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Abstract

We introduce and develop a pathwise description of the dissipation of general convex
entropies for continuous time Markov processes, based on simple backward martingales and
convergence theorems with respect to the tail sigma field. The entropy is in this setting
the expected value of a backward submartingale. In the case of (non necessarily reversible)
Markov diffusion processes, we use Girsanov theory to explicit its Doob-Meyer decomposi-
tion, thereby providing a stochastic analogue of the well known entropy dissipation formula,
valid for general convex entropies (including total variation). Under additional regularity
assumptions, and using It&’s calculus and ideas of Arnold, Carlen and Ju [2], we obtain a
new Bakry Emery criterion which ensures exponential convergence of the entropy to 0. This
criterion is non-intrisic since it depends on the square root of the diffusion matrix, and can-
not be written only in terms of the diffusion matrix itself. Last, we provide examples where
the classic Bakry Emery criterion fails, but our non-intrisic criterion ensuring exponential
convergence to equilibrium applies without modifying the law of the diffusion process.

Keywords : long-time behaviour, stochastic differential equations, time reversal, Gir-
sanov theory, Bakry Emery criterion, convex Sobolev inequalities
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Introduction

We are interested in the long-time behaviour of solutions to the stochastic differential equation
where b: R — RY, o : R* — R4 and W = (W;,t > 0) is a standard Brownian motion in R? .

We consider a convex function U : [0,00) — R bounded from below and define the U—entropy
of a probability measure p in R? with respect to a probability measure ¢ in R? by

JoaU (2(2)) da(x) if p< q

+o00 otherwise.

Hy(plg) = {
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The particular cases U(z) = 1>z In(z) and U(z) = (x — 1)? respectively correspond to the
usual entropy and the y2-distance. For U(x) = |z —1|, Hy(p|q) coincides with the total variation
distance but only when p < q.

In case (0.1) admits a reversible probability measure, the celebrated Bakry Emery curvature
dimension criterion which involves the generator, the carré du champs and the iterated carré du
champs is a sufficient condition for this reversible measure to satisfy a Poincaré inequality and a
logarithmic Sobolev inequality. From these inequalities, one can respectively deduce exponential
convergence to 0 as t — oo of the chi-square distance or the relative entropy between the marginal
at time ¢ of the process and its reversible measure. This criterion has been generalized to entropy
functions U more general than U(r) = (r — 1)? and U(r) = rIn(r) (see for instance [1]).

In general, even when the stochastic differential equation (0.1) admits an invariant probability
measure, this measure is not reversible. It is well known both from a probabilistic point of view
[13] and the point of view of partial differential equations [2] that the presence of a contribution
antisymmetric with respect to the invariant measure in the drift may accelerate convergence to
this invariant measure as ¢t — oo.

The primal goal of this work is to recover the results of [2] and [1] about the long-time behaviour
of the U-entropy of the law of X; with respect to the invariant measure by arguments based on
[t0’s stochastic calculus. To achieve this goal, we introduce and develop in the first section of the
paper a pathwise description of the dissipation of general convex entropies for continuous time
non-homogeneous Markov processes, based on simple backward martingales and convergence
theorems with respect to the tail sigma field. Given two different initial laws, the U-entropy
of the marginal at time ¢ of the Markov process under the first initial law with respect to its
marginal at time ¢ under the second initial law is the expected value of a backward submartingale.
This implies that this U-entropy is non-increasing with ¢ and permits to characterize its limit as
t — o0o. To our knowledge, this simple result does not seem to have been used in the study of the
trend to equilibrium of Markov processes. Conditions ensuring that the U-entropy of general
Markov processes converges to 0 are discussed at the end of the section (the case of Markov
diffusion processes is studied in more details in the second section).

From the second section of the paper on, we only deal with Markov diffusions given by
dXt == O'(t, Xt)th + b(t, Xt)dt (02)

where b: Ry xR? > R? ¢ : R, xRY — RI®d" Under assumptions that guarantee that for both
initial laws, the time-reversed processes are still diffusions, we use Girsanov theory to explicit
the Doob-Meyer decomposition of the submartingale obtained in the first section. In this way,
we obtain a stochastic analogue of the well known entropy dissipation formula, valid for general
convex entropies (including total variation). Taking expectations in this formula, we recover the
well known fact that the U-entropy dissipation is equal to the U-Fisher information. Proofs of
the main results of this section are given in Appendix A.

It should be noticed that the idea of considering a trajectorial interpretation of entropy to obtain
functional inequalities is not new, at least for reversible diffusions (see e.g. the work of Cattiaux
[5] whose results are nevertheless of quite different nature). However, even in the reversible case,
time reversal of a diffusion starting out of equilibrium modifies the dynamics of the diffusion.
The simple martingales introduced in the first section take this fact into account and moreover
permit the use of It6’s calculus under less regularity than a priori needed when working in
the forward time direction. Their interest thus goes beyond the treatment of non-reversible
situations.



In the third section, we further suppose that the stochastic differential equation is time-homogeneous
(i.e. of the form (0.1)) and that it admits an invariant probability distribution, that is chosen as
one of the two initial laws. Under additional regularity assumptions, and using It6’s calculus and
some ideas close to Arnold, Carlen and Ju [2], we obtain a new Bakry Emery criterion which
ensures exponential convergence of the U-Fischer information to 0 and therefore exponential
convergence of the U-entropy to 0. In addition, under this criterion, the invariant measure satis-
fies a U-convex Sobolev inequality. This criterion is non-intrisic : it depends on the square root
o of the diffusion matrix a = oco™* and cannot be written only in terms of the diffusion matrix
itself whereas, under mild regularity assumptions on b and a, the law of (X;);>o solving (0.1) is
characterized by the associated martingale problem only written in terms of a and b. The main
results of this section are proved in Appendix B. We point out that our approach also allows
us to recover the results and criterion provided in [2]. The way in which this can be done is
described in the Appendix C, where also the difference between the arguments leading to each
of the two criteria is highlighted. Additionally, we provide therein a combined criterion based
on both the one of [2] and ours.

Last, we provide in Section 4 two examples where the classic Bakry Emery criterion fails, but
our non-intrisic criterion ensures exponential convergence to equilibrium without modifying the
law of the diffusion process.

As future work, we plan to investigate how to choose the square root o of the diffusion matrix in
order to maximize the rate of exponential convergence to equilibrium given by our non-intrisic
Bakry Emery criterion.

Throughout this work, we make the following assumption on U:
HO0) U :]0,00) — R is a convex function such that inf U > —c0.

Notice that U is then continuous on (0, +00) and such that U(0) > lim,_,o+ U(x).
Moreover, we use the convention of summation over repeated indexes.

Acknowledgements : We thank Tony Lelievre (CERMICS) for pointing out to us the paper
of Arnold, Carlen and Ju [2] at an early stage of this research. We also thank Anton Arnold (TU
Wien) for suggesting an improvement of our non-intrinsic Bakry-Emery criterion (see Remark
3.3 below). The first author last thanks the hospitality and partial support of CERMICS.

1 Entropy decrease for general continuous-time Markov pro-
cesses

In this section (X; : ¢ > 0) is an arbitrary continuous-time Markov process with values in a
measurable space (E,E).

Let Py, Qo be probability measures on E. We will use the following notation:
e P, and (J; denote the time marginal laws of X; when the initial laws are Py and Qo,
respectively.

o (XI,t >0) and (X?,t > 0) denote realizations of the process (X;) with Xg respectively
distributed according to Py and Q.



Proposition 1.1 The function t € Ry — Hy(P|Q¢) € RU {+00} is non-increasing.
Moreover, if for some t > 0, P, < Qq, then the law of (XI).>; is absolutely continuous with
respect to the one of (X?)Dt with density 5 dPt (XQ), it holds for all s > t that P; < Qs, and

(jgz (XQ)>S>t 1s a backward martingale wzth respect to the filtration Fg = J(Xg,r > s).

Last, if Hy(P,|Q¢) < +o00 for some t > 0, then (U(dPS (XQ))) is a backward submartingale

s>t
with respect to Fg with expectation E (U(dps (XQ))) Hy(Ps|Qs) -

Corollary 1.2 If Hy(P;|Q:) < +oo for some t > 0, then

lim Hy(P|Qs) =E <U <E (dpt (XQ)‘ Ns>0 .7-“>>> < 00.
S—00 th

In particular, if the tail o-field Ng>0Fs is trivial a.s. w.r.t. the law of (XtQ)tzo then limg_,oo Hy (Ps|Qs) =
U).

Proof of Proposition 1.1. Let s >t > 0. If P; is not absolutely continuous with respect to
Qy, then +00 = Hy (P;|Qy) > Hy(Ps|Qs). Otherwise, for f : E®+ — R measurable with respect
to the product sigma-field, using the Markov property for the second equality, one has

dP;

BUOL 2 0) = [ BUCE = 0lx! =adRie) = [ EGE2r 2 0158 =) 5 (@)
—E (f(XQ r>t) ZQt (XQ)> (1.1)

The law of (X;7),>¢ is thus absolutely continuous with respect to the one of (Xf2 )r>¢ With density
jT];tt(XtQ) and Vr > t, P, < Q,. Now, for s > t,

dP;
dQy

B (10X 2 95000 ) =B (1(XLr 2 9) =B (£(X0r 2950 (x9))

dQs

where we used (1.1) with ¢ replaced by s. This ensures that E <dP L(X, e ‘]—" > = dgi (XSQ ). By

Jensen’s inequality, since U is a convex function bounded from below,

E (U (;gtt (X2) > ‘J—") U (jgz (X§)> . (1.2)

Taking expectations one concludes that Hy (P;|Q:) > Hy(Ps|Qs). ||

Proof of Corollary 1.2. If Hy(P;|Q:) < +oo then P, < Q¢ and the F, backward martin-

gale (dPs (XSQ))SZt converges a.s. to E <§%§(X?)‘ Ns>0 .7-"5> when s — oo. By the backward

martingale property, for r > t,

dp, dPp,
T (x@ — t(x@ =
E(dQT(X" )1{E<%(X?)ﬂszofs)0}> E(th(X 1 {E( B (XD)INs207: ) 0}> 0
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Hence 35: (X?) = 0 a.s. on the set {IE (%(X?)

Ns>0 .7:s> = 0}. With the continuity of

U on (0,+00), one deduces that the random variables U (jgss (X?)), s > 0, converge a.s. to
o (& (4 0x2)

takes place in L!, and we conclude that Hy (Ps|Qs) = E (U (ggss (X?))) converges as § — 00
to the asserted limit. When the tail o-field is trivial a.s. w.r.t. the law of (XtQ)tzO, then the
limit of the backward martingale is equal to E <%(X?)> =land U <§5§ (XSQ)> CONVerges a.s.
and in L' to U(1).

