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ABSTRACT 

The objective of this study was to determine whether exposure of 

Staphylococcus aureus to early (ciprofloxacin or levofloxacin) and a recent 

fluoroquinolone (moxifloxacin) has differential potential as a mutator or 

selector for meticillin resistance. The potential of fluoroquinolones to act as 

mutators or selectors was studied in 24 strains each of healthcare-associated 

meticillin-susceptible S. aureus (MSSA) and meticillin-resistant S. aureus 

(MRSA) as well as 6 strains of community-acquired MRSA. Mutator or 

selector potential was studied first by exposing isolates to 0.5 the 

fluoroquinolone minimal inhibitory concentration (MIC) and screening for 

either single-step fluoroquinolone resistance or high-level oxacillin resistance; 

second, by exposing the heteroresistant MRSA P8 parent strain as well as 

fluoroquinolone-resistant subpopulations derived from strain P8 to constant 

fluoroquinolone concentrations ranging from 0.015 mg/L to 128 mg/L; and 

third, by exposing the heteroresistant MRSA population of strain P8 to 

fluctuating concentrations of ciprofloxacin, levofloxacin and moxifloxacin 

simulating oral doses of 500 mg twice a day, 500 mg once daily (qd) and 400 

mg qd, respectively, compared with amoxicillin/clavulanic acid 500 mg three 

times a day. Total viable counts and subpopulations resistant to 2, 4 and 8 

the fluoroquinolone MICs and to 32, 64 and 128 mg/L oxacillin [high-level 

oxacillin (hl-OXA)-resistant] were quantitated. None of the fluoroquinolones 

acted as a mutator; ciprofloxacin and levofloxacin selected for hl-OXA 

resistance, whereas moxifloxacin selected towards hl-OXA resistance by one 

order of magnitude less frequently. The P8 parent and fluoroquinolone-

resistant subpopulations were eliminated by ciprofloxacin or levofloxacin 
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concentrations >10-fold higher than the MICs, whereas moxifloxacin 

eliminated all subpopulations by concentrations 2–3-fold the MIC. Finally, 

exposure of P8 to fluctuating amoxicillin/clavulanic acid, ciprofloxacin and 

levofloxacin concentrations, respectively, caused a rapid selection of 

fluoroquinolone and hl-OXA resistance. Moxifloxacin reduced total viable 

counts rapidly, thus preventing the emergence of resistant subpopulations. In 

conclusion, fluoroquinolones do not act as mutators towards hl-OXA 

resistance. However, ciprofloxacin and levofloxacin are potent selectors of hl-

OXA resistance, whereas moxifloxacin is a poor selector. In contrast to 

ciprofloxacin and levofloxacin, moxifloxacin exerts a high bactericidal activity 

against staphylococci, thus minimising the probability for selection of 

resistance. Thus, fluoroquinolones exert a dichotomous MRSA-selective 

potential in heteroresistant MRSA. 
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1. Introduction 

Meticillin resistance leading to treatment failure was detected 1 year after its 

launch [1,2]. Shortly after the identification of meticillin resistance, it became 

apparent that ‘resistant clones’ were not true mutants but represented a 

minority population of a genetically uniform culture [3]. It is characteristic for 

most meticillin-resistant Staphylococcus aureus (MRSA) that expression of 

meticillin resistance is heterogeneous; most cells express a low level of 

resistance, from which a small subpopulation of highly resistant subclones 

segregate at a frequency of 10–7 to 10–3 [4]. Therefore, phenotypic expression 

of meticillin resistance is highly variable and each strain has a characteristic 

profile of meticillin resistance heterogeneity [5]. The mechanism of meticillin 

resistance is due to the acquisition of an altered penicillin-binding protein 2A 

(PBP2A) [1,6] encoded by the mecA gene, which is located on the so-called 

staphylococcal cassette chromosome mec (SCCmec) also containing 

additional genes for antibiotic resistance elements encoding for 

aminoglycoside, tetracycline and macrolide–lincosamide–streptogramin B 

(MLSB) resistance, insertion sequences as well as genes of uncertain function 

[4,7]. Therefore, these drug classes can act as co-selectors for MRSA. 

