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Caenorhabditis elegans, a pluricellular model organism to screen new genes 

involved in mitochondrial genome maintenance. 
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Summary 
 

  The inheritance of functional mitochondria depends on faithful replication and 

transmission of mitochondrial DNA (mtDNA). A large and heterogeneous group of human 

disorders is associated with mitochondrial genome quantitative and qualitative anomalies. 

Several nuclear genes have been shown to account for these severe OXPHOS disorders. 

However, in several cases the disease-causing mutations still remain unknown. 

  C. elegans has been largely used for studying various biological functions as this 

multicellular organism has short life cycle and is easy to grow in the laboratory. Mitochondrial 

functions are relatively well conserved between human and C. elegans and heteroplasmy 

exists in this organism as in human. C. elegans therefore represent a useful tool for studying 

mtDNA maintenance. Suppression by RNA interference of genes involved in mtDNA 

replication such as polg-1, encoding the mitochondrial DNA polymerase, results in reduced 

mtDNA copy number but in a normal phenotype of the F1 worms. By combining RNAi of 

genes involved in mtDNA maintenance and EtBr exposure we were able to reveal a strong 

and specific phenotype (developmental larval arrest) associated to a severe decrease of 

mtDNA copy number. Moreover, we tested and validated the screen efficiency for human 

orthologous genes encoding mitochondrial nucleoid proteins. This allowed us to identify 

several genes that seem to be closely related to mtDNA maintenance in C. elegans. 

 This work reports a first step in the further development of a large-scale screening in 

C. elegans that should allow to identify new genes of mtDNA maintenance whose human 

orthologs will obviously constitute new candidate genes for patients with quantitative or 

qualitative mtDNA anomalies. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Introduction 

Mitochondria play an essential role in cellular energy production provided by the 

mitochondrial respiratory chain. The inheritance of functional mitochondria depends on 

faithful replication and transmission of mitochondrial DNA (mtDNA). The mitochondrial 

genome encodes only a few proteins of the respiratory chain (RC) complexes whereas all 

other mitochondrial proteins are encoded in the nucleus, synthesized on cytosolic ribosomes 

and imported into mitochondria. The mitochondrially encoded proteins are essential for the 

proper function of the respiratory chain and expression of those subunits requires that the 

mitochondrial genome be replicated, transcribed and translated. The newly synthesized 

subunits are subsequently assembled with nuclear encoded subunits. Over the past years, 

while key details of the content and expression of the mitochondrial genome have been 

elucidated, important questions remain regarding the maintenance and the transmission of 

mtDNA during cell proliferation and development. 

A large and heterogeneous group of disorders is associated with mitochondrial 

genome anomalies in human. Mutations in nuclear genes encoding proteins involved in 

mtDNA maintenance can result in large-scale mtDNA rearrangements (mtDNA deletion) and 

abnormal copy number (mtDNA depletion) of the mitochondrial genome. Autosomal 

dominant progressive external ophthalmoplegia (adPEO) is an adult-onset mitochondrial 

disorder characterized by ophthalmoparesis with exercise intolerance, ataxia, peripheral 

neuropathy, and multiple mtDNA deletions [1, 2]. Familial ad-PEO is genetically 

heterogeneous, and at least six nuclear genes account for this disease, namely, ANT1, 

encoding the adenosine diphosphate-triphosphate translocator [3, 4], POLG1 [5] and 

POLG2 [6] encoding the catalytic and accessory subunits of the mtDNA polymerase, PEO1 

encoding the Twinkle DNA helicase [1], OPA1 encoding a mitochondrial dynamin-related 

GTPase [7] and RRM2B encoding the p53-inducible small subunit of ribonucleotide 

reductase [8]. 

mtDNA depletion syndrome (MDS) is a clinically and genetically heterogeneous group 

of autosomal recessive diseases characterized by a reduction in mtDNA copy number [9]. 

Several nuclear genes have been shown to account for these severe OXPHOS disorders. 

Indeed, mutations in the deoxyguanosine kinase (DGUOK) and the thymidine kinase genes 

(TK2) have been reported in the hepatocerebral and myopathic forms of MDS [10, 11] 

respectively. Also, POLG1 mutations associated with Alpers’ syndrome [12, 13] as well as 

the hepatocerebral form lead to mtDNA depletion. Mutations in TP gene encoding the 

cytosolic thymidine phosphorylase result in mitochondrial neurogastrointestinal 

encephalopathy (MNGIE) syndrome with mtDNA deletion and depletion [14]. The succinyl 

coenzyme A-ligase subunits (SUCLA2, [15] and SUCLG1 [16]) and MPV17 [17] genes have 
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also been shown to account for mtDNA depletion in a few pedigrees. Finally, mutations of 

RRM2B encoding a small subunit of the cytosolic ribonucleotide reductase have been 

reported to cause severe muscle mtDNA depletion [18]. All these genes are involved in 

mtDNA maintenance or dNTP metabolism. However, in several cases of ad-PEO and MDS 

the disease-causing mutations remain still unknown. 