Ns>0 ]:s>> as s — 400. Since they are uniformly integrable, convergence also

The next proposition gives a framework in which the tail o-fied is trivial.

Proposition 1.3 Assume that E is a locally compact metric space and that the Markov process
(Xt)e>0 is Feller and with cadlag paths. Assume moreover that there is a sigma-finite Borel
measure (1 with full support in E with respect to which the transition semigroup of (X¢)i>0 has a
strictly positive transition density pi(z,y), continuous in (z,y) for each t > 0, and that (X;)i>0
has an invariant distribution. Then the tail o-field Ny>o0 (X, 7 > t) is trivial a.s. w.r.t. the law
of (XtQ)tzo for any choice of initial law Q.

Proof . Notice on one hand that if (P®));>¢ denotes the semigroup of (X;)¢>0, by continuity
of z — ¢y(z,y) and Fatou’s Lemma the functions P® f(z) and P®) (1 — f)(x) summing 1 are
both ls.c. if f is any measurable function f : E — [0,1]. This implies that (X;);>¢ actually
is strongly Feller. On the other hand, the positivity of the transition density implies that any
invariant probability measure is equivalent to p. Therefore there is a unique (thus ergodic)
invariant distribution, which is of the form poo(z)u(dz) with poo(x) > 0, p(dx) a.e..

Now let Po, and P, denote the laws of (X¢)¢>¢ on the canonical space E [0,+°) when respectively
starting from an initial condition distributed according to poop and to d,, and write (Y3)i>0
for the canonical process. By the ergodic theorem and the strict positivity of ps, we have
Joo1a(Y)dt = +o00, Po— as. for each Borel set A in E such that u(A) > 0. If A = {y €
E0,+00) Jo~ 1a(ys)ds = oo}, we deduce that P,(A) =1 for pu(dx)— almost every z. But A is a

tail event, and by the Markov property, for any ¢ > 0, one has P;(A) = E;(Py,(A)). The strong

Feller property then yields P,(A) =1 for all x € E. That is, X is positive Harris recurrent with
maximal irreducibility measure p.

By Theorem 1.3.9 in [15] (and noting that its proof uses only continuity of ¢;(z,y) in (z,y) for
each ¢ > 0 but not continuity in (¢, x,y)), we get that any tail event B is such that P,(B) =1
for all z € E or P,(B) =0 for all z € E, which concludes the proof.

Remark 1.4 In the case of Markov diffusion processes studied below, conditions ensuring the
joint continuity in (x,y) of the transition density with respect to Lebesgue measure can be found
in [10] Chapter 9 under uniform ellipticity, and in [16] Theorem 4.5 under hypoellipticity. Al-
ternative conditions for the tail sigma field to be trivial are also given at the end of the next
section.



2 Entropy dissipation for diffusion processes

From now on we assume that (Xy,¢ > 0) is a Markov diffusion process, solution to the stochastic
differential equation

dXt = O'(t, Xt)th + b(t, Xt)dt (21)

where W = (W;,t > 0) is a standard Brownian motion in R and b : Ry x RY - R?, ¢ :
R, x R* — RI®4" are mesurable coefficients satisfying conditions that will be specified below.

Our next goal is to explicitly describe the process U <§l£z (XSQ )) when Py <€ Qo and, as a

byproduct, the decrease of its expectation Hy (Ps|Qs).

We fix a finite time-horizon 7" € (0,400) in order to work with standard (forward) filtrations
by time reversal in [0, 7]. Let us introduce some notation:

e Q7 (resp. PT ) will denote the law of the time reversed processes (X?_t,t < T) (resp.
(XE_,,t <T)) on the canonical space C([0, 7], R%).

e (Y;)i<r stands from now on for the canonical process on C([0,T],R?) and G; = o(Ys,0 <
s < 't) denotes its natural (complete, right continuous) filtration.

e In all the sequel, E” will denote the expectation under the law Q7.

Remark 2.1  a) Whenever Py < Qo, we obtain by obvious adaptations of the results and
proofs in the previous section that PT < QT with % = %(YT), and that
det dPT|  dPr_,

D, &= —
" AT, T dQr—

(Y)), 0<t<T (2.2)

is a QT — G; martingale. Moreover, Hy(Ps|Qs) < +oo for s € [0,T] if and only if
(U (Dt))o<t<r—s 18 a uniformly integrable QT — G, submartingale, in which case one has

Hy(P|Qy) =E" (U (D}_,)) for allt € [s,T).

b) If Hy(P1|P2) denotes the pathwise U—entropy between two probability measures P1,Py on
C([0,T),RY), that is

JoqoarnU <%(w)> dPy(w)  if Py < Po,

400 otherwise,

Hy (P1|P2) = {

one immediately gets that Hy (law (XtP it > 0)

law <XtQ > 0)> = Hy(Py|Qo) since

XP and X have the same (forward) generator. The identities in a) written for t = T
imply that also

Hy(Py|Qo) = Hy (PT1QT).

The stability of the usual pathwise entropy ( U(r) = rlnr) under time reversal was re-
marked by Féllmer [8] and used therein to study time reversal of diffusion processes (see
also [9] for an extension to infinite dimension where the situation is more complicated).
In the converse sense, we will use here time reversal to study the U—entropy.



In order to use Itd calculus to obtain the explicit form of the Girsanov density D, as a QT — G,
martingale, and then deduce the Doob-Meyer decomposition of the submartingale U (D;), we
will assume that the Markov processes (X?ft,t < T) and (lefft,t < T') are again diffusion
processes. Conditions ensuring this fact have been studied in the aforementioned paper [8],
and in Hausmann and Pardoux [11], Pardoux [18] and Millet et. al [17] among others, who
in particular provide the semimartingale decomposition of (Xj@ft,t < T) in its filtration, for
suitable QQg. We recall in Theorem 2.2 below the general results in [17] in a slightly more
restrictive setting. The following conditions are needed:

H1) For each T > 0, supycpo 71 (|b(t, 0)|+|o(t,0)]) < +oc and for every A > 0 there is a constant
K7 4 > 0 such that

d/
|b(t,z) — b(t,y)| + Z |oei(t,x) — 0ei(t,y)| < K alx —y|, Vt € [0,T], Vz,y € B(0,A),
i=1

where g,; denotes the i-th column of the matrix o and B(0, A) is the ball of radius A > 0
centered at the origin in R%. Moreover,
H1)" the constants K7 4 do not depend on A, or

H1)" for each s > 0, equation (2.1) starting at time s is strictly conservative, and for any
bounded open set D C R,

T ,
sup sup E<{ exp / 4B () + 82 |A? ()| dt| p < oo,
z€D s€[0,T) s j ’

S

L .
where By y(w) = | X0y Oib((t, Xoa(@))?] ", AL y(@) = |S8sy Qo (1, X (2))?]
and X ;(x) denotes the solution to (2.1) starting from x at time s < t.

H2)g For each t > 0, the law Q;(dx) of XtQ has a density g;(z) with respect to Lebesgue measure.

H3)qg Denoting a;; = (00*);;, for each i = 1,...,d the distributional derivative 0;(a;;(t,x)q:(x))
is a locally integrable function on [0, T] x R¢:

T
/ / |0 (ai;(t, x)gq¢(x))|dzdt < oo for any bounded open set D C RY.
0 D

We denote for (¢,z) € [0,T] x R?

o a;j(t,x) ==a;(T —t,x),i,57=1,...,d,

o l_)?(t,x) = —b(T — t,z) + aj(a”(z;f’:z;qf_t(x)) (with the convention that the term
involving QT—lt @ is zero when qr—t(zx) is zero)

and notice that b9(t, ) is defined dt ® dz a.e. on [0,7] x R? under assumption H3)g.

Theorem 2.2 Assume that H1) and H2)q hold.



a) Suppose moreover that H3)q holds. Then, QT is a solution to the martingale problem:

(MPyg: M= [(%) = [(Y0) = [ G5 Y0, /(Y0 + B (s Y00/ (Vods, ¢ € 0.7

is a continuous martingale with respect to the filtration (G;) for all f € C(RY).

b) Let b:Ry xR - RY and 6 : Ry x RY — R pe measurable functions such that
fOT I lasi(t, 2)| + |bi(t, 2)|qgr—¢(z)dzdt < oo for any bounded open set D C R?. Assume
moreover that QT is a solution to the martingale problem w/r to (Gi) for the generator

Lif(x) = 3a:(t,2)0i f (x ) 4 bi(t,2)0; f(x). Then H3)q holds, b="b and a = a.

Proof . According to Theorem 3.3 [17], under H1), H2)q and H3)q, (Mtf) is a continuous G-
martingale in the interval [0,7) under Q7. When f is C*™ on R? and vanishes outside B(0, A),
we have

ET(/ B0 Vs (vl as )

< sup |V (T sup  [b(s,z)| + /[0 Zm aij(s, 2)qs (@ >>|dsd:c>

B(0,A) [0,T]xB(0,4) T|x B(0,A) 75
(2.3)

where the right-hand-side is finite under H1) and H3)g. This implies that ET(|M7J:|) < 400,

and together with H1), that ¢ — Mj’f is continuous on [0, 7] and a continuous G-martingale on
[0, 7] under Q. Part b) follows from Theorem 3.3 in [17]. ||

Thus, under (M P)g and (M P)p the process Y; is respectively a weak solution to the SDEs
dX; = a(t, X;)dW; + b9(t, X;)dt, te[0,T] (2.4)
and .
dX; = & (t, X;)dW; + b (t, X;)dt, te[0,T],

where 5(t,z) = o(T —t,x) and W and W are d’ dimensional Brownian motions in a possibly
enlarged probability space. If uniqueness in law holds for both SDEs, Py and @ (and then P7
and QT by Remark 2.1) are equivalent, and p;(z) and ¢;(z) are strictly positive and differentiable,
then the difference between the drift terms of the two equations is

O (t, ) — b2 (t, ) =ai(t, )0; npr_y(x) — ai;(t, )9; Ingr—y ()

—a;;(t, 1), [m Z: (x)} ,

and the simplest form of Girsanov theorem allows us to deduce that

Dy = exp { /Ot v [m Z:Z (x)] a(t, Xt)th—% /Ot (v [m Zi—} (Y8)> ) as,Yy)V [m Z—} (Ys)ds}.

However, in the general case when ¢;(z) or p;(z) may vanish and are possibly not differentiable, it
is not clear what sense should be given to the derivatives above. If the diffusion matrix is singular,
neither is it clear that difference of drift terms b9 and b (defined by means of distributional
derivatives) is in the range of the diffusion matrix, which is required to use Girsanov theorem.