 

A steady rise in the proportion of S. aureus resistant to meticillin occurred in 

the 1960–1970s, but inexplicably the numbers fell between the latter half of 

the 1970s and the early 1980s. The reasons for this decline are not clear. On 

the one hand there was a continuous and moderately heavy use of antibiotics 

such as isoxazolyl penicillins (flucloxacillin, nafcillin, dicloxacillin, etc.), which 

have been implicated as a selective pressure for MRSA. On the other hand, 
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aminoglycosides to which many MRSA were susceptible at that time were 

increasingly prescribed. In the 1980s, a rise in gentamicin-resistant MRSA 

was reported. Not only do aminoglycosides act as co-selectors for MRSA [8–

12] but use of cephalosporins, penicillins, carbapenems, macrolides, 

vancomycin, metronidazole and fluoroquinolones has been important in 

selecting for MRSA [13–16]. Although a causal relationship between 

antimicrobial drug use and MRSA colonisation and/or infection has been 

demonstrated [17–19], the evidence is not conclusive. 

 

In any consideration of the selective effect of antibiotic regimens, not only the 

resistance mechanisms of each antibiotic/organism combination should be 

considered. It is also of clinical relevance if any agent of a given drug class 

may exert the same or differential selective pressure. Furthermore, the 

problem of co-selection of strains has to be considered, as some of the 

SCCmec islands contain genes encoding for aminoglycoside, tetracycline and 

MLSB resistance [7]. In addition, selective pressures in the hospital 

environment are very complex as different intensities of care are used for 

different patients [14–16] and different policies for hospital cleaning and 

hygienic measures are applied [20,21]. 

 

A further complication is the recent recognition that some community-acquired 

(CA)-MRSA may originate in hospitals and that novel strains of MRSA can 

evolve by horizontal gene transfer of the mecA gene and then be subjected to 

selective pressure. 
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Although antibacterials in general select for MRSA, fluoroquinolones in 

particular are considered to act as mutators or selectors for meticillin 

resistance in S. aureus [22,23]. Therefore, three questions to be addressed 

are: is fluoroquinolone use per se linked to the emergence of MRSA? Do 

fluoroquinolones act as selectors of or mutators for meticillin resistance in S. 

aureus? And if so, may different fluoroquinolones be characterised by a 

differential selective potential? 

 

2. Materials and methods 

2.1. Strains, media and agents studied 

Twenty-four strains each of healthcare-associated (HA) meticillin-susceptible 

S. aureus (MSSA) and MRSA as well as six CA-MRSA were studied. All 

strains were shown to be negative or positive for mecA by hybridisation. All 

strains had recently been isolated and characterised at the University 

Hospitals in Muenster (Germany) and Zürich (Switzerland). Fluoroquinolone-

resistant MRSA were generated in the laboratory as described previously [24]. 

Briefly, six HA-MRSA were grown overnight in brain–heart infusion (BHI) broth 

(Oxoid, Wesel, Germany) containing doubling dilutions of either ciprofloxacin, 

levofloxacin or moxifloxacin. From the culture containing the highest drug 

concentration permitting visible bacterial growth [i.e. 0.5 the minimal 

inhibitory concentration (MIC)], an aliquot was transferred as a 1:20 dilution to 

inoculate a second set of serial fluoroquinolone dilutions. Following overnight 

incubation, the dilution procedure was repeated again until the initial 

fluoroquinolone MIC increased eight-fold. MICs were determined by the agar 
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dilution method according to Clinical and Laboratory Standards Institute 

guidelines [25]. BHI agar was inoculated with 1  105 colony-forming units 

(CFU)/mL and was incubated for 20 h at 36  1 C in ambient air. 