The suitability of the yeast Saccharomyces cerevisiae as a model for human 

mitochondrial studies has been well demonstrated. However notable differences in mtDNA 

structure and dynamics between yeast and human did not make it a perfect tool to study the 

mtDNA maintenance. Indeed, human cells contain102–104 mtDNA copies whereas yeast 

cells contain only 20–100 copies. The mitochondrial genome, 16.6 kb in human and 85.8 kb 

in yeast, is predominantly linear in yeast but is circular in human [19-21]. Finally 

heteroplasmy is very frequently observed for mtDNA mutations in human whereas yeast 

cannot normally maintain stably heteroplasmy [22, 23]. Furthermore, because this yeast can 

grow robustly by fermentation in the absence of mtDNA, it loses its mitochondrial genome 

very rapidly upon inactivation of a large class of genes encoding mitochondrial proteins 

involved in almost all the mitochondrial biogenesis pathways (mitochondrial translation, ATP 

synthesis, iron homeostasis, mitochondrial import and morphology). As such it cannot be 

used easily to address the question of mtDNA transmission control [24].  

The characteristics of Caenorhabditis elegans make it a perfect complement to the 

yeast system. While C. elegans has been largely used for studying various biological 

functions such as neuron development or apoptosis, few studies have focused on 

mitochondria. Its mitochondrial genome (13.7 kb) has been fully sequenced, it encodes 12 

mitochondrial RC subunits and is similar in size and gene content to its human counterpart 

[25]. The group of B. Lemire has brought a large contribution by showing that heteroplasmy 

exists in this organism as in human as far as mtDNA deletions are considered [26]. This 

team also showed that mtDNA copy number is coordinated with the maturation steps of C. 

elegans life cycle. Indeed, mtDNA amplification is necessary for normal development as 

blocking mtDNA replication results in development arrest [27]. The mtDNA copy number is 

strictly regulated during C. elegans development. Indeed, mtDNA content that is maternally 

derived remains essentially unchanged from embryo up to the L3 larval stage. The copy 

number then increases at least 3-fold in L4 larvae and is associated with somatic cells 

development and gonad formation. A further huge increase in mtDNA content takes place in 

adult hermaphrodites during oogenesis and high production of embryo [27, 28]. Finally, 

blockage of mtDNA replication by ethidium bromide (EtBr), a well-known molecule acting as 

a DNA-intercaling dye and potent inhibitor of mtDNA transcription and replication [29-31] 

results in developmental arrest [27]. Surprisingly, inactivation by RNA interference (RNAi) 
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over one generation of genes encoding proteins essential for mtDNA replication such as 

polg-1 (DNA polymerase γ) or mtss-1 (mitochondrial single-stranded DNA-binding protein) 

does not give rise to a strong phenotype [32-36]. Only continuous exposure to RNAi over 

several generations revealed an abnormal phenotype (gonad protrusion and sterility, [37]). 

Furthermore, homozygous polg-1 knockout mutants had normal development rates indicating 

a high maternal contribution of polg-1. However, loss of polg-1 leads to complete sterility and 

shortened lifespan. Moreover during adult life, worms failed to maintain normal mtDNA levels 

[28].  

Several genes are known to be involved in mtDNA maintenance in various species. 

Not only genes encoding mitochondrial proteins but also cytosolic proteins are involved in 

this mechanism such as RRM2B and TP in human. This suggests that unexpected genes 

could be required for normal mtDNA metabolism that have to be identified. In the present 

study, we designed an efficient and rapid screening for the identification of genes required for 

mtDNA maintenance in the worm C. elegans by combining RNAi and EtBr exposure. 

Considering that mitochondrial functions are relatively well conserved during evolution, the 

systematic use of this screen for all C. elegans genes will certainly allow to identify new 

genes of mtDNA maintenance whose human orthologs could obviously constitute new 

candidate genes for patients.  

 

Results 

polg-1 and mtss-1 knock down results in mtDNA depletion  

 We first silenced two genes, polg-1 and mtss-1 in wild-type animals. These two genes 

are orthologs to the human POLG1 and SSBP1 genes encoding the mitochondrial DNA 

polymerase γ and the single strand DNA binding protein respectively, both genes being 

involved in mtDNA replication. Synchronized N2 embryos were subjected to RNAi feeding 

until the adult stage and during the F1 progeny. As expected, the F1 progeny developed into 

adulthood with no strong phenotype (Fig. 1A). We next estimated by quantitative PCR the 

mtDNA copy number in F1 adults having laid all their eggs to avoid any differences due to 

oocyte production. The mtDNA copy number in the hermaphrodites fed by bacteria 

expressing polg-1 or mtss-1 dsRNA was approximately 80% and 70% respectively lower 

than the control adult hermaphrodites (Fig. 1B) but similar to that of L4 worms treated with 

very high concentration of EtBr (125 µg/ml), concentration already known to lead to mtDNA 

depletion [27]. 