This question is reminiscent and, somehow, reciprocal to the stochastic construction of Nelson
processes where QT and the possibly singular difference of drift terms are given, and one tries
to construct PT (see for instance [6]). The following technical lemma answers the question in
the most general situations covered by Theorem 2.2. Its proof, not hard but lengthy, relies on
Girsanov theory in the absolutely continuous setting and is differed to the Appendix A.1 section.
Recall that an element Py € M of a given set M of probability measures in C([0,T],R%) is said
to be extremal if Py = aP1 + (1 — )Py for some Py, Py € M and « € (0, 1) implies Py = Py = Ps.

Lemma 2.3 Assume that H1) , H2)g, H3)g and H3)p hold, with Py < Qo, and let %(x) be

the Radon-Nikodyn derivative of p;(x)dxdt w.r.t q;(x)dzdt on [0,T] x R? (the existence of which
follows from Proposition 1.1 ). Then,

a) there exists a measurable function in [0,T] x RY — R? denoted (t,z) v Vln[%](x) such
that

bP(t,z) — b9 (t, z) = a(t, z)V [ln Pt (x)} ) pr—t(z)dz dta.e..
qr—t

b) Define q;(x)dx dt a.e. in [0,T] x R? the function (t,x) V[%](x) by

v [Zﬁ] (z) = P(a)V [m ]ﬁ] ()

qt qt qt

and assume moreover that QT is an extremal solution to the martingale problem (M P)g.
Then, the QT <(G;) martingale (Di)iejo,m) introduced in (2.2) has a continuous version
(denoted in the same way) satisfying

t
D, =2 (vy) + / D,Vn [p—“} (Va)locr - dM,
qr 0 qr—s

t
_ZE br—s .
00+ [ 5[] 0t

where My = (M})%_, are the continuous local martingales w.r.t. QT and (G;) defined by
. . . t —
My =Y!-Y, —/ bZ-Q(s,Y;)ds, te0,T]
0

and R is the (Gy)-stopping time R := inf{s € [0,T] : Dy = 0}. Moreover, QT a.s., one has

o) = [ (V]2 00) ate.vw [2=2] (e ds. ve e o1y

qT—s 47 —s

From the proof of Lemma 2.3 it will be clear that if p; and ¢; are everywhere strictly positive
and of class C1, (t,z) V[E](z) and (¢,z) — VIn[2](z) can be respectively taken to be the
usual gradient and gradient of the logarithm of % (see Remark A.4 for details). An exponential
form for D; can also be given.

We introduce now the notation U’ and U”(dy) for respectively the left-hand derivative of the
restriction of the convex function U : [0,00) — R to (0, +00) and the non-negative measure on
(0, +00) equal to the second order distribution derivative of this restriction.

We are ready to state the main result of this section:



Theorem 2.4 (Stochastic U-Entropy dissipation) Let Qo and Py be probability measures on R?
such that
HU(PO‘QO) < 00

and assume that H1) , H2)g, H3)g and H3)p hold. Suppose moreover that QT is an extremal
solution to the martingale problem (MP)g.

Then, the submartingale (U(Dy))ejo,r) has the Doob-Meyer decomposition

Vit € [0,T), U(Dy) =U(Do) + / t U’ (D,)V

|:st
0

:| (}/;)13<R : dMs
qT—s

: (2.5)
3 [ LU ) - Lersn AU ()
(0,+00)

where R :=inf{s € [0,T] : Dy = 0}, AU(0) =lim,_,q+ U(z) — U(0) < 0 and L{(D) denotes the
local time at level r > 0 and time t of the continuous version of the martingale (Ds)se[o,T]-

In particular, if U is continuous on [0,+0c0) and C? on (0,+00), one has

e 0], U0 <000 + [ 007 [ (itcn-a,

(=) (o =] o

In the above equation and from now on, we denote by V* the transpose of the gradient. The
proof of Theorem 2.4 is given in the Appendix A section. We next briefly discuss some of its

(2.6)

assumptions and then state some consequences.

Remark 2.5 a) By Theorem 3.1 in [11], conditions H2)g and H3)¢g hold under condition

qg (z)dz

e < Foo for some

H1) if Qo has a density qo w.r.t. the Lebesque measure s.t. f]Rd
k > 0 and either

VT >0, 3 >0, Y(t,z) € [0,T] x RY, a(t,z)=00*(t,z) > ely,
or the second order distribution derivatives 883:%; (t,x) are bounded on [0,T] x R? for each
T >0 (by Theorem 3.1. in p. 1199 [11], the latter conditions imply that (A)(ii) in p. 1189
and thus Theorem 2.1 therein hold). In particular, under H1)" and the previous conditions,
H2)p and H3)p also hold if for instance Py < Qo and % has polynomial growth.

b) Condition H1)” introduced in [17] allows us to include in our study the fundamental ex-
amples of Langevin diffusions with a(z) = Iy and b(x) = —VV (z) for a nonnegative C?
potential V', possibly superquadratic but satisfying:

limsupi‘z/(x) < +00, limsup == (z) < 2 and limsup M(ﬂv) =0. (2.7)

See the Appendiz section A.5 for a proof of this fact.

c¢) Extremality of the solution QT to the martingale problem (MP)q is implied by pathwise
uniqueness for the stochastic differential equation (2.4). In the relevant case that o and

10



b in (2.1) are time-homogeneous and (0.1) admits an invariant density poo(z) > 0, when
choosing Qo(dr) = peo(x)dx equation (2.4) takes the form

O:(ae;

dX; = o(X,)dW, + (M(Xt) - b(Xt)> dt tel0,7T).
P

Pathwise uniqueness for this SDE can be proved under H1) by a standard argument using

localization, Ito’s formula and Gronwall’s lemma, whenever the function —a](a'iﬁ is the

sum of a locally Lipschitz function cmd a monotone function. This is for instance the case

when a = I and poo(z) = Ce™ V(@) for some convex function V : R* — R, or when a and
Poo(x) > 0 have locally Lipschitz derivatives.

The proof of Theorem 2.4 will justify that expectations can be taken in (2.5) and (2.6), and get

Corollary 2.6 (U-Entropy dissipation) Under the assumptions of Theorem 2.4, we have

W e 0,7, Hu(PlQ) = Hy(PrlQr)—AU0)QT(0 < R < T—t)4~ /(O . )ET (Ly_ (D)) U (dr).
7 (2.8)

If U is moreover continuous on [0,+00) and C? on (0,+00), we get the well known expression
for the entropy dissipation:

Vt € [0,T), Hy(PQ:) = Hu(Po|Qo)

g () (7 [z 2] i

with U"(r) now standing for the second order derivative of U at r > 0.

The particular case U(x) = |x — 1| of the total variation is more intricate but we are still able
to derive a dissipation formula analogous to (2.9). To our knowledge this formula is new:

Corollary 2.7 (Dissipation of total variation) Under the assumptions of Theorem 2.4, suppose
moreover that for a.e. t € [0,T], the functions x — q(x) and z — E(z) are respectively

of class C' and C? and there exists a sequence (ry), of positive numbers tending to +oo as

n — 00, such that lim,_, % f{rn a(t,x)V [Z—z] (m)‘ qi(x)dz = 0. Furthermore, assume

that foT Jpa

<|z|<2rn}

V. [d(s,x)v [z%] (w)qT_s(x)] ‘ dxds < oo. Then, Vt € [0,T],

[P — Qllrv = [|[Po — Qollrv + 5 / / sign (— — 1) (2)V - [a(s,m)v [%} (m)qs(m)} dzds

where sign(r) = —1(_o0)(7) + L(0,00) (1) and the integral is non-positive for all t € [0,T].
The proof is given in the Appendix.

Remark 2.8 a) Denote by Q the law of (X, ,t < T) and by E the corresponding expectation.
The following “forward” version of formula (2.8) holds under the assumptions of Theo-

rem 2.4 if moreover (Y}) is a continuous (G) semimartingale under Q (in particular if

darPy

(t,z) = g5t (2) has a version of class cl?):

e T) HoRIQ) = HuRio+aU0RO < s <03 [ B (1 (2m) ) vrian)

11



where S :=inf{s € [0,T] : Z—z(YS) > 0}. This follows from the pointwise relation

g (P ) - o (2= ) = 2k (B x9)

and the fact that the process (% <X7Q_t)> 0] s a.s. stopped upon hitting 0, by Lemma
- telo,

2.5.

b) The limit type assumption in Corollary 2.7 is not too stringent. Thanks to (2.9) and
Cauchy-Schwarz inequality, it holds true for instance if the matrix a is uniformly bounded

and Hy(Po|Qo) < o0 for U(r) = (r = 1)2, since [o¥ [2]] = supj,j<i(00) (0V2) <

S 5] ]

We end this section providing sufficient conditions in order that lim; o, Hy(P;|Q:) = 0.The
proof of the following result is also differed to the Appendix A section.

Proposition 2.9 Let us assume that the coefficients o and b are time-homogeneous, globally
Lipschitz continuous and that the SDE (0.1) admits an invariant density po locally Lipschitz

and bounded away from 0 and +oo and such that 3k > 0, fRd 1+|:p)|k < 400 and that — %

s the sum of a locally Lipschitz function and a monotone function. We also suppose that

VA >0, Jeq >0, V|z| < A, a(x) >eqly (2.10)

bounded

8
on R Then the tail sigma-field Ny>o0 (X, r > t) is trivial a.s. w.r.t. the law of (X, )t>0 for
any choice of initial law Qq. In particular, if U(1) = 0, then as soon as Hy(Ps|Qs) < +o0 for
some s < +00, one has limy_,o, Hy (P|Qy) = 0.

with either €4 not depending on A or the second order distribution derivatives 8

Remark 2.10 In the case that (X,)r>o is Feller, the conclusion still holds when the globally
Lipschitz condition on b is relazed to locally Lipschitz and H1") hold (see the proof of Proposition
2.9).

3 Dissipation of the Fisher information and non-intrisic Bakry
Emery criterion

We will from now on focus in the case when Q(dz) = poo(x)dx is a stationary probability law
for the time-homogeneous Markov diffusion (0.1) . We denote

1
I (ps|poo) = —/ U <&> v* [&] aVv [ps } Poodit
2 {£=>0} P Poo Poo

the integral that appears in the right-hand-side of (2.9), and we refer to it as the U— Fisher
information.

Inspired by the famous Bakry-Emery approach, we want to compute the derivative of It/ (ps|pso)
with respect to the time variable.

In all the sequel, we make the following assumptions :

12



H4) The drift function b and the matrix o are time-homogeneous and such that H1) holds.
Moreover, b (resp. o) admits first (resp. second) order derivatives which are locally a-
Holder-continuous on R? for some o > 0.