 

Ciprofloxacin and moxifloxacin were provided by Bayer Healthcare 

(Leverkusen, Germany). Levofloxacin (Sanofi-aventis Deutschland GmbH, 

Frankfurt, Germany) and amoxicillin/clavulanic acid (fixed 4:1 combination; 

GlaxoSmithKline GmbH & Co. KG, Munich, Germany) were obtained from 

commercially available sources. All agents were of defined activity. 

 

2.2. Spontaneous emergence of meticillin or fluoroquinolone resistance 

Single-step fluoroquinolone resistance testing was performed as outlined by 

Dalhoff et al. [24]. To characterise the spontaneous emergence of 

fluoroquinolone resistance, each of the 24 MSSA and MRSA strains 

(inoculum 1  109–1010 CFU/mL) were spread over BHI agar plates 

incorporating the study drugs (ciprofloxacin, moxifloxacin or levofloxacin ) at 

4 MIC of the individual test organisms. Following overnight incubation at 36  

1 C, the frequency of spontaneous resistance was determined by colony 

counting. 

 

Emergence of high-level oxacillin (hl-OXA) resistance in the 24 strains each of 

MSSA and MRSA was tested in the presence of 0.5 MIC of the three 

fluoroquinolones as well as amoxicillin (positive control) and saline (negative 

control) by incorporating 128 mg/L oxacillin into agar containing 2% NaCl. The 
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resultant oxacillin-resistant subpopulations can be defined as hl-MRSA 

populations because of the high oxacillin concentration used for selection of 

MRSA. 

 

2.3. Population analysis profiling 

One heteroresistant MRSA strain (S. aureus P8) was used for these 

experiments. From this strain, fluoroquinolone-resistant subpopulations 

resistant to 2, 4 and 8 the MIC of either ciprofloxacin (initial MIC = 0.25 

mg/L), levofloxacin (initial MIC = 0.25 mg/L) or moxifloxacin (initial MIC = 

0.125 mg/L) were elicited by incubating ca. 10 log10 CFU/mL in tubes 

containing rising concentrations of either fluoroquinolone. From the culture 

containing the highest drug concentration permitting visible growth following 

an incubation period of 48 h, an aliquot was transferred as a 1:20 dilution to 

inoculate a second set of serial fluoroquinolone dilutions. After 48 h 

incubation, the dilution procedure was repeated again until subpopulations 

were elicited that were resistant to the multiples of the initial individual 

fluoroquinolone MICs. 

 

The parent strain and the three either ciprofloxacin-, levofloxacin- or 

moxifloxacin-resistant subpopulations were grown to ca. 9 log10 CFU/mL in 

BHI broth for 20 h at 37 C. The final inoculum of ca. 11 log10 CFU/mL was 

obtained by centrifugation and re-suspension of the test strain in fresh 

medium. Aliquots were then plated onto BHI agar plates containing a 

fluoroquinolone concentration range (one fluoroquinolone concentration per 

plate) of 0.015, 0.025, 0.03, 0.05, 0.06, 0.075, 0.10, 0.12, 0.15, 0.20, 0.24, 



Page 9 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

0.30, 0.40, 0.48, 0.60, 0.80, 0.96, 1.2, 1.6, 2.4, 3.2, 3.8, 4.8, 6.4, 7.7, 9.6, 

12.8, 15.5, 19.2, 25.6, 31.0, 38.4, 51.0, 62.0, 76.8, 102.4 and 128 mg/L. 

Plates were incubated in ambient air at 36  1 C for 20 h. Thus, MRSA strain 

P8 was exposed to 37 fluoroquinolone concentrations. Total viable counts 

were quantitated on drug-free agar plates as well as on plates containing 2% 

NaCl and 128 mg/L oxacillin. Plates were controlled after 24 h, but colonies 

were counted after an incubation period of 48 h at 37 C (as colonies were not 

clearly visible after 24 h). Population analysis profiling was used to determine 

whether the three different fluoroquinolones studied exhibited a differential 

bactericidal activity against three different fluoroquinolone-resistant 

subpopulations of a heteroresistant MRSA indicator strain. 