As POLG1 mutations in human can result in either quantitative or qualitative mtDNA 

anomalies, we looked for mtDNA deletions in worms subjected to polg-1 knock-down. Long-

range PCR amplification of the nearly two-thirds of the genome in these worms revealed the 
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same mtDNA length product (9 kb) in polg-1 treated animals and controls ruling out that polg-

1 inactivation results in mtDNA deletion (Fig. 1C). 

 polg-1 silencing by RNAi was highly efficient and specific as polg-1 transcript was 

severely impaired in F1 progeny when subjected to RNAi feeding (Fig. 1D). We then 

analyzed the efficiency of mtss-1 RNAi in vivo. For this purpose, we constructed transgenic 

animals expressing a mtss-1::GFP fusion construct under the control of either the body-wall 

muscle specific myo-3 promoter (myo3-MTSS::GFP) or mtss-1 promoter and 3’-UTR 

regulatory sequences (par-MTSS::GFP). As shown in Figure 1E, the GFP signal appeared 

cytoplasmic and as punctuate foci. This signal is aligned and regularly spaced along 

myofibrilla within the cytoplasm of body-wall muscle cells in agreement with a mitochondrial 

localization. Feeding these transgenic worms with bacteria expressing mtss-1 dsRNA led to 

the loss of most of the MTSS::GFP punctuated signals (Fig. 1E), showing the efficiency of 

RNAi. Altogether, these results show that RNAi of polg-1 and mtss-1 over one generation 

lead to a specific knock-down of polg-1 and mtss-1, to a severe mtDNA depletion in somatic 

cells but does not result in major anomalies in worms development.  

 

Ethidium bromide exposure combined with polg-1 and mtss-1 knock-down results in 

an obvious developmental phenotype 

 To design a large scale screening of genes involved in mitochondrial genome 

maintenance using RNAi feeding, we need a clear and obvious phenotype, appearing rapidly 

during the worms life.  

 Ethidium bromide (EtBr) is a well-known nucleic acid intercalating compound that 

preferentially inhibits mtDNA replication and transcription. Exposure to EtBr results in a total 

loss of mtDNA in mammalian cells (ρ° cells ) [38-40] or diminished number of mtDNA copies 

in C. elegans [27] and Fig. 1B). Concentration and timing of the EtBr treatment during C. 

elegans development affects terminal developmental stages. Indeed, submitting L1 animals 

to high EtBr concentration (125 µg/ml) leads to a L3 stage arrest. Prolonged exposure to 

EtBr results in mtDNA depletion and L3 arrested larvae presented a 25-fold decrease of 

mtDNA content. Interestingly, the L3 arrest phenotype was reversible upon drug removal 

indicating that EtBr is not acting by causing mutations in either the mitochondrial or the 

nuclear genomes since these would be expected to be heritable and irreversible [27].  

 We reasoned that animals with low mtDNA content should be more sensitive to EtBr 

than animals with normal mtDNA content. Therefore silencing of genes controlling mtDNA 

copy number combined with EtBr exposure should rapidly reveal a defective phenotype. We 

therefore performed polg-1 and mtss-1 RNAi experiments on wild-type animals from the L1 

stage to the adult stage (3 days). The adults (F0) were then allowed to hatch 100 eggs (F1 
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progeny) on NGM plates seeded with bacteria expressing polg-1 or mtss-1 dsRNA, with and 

without increasing concentrations of EtBr (10 to 80 µg/ml). We then analyzed the 

development of the F1 larvae and evaluated the concentration at which 100 % of the larvae 

were arrested at the L3 stage. We observed that 100% of control larvae were arrested at the 

L3 stage after treatment with 80 µg/ml EtBr as previously reported [27] whereas as few as 20 

and 60 µg/ml EtBr were sufficient to stop development of worms fed with dsRNA for polg-1 

and mtss-1 respectively (Fig. 2A and 2B). Concentration of 50 µg/ml of EtBr appeared to 

clearly discriminate genes important for mtDNA stability (90 to 100% L3 arrest) compared to 

the control (50% L3 arrest). To confirm that this L3 arrest phenotype is indeed related to 

mtDNA maintenance, we further examined silencing of rrt-2 gene encoding the arginyl-tRNA 

synthetase predicted to be involved in mitochondrial translation and of pmp-4 gene encoding 

a peroxisomal protein homologous to human ABCD1, which when mutated leads to X-linked 

adrenoleukodystrophy [41]. The F1 progeny of worms submitted to RNAi of those genes 

shows 50-55% L3 arrest as control worms (Fig 2C). This clearly shows that the increased 

sensitivity towards EtBr exposure is specific to an effect on mtDNA replication. Altogether, 

these results show that combining RNAi of genes involved in mtDNA maintenance and EtBr 

exposure reveals a strong and specific phenotype that can be further used for large-scale 

screening in C. elegans. 

 

Identification of new C. elegans genes involved in mtDNA stability 

 In human, the nucleoid consists of 5-7 mtDNA copies associated with several 

proteins. The precise protein composition of nucleoid is still under debate and depends of the 

procedure used to isolate these proteins [42]. Recent studies identify a set of proteins 

associated with human mtDNA nucleoids [43, 44]. Among them, a set of 31 mtDNA cross-

linked proteins constitutes the core nucleoid proteins (class I) that are supposed to be closely 

related to mtDNA replication and transcription. A second class of proteins (class II) is part of 

nucleoids but not crosslinked to mtDNA. Finally, class III proteins are not found in native 

nucleoids [43]. Considering the efficiency of our screen on C. elegans, we decided to 

successively inactivate the genes coding proteins of the mitochondrial nucleoid with the aim 

to reveal genes involved in mtDNA maintenance. The human protein sequences were used 

to explore the C. elegans genome database (C. elegans Sequencing Consortium 1998) by 