Hb5),.. The Markov process defined by (0.1) has an invariant density poo(z) and Qo(dx) =
~o(x)dz. Moreover, ps, admits derivatives up to the second order which are locally «-

Holder-continuous on R? for some o > 0 and py () > 0 for all z € RY.

oo

H 6);0 The initial distribution P, admits a probability density py with respect to the Lebesgue
measure. Moreover, we assume that H2),, holds and that p;(x) has space derivatives up
to the second order for each ¢ > 0, which are continuous in (¢, 2) € (0,7] x R? and bounded

and Holder continuous in z € R? uniformly on [§,7] x R? for each ¢ € (0, T].
Let us also introduce some notations :

e We write PL := Q7 and b; ::BZ.Q,i:l,...,d.

e By possibly enlarging the probability space G; — PL | we introduce a Brownian motion W
such that Y; solves the stochastic differential equatlon :

9;(ai;(y)p=(y))

dY; = o(Y;)dW,; + b(Y;)dt, t € [0,T] where b;(y) = —b;(y) + (V)

(3.1)

By assumptions H4) and H5)., the coefficients o and b are locally Lipschitz so that tra-
jectorial uniqueness holds for this SDE. By the Yamada-Watanabe theorem, one deduces
that uniqueness holds for the martingale problem (MP)q.

o We write pi(z) := p;wt( x), t€[0,T].

Notice that Hb5),  implies H2)g for Qo(dz) = poo(x)dr and combined with H4), it implies
H3)q. Moreover H 6);0 implies H2)p and H3)p. Therefore the hypotheses of Theorem 2.4 hold
within the present Section. Notice also that, under H5)o, and H 6)50, the derivative V- p

defined everywhere and according to the proof of Lemma 2.3 (see in particular Remark A. 4 at
the end of Section A.1) the function Y Pt in Lemma 2.3 may be taken to be the true gradient.
We will throughout in the sequel make thls choice , in particular in Equation (2.9) which states

that the U-entropy dissipation is equal to the U- Flsher information.

Under H4), if moreover a and b are bounded with a uniformly elliptic, then H 6) holds for any
compactly supported probability density pg, by [10] Chapter 9. We refer to [16] for conditions
ensuring that H 6) holds under hypoellipticity.

To compute the dissipation of the U-Fischer information, in all the sequel we make the following
regularity assumption on U:

H7) The convex function U : [0,00) — R is of class C* on (0, +o0), continuous on [0, +-00) and
satisfies U(1) = U'(1) = 0.

The assumption that U’(1) = 0 is inspired in the analysis on admissible entropies developed
in Arnold et al. [1] and is granted without modifying the functions p — Hy(p|ps) and p +—
Iy (plpso) by replacing U(r) by U(r) — U'(1)(r — 1) if needed. Notice that if H7) holds, U(r)
attains the minimum 0 at » = 1 and therefore U > 0 by convexity. Following [3] p202 (see also
[1, 7]), we introduce an additional assumption on U:
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HT) ¥r e (0,00), (UG (r))? < %U/I(T)U(4)(7“),

which is satisfied for instance by U(r) = rlnr — (r — 1) and by U(r) = (r — 1)2. Let us recall
consequences of H7)" pointed out in [1] (see Remark 2.3 therein) which will be used in proving
the following results.

Remark 3.1 Condition HT") implies that (U") < 0 at points where U" # 0. Since U" > 0,
and excluding the uninteresting case where U" identically vanishes, the previous implies that
% is finite in [0,00), and therefore that U is strictly convexr. We then deduce from HT') that

U >0 in (0,00). By concavity and positivity of % this function is moreover non decreasing,
and we deduce that U®) <0 in (0,00).

We do not assume that the entropy function U is C* on the closed interval [0, +oc), since we
want to deal with U(r) = rln(r) — (r — 1). That is why we introduce some regularization Us
indexed by a positive parameter § : we chose Us such that Us(r) = U(r + J) for r > 0 and Uy
is extended to a C* function on R. In the next proposition as well as in the remaining of the
paper, we will omit the argument (¢,Y;) in order to obtain more compact formulae.

Proposition 3.2 Under H4), H5),. , H6)' and HT), one has on the time-interval [0,T]
d (U} (p)V*paVp] = tr(AsT)dt + UY (p)fdt + dM®) with tr(AsT) > 0 under HT)'

and where M, ©) fo [UY(p)V*paN p| o4 dWT is a Gy — P —local martingale,

— 1 1- 1 _

0 =24 Oypoip Z(ako'ljakmamo'l’j — 01iOK01jOmiOmoy;) + §bm8mall’ + §Ul'iamk3mk0u — 1 Om by
+ [ovitmp — TriGmy] 31'P3m01i<9kl,0}-

and As and I are the square matrices defined by

(0ui - VP)V*p aV(0w; - Vp)  [V*paVpl?

Us (P) U (p) ] r.— [ Ty (0ei - VP)V*p aV (04 - Vp)

. 2
with T'1y = szzl (okj01:0k1p + 5(0k;Ok01 + OkiOk1;)D1p)

The computation of d[Uj (p)V*paVp] is postponed to Appendix B. Let us nevertheless discuss
the sign of the term ¢r(AsI') which is inspired from [3] p202 and also from the term ¢r(XY) in
[2] pp 163-164 (see Appendix C for a detailed comparison with the computations in that paper).
Since, by Cauchy Schwarz inequality,

1 2
—(ok;Ok0u; + Ukﬁkﬂj)@ﬂ))

((0ei - Vp)V*p aV (0 - Vp))? = ((0 Vp)i(a*Vp); (%Uu@km t3

d
<Tu Y (0"Vp)i(0"Vp)j = T [V paVp|*,
i,j=1

the determinant of the matrix I is nonnegative and this matrix is positive semidefinite. Under
HT), As is also positive semidefinite and tr(AsT") > 0.
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Remark 3.3 In a previous version of this paper, the coefficient I'yy was chosen equal to

d d
Z (0kjo10kp + Ok jOLOLDIP)® = Z (U*V(U*Vp)i)? = V*((aVp)iaV((aVp)i).
i,j=1 hj=1

We thank Anton Arnold for pointing out to us that the positive semidefiniteness of the matrix
I’ is preserved under the new choice of this coefficient. Notice that, by symmetry of o1;01;0k1p

m 1 and j,
d L
> (0kjo10kp + okjOko1i0p)? — T11 = 1 > (or;0k01 — oriOk1;)0ip)?
i,j=1 i,j=1

1
= 5(3k01jakmam01'j — 0kiOk 010 mjOm0 ;)01 pOy p

is a nonnegative quadratic form applied to Vp which implies that the Bakry Emery criterion
below improves upon the one of the previous version.

pPr—t .
= -

We introduce one last assumption on the density flow p; =

HE')! For each T' € (0,T) the following integrals are finite:

. fOTI ‘U(?’) (p) vV —1!2 |V*paV p|3peo (x)dxdt

o [T (U"(p) N1)? V*(V* paV p)aV (V*paV p)poo (z)dzdt

o [T W (P)AD][(0vitime — Ceittmir)Omos| 10 ([0vitmp — Thimir] Omori)| 180 pl|01p|poo (x) dadt
e /5 (U (0) M) [1(01imk — Okiumir)Om01i(Dupdk In oo + k)| | |00 plpos () dadt

We also denote by H6)p" (resp. H6'),0) the assumption satisfied when HG)ZO (resp. H6’)17;())
holds for each 7' > 0.

Theorem 3.4 Let O denote the d x d symmetric matriz defined by

1 1 1 1
O = _ibmamall’ + §(akl’akbl + apOpbr) — Zamkamkall’ - §(akl'3kjalj + aOjar ;)

1 1
— apajy O In(pos) — §(aklakal'j + apr Or )0 In(pos) — Z(amkamo'liakal’i + 040k 01jTmjOmo;)

1 1
+ = 0%i (OmO1imr + Om01imi) Ok IN(Poo) + =0k [0ki (OmT1iGmy + Omoriam:))

2 2
and assume that ©(x) is poo(x)dx — a.e. positive semidefinite. Then, under H4), H5),_, H6).
HE)L , H7) and HT'), for a.e. t € [0,T] one has
d
pn U" (p)[V*praV pi|pocdz > 2/ U" (pt)V* piOV pipooda. (3.2)
pt>0 pt>0

If, moreover Iy (po|pec) < 400, H6)
intrinsic Bakry-Emery criterion

oo and H6')2° hold and the matriz © satisfies the non-

NIBEC) 3\ > 0, Yz € RY, O(z) > \a(x),
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then Yt > 0, Iy (pt|poe) < e M Iy (po|pso) and the non-increasing function t — Hyr(ps|poo) also
converges at exponential rate 2\ to its limit as t — oo.

Remark 3.5 o The matriz © and therefore our Bakry-Emery criterion are non-intrinsic in
the sense that they cannot in general be written in terms of the diffusion matriz a only
without making explicit use of o. This is because we have got rid of the nonnegative term
tr(AsT') which appears in the first equation in Proposition 3.2 and involves the non-intrisic
term I'1q.

o In case a = 2vly and b= —(VV + F) with F such that V.(e"V/VF) = 0, then peo o< e~ V7",
b=—b+20VInps = —VV +F and © = v(2V?V —VF —VF*). For the canonical choice
o = 2vly, condition NIBEC) therefore writes IX > 0, Vz € RY, V2V (z) — VLV () >
Ay which is exactly condition (A2) in the introduction of [2], page 158.

The proof of (3.2) is postponed to Appendix B.2. Let us deduce the last assertion of Theorem
3.4. Reverting time in (3.2) and using NIBEC), one obtains that for r» > 0,

d
%IU(pT’poo) < _QAIU(pr‘poo)-

Hence Vr >t > 0, Iy (py]poo) < e 227 Ity (pt|poo). Since by Theorem 2.4, one has d%HU(pApOO) =
—Iy(pr|pso), one deduces that

(pt‘poo) < 672>\tIU(pO’poo)

2\ - 2\ (3:3)

o0
_ I
0 < Hy(pelpoo) — lim Hy (pr|poo) =/ Iy (prlpoo)dt < =2
t

We deduce

Theorem 3.6 Assume H4), H5),. ., H6);> H6')>°, HT) and HT'), that the matriz ©(x) is
Poo(x)dx — a.e. positive semidefinite, that the diffusion matriz a is locally uniformly strictly
positive definite and that Hy (ps|pso) < +00 for some s > 0. Then Hy (pt|peo) converges to 0 as

t — oo. Moreover, under NIBEC), fort > s, one has the convex Sobolev inequality

1
Hy (pelpeo) < o3 1u (pelpoo), (3.4)
and V't > s, Hy(pt|pso) < e_QA(t_S)HU(ps|pOO). (3.5)

Proof . Reverting time in (3.2), we obtain that ¢ — Iy (ppso) is non-increasing. When
Hy (ps|poo) is finite for some s > 0, writing (2.9) on the interval [s, T in place of [0, T] with arbi-
trarily large T', we deduce that Iy (pt|pso) is finite on (s, +00) and tends to 0 as t — oco. When a
is locally uniformly strictly positive definite, the beginning of the proof of Theorem 2.5 (before
Part(a)) [2], ensures that p; tends to ps in L'(R?). As a consequence, in the notations of Proposi-

tion 1.1, E %(X?) — 1] tends to 0 as t — oo and therefore the a.s. limit E (%(Xt@) Ns>0 .7-"8>
of %(X?) is equal to 1. By Corollary 1.2, one concludes that Hy (pt|poo) tends to U(1) = 0.

