm) = aJME(u;n,qm) +aME(umaq;n)
= ayme(u",q") +aee(@™, q") - (A.5)
Therefore L d
5 70eE(d"d") = aup(W”, ¢") = apm(q™, uf") | (A.6)
by symmetry. Using{AM) in{AI3) and integrating ovért| we obtain
| + anear(u™, w™) + app(™, ¢") = ui'l® + annr (g ui) + ape(g™(0),4™(0)) . (A7)
In order to obtain an initial condition fay™ we need to solve

for any¢ € {span{¢!,£2,...,&m}, & € HY(Q) : & = 0onTy}. Since we know the regularity off* we can
apply the Lax-Milgran lemma and obtain a unique solut6h(0) belonging toH ! () with ¢™(x,0) = 0 on
I';. Furthermore

la™ O < ellug® {1 @rys - (A.9)
Using the coercivity of the bilinear formsy;); andagg in Wp andWpg respectively to obtain froni{Al 3) and
@&2D). In case we considef, g, h andg? different from zero, we use Gronwall's inequality at thismio

2 2 2 2 2
a2 grys + 1™y, + g™ Iy, < CLITIE 2 ey + 1By, ) (A.10)
for some positive constaudf. A standard argument shows that also
et 175 Nwi ™5 Ilug||* < C. (A.11)

Using the a priori energy estimatés {A.10) ahd (A.11) we tam textract subsequencgs™}, {¢i*}, {o };
{w™}, {wi}, {wi}}; {u™}, {ui}, {uy}}, which we relabel by original indices converging fsr:= A, M, P
weak-&) in L°°(0,T; Wik (£2)), and weak in.2(0, T; Wi (2)*), respectively, to elements’, o5, ¢f,; w*, w},
wyy; u*, uy, uy,. Standard arguments reveal that these elements solve diesystem[(314) and that the initial
data are matched in the corresponding spaces as well.

As for the second part of the theorem, we first differentidte approximate weak system and take
(pir(t),0,0,0) and then(0, wi}(t),0,0). One adds the results and integrates with respect to timlet&ino

1RO + i O + eale? O, 7 (1) + an (P O 1) + = [ e O,

< {6—12||gp;§?(0)\|2 + [lwii () + agar (wi™ (0), wi" (0)) + aa(¢}"(0), @?(0))}(A-12)
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As for the piezoelectric part, we take, 0, u}}(¢),0) as test functions and then, after another differentiation o
the weak form with respect g (0, 0, 0, ¢/ (¢). We obtain

d m m m m
5 g7 Ulwaell” + agf (w (0), u (0) + agF (g (1), 4" (1)} = 0 (A13)
Integration with respect to time leads to:

gy O + g™ ) B, + g )5,
< C {Ilugi (O)I + [[u" 0) vy, + llai" (0) [ } - (A.14)

We need estimates aipy; (0) |, [[wiy (0)[ljz2(rys, [ug (0)|liz2@ryz @nd|gi (0)|hw in terms of our data. As
nowu;"(0) € Wp we can uniquely solve the second equatior0fl (3.4) to obtain

" (0)lwe < CHlluf" (0)]lwp }-
Moreover, for givenu™(0) € H2(QF) let g™ (0) € H?(2F) be such that

div(DVq) = div(PTV*u™(0)) inQF
DVg-n = P'Vu-n onT (A.15)
qg = 0 onTy

Then||g™(0)|| g2(@yr < {llu"™(0)||z2(r)s} and after evaluating the strong solutiort at 0 we obtain
[[ugg (0)]] < Cllu™(O0) || 2 ()2
We can now proceed as before, in order to obtain the a pritbnmate
1 (22 ey + [ Oy + [ () 22y + 10722 0y + a1
< C{lu™ ()1 F20rys + luf"O) [} (A.16)

We then subtract weaks convergent subsequences and pass to the limit in the egeafihe fulfillment of
the initial data is proved by a standard argument. Note tisat @on-homogenous boundary conditions gor
(andu ) can be easily handled.
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