 

2.4. In vitro pharmacokinetic simulation model 

One heteroresistant MRSA strain (P8) was used for these experiments. A 

slightly modified one-compartment model according to and illustrated by 

Grasso et al. [26] was used. Briefly, this model consists of a central 

compartment (calibrated flasks only were used for all experiments) that is 

placed on heated magnetic stirrer. The antibacterial is pumped via a 

programmable pump into the central compartment until the maximum serum 

concentration (Cmax) to be simulated is reached at Tmax. Thereafter, drug-free 

medium is pumped by a second programmable pump into the central 

compartment and is continuously eliminated in parallel to mimic elimination 

half-life (t1/2) values. Control growth in the absence of antibiotics is studied in 

the same model under identical conditions. To avoid wash-out of bacteria 

from the central compartment when simulating fluctuating concentration 
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profiles of agents with short half-lives (e.g. amoxicillin t1/2 = 3.5 h; ciprofloxacin 

t1/2 = 5.0 h), bacteria were entrapped in dialysis tubing (neoLab, Heidelberg, 

Germany) fixed within the central compartment. Antibacterials selectively 

diffuse into the tubing whereas bacteria do not penetrate into the surrounding 

medium. Bacteria were not washed-out from the central compartment 

provided the simulated t1/2 values exceeded 8 h (e.g. levofloxacin and 

moxifloxacin) [27]. 

 

Bacteria were grown in BHI broth and were incubated in ambient air at 37 C. 

Viable counts were determined at 0, 0.5, 1, 2, 3, 5, 7, 12, 24, 25, 26, 27, 29, 

36, 48, 49, 50, 51, 53, 55, 60, 72, 73, 74, 75, 77, 79, 84 and 96 h. The impact 

of fluoroquinolone or amoxicillin/clavulanic acid carry-over on viable counts 

was minimised first by diluting the samples and second by plating the aliquots 

on cation-enriched agar or Bacillus cereus -lactamse-containing agar, thus 

inactivating the agents. At the point of quantification of viable counts, antibiotic 

concentrations were measured by a conventional cup-plate agar diffusion test 

with Bacillus subtilis spore suspension as the indicator organism. Drug 

concentrations were monitored in the absence and presence of bacteria. 

Actual drug concentrations achieved in this model were on average within 

4.2% of the desired profile, which is in agreement with previous studies [28]. 

Interday and intraday reproducibility ranged from 92.4% to 98.5% as qualified 

calibrated flasks were used. 

 

The following pharmacokinetic (PK) parameters calculated on the basis of 

total drug concentrations were used as a basis for the PK simulations: for 
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amoxicillin 500 mg three times a day, Cmax = 11.0 mg/L, Tmax = 2.0 h, t1/2 = 3.5 

h, area under the concentration–time curve (AUC) = 55.4 mg h/L and protein 

binding (PB) = 20% [29,30]; for ciprofloxacin 500 mg twice a day, Cmax = 2.5 

mg/L, Tmax = 1.5 h, t1/2 = 5 h, AUC = 22.3 mg h/L and PB = 30% [31]; for 

levofloxacin 500 mg once daily (qd), Cmax = 6.6 mg/L, Tmax = 1.3 h, t1/2 = 8.0 h, 

AUC = 57.3 mg h/L and PB = 30% [31]; and for moxifloxacin 400 mg qd, Cmax 

= 3.3 mg/L, Tmax = 1.5 h, t1/2 = 13 h, AUC = 30 mg h/L and PB = 40% [31,32]. 