Under NIBEC), for t > s, Iy(pt|psc) < 400 and reasoning like in the derivation of (3.3), one
obtains (3.4). This implies that

d
%HU(pt’poo) = —Iy(ptlpeo) < =2 Hy (pt|poo)

from which the last assertion follows readily. |
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Remark 3.7 In view of Corollary 1.2, Proposition 1.8 and Remark 1.4, the local uniform strict
positive definiteness assumption on the diffusion matriz a may be replaced by some hypoellipticity
assumption to ensure that Hy(p|pso) tends to 0 as t — oo at exponential rate 2\ as soon as
Hy(pslpso) is finite for some s > 0. By the last step of the proof of Theorem 3.6, this implies
(3.4) and (3.5) under NIBEC).

4 Examples

Consider the reversible diffusion process in R? with coefficients given for each (z1,22) € R? by
a(xy,x2) = Iz, and b(xy,x9) = —VV (21, 229),
where V is the globally C? convex potential

V(.%'l,.%'z) = ’1‘1’2 + ’1‘1 — .%'2‘2+a + \x2]2+0‘

2V

for some a € (0,1). The invariant measure is po, ox e™=", and we have

OV =2z, + (2 + a)sign(x) — x9)|x1 — 29| T
RV =(2+ a)sign(xg)]m\Ha + (2 + a)sign(zg — z1)|x2 — xl\Ho‘

and
S 0 e 1 1
Vs ( 0 2+a)l+a)sle ) TETOEFmmn )
The drift b = —VV is locally Lipschitz continuous. Moreover, (z1,22)VV (z1,22) > 0 and

0ik VO,V (x1,x2)
V(z1,x2)

VOirVOiV(z1,22) < C\/1+ |z22* + |21 — 32|2* 50 that im SUp| (3, 2|00
0. Last AV (z1,29) < C(1 + |z2|* + |21 — x2|*) whereas
’vv‘z(xh .%'2) 2(2‘.%'2‘ + (2 + O‘)’xl - 1’2’1+a)2lsign(azg);ésign(xg—xl)
+ (2 + a)2(‘x2’1+a + ’1‘1 - 1’2‘1+a)2lsign(mg):sign(mgfx1)
AV

since sign(zq) # sign(ze—xz1) iff x1 > 29 > 0or z; < x5 < 0. Therefore Hm SUP| (7, 20)| o0 oV (x1,22) =
0 and, by Remark 2.5 b), H1)" is satisfied.

The classic Bakry-Emery criterion fails since V2V (0,0) is singular but a logarithmic Sobolev
inequality can be obtained by the perturbative argument of Holley and Stroock [12]. The
potential V' is also a particular case of the examples considered by Arnold, Carlen and Ju in the
Section 3 of [2]. We notice that in order to check that p., satisfies the convex Sobolev inequality
(3.4), they first modify the Fokker-Planck equation by adding a non-symmetric drift term F as
described in Remark 3.5 ii) above. Exponential convergence to 0 of Hyr(pi|pso) for the solution
p¢ of the original Fokker-Planck equation is only deduced in a second step.

It is nevertheless of interest to see how our non-intrisic Bakry Emery criterion allows us to prove
directly that p. satisfies the convex Sobolev inequality (3.4) and that Hy(p¢|pso) converges
exponentially to 0. In contrast to [2] we modify the stochastic differential equation associated
with the diffusion processes, by changing the square root ¢ of the diffusion matrix, but not the
law of its solution or the associated Foker-Planck equation. We consider

_ cos¢p sing
7= —sing cos ¢
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for a function ¢ : R? — R? of class C2 to be chosen later. We obtain after some computations
1 1 (820)*  —01¢029 Orpp ~ L2foud
0=VV--|V 21--( + 12 3
4‘ (b’ 2 4\ —0,002¢ (81¢)2 322¢2311¢ —d12¢

N 28100,V POV — DoV
10OV — DaddsV 289000,V

We now consider a parameter ¢ > 0 which will be chosen small and a C? function ¢ : R — R
such that ¢(s) = s if [s| <1 and ¢(s) = 0 if |s| > 2. Then, we define

G(x1,22) = —epe(x1)pe(w2), (21,22) € R?
where . (s) = ep(s/e). Notice that

1 if |s] <e,
pe=0(c), ¢l =0(1/e), and g.=q O(1) ife<|s|<2e,
0 if]s| > 2.
Then, defining B, := {(x1,72) € R?s.t. |71| V |z2| < €} and C. := Bay.\B:, we have

O(e?) if (z1,22) € B,
N ER e b
) <

—& if (.%'1,.%'2) S B57
(912¢($1,$2) = 0(6) if ($1,$2) S Ce,
0 if (z1,292) € BS,_,
1 0 if (1‘1,1‘2) € B,
5(311¢($1,$2) — Oap(x1,22)) = Ofe) if (w1,22) € Cg,
0 if (1‘1,1‘2) c BSE,
and 01V = O(g), 0,V = O(¢!+?) on By.. It follows that

@:V2v+<_08 2>+O(53)2<265 g>+0(a3) on B..

Next, the smallest eigenvalue of V2V (21, x2), is given by

v— ::1—{—/€1+/{2/2—\/1—|—/£%—/£2+/<%/421—|—/@2/2—\/(m2/2—1)2:/€2/\2 (4.1)

with k1 = K1 (21, 22) = (24 a)(14+a)|r; —x2|* and ke = ka(x1,22) == (2+a)(1+a)|z2|*. Since
Yo = K1+ kg + O(k? + K3) as k2 + k3 — 0 and |z2|% + |11 — 22]* > (|w2] + |21 — 22])* > |21]%,
one deduces that on C,

O =VV4+0() > 2+ a)(1 + a)e*Ly + o(e%).
Last, by (4.1), inf(4, zp)eps 7— = (2 + @)(1 + @)(26)%) A2 > 0. One concludes that for ¢ small
enough NIBEC) holds.

We next study a related second example of application of our criterion, where V2V is singular
on a ball with positive radius. Once again, the perturbative argument of Holley Stroock [12]
also ensures that a logarithmic Sobolev inequality holds for this choice of potential.
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Let v be a convex C? function which vanishes on [—%, 1] and such that v = 2 on (—o0, 1] U
[5,+00). We set ve(s) = e?v (£) and Vi(z1,22) = 2} 4 ve(2) + ve(x1 — 2). For € < 1, let ¢,

be a C? function such that
s when [s| < e
805(5) =

0 when [s| > 1

and such that =5 < ¢ <1, |@.| < 2¢ and |¢!| < C where C is a constant not depending on
e. We set ¢(m1,x2) = —- (1)@ (22) so that —1 < d1a¢(21,22) < £= with the first inequality
being an equality on B.. One has |022¢ — 011¢| < 4Ce and |V¢| = O(e). As a consequence,
O = O + O(e) where

O — ( 2+ vl (w1 — x2) + O129(1, 72) —v!(z1 — x9) >
—vl(z1 — z2) vg (w2) + v (21 — 22) — O12¢(71, 72)
On B., 012¢(z1,12) = —1 and © > I,. When |z2| > 5, then v?(x2) = 2 so that 6 > (2-1)A
( - —> Iy. When |z3| < § and |z1] > € then |z, — m2] > § so that v/(z1 — 22) = 2 and

. P _ 1
0z ( 4+—212¢ 2 — 6212¢ ) ( V5420120 - (812¢)2> Iz 2 (3 AT _€e> L2

We conclude that
YA e (0,3 — \/g), for € > 0 and small enough ,Vz € R?, O(z) > Ao.

A Proofs of the main results of Section 2

A.1 Proof of Lemma 2.3
The proof of part a) relies on the following technical result:

Lemma A.1 Assume that H1) , H2)p and H3)p hold.

i) For each i =1...,d and a.e. t € (0,T], the distribution [a;;(t,-)0jps] = 0j(ai;(t, )pt) —
p0;aij(t,") is a function in L} (dx) and, as a Radon measure in [0,T] x R%, one has
[aij(t,-)0jpe)(x)dx dt < py(x)dx dt. A version of the Radon-Nikodyn density (measurable
in (t,x)) is given by [a;;(t,-)0;jp](x)/pe(z). Moreover, there exists a measurable function
(t,x) — KP(t,x) € R? such that for eachi=1...,d

[a;ij(t,-)0jpe)(x)/pe(x) = aie(t, ) KP(t, ), pe(x)dz dt a.e.
where a;e denotes the row vector (a, ..., a;q).
i) If moreover H2)g, H3)g and Py < Qo hold, one has [a;j(t,-)0;p](x)dx dt < q(z)dx dt

and [ai;(t,)0;pe)(x)/q:(x) is a (measurable in (t,x)) version of the Radon-Nikodyn deriva-
tive. Furthermore, it holds pr—¢(x)dx dt (but not necessarily qr—(x)dz dt) a.e. that

b (t,x) = B2 (8, ) =@ (¢, )0pr—) (@) [pr—i(2) — (@i (t, ) qr—) () /ar ()
=a;a(t,2)(KP(T — t,2) — KT — t,x)),

and qr—¢(x)dx dt (and thus pr—(z)dz dt) a.e. that

]Lt(x)_]‘: z) — b2 (t,x ZpiT_t(x)d- WKP(T —t.z2) — KYT — t.x
qT_t(x)(b, (t,z) — b7 (t,z)) (@ wo(t, ) (KP(T — t,2) — KT — t,)).
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Proof . The Lipschitz character of a (following from H1)) ensures that a has a.e. defined
spatial derivatives of order 1 in L$° ([0,7] x RY) and thus that the distribution a;;(t,)d;p; as
defined is a function in L} ([0, 7] x R?) under H3)p. This implies, by Lemma A.2 in [17] (see
also Lemma A.2 in [11]), that a;;(t,2)0;p:(x) vanishes a.e. on {x : p;(x) = 0}. This fact easily
yields the remaining assertions, except for the existence of the functions K? or K9, which we

establish in what follows.