BLAST searching. Several open reading frames were identified, some of them being already 

known as true orthologous genes. Among those genes, we could study those that did not 

lead to embryonic lethality in large-scale RNAi screens and were present in the Ahringer 

RNAi feeding library. As a first screen, we retained 19 C. elegans genes homologous to 16 

human mitochondrial nucleoid genes (Table 1). ANT2 and ANT3 were reported respectively 
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as class I and III nucleoid proteins [43]. As there is no direct orthology between any C. 

elegans ant gene and a particular human ANT gene, we decided to screen the five C. 

elegans mitochondrial ADP/ATP carrier proteins (ant-1.1, ant-1.2, ant-1.3, ant-1.4 and 

C47E12.2) as previously reported [45]. One of them ant-1.1 could not be included in our 

screen as its inactivation from L1 larval stage leads to sterility [45]. Moreover, due to the high 

sequence identities (84%) of ant-1.3 and ant-1.4 mRNA, RNAi of any of these two genes 

results in silencing of both ([45] and our results). Therefore results are presented for ant-1.4 

only. On the same way, IMMT human gene (Mitofilin) presents two orthologs in C. elegans, 

immt-1 and immt-2 that were both tested. 

 Using the Ahringer library feeding RNAi clones, we inactivated expression of those 

genes beginning from synchronized L1 larvae. After 3 days, adults were then allowed to lay 

around 100 eggs onto new RNAi plates with 50 µg/ml EtBr. At day 4 the percentages of L3 

arrested larvae versus gravid adults were counted (Fig. 3). This revealed a first group of 

genes for which inactivation resulted in 85 to 100% of L3 arrest. These genes are homologs 

of human genes encoding proteins of class I, mtss-1, polg-1, hmg-5, polrmt (Y105E8A.23), 

dnj-10, ANT (C47E12.2) and ant-1.4 but also of class II, atad-3, immt-1 and of class III, phi-

37. To confirm that inactivation of these genes led to mtDNA depletion, we quantified the 

relative mtDNA copy number of worms submitted to the same RNAi without any EtBr 

exposure. As shown on Fig. 3, all the animals treated by RNAi, which led to more than 85% 

EtBr sensitivity, presented obvious mtDNA depletion (10-40% of normal mtDNA content) 

except immt-1. None of these gene silencing resulted in a specific abnormal developmental 

phenotype (data not shown). To ascertain that the L3 arrest phenotype was due to specific 

inactivation of the targeted genes, we quantified by reverse transcriptase-PCR (RT-PCR) the 

expression of most of these genes during the RNAi experiments without EtBr exposure and 

consistently observed silencing of all genes (Fig. 4). These results therefore suggest that the 

proteins encoded by these genes are closely related to mtDNA replication.  

 A second group of genes was found for which inactivation did not result in any EtBr 

sensitivity (44 to 74% L3 arrest). Among them, mel-32, clpx (D2030.2), pyr-1, hsp-6 and 

ant1-2 encode proteins homologous of human proteins of the core nucleoid whereas dao-3, 

kat-1 and immt-2 are orthologs of the class II or III. Moreover, silencing of these genes does 

not result in major modification of the mtDNA copy number (Fig. 3). The same results were 

obtained with the inactivation of irk-1 and C34B7.2, two genes encoding proteins of unrelated 

mitochondrial function. irk-1 encodes a protein associated with the outer mitochondrial 

membrane homologous to human LRRK2 protein whom mutations result in Parkinson 

disease-8 and C34B7.2 encodes a putative cytosolic phosphoinositide phosphatase. Thus, 

whereas the human counterparts of the second group of genes are closely related to mtDNA, 
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at least in human, they seem not to be involved in mtDNA copy number control in C. elegans. 

 

Discussion 

  We have designed an efficient screening method for the identification of genes 

involved in the mitochondrial genome stability in C. elegans. Indeed, by combining RNAi of 

polg-1 and mtss-1 genes already known to be involved in mtDNA maintenance and EtBr 

exposure of worms, we were able to rapidly reveal a L3 developmental arrest associated with 

a severe decrease in mtDNA copy number. It has been shown that there is no mtDNA 

replication during the early larval stages and that transition from L3 to adulthood is 

associated with an important increase of mtDNA replication [27, 28]. Therefore we can 

hypothesize that EtBr exposure drastically inhibited replication of the low mtDNA content 

resulting from polg-1 or mtss-1 silencing. This developmental phenotype seems to be 

specific as silencing of other genes encoding either mitochondrial proteins not involved in 

mtDNA maintenance (C29H12.1, lrk-1) or non-mitochondrial proteins (pmp-4, C34B7.2) did 

not result in a L3 arrest and/or mtDNA depletion. Interestingly, with a notable exception 

(immt-1), only mtDNA quantitative anomalies were observed. This abnormal and specific 

phenotype is obvious after three days and therefore allows a very rapid screen that can be 

further used for large-scale screening in C. elegans. 