Calculated free serum concentrations (amoxicillin Cmax = 9.5 mg/L and AUC = 

44.4 mg h/L; ciprofloxacin Cmax = 2.0 mg/L and AUC = 16.1 mg h/L; 

levofloxacin Cmax = 4.8 mg/L and AUC = 40.5 mg h/L; and moxifloxacin Cmax = 

2.3 and AUC = 19.8 mg h/L) simulated in the in vitro pharmacodynamic model 

are illustrated in Fig. 1. 

 

Viable counts were quantitated by spreading the samples onto agar plates 

containing B. cereus -lactamse (Merck KGaA, Darmstadt, Germany) or 5 

mM calcium to inactivate amoxicillin or the fluoroquinolones. In parallel, 

samples were plated first onto agar plates containing 2, 4 and 8 the MIC 

of the fluoroquinolone studied; and second, samples were plated onto agar 

plates containing 2% NaCl + 32, 64 and 128 mg/L oxacillin and incubated at 

35 C. Thus, the emergence of fluoroquinolone-resistant subpopulations as 

well as the emergence of MRSA heteroresistance is addressed in parallel in 

these experiments. 
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3. Results 

MRSA strains in the strict sense (mecA-positive but fluoroquinolone 

susceptible) are as susceptible to the three fluoroquinolones studied as MSSA 

strains (Table 1). Furthermore, the spontaneous mutation frequencies towards 

fluoroquinolone resistance were almost the same amongst the CA-MRSA, 

HA-MRSA and MSSA strains studied as well as the three laboratory-

generated fluoroquinolone-resistant MRSA strains and the fluoroquinolone-

resistant strain P8 (Table 1). Strains with 4 the initial moxifloxacin MIC could 

be elicited in <50% of the isolates studied, whereas ciprofloxacin or 

levofloxacin resistance emerged in all isolates studied (Table 1). 

 

High-level meticillin resistance emerged amongst the strains studied at a low 

frequency. Pre-existing highly meticillin-resistant subclones emerged 

spontaneously in the HA-MRSA but not the CA-MRSA controls at a frequency 

of 1–5  10–7 and were selected by amoxicillin/clavulanic acid at a frequency 

of 1–2  10–2 to 2.4  10–4. 

 

Ciprofloxacin and levofloxacin selected for high-level meticillin resistance by 

one to two orders of magnitude and moxifloxacin by three to four orders of 

magnitude less frequently than amoxicillin/clavulanic acid (Table 1). 

 

Selection of highly meticillin-resistant subclones by fluoroquinolones has been 

studied by population analysis profiling. The indicator MRSA strain P8 and its 

laboratory-generated fluoroquinolone-resistant mutants were exposed to a 

broad range of fluoroquinolone concentrations and total viable counts were 
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quantitated as well as the frequency with which highly meticillin-resistant 

subclones (128 mg/L oxacillin) emerged upon exposure to any of the 

fluoroquinolone concentrations (Table 2). For the sake of clarity, emergence 

of highly meticillin-resistant subclones upon exposure to 1, 5, 10, 50 and 100 

mg/L of either ciprofloxacin, levofloxacin or moxifloxacin only are summarised 

in Table 2. 

 

Exposure of the indicator strain S. aureus P8 to a broad range of constant 

ciprofloxacin and levofloxacin concentrations resulted in a moderately 

concentration-dependent reduction of the initial inoculum. The inoculum of the 

parent population of S. aureus P8 was eradicated by 12.8 mg/L ciprofloxacin; 

the inoculum of the subpopulations resistant to 2 the ciprofloxacin MIC was 

eradicated by 38.4 mg/L ciprofloxacin; whereas the inoculated viable counts 

of the subpopulations being resistant to 4 and 8 the MIC were reduced by 

ca. 9.2 and 6.0 log CFU/mL by 128 mg/L ciprofloxacin. 