We will on one hand use the fact, asserted in the proof of Lemma A.2 in [17], that for a.e.
t > 0 and each bounded open set O, a;;(t,z)9;p:(z) is the o(L1(0), L®(0))-weak limit of
some subsequence of a;;(t,z)0;[pn *p¢](x), for compactly supported regularizing kernels p,(x) =
nep(nz). Tt is indeed shown in Lemma A.1 in [11] that for a suitable bounded sequence
an >0, a; x| [Vpu(z)| is again a regularizing kernel. The local Lipschitz character of a then
yields the domination Vo € O, |a;;(t,2)0;[pn * pe)(z)| < |pn * 9;(aij(t, )pt)(z)] + Cayt [ |z —
y| |Vpn(z — y)|p:(y)dy, the right-hand-side being, by the previous, an L!(O)-converging se-
quence. Weak compactness is then provided by the Dunford-Pettis criterion, and the limit is
identified integrating by parts against smooth test functions compactly supported in O. On
the other hand, we will use the fact that diagonalizing the symmetric positive semidefinite ma-
trix (ai;(t,x)) = [u1(t, x), ..., uq(t, 2)|A(t, x)[ur (t, ), ..., uq(t,z)]* provides orthonormal vectors
(u;(t, ), and the corresponding eigenvalues and diagonal components (\;(¢, )L, of A(t,z),
that are measurable as functions of (¢, x).

We take O as before and a;;(t, z)0;[pn * p](x) to be the subsequence described above. Defining

the vectorial functions w(™ := [uy,...,ug]*V[p, * p] and vy = sign(u}[aVp|)ug, k = 1,...,d,

we have

/ |vp[aVp]| = lim vi[aVpnxp]] = lim Akw,gn)sign(uZ[ant]) =0,
ON{A,=0} =00 JOn{A,=0} =0 JOon{\,=0}

(n)
J
and a.e. « € R, the vector [a(t,z)Vp;(z)] belongs to the linear space ((u;(t, T))im1, di s (1,2)£0) -

since aV|py, * py] = 2?21 Ajw;: " u; by the spectral decomposition of a. Consequently, for each ¢

Denote now by w = (wj);lzl = (u;ant)?zl the coordinates of aVp,; w.r.t. the orthogonal basis
(uj(t,x))j=1, 4, S0 that w is a measurable function of (¢,z). If we moreover denote by A the
diagonal matrix with diagonal coefficients )\;11 A#£0,J = 1,...,d, and set v := [ug, ..., uq)Aw,
then

av = [ug,. .., ug)Afu, ..., ug) [ut, ..., ug)Aw = [ug,. .., ug) AAw = [uq, ... uglw

since w = (wlejﬂ))?:l. That is, (t,x) — v(t,r) € R? is a measurable function such that for
almost every t € [0,7] and each i, a;e(t,z)v(t,x) = [a;;0;pi(x)], dz a.e. Finally, KP(t,x) :=
v(t, z)/pt(2)1p,(x)>0 has the required properties. ||

We can now take VlIn p—z(:n) to be an arbitrary representant of the equivalence class of the

function KP(t,z) — K9(t,z) under the relation f(t,z) — g(t,x) € Ker(a(t,z)), pi(x)dz dt a.e.
The identity in Lemma 2.3 a) is then satisfied by construction.

The proof of part b) of Lemma 2.3 relies first on a martingale representation property ensured
by the extremality assumption:

Lemma A.2 Assume that H1), H2)g and H3)g hold. For eachi=1,...,d,

t
M= Yt’—YOZ—/ b2(s,Ys)ds, t € [0,T)
0
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is a continuous local martingale w/r to QT and (G;), and (M? M), = gdij(s,Y;)ds for all

i,5=1,...,d. Moreover, if QT is an extremal solution to the martingale problem (MP)q, then
for any martingale (Ni)icpor) w/r to Q" and (G¢) such that Ny = 0, there exist predictable

processes (hg)te[QT},j:Lmd with Zgjzl fOT hlaj(s, Yy)hids < 0o, QT a.s., and such that (fg h -

dM, = 2?21 fg hngg)te[O’T} is a modification of (Nt)te[o,T]- In particular, (Nt)te[o,T} has a
continuous modification.

Proof . Standard localization arguments show that Mtf in (MP)q is a continuous local mar-
tingale for any f € C? (see e.g. Proposition 2.2 in Ch. VII of [19], its proof for determin-
istic initial condition being also valid in the general case). Moreover, since M} = Mtf for
f(z) = 2, by Proposition 2.4 , Ch. VII of [19] we get (M’ MJ), = fot a(s,Y;)ds. The
measure Q7 is therefore a solution to the Problem (12.9) in Jacod [14] in the filtered space
(C ([0, T], R%), (gt)te[O,T]), with data given by Go and (Y).[0,7], and characteristics respectively
corresponding to: Q7 as the initial law, the d—dimensional process (B* = [;b(s,Y;)ds)L,, the
matrix process (CV = [ a" (s, Ys)ds)gj:1 and the trivial random measure process on R® given
by p¢ = 0. The extremality assumption together with Theorem 12.21 in [14] and the continuity
of the canonical process under Q7 imply that any L?(QT)—bounded (G;)—martingale is the the
L?(QT) limit of linear combinations of stochastic integrals with respect to M{i = 1,...,d (see
also Proposition 12.10 in [14]). The statement follows by localization arguments.

Part b) of Lemma 2.3 is contained in parts i) and ii) of the next result. For completeness, its
part iii) additionally gives the exponential form of (D¢).c(o,7] defined in (2.3). By convenience,
the convention inf() = 400 is adopted and the filtration (Gy)sejo,7] is extended to the whole
interval [0, 00) by putting G; = Gr for all ¢ € [T, 00).

Lemma A.3 Assume that H1), H2)g, H3)g and H3)p hold together. Suppose moreover
that Py < Qo and that QT is an extremal solution to the martingale problem (MP)g. Re-

call that (t,z) — V[2](z) is q(z)dz dt a.e. defined in [0,T] x RY — R? by V [Z—z] () =
2 (5)V [m qu] (x).

i) With R the (G;)-stopping time R := inf{s € [0,T] : Ds = 0}, we have QT —a.s. that

t *
vie ., | (v [p“] m)) a(5, V)V [p“} (Yo)loer ds < oo, and
0 qr—s qT—s

vt € [0, R), /Ot (v [m Z} (YS)>* a(s,Yy)V [m Z} (Y,)ds < 0o on {R > 0}.

ii) The process (Dy)icpo,r] has a continuous version, denoted in the same way, such that

t
QT a.s, ¥t € [0,T), Dy :ZE(YE)) +/ \Y [pTS} (Yo)ls<r - dM;
qr 0 qr—s

qr qr—s aT—s

and (D) = [ t (v]2=] <Ys>>* als Y0V P22 (e ds

4T —s 4T —s

=0T vy + tv PT=s | (v)1,» -dM,
0 0 s {b(Ys)>0} S
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iii) Finally, if we define the (Gi)-stopping times 7° := 0 - 1p,—g + 00 - 1p,>0 and

7= inf {t €1[0,7] /Ot <v [m ]ﬁ] (y;)>*a(s,y;)v [m ]ﬁ} (Y,)ds = oo} ,

4T —s 4T —s

then QT —a.s. R=1AT°, and Vt € [0,T],

d
Dy =1p<ry de(Yo)X
t _ 1 t _ * _
exp{/ v [mpT ] (Y,)-dM,—~ (v [mpT } (Y8)> a(s,Y,)V [mpT } (Ys)ds}.
0 47 —s 2 0 4T —s 4T —s

In particular, on {R > 0} the second integral in i) is a.s. divergent att = R.

Proof . By Lemma A.2, the QT-martingale (D¢)tefo,r] admits the continuous version Dy +
2?21 fg h%dMj3 still denoted by D; for simplicity. The martingale representation property and
standard properties of stochastic integrals moreover imply that Dy is determined by the pro-
cesses (D, Mi = fo a;j(t, Y})hjdt i = 1,...,d. Consequently, h; can be replaced (leaving
D, unchanged) by any predictable process kt such that for each i, Jo2 h] 105 (t,Y)dt =
Jo aij(t Ykl dt QT a.s. (the fact that fo kidij(s (s,Yo)klds = fo ” 1 héazj(s,Yg)hst < oo QT
a.s. follows then immediately). Furthermore, since D; = Dysgr by standard properties of nonneg-
ative continuous martingales, we may and shall assume that Q7 a.s. hy = hylicr = byl D,>0 for
all t € [0, T]. Let us also notice that, by Fubini’s Theorem, it Q7 —a.s. holds that Dy = 2 o (Ys)
(and then 1ip. ) = l{z;f(Ys)>0}) for a.e. s €[0,T].

Now, by our assumptions and Theorem 2.2 a), PT <« QT are probability measures respec-
tively solving the martingale problems (MP)p and (MP)g. The processes [;bF (t,Y;)dt and
fo bQ t,Yy) dt—l—fo (Dy) 1h]d(M’,M]) then are P — indistinguishable (see e.g. Proposition 12.18

v) in [ 4]). Using these facts, the expression for (M*, M”7) in Lemma A.2 and part ii) of Lemma
A.1 we deduce first that, PT—a.s.,

b (1,Y,) — 191, Y;) = iy (1, Yy) (hi o m)) — (6, V) (KP(T — £, Y1) — KT — 1,Y)) (A.2)
T—t

for a.e. t € [0,7] and each ¢. By part ii) of Lemma A.1 we then also get

/' a1, Yo)hidt = / G (B YD) (KP(T — £,Y) — KT — 1, v;)) 2=t

dt, i=1,....d,
0 0 qr—+(Y3)

PT—a.s., and then QT —a.s. because of our assumption on h. From these identities and

. . . _ Pr—t —
our previous discussion we deduce the that we can choose h; = V= ()1 {Z:: )50} =
VZ? £(Y1)1{g>¢y- This proves part ii). The first property of the process VZ??(Y}) in i) is

thus consequence of the general properties of h in the representation formula for D;. The second
assertion in i) easily follows from the first one, taking into account the definitions of V%(Y})

and VIn {=*(Y;) and the properties of D;.

To establish iii), we again use the extremality of Q7 in order to apply Theorem 12.48 in [14].
Thanks to part ii) of Lemma A.1 and equation (A.2), the objects z, K, B and T,, in (12.32),
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(12.35) and (12.42) of [14] alluded in that theorem, respectively correspond in our setting to
£(Yo), VIn [Z%} (Y;), the process A; == [} <V [ln pT’S} (Y8)> a(s,Ys)V [ln Z;—:j (Ys)ds and

ar—s
the stopping time 7, := inf {t € [0,7] : A; > n}. This and Lemma 12.36 d) in [14], yield the fact
that Dy equals (A.1), QT a.s in the set Upen{t € [0,7] : t < 7,}. It is also established therein
that 7, /7 QT as., impling that the latter random set equals the interval [0,7) N [0, 7.
Moreover, on this interval, the integrals which appear in the exponential factor in (A.1) are

finite. Therefore, either 7° = 0 and then R =0, or 7° = o0 and then R > 7.