 We extended this screen to C. elegans genes encoding proteins homologous to 

human nucleoid proteins. The function of some of these proteins is clearly related to mtDNA 

stability. Indeed, the mitochondrial RNA polymerase, DNA polymerase, single strand DNA 

binding protein, Twinkle helicase or the transcription factor TFAM have been shown to 

directly interact with mtDNA in several species. We applied our screen to the C. elegans 

genes orthologous to human nucleoid encoding protein genes. This clearly showed us that 

inactivation of genes involved in mtDNA replication or transcription rapidly result in L3 

developmental arrest and mtDNA depletion confirming the efficiency of our screen. However, 

other proteins identified as true components of the human nucleoid (core nucleoid) do not 

display obvious function related to mtDNA maintenance. This is the case for SHMT2, CPS1 

or CLPX for example. SHMT2 (serine hydroxymethyltransferase) is primarily responsible for 

glycine synthesis, CPS1 (carbamoyl-phosphate synthetase 1) catalyzes the first committed 

step of the hepatic urea cycle and CLPX gene encodes a ClpX caseinolytic protease X 

homolog with no well-defined function. Whether these proteins are bifunctional proteins with 

a second function directly related to mtDNA maintenance or are structural components of the 

nucleoid with no direct function in mtDNA replication, transcription or translation is still under 

debate. Silencing of these genes by RNAi combined with EtBr exposure resulted in a normal 

mtDNA content, or an increased mtDNA content which can be the result of a general 

mitochondrial upregulation, and a L3 arrest level similar to that observed in control animals 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

suggesting no functional interaction with the mitochondrial genome. 

 Furthermore, our screen distinguishes five new genes involved in mtDNA 

maintenance in a pluricellular organism, atad-3, phi-37, dnj-10, immt-1 and Y105E8A.23.  

 ATAD3 is an AAA-domain protein, a class of proteins that is known to have important 

roles in DNA and RNA transactions. In human, ATAD3 was reported to be an intrinsic 

mitochondrial membrane protein embedded in the inner membrane leaving its AAA-domain 

directed towards the matrix [43, 46]. In C. elegans, atad-3, the homolog of vertebrate 

ATAD3, has been shown to be important for larval development and is required for proper 

organ function suggesting a crucial role of this protein for the up regulation of mitochondrial 

activity during the progression through larval stages [47]. Moreover, atad-3 (RNAi) animals 

showed drastic reduction of complex I and citrate synthase (CS) activities. The severe 

mtDNA depletion we observed after atad-3 silencing could explain this respiratory chain 

deficiency. Whether CS decrease is primary related to atad-3 suppression or secondary to 

mtDNA depletion has still to be demonstrated. It should be noted that CS is a class III protein 

of the nucleoid and that its decreased activity in atad-3 (RNAi) animals could therefore result 

from defective nucleoid assembly. Interestingly, in human and in flies it was shown that the 

ATAD3A protein does not bind mtDNA but rather participates in the connection between the 

inner and outer mitochondrial membranes regulating the mitochondrial dynamics [48]. 

Interactions between the mitochondrial inner and outer membranes control a number of 

central mitochondrial functions such as channeling of metabolites, protein transport, 

coordinated fusion and fission, and mitochondrial DNA inheritance. The relationship between 

mitochondrial network and mtDNA maintenance has been already demonstrated as 

mutations in OPA1, encoding a dynamin-related GTPase and being mainly involved in the 

mitochondrial network organization [49] results in multiple mtDNA deletions [7]. Our results 

strengthen the idea that ATAD3A, through interactions with proteins of the inner membrane, 

directly contributes to mtDNA maintenance within nucleoids. 

 phi-37 encodes the alpha subunit of mitochondrial ATP synthase and the human 

ATP5A protein is a class III nucleoid protein. It is hypothesized that class III proteins were 

adventitiously crosslinked to other nucleoid proteins [43]. Nevertheless, suppression of phi-

37 leads to highly sensitive worms to EtBr and mtDNA depletion. Whether this protein plays 

a direct role on mtDNA stability in addition to its role in the mitochondrial ATP synthase is 

very interesting and deserves more experiments. It can be also hypothesized that ATP 

synthase deficiency due to phi-37 silencing could induce cristae modifications and 

consequently avoid mtDNA attachment to the inner mitochondrial membrane resulting in a 

secondary mtDNA depletion [50-52].  

dnj-10 is homologous to human DNAJA3, also known as Tid1. A crucial role of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

DNAJA3 for mitochondrial biogenesis has been demonstrated in mice where a progressive 

RC deficiency and decreased copy number of mtDNA were reported in cardiomyocytes 

lacking DNAJA3 [53]. Hsp70 and PolG have been identified as interactors of DnaJ3 

suggesting that DnaJ3, through its chaperone activity on PolG folding, thereby controls 

mtDNA replication. DNAJA3 function seems very well conserved through evolution since the 

invalidation of its homolog in yeast (Mdj1) that also interacts with the yeast mitochondrial 

DNA polymerase, causes mtDNA loss. Our results show that dnj-10 in C. elegans is also 

involved in mtDNA copy number control and could thus be a functional homolog of human 

DNAJA3. 

 Mitofilin (IMMT) is a protein anchored to the mitochondrial inner membrane, with a 

small N-terminal domain protruding in the mitochondrial matrix [54]. A role in protein import 

related to maintenance of mitochondrial structure was suggested as mitofilin helps to 

regulate mitochondrial morphology [55]. Recently, mitofilin has been implicated in the 

maintenance of the mtDNA integrity as depletion of mitofilin in human cultured cells causes 

accumulation of mtDNA damage [56]. In C. elegans two genes encode the IMMT homolog, 

immt-1 and immt-2. Inactivation of immt-1 only, the closest homolog of IMMT, leads to EtBr 

sensitivity but not to mtDNA depletion (Fig. 3).  