 

Likewise, the inoculum of the parent population of S. aureus P8 was 

eradicated by 3.8 mg/L levofloxacin; the inocula of the subpopulations 

resistant to 2 and 4 the levofloxacin MICs were eradicated by 12.8 mg/L 

and 31.0 mg/L levofloxacin, respectively; whereas the inoculated viable 

counts of the subpopulation resistant to 8 the MIC was reduced by ca. 10.4 

log CFU/mL by 128 mg/L levofloxacin. In contrast, moxifloxacin eradicated the 

inocula of the parent strain as well as the three moxifloxacin-resistant 

subpopulations at moxifloxacin concentrations of 0.30, 0.60, 1.2 and 2.4 mg/L, 

respectively. 



Page 14 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

 

The frequencies with which highly meticillin-resistant subclones emerged 

decreased in parallel with the reduction of total viable counts by increasing 

fluoroquinolone concentrations (Table 2). Ciprofloxacin selected more highly 

meticillin-resistant subclones than levofloxacin; moxifloxacin exerted no 

selective potential. 

 

The MRSA selective potential of fluoroquinolones was analysed in an in vitro 

PK simulation model. Again, the MRSA heteroresistant strain P8 served as 

the indicator strain. Fluctuating amoxicillin/clavulanic acid concentrations, 

serving as a control, selected rapidly for resistance (Fig. 2). Ciprofloxacin 

rapidly selected both the ciprofloxacin-resistant (within 24 h) as well as the 

three oxacillin-resistant subpopulations. CFUs of the three pre-existing hl-

MRSA subpopulations (32, 64 and 128 mg/L oxacillin) remained constant for 

ca. 36 h. Thereafter, a continuous increase in CFUs of the oxacillin-resistant 

subpopulations was noted (Fig. 3). Levofloxacin was also a rapid selector of 

fluoroquinolone resistance. The three oxacillin-resistant subpopulations were 

selected from 48 h onwards and less rapidly than by ciprofloxacin (Fig. 4). 

Moxifloxacin, however, eliminated all the hl-MRSA subpopulations of S. 

aureus P8, i.e. the fluoroquinolone-resistant as well as the heteroresistant 

MRSA subpopulations, within 36 h, so that the in vitro PK simulation model 

was sterilised (Fig. 5). 
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4. Discussion 

Data generated in this study demonstrate that fluoroquinolones do not act as 

mutators towards hl-OXA resistance. However, ciprofloxacin and levofloxacin 

are potent selectors, whereas moxifloxacin is a poor selector. Thus, 

fluoroquinolones exert a dichotomous MRSA-selective potential in 

heteroresistant MRSA. This finding is in good agreement with data generated 

by Venezia et al. [33]. Fluoroquinolone-susceptible heteroresistant MRSA 

were exposed to constant subinhibitory concentrations of ciprofloxacin, 

levofloxacin, gatifloxacin and moxifloxacin. All four fluoroquinolones selected 

for hl-OXA resistance; however, the proportion of hl-OXA-resistant MRSA was 

one to three orders of magnitude greater following ciprofloxacin exposure than 

upon exposure to the two 8-methoxy fluoroquinolones [33]. Furthermore, the 

MICs of the strains studied in this series of experiments, the mutational 

frequencies and the bactericidal activities are in good agreement with 

previously published data [34–38]. 

 

The low MRSA-selective potential of moxifloxacin in contrast to the high 

selective potential of ciprofloxacin and levofloxacin is likely due to the high 

and pronounced bactericidal activity of moxifloxacin against MSSA and 

MRSA, whereas ciprofloxacin and levofloxacin reduce viable counts of S. 

aureus much more slowly as described in this study and as published 

previously [17,38–40]. 

 

Clinical use of early quinolones like levofloxacin as opposed to the use of 

recent quinolones like moxifloxacin in the treatment of Gram-positive 
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infections in indications such as community-acquired respiratory tract 

infections or skin and skin-structure infections may trigger the selection of 

quinolone-resistant MRSA (see above and [15,33,41]). Furthermore, MRSA 

tended to develop fluoroquinolone resistance more frequently than MSSA 

(Table 1), which is in agreement with previous data [33]. This phenomenon 

may be due to the fact that on the chromosomal map of the S. aureus 

genome the mecA gene is located between protein A and DNA gyrase genes. 