By Theorem 12.48 in [14] as well, we have D; = liminf, . D, for t in [1,7], QT a.s. Thus,
t + Dy is constant in [r,7], QT a.s.. By Theorem 12.39 in [14] we have PT (7 < co) = 0. Since
PT(r <o) =Pl (1 <T) = ET(l{TST}DT), the a.s. constancy of ¢ — D; on [r,T] ensures that
QT a.s. Dy =0 for all ¢t € [7,T], when the latter interval is non empty. As a consequence Q7
a.s., R < 7 so that R =7 A 7°. This completes the proof. |

Remark A.4 We notice from the proof of Lemma A.3 that the function V%(m) therein can be
replaced by any representant of the equivalence class of the function L (z) (KP(t, z) — K(t,z))
under the relation f(t,z) — g(t,z) € Ker(a(t,z)), q(z)dz dt a.e.. If p; and q; are of class C*
and q; does not vanish on R%, the true gradient V% s equal to % <1pt>0% - %) (as the
gradient of non-negative function vanishes at zeros of that function) and is such a representant.

A.2 Proof of Theorem 2.4

Since by Lemma 2.3, (D¢);c[o,7) is a continuous non-negative QT-martingale and U’ is locally
bounded on (0, +00), t f(f U (Ds)}2 d(D) is finite and continuous on [0,7] when R > T and
finite and continuous on [0, R) otherwise. In the latter case, fOR 12 (Ds)}2 d(D)s makes sense

but is possibly infinite. Define for any positive integer n the stopping time

n sl

R, := inf{t €[0,TAR]:D; < Lo /Ot [U’_(DS)]Qd(D>S > n}

For all ¢ € [0,T], [ [U(D,)]?

R asn — oco.

d(D)s < n and E ( Jiintin UL(DS)dDS> — 0. Moreover R, /
Let t € [0,7]. By Tanaka’s formula,

t/\Rn 1
U(Dyar,) =U(Dy) + / UL(Ds)st+§ /( | inr, (D)U"(dr). (A.3)
0 0,400

The assumption that Hy(Fy|Qo) < oo and Remark 2.1 a) imply that (U(Ds))sepo,7] is & uni-
formly integrable Q”-submartingale. Since the Q”-expectation of the stochastic integral is zero,
one deduces

&7 (U(Dinr,)) = ET(U(Do)) + 3E7 ( / :ARH<D>U”<dr>> .
(0

,+00)

When n — oo, since U is continuous on (0, +00) by convexity, U(D;‘F/\Rn) converges to U(Diar)+
AU(0)1go<p<sy = U(Dy) + AU(0)1{o<p<sy and by uniform integrability, ET(U(Ding, )) con-
verges to BT (U(Dy)) + AU(0)QT(0 < R < t). Dealing with the expectation of the integral in
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the right-hand-side by monotone convergence, one obtains

ET(U(Dy)) = E"(U(Dyo)) — AU(0)Q" (0 < R <t) + %ET ( /( :AR<D>U”<dr>> :
0

7+w)

Since according to Lemma 2.3 b), D is equal to zero on [R,T], one can replace t A R by t
in the last expectation. Replacing ¢ by T' — ¢ in this equation, one gets (2.8). Moreover Q7
a.s., f(07+oo) L7(D)U"(dr) is the finite limit of the integral with respect to U”(dr) in the right-
hand-side of (A.3) as n — oo. Since the left-hand-side converges to U(D;) + AU(0)1{0<r<¢}
we deduce that the stochastic integral in the right-hand-side also has a finite limit. Hence
fg/\R [U"(Dy))? d(D)g < +00, g/\R U'(Ds)dD4 makes sense and (2.5) holds. When U is continu-
ous on [0, +00) and C? on (0, +0c0), (2.6) follows by the occupation times formula and Lemma

2.3 b) and (2.8) written for t = 0 combined with the same arguments imply that
Hy (Po|Qo) =Hu (Pr|Qr)
L7 T " Pr—s o Pr—s
+ §E U'(Ds)lgs<ry | V (Ys) | a(s,Yy)V |——| (Ys)ds ) .

0 qr—s qT—s

Since Y, admits the density ¢r_s and for almost all s € [0,7T), Ds = Z;—::(YS) and {R > s} =

{ziiz (Ys) > 0}, by changing variables s — T — s we have established (2.9).

A.3 Proof of Corollary 2.7

We notice first that

e 0.0, 8 [ o e (v 2] 00) a6 row [ s < (2

Indeed, for 6 € (0,1), we can easily construct a C? convex function U on R such that Vr €
R, 0<U(r)<|r—1land Vr € [1 — 6,1+ 6], U"(r) > « for some a > 0, so that the integral in
(A.4) is bounded thanks to (2.9) by éHU(POIQO) < L|Py — Qo||Tv. For r € R, since

t
£i(0) =2 (0= = =) = [ 1p,20aD.).
0
. 1/2
by Doob’s inequality we obtain |ET (LI (D)—L{ (D))] < 4|r—1|+2 (ET JE e DSSTvl}d<D>S)

Hence Lemma 2.3 b) and (A.4) imply that r +— ET(L7(D)) is continuous (and finite) at r = 1.
With the occupation times formula, one deduces that

1 1+e
oRT (L}(D)) = lim = ET(L}(D))dr
e—0 € 1—e
. 1 ¢ PT—s * PT—s
—limE"= [ 1,p._ v Y,) ) a(s,Y,)V |=—=| (Y,)d
B [ 1n, e (V222 00)) a2 (ijas

t
:lim/ 1/ A\ [&} (x)a(s,z)V [st] (x)gr—s(x)dxds.
e70Jo € ST (@) -1]<e} aT-s qar—s

Define now the function ¢.(r) := 1_. 4(r)re ™! 4 1(z 00)(r) = 1(_co,—)(r). Since the function

€ — fot f{|PT—s ()—1]<e} gr—s(z)dzds is increasing and right continuous, we can chose g N\, 0 a
9T —s -
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sequence with fg fHZ?S (2)1|=2; ) 17—s(x)dzds = 0 so that

9ET(LY(D)) = lim / /R dv*[ <pT 8—1>}($)(L(5,$)V {pT—S] (2)qr_s(z)dads

k—o0 T—s qr—s

~ — lim. / /R e, (pT—_ - 1> ()V - [d(s,x)v [X(Zj (m)qu(x)] dwds

_ _/Ot /Rdé’;';n (qi_: — 1> (2)V - [d(s,x)v [Z;_j (m)qu(g;)] dads

where the last equality is a consequence of the integrability assumption made on V- { (s,z)V [’)T—*S} (x)qr— S(m)} .

qT—s

To justify the integration by parts at the second equality, we introduce functions ¢,, € Cgo(Rd)
such that 1p(g,,) < én < 1p2r,) and 0 < [Vo,| < 2/r,, and functions ¢¢, m : R — R of
class C1 such that ¢z, m = @, [@epm| < l@e,| on Rand @ . — @l [l .| < gl | on
R\{—¢g, +cr} as m — oo, and using the assumptions, (A.4) and the choice of ¢, we take the
limits n — oo then m — oo by dominated convergence in the equality

/Rd gp’%m <];T—s _ 1> (x)V* [pT_S] (x)a(T — s,2)V [pT_S (2)q7—s () (z)da

—8 qT—s qTr—>s |

== [ o (2= 1) @9 - (a0 = 5,209 [22] () ) o)

- [ e (B2 1) @F @l = 5,09 | P22 0y (o

L dT—s

A.4 Proof of Proposition 2.9

By Theorem 1.3.8 [15], if (X});>0 is Feller the tail sigma field is trivial if | P, —Q¢|l7v — 0 as t —
oo for all pair of initial laws P; and Q. Since ||P; — Qt|lrv < [|Pr — pood||7v + ||[Pocd® — Q|| TV
and, by Theorem 2.1.3 p.162 [4], the local uniform ellipticity assumption ensures that P, admits
a density with respect to the Lebesgue measure for any positive t, it is enough to show that
(X¢)e>0 is Feller and that |P; — poodz||7y — 0 as t — oo when Py admits a density py with
respect to the Lebesgue measure.

We first check the convergence to the invariant density in total variation norm. For k& € N*
consider the probability density

PE(2) = (po(2) A kpoo(2)) + Pool) / (po(y) — kpoo(y))dy.

Po>kpoo

Since poo is positive, on one hand we have limy_ o |[po — pf|l1 = 0 and p§ < (k + 1)pso. On the
other hand, the total variation distance between the marginal laws at time ¢ of the solutions to
(0.1) started from the initial densities pg and pk is not larger than ||pg — p&||;. Therefore we can
moreover restrict ourselves to the case when 1% is bounded. Then,

1/2

/Rd (%(m) — 1>2poo(36)dm < (/Rd (%(m) — 1>4poo(x)dx> < 400,

We set Qo = poodz. By Remarks 2.5 a) and 2.5 ¢), conditions H1) , H2)g, H3)g and H3)p
hold and for each T' > 0, Q7 is an extremal solution of the martingale problem (M P). Applying
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Theorem 2.4 respectively with U(r) = (r — 1)* and U(r) = (r — 1)?, one obtains that ¢
2
Jra (I%(x) - 1) Poo(z)dz is non-increasing and that

g () e [ (2] i<

(A.5)
Since a is locally uniformly elliptic, the proof of Lemma A.1 ensures that dt a.e., the gradient
Vp: (resp. Vpeo) of pr (resp. poo) in the sense of distributions is a locally integrable function

on R? that vanishes a.e. on {x : p;(x) = 0}. Moreover, one can choose therein KP(t,z) =
l{pt(l‘)>0}m( ) and K9(t,x) = vpoo (z). Then, in (A.5), V {%] = % — p—tpvp“’ is a.e. equal
to 0 when - is equal to 0 so that the restriction of the spatial integration to {-(z) > 0} can

be removed. Slnce Poo is assumed to be locally Lipschitz continuous and bounded away from 0,

the function — p is locally bounded with a locally bounded gradient in the sense of distributions

V_

equal to We deduce that the gradient V Pt of p; in the sense of distributions is equal

to %( T) — pth‘X’ and therefore to V { oo]-

From the finiteness of the time-integral in (A.5), we deduce the existence of a sequence ()
tending to +oo such that lim, fRd <V*%QV%) (2)poo(x)dx = 0. For A > 0, writing the

integral on R? as the sum of the integrals on the ball B(0, A) and its complementary B(0, A)°,
one has

/Rd (1%(9”) - 1>2poo(ac)dm

2
Ptn (0 _ fB(o,A)ptn(y)dy 2 o (fB(QA)(ptn —poo)(y)dy>
§/< ><p°°( ) fB(0A>p°°(y)dy> Pl JB(0,4) Poo(¥)dy

4 1/2
+ (/ <Iﬁ(x) — 1> poo(ac)dx/ poo(x)dac>
B(0,A)c \DPoo B(0,A)c

2
by doon 5@\ (e (2 0) - Dps()dy)
S/( )(poo( ) fB(O,A) dy ) Poolz)d + fB(07A)pOO(y)dy

) </Rd (%(x) B 1>4p°°(x)dm /B(O,A)cpoo(x)d$> 1/2.