Y105E8A.23 encodes a protein highly homologous to the mitochondrial RNA 

polymerase (POLRMT). A direct relationship between RNA polymerase and mtDNA copy 

number has never been observed in animals. Only, the yeast mitochondrial RNA polymerase 

(RPO41) has been involved in the mitochondrial genome stability. The amino-terminal 

extension of the yeast mtRNA polymerase is required for a mtDNA maintenance function that 

is separable from the known RNA polymerization activity of the enzyme [57]. Our study adds 

new evidence of a role of the mitochondrial RNA polymerase on mtDNA stability in a 

pluricellular organism. 

 Finally, C. elegans genome contains five genes encoding ADP/ATP translocators. We 

found that only ant-1.2 (RNAi) worms resulted in a phenotype comparable to control animals. 

Interestingly, the ant-1.2 gene is the most divergent C. elegans ant gene. On the contrary, 

down expression of the C47E12.2 gene, more distantly related to ant genes, leads to EtBr 

sensitivity and mtDNA depletion. The function of ANT proteins is not confined to exchanging 

ADP/ATP between mitochondria and cytosol. Human ANT1 also contributes to programmed 

cell death [58] and mtDNA stability as a constituent of the nucleoid [3, 4]. Human ANT2 has 

been shown to also maintain ATP entry into mitochondria even when oxidative 

phosphorylation is impaired [59]. These results highlight the differential contribution of these 

C. elegans ANT proteins on mtDNA maintenance. 

 In conclusion, our work allowed to develop a rapid and efficient screening in C. 
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elegans for genes possibly involved in mtDNA maintenance. By applying this screen to 

genes homologous to human genes encoding proteins of the nucleoid, we identified new 

genes (Y105E8A.23, dnj-10, atad-3 and phi-37) that clearly show a direct control on mtDNA 

copy number. The human orthologs of these four genes (POLRMT, DNAJA3, ATAD3 and 

ATP5A1) should therefore be considered as candidate genes for patients with quantitative 

mtDNA anomalies. These results will now allow us to systematically invalidate all genes of 

the C. elegans genome with the aim to identify new components of the mitochondrial 

genome copy number control. It should be hypothesize that false positive will be obtained as 

it is the case for immt-1, the counterpart of fast high throughput screening being of course 

the risk of false positive or negative results. Obviously several of these genes would have 

been already identified as such but we hope to find new genes involved in mtDNA 

maintenance, to identify a yet unknown function of already described genes with no relation 

to any mitochondrial function or to identify transient nucleoid components in a temporal 

and/or spatial manner that could play important function on the stability and maintenance of 

mtDNA. This reservoir of new genes will represent a helpful tool and knowledge for 

mitochondrial diseases as they would be considered as candidate genes for patients. 
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Materials and Methods 

 

Strains and growth conditions 

The C. elegans wild type strain N2 Bristol and unc-119 (ed3)III were used in this work. The 

strains were maintained at 20°C on NGM plates seede d with OP50 E. coli strain. 

 

Generation of transgenic worms 

The entire mtss-1 gene with the promoter region or the mtss-1 coding sequence without stop 

codon were PCR amplified using mtss-1UP or mtss-1ATG as forward primers and mtss-1DW 

as reverse primer (Table 2). The amplification product of the mtss-1 coding sequence was 

cloned into the pPD136.61 vector in fusion with the GFP sequence. The resulting plasmid 

encoded MTSS1-1::GFP under the control of the myo-3 promoter. The entire mtss-1 gene 

containing the promoter sequence was fused in frame with the GFP coding sequence by 

using the PCR-fusion method [60] and cloned into the pGEMT-easy plasmid. Both plasmids 

and the plasmid pDPMM016b carrying an unc119(+) gene, were linearized and used to 

perform microparticle bombardments of the unc-119 (ed3) strain using the Bio-Rad Biolistic 

PDS-1000/HE (Bio-Rad laboratories) as described [61]. Following bombardment, worms 

were allowed to recover at 20°C and after 14 days, plates were examined for animals with 

wild type motility. Confirmation of the presence of the mtss-1::gfp transgenes was made by 

PCR. For each construct two independent transgenic worm lines were generated. 

 

RNA interference and EtBr assay 

The RNAi experiments were performed using the feeding procedure described by Kamath 

and Ahringer (2003) with slight modifications. Feeding RNAi clones were purchased from the 

Ahringer RNAi library (Geneservice Limited) and sequenced. A single colony of HT115 (DE3) 

bacteria of interest (RNase III-deficient E. coli strain, carrying IPTG-inducible T7-RNA 

polymerase) was first grown overnight at 37oC in LB-ampicillin. The bacteria were then 

seeded onto NGM plates with 1 mM IPTG, 25 µg/ml carbenicillin and 50 µg/ml ampicillin and 

incubated at room temperature in a dark container at room temperature for 48 h to allow the 

expression of the double-stranded RNA (dsRNA). Worms feeding on HT115 bacteria 

carrying the empty vector (L4440) were used as controls in all the experiments. 