Therefore, mutations in the gyrase may have an effect on the expression of 

mecA in heteroresistant MRSA strains [33] and some cell wall-associated 

proteins such a protein A and fibronectin-binding proteins [42,43]. 

 

In conclusion, the experimental data of this study and the clinical findings 

[15,33,41] discussed above support the notion that quinolone resistance in 

staphylococci is not a class effect. The propensities for resistance 

development in vitro as well as in the clinical setting are dissociated, with 

ciprofloxacin and levofloxacin being better selectors of meticillin resistance 

and better drivers of quinolone resistance than the newer fluoroquinolones 

that have enhanced anti-Gram-positive activity. Thus, the increasing use of 

generic fluoroquinolones or inappropriately dosed levofloxacin in the 

treatment of community-acquired respiratory tract infections purely for 

economic reasons may jeopardise the beneficial clinical efficacy of the 

modern fluoroquinolones. Prescription guidelines should also consider the 

dissociated propensities for resistance development. 
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Fig. 1. Measured drug concentrations representing the free fraction following 

oral administration of amoxicillin 500 mg three times a day (), ciprofloxacin 

500 mg twice a day (♦), levofloxacin 500 mg once daily (▲) and moxifloxacin 

400 mg once daily () 

 

Fig. 2. Effect of fluctuating amoxicillin/clavulanic acid (AMC) concentrations 

simulating oral doses of 500 mg three times a day against the heteroresistant 

meticillin-resistant Staphylococcus aureus (MRSA) strain P8. ♦, total viable 

counts;■, AMC-resistant subpopulations with 2 MIC; ▲, AMC-resistant 

subpopulations with 4 MIC; and , 8 MIC. Viable counts of drug-free 

controls (not shown) increased to 2–3  108 CFU/mL, 109 CFU/mL and 5  

109 CFU/mL at t = 6 h, 12 h and >24 h. MIC, minimal inhibitory concentration; 

CFU, colony-forming units. 

 

Fig. 3. Effect of fluctuating ciprofloxacin concentrations simulating oral doses 

of 500 mg twice a day against the heteroresistant meticillin-resistant 

Staphylococcus aureus (MRSA) strain P8. ■, total viable counts; solid lines, 

fluoroquinolone-resistant subpopulations with 2 MIC (♦), 4 MIC () and 8 

MIC () elevated ciprofloxacin MICs; and dotted lines, high-level oxacillin-

resistant MRSA (hl-MRSA) subpopulations with oxacillin (OXA) MICs of 32 

mg/L (▲), 64 mg/L () and 128 mg/L (+). Viable counts of drug-free controls 

(not shown) increased to 2–3  108 colony-forming units (CFU)/mL, 109 

CFU/mL and 5  109 CFU/mL at t = 6 h, 12 h and >24 h. MIC, minimal 

inhibitory concentration; CFU, colony-forming units. 
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Fig. 4. Effect of fluctuating levofloxacin concentrations simulating oral doses 

of 500 mg once daily against the heteroresistant meticillin-resistant 

Staphylococcus aureus (MRSA) strain P8. Symbols as in Fig. 3. MIC, minimal 

inhibitory concentration; CFU, colony-forming units. 