2
Since < S0, G2 (Y) — 1)poo(y)dy> < Jra(E2 (W) = 1*poc(¥)dy [i50 4y Poc(y)dy, the sum of
the last two terms on the right-hand-side tends to 0 uniformly in n as A — oo. Using (2.10)
and denoting by Cy4 < 400 the constant of the Poincaré-Wirtinger inequality satisfied by the
Lebesgue measure on the ball B(0, A), one checks that the first term is smaller than

su 50
Cp—nB0A) Poo / <v*pﬁavpﬁ> (2)poo () duz
eainfp(g 4) P Poo  Poo

2
which tends to 0 as n — co. Hence lim, o [pa <zﬁ(x) - 1) Poo(z)dz = 0. Since ||p; — po||F <

Jga (%(m) - 1) Poo(x)dx where the right-hand-side is non-increasing with ¢, we conclude that

hmt—)oo Hpt - pooHl =0.
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It remains us to show that (X ):>0 is Feller. Using Itd’s calculus and Gronwall’s Lemma we check
under the assumptions on the coefficients that the solution X¥ of (0.1) starting from z € RY
satisfies E ((1+ |X7]?)™!) < C(1 + |z[*)~! for some C > 0. Then, for any continuous function
f:R? = R going to 0 at infinity the inequality

v (1+4%)
E(f(XP)] < ‘Slusa\f(y)\cm + \Srlﬁx’f(y)’

for all A > 0 (following from the previous estimate and Markov’s inequality) implies that
E(f(X})) — 0 when z — oo.

A.5 Sufficient conditions for superquadratic potentials to satisfy H1)”

Lemma A.5 Let b(z) = —VV(x) for a nonnegative C? potential V in R? satisfying (2.7),
and o be any globally Lipschitz continuous choice of the square root of the identity 1. Then,
condition H1)” holds for the diffusion process dXy = o(Xy)dW; — VV (Xy)dt.

Proof . Computing d|X;|?, one sees that the first condition in (2.7) prevents explosion for the

SDE which has locally Lipschitz coefficients. Since for ¢ > 0,
eV (X0) = geV(X0) <cV*V(Xt)a(Xt)th v g[AV +(c— Z)NV\Q](Xt)dt) ,

the second condition ensures that for ¢ small enough, E(eV (X)) < KR (V(X0)) for some
finite constant K (c) only depending on V" and ¢. The third assumption ensures the existence of

a finite constant K () only depending on % and V' such that

E (exp(4 /O ! 6,~kV6,~kV(Xt)dt)> < K(%)E <exp(% /O ' V(Xt)dt)>.

By Jensen’s inequality, one deduces that

T f( c T B
E <exp(4 / \/aikvaikth)dto < ;T ) / E(e?” X)dt < K(%)eK(C)T E (e (X0)y,
0 0

B Proofs of the main results of Section 3

B.1 Proof of Proposition 3.2

We will make use of the stochastic flow defined by the two-parameter process & (x) satisfying
g} (x) = o(&(2))dWE + bi(&(x))dt,  (t,z) € [0,T) xR%, i =1,...d, (B.1)

and {o(x) = =z, noting that &(Yp) = Yi. We shall also deal with the family of continuous
G — PL — local martingales (Dy(z) : t € [0,T]),cra defined by

dDy(x) = [odip] (¢, () AW} Do(%)=%(%)=ﬂo(%)- (B.2)
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According to Lemma 2.3, D;(Yp) is equal to the process Dy defined in (2.2). Writing Vp;(&:(z)) =
(Vi€(2)) " Ve[pi(&(2))] we remark that, thanks to the Ito product rule, dVp;(&(x)) can be
obtained with by computing d(V, & (z))~! and dV.[p:(&(x))], which is part of the content of
the two next Lemmas:

Lemma B.1 The process (t,z) = &(z) has a PL a.s. continuous version such that the mapping
x — &(z) is a global diffeomorphism of class CY for some o € (0,1) and every t € [0,T).
Moreover, we have

doj€i(x) = 0o (t, €u(x))0;€7 (x)AW] + Opbi(t, & (2))0;€f (x)dt,  (t,x) € 0,T) x R?  (B.3)
with 9;€}(x) = 8. Finally, writing V& (z) = (9;€4(x))ij, it holds that

d(VE(@)y' == (V&)1 [000i] (&(2)dW] — VE(2)); [00bi] (& (x))dt

(V@) [Om0ir Oromr) (Ex(2)) o) e o) gt Y

Proof . Under assumptions H4) and H5),,__, classic results by Kunita [15] (see Theorem 4.7.2)
imply the asserted regularity properties of the stochastic flow, as well as the IP’go a.s. existence
of the inverse matrix (V& (z))~! for all (t,x) € [0,T] x R%. Since the smooth map A ~ A™1,
defined on non singular d x d matrices, has first and second derivatives respectively given by the
linear and bilinear operators F' +— —A"'FA ' and (F,K) — AT'FAT'KA '+ A1 KA1 FA~!
(where F, K are generic square-matrices), we deduce that for A = (A4;5); j=1..d,

O(A™ D

14— O* (A
o = -A A, and

=1 4—1 g1 1 4—1 41
K 9450 A = AL A A T A AL A

km~* ns

for all k,1,i,5,m,n € {1,...,d}. Equation B.4 follows by applying It&’s formula to each of the
functions A — (A71)g and the semimartingales (9;&(z)), i,j =1...d.

Lemma B.2 The process Dy(z) has a modification still denoted Dy(z) such that PL a.s. the
function (t,x) = Dy(x) is continuous and x — Dy(x) is of class C' for each t. This modification
is indistinguishable from (py(&(z)) : (t,2) € [0,T) x R?) and we have

0k Dy () = Om [0ir0ip] (£, &(2)) 0" (x) AW = d [Omp(t, &1()) Ok ()] (B.5)

for all (t,z) € [0,T) x RY,

Proof . Thanks to the regularity of x +— &(x) established in Lemma B.1 and assumptions
H5),., and H6)L | the statements follow from Theorem 3.3.3 of Kunita [15] (see also Exercise
3.1.5 therein). [ ]

We can now proceed to prove Proposition 3.2. Evaluating expressions (B.4) and (B.5) in x = Y,
we obtain using It6’s product rule that

dOipe(Yz) = [0krOip) (¢, Y1) dAW] — [01yOkjpOiojr + OrpOibi] (t,Y1)dt

N ] (B.6)
= [O’kralkp] (t, Y})th — §8kjpalakj ~+ Ok pO; by, (t, Y})dt
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For the remaining of the proof, the argument (¢,Y;) will be omitted for notational simplicity.
By It6 ’s formula we get doy; = [0 Omoy] AW + [bm(?mali + %amkﬁmkali] dt. We then have

d [01;0,p) = 01;d0p + Oypdoy; + d(O1p, o1)
_ ~ 1 _
= Ok [01p0i] ok dW" + O1p | b Omo; + §amkamkali — 01 [0 Ok pO1ojr + Ok pOybi]
+ Ak Ok POmoi;

where we used in the stochastic integral the fact that 0;p0.,,0mor; + 010k Ol p = O1porrOkoy; +
01i0kr O p = Ok [O1po;] ok - 1t follows that

d[V*paVp| = d[o;0p o0y p]
= 2 o Oy po [01:01p] OprdW" + 2{ (01501 Pk OmT1: Ok ]
_ 1 _
+ 0Oy pOyp |:bmamali + §amkamk0'li:| — ay Oy p [0k Ok P10 jr + OrpOiby) }dt
+ app Ok, [01p01i) O [O pors] dt

On the other hand, using (B.2) at z = Y we have dUj/ (p) = U(gg) (P)OnyrOnp dW”—l—%Uy) (p)anjOnpd;p dt
which combined with the previous expression yields

= 1
d [U§ (p)V*paVp] :2U§I(P){ [01/:01 Pk O 01501k p) + 015 Op pOLp [bmammz + §amk3mk0u]
- au/al/p [O'krakjpal()'jr + 3kp315k] }dt + dM((S)

1 *
+ U5 (p)arw: Ok [O1pais) Opr [0y porsi] dt + §U§4) (p) [V*paVp|? dt

+ 2U<§3) (p)owiOy pOk [01;0,p] a;,0;pdt.
(B.7)

Equivalently,
* 1
d [U§ (p)V*paVp) :2U¢§,(P){al/[)alp [Z(akaljakmamo'l’j — 0kiOKO1jOmjOmoy;)

_ 1 B
+ bymOmay + §Jl’iamkamkali - akl’akbl]

1
2

+ [Ul’iamk — Ukiaml’] 8l/p({9m0'liaklp}dt + dM(é) + tT[AgP]dt.

B.2 Proof of Theorem 3.4

Let us check (3.2). Since U” is continuous and non increasing in (0,00) by Remark 3.1, one has
U (r) / U"(r) for each r > 0 as 6 — 0. It is therefore enough to obtain (the integrated version
of) inequality (3.2) with Uy instead of U”, as monotone convergence allows us to pass to the
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limit as § — 0 on both sides. For 0 < r <t < T we have by Proposition 3.2 that
[U5 (0)V*paV pl(t. Yz) — (U5 (0) V" paV pl(r, Yr)

t
> M( 5) + 2/ U' ) [ovitme — Oki@mir] Oy pOym01: 0k pds
T

1
+2/ Us'(p 51/P31P<— Ok 01j0kmOm0rj — OkiOk01i0miOmo;)
T

,,u

1 - _
+ 5 [bmama”/ + Ul/iamkamkali] — aml/ambl>d8. (B.8)

Since Oy pUS (p) [oriamk — Oki@mr] = 0 and

(UL (0)0r p [ovitmp — onitmpr] = US> (p)Okpdip [o1itmp — Opittmpr] = 0,
one has

1
U5 (p) [ovi@mk — Okiamy] Op pOmo1iOkip = p_ak (91p0w pUS (p) lovittmk — Okitlmir] OmOti Poo)
(0.0]

0,00 pUY
— %Mak ([amkori — Oki@my |Omo1ipss) - (B.9)

Setting

def 1 -
Y = (3k01jakmam0yj — 