Synchronized L1-stage N2 worms were placed onto NGM plates seeded with bacteria 

expressing the dsRNA of interest and were incubated for 72 h at 20oC. Four adult worms 

were independently picked up and transferred to fresh RNAi plates containing or not different 

concentrations of ethidium bromide (EtBr). Worms were allowed to lay 80 to 100 eggs before 

being removed. Eggs were immediately counted and the F1 progeny produced was analyzed 

after 3 and 4 days. At day 4, evaluation of the F1 progeny arrested at the L3 stage was 
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compared to the number of adults on the same plate. The phenotype was scored as 

sensitive to RNAi and EtBr if more than 80% of worms were arrested at the L3-stage on 

plates containing 50 µg/ml of EtBr. A gene was considered as positive for a given phenotype 

if the same result was observed in at least two independent feeding experiments.  

The specificity and efficiency of RNAi inactivation of each gene were checked by semi-

quantitative RT-PCR analyses. Total RNA was isolated from N2 animals fed on RNAi 

bacteria using Trizol reagent (Invitrogen). Total RNA were treated with DNaseI, then 

subjected to cDNA synthesis using the reverse transcriptase SuperScript VILOTM (Invitrogen) 

and PCR amplified. The primers used for each gene are listed in Table 2. The amplification 

of a 426 bp fragment of the ama-1 cDNA was used as internal control. 

 

Quantification of mtDNA and investigation of mtDNA integrity 

Extraction of total genomic and mitochondrial DNA was performed using the NucleoSpin 

Tissue extraction kit (Macherey-Nagel) from 10 F1-adult worms having laid all their eggs (day 

9) after RNAi treatment or from control adults at the same stage. The mitochondrial cytb and 

the nuclear K01H12.2 genes were individually amplified by real-time PCR using primers cytb-

f/cytb-r and K01H12.2-f and K01H12.2-r (Table 2) as previously reported [37]. The ratio of 

mtDNA copy number to nuclear DNA was used as a measure of mtDNA content in each 

specimen. Each Q-PCR measurement has been made in triplicate in at least two 

independent RNAi experiment. The integrity of mtDNA was checked by long-range PCR 

(Expand Long Template, Roche) using a pair of primers distant of 8561 bp (CE3 and CE4, 

Table 2).  
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Legends to Figures 

 

Figure 1. polg-1 (RNAi) and mtss-1 (RNAi) lead to mtDNA depletion. A, phenotype of polg-1 

(RNAi) and mtss-1 (RNAi) F1 adult worms. B, mtDNA copy number of control (L4440), polg-1 

(RNAi), mtss-1 (RNAi) and control adults treated from the L4 stage with 125 µg/ml EtBr 

(EtBr). The relative ratio of mtDNA copy number per adult is represented. C, Long-range 

PCR of the mtDNA extracted from polg-1 (RNAi) and L4440 control animals (C). M: 

molecular weight marker. D, polg-1 and ama-1 mRNA levels in N2 animals grown on bacteria 

expressing either polg-1 dsRNA or containing the empty L4440 RNAi vector (C) during larval 

development and adulthood. M: molecular weight. E, Expression of MTSS-1::GFP fusion 

protein in adult worms. MTSS-1::GFP was expressed either under its own promoter (par-

MTSS-1::GFP, (1) Normaski and (2) fluorescence) or under the body-wall muscle specific 

myo-3 promoter (myo-3-MTSS-1::GFP, (3). RNAi of mtss-1 gene in myo3-MTSS-1::GFP 

transgenic animals (5) compared to control RNAi (4).  

 

Figure 2. polg-1 (RNAi) and mtss-1 (RNAi) mutants are hypersensitive to the EtBr. A, L3 

larval development arrest after polg-1 (RNAi) and mtss-1 (RNAi) in the presence of 40 µg/ml 

of EtBr compared to control animals (L4440). B, Percentage of L3 larval arrest of polg-1 

(RNAi) (square), mtss-1 (RNAi) (triangle) and control animals (L4440) (circle) grown with 

increasing concentration of EtBr. Each point corresponds to the analysis of n> 80 animals in 

two independent experiments. C, Percentage of L3 arrest of worms submitted to RNAi of 

polg-1, mtss-1, rrt-2 and pmp-4 genes and 50 µg/ml EtBr exposure. L4440: control RNAi. 

 

Figure 3. Correlation between L3 arrest and mtDNA copy number. mtDNA content of adult 

worms after 9 days of RNAi of various genes (black bars). Values are presented as ratio of 

mtDNA versus nuclear DNA relative to the control (L4440 RNAi). The error bars represent 

the SD. Percentage of L3 arrested animals after RNAi and 50 µg/ml EtBr exposure (gray 

bars). Experiments were performed in at least two independent RNAi for each gene. 

 

Figure 4. Efficiency and specificity of RNAi. The expression level of various genes was 

estimated by semiquantitative RT-PCR after RNAi of the corresponding genes and in control 

(L4440). ama-1 transcript level was used as internal control. M: molecular weight 

 

Table 1. List of C. elegans genes homologous to human nucleoid genes. The three classes 

correspond to the nucleoid class of proteins described in Bogenhagen et al., 2008. Class I: 

proteins isolated in both native and crosslinked nucleoid preparations, class II: proteins 

observed in native nucleoids but not found crosslinked to mtDNA and class III: proteins 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

identified in crosslinked nucleoids but not found in native nucleoids. The two last columns 

show the Blast E-values between C. elegans and human genes.  