 

Fig. 5. Effect of fluctuating moxifloxacin concentrations simulating oral doses 

of 400 mg once daily against the heteroresistant meticillin-resistant 

Staphylococcus aureus (MRSA) strain P8. Symbols as in Fig. 3. MIC, minimal 

inhibitory concentration; CFU, colony-forming units. 
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Table 1 

Range of initial minimal inhibitory concentrations (MICs) (mg/L), spontaneous mutation frequency (smf) towards fluoroquinolone 

resistance (4 initial MIC) and selection of high-level meticillin resistance (128 mg/L oxacillin) in the presence of 0.5 the minimal 

inhibitory concentrations of the study drugs 

Phenotype Parameter Ciprofloxacin Levofloxacin Moxifloxacin 

MSSA (n = 24) MIC 1–16 0.5–16 0.03–1 

 smf 2.0  10–8 to 2.3  10–10 3.6  10–8 to 8.8  10–9 1.0  10–9 to 10–11 

 Resistance selection 0 0 0 

HA-MRSA (n = 24) MIC 4 to >64 4–64 0.12–32 

 smf 2.2  10–8 to 2.8  10–9 5.2  10–8 to 5.0  10–9 1.0  10–9 to 10–11 

 Resistance selection 1.1  10–3 to 3.3  10–5 2.2  10–4 to 7.1  10–5 3.2  10–5 to 4.1  10–6 

CA-MRSA (n = 6) MIC 1 to >64 0.5–64 0.03–16 

 smf 2.1  10–8 to 3.2  10–9 4.8  10–8 to 6.2  10–9 2.2  10–9 to 10–11 

 Resistance selection 4.6  10–3 to 6.8  10–5 5.2  10–4 to 8.6  10–5 N/D 

FQr MRSA (n = 4) a 
MIC 8 to >64 8 to >64 2–16 

 smf 6.4  10–7 to 8.4  10–8 2.8  10–7 to 5.6  10–8 6.7  10–8 to 10–11 

 Resistance selection nd nd nd 

Edited Table 1
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MSSA, meticillin-susceptible Staphylococcus aureus; MRSA, meticillin-resistant S. aureus; HA, healthcare-associated; CA, 

community-acquired; FQr, fluoroquinolone-resistant; N/D, not done; nd, not done. 

a FQr MRSA strains were generated in the laboratory by serial passage until the initial MIC has been increased eight-fold. 
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Table 2 

Selection of highly meticillin-resistant (128 mg/L oxacillin) subclones of the heteroresistant meticillin-resistant Staphylococcus 

aureus (MRSA) strain P8 by constant fluoroquinolone concentrations. The parent strain P8, as well as the laboratory-generated 

mutants with 2, 4 and 8 elevated fluoroquinolone minimal inhibitory concentrations (MICs), were studied 

Fluoroquinolone 

Concentration (mg/L) 

Ciprofloxacin Levofloxacin Moxifloxacin 

Parent 2 

MIC 

4 

MIC 

8 

MIC 

Parent 2 

MIC 

4 

MIC 

8 

MIC 

Parent 2 

MIC 

4 

MIC 

8x 

MIC 

1 5.4  

10–7 

4.6  

10–6 

3.2  

10–5 

2.2  

10–4 

3.6  

10–9 

4.8  

10–8 

7.2  

10–6 

5.8  

10–5 

0 0 0 4.6  

10–6 

5 3.2  

10–9 

5.1  

10–7 

6.2  

10–6 

4.8  

10–4 

0 0 3.2  

10–8 

8.6  

10–7 

0 0 0 0 

10 0 1.6  

10–9 

2.8  

10–7 

5.6  

10–5 

0 0 1.2  

10–9 

2.6  

10–8 

0 0 0 0 

50 0 0 8.9  

10–8 

7.2  

10–7 

0 0 0 5.6  

10–9 

0 0 0 0 

100 0 0 0 1.8  

10–8 

0 0 0 0 0 0 0 0 

 

Edited Table 2
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Edited Figures 1-5
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Drug Levofloxacin Strain P8+
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Drug Moxifloxacin Strain P8+

0

2

4

6

8

10

12

0 9684726048362412

Time (h)

log10 CFU/ml

Total

2xMIC

32 oxa

4xMIC

64 oxa

8xMIC

128 oxa