 
Table 2 
Oligonucleotides used in this study. 
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Nucleoid 

class

Human 

gene

C. elegans 

gene

C. elegans 

main gene

C. elegans description Blast E-

value

% length

I TFAM F45E4.9 hmg-5 HMG box-containing protein 4.0e-18 91.2%

I SSBP1 PAR2.1 mtss-1 Single-stranded DNA-binding protein 1.2e-09 65.9%

I POLG Y57A10A.15 polg-1 ortholog of human mitochondrial DNA polymerase gamma 7.6e-102 67.3%

I POLRMT Y105E8A.23 no description 1.2e-112 54.8%

I PEO1 F46G11.1 orthologous to the human mitochondrial DNA helicase twinkle 9.7e-56 80.3%

I CLPX D2030.2 Putative ATP-dependent Clp-type protease (AAA+ ATPase superfamily) 1.2e-103 91.8%

I DNAJA3 F22B7.5 dnj-10 protein containing a DnaJ ('J') domain that is predicted to be mitochondrial. 5.6e-83 83.8%

I ANT2/3 C47E12.2 Mitochondrial ADP/ATP carrier proteins 9.9e-77 94.4%

I ANT2/3 W02D3.6 ant-1.2 Mitochondrial ADP/ATP carrier proteins 8.49e-103 96.0%

I ANT2/3 T01B11.4 ant-1.4 Mitochondrial ADP/ATP carrier proteins 1.0e-106 92.0%

I SHMT2 C05D11.11 mel-32 Glycine/serine hydroxymethyltransferase 5.4e-156 91.9%

I HSPA1 C37H5.8 hsp-6 mitochondrial-specific chaperone that is a member of the DnaK/Hsp70 superfamily 1.5e-261 97.0%

I CPS1 D2085.1 pyr-1 orthologous to the human gene CPS1 carbamyl phosphate synthetase 0 65.9%

II ATADA3 F54B3.3 atad-3 AAA+-type ATPase 9.79e-173 96.3%

II IMMT T14G11.3 immt-1 Mitochondrial inner membrane protein (mitofilin) 1.8e-68 86.5%

II IMMT W06H3.1 immt-2 Mitochondrial inner membrane protein (mitofilin) 8.7e-32 86.9%

III MTHFD2 K07E3.3 dao-3 C1-tetrahydrofolate synthase 8.7e-78 95.4%

III ACAT1 T02G5.8 kat-1 homolog of the human gene ACAT1 Acetyl-CoA acetyltransferase 4.3e-115 94.6%

III ATP5A1 H28O16.1 phi-37 F0F1-type ATP synthase, alpha subunit 2.1e-225 93.5%

Table 1

Table 1
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Table 2
target genes primers PCR length

mtss1 mtss-1UP GAAGTTTTCTTGTGAAGAAGC

mtss-11ATG GGAAGATCTTAGAAAATGCTTCGTTCACTT

mtss-1DW CGGGATATCGGAAACAGTTATGTTTGG

RT-PCR ama-1-f (95-112) CAGTGGCTCATGTCGAGT

ama-1-r (559-577) CGACCTTCTTTCCATCAT 482 bp

ant1-2-f (46-65) CTCGCCTCCGGAGGCACTGC

ant1-2-r (606-627) GCCCGTCAGTTGAGTACAATG 581 bp

atad-3-f (291-311) GGCCAATATGAAATCAGAGCA

atad-3-r (626-647) CGGTTCTCTTCTTCGTGAAGC 356 bp

dnj-10-f (692-711) GTAATCGATGCAGAGGAAGT

dnj-10-r (1142-1162) CGCAGCCCAAGCCAACATAA 470 bp

C47E12.2-f (251-271) GGAGAGGAAACATGACAAATG

C47E12.2-r (717-737) GTGTCCCAAGGGTAGGTTAA 486 bp

immt-1-f (385-404) CCAAGAGAGCCCACACATGT

immt-1-r (814-834) GATCTCATCAAGCTGATGAG 449 bp

D2030.2-f (663-682) GCAGCAGCAGAGTAATAATC

D2030.2-r (1164-1184) CCAGAAGACGTACCAAATCC 521 bp

hmg-5-f (52-71) CGTGCTTCTGTCGCAGCTTC

hmg-5-r (563-583) CCCATTTCTGGAGGACGACA 531 bp

polg-1-f (19-39) ATGCAAATTTTCCACGTATCC

polg-1-r (619-638) CCCGACATCTGGCTCGATC 619 bp

phi-37-f (53-73) ATGCCGGAATCGCCACCACCG

phi-37-r (507-528) GATGGTGTCAATGGCAATGGC 475 bp

q-PCR cyb-f (158-177) CGCCCGATAGGTTAATAGCA

cyb-r (234-253) TGGCCCCATTAAAATGAAAA 95 bp

K01H12.2-f (502-522) CGTGAATTCAAAGGTCTGGCT

K01H12.2-r (602-622) AGTAAGCGGCACGGTAGATGA 120 bp

deletion CE3 (1840-1860) GAGCGTCATTTATTGGGAAG

CE4 (10529-10550) CACAAAGGTCGACATATCAAC 8710 bp

Table 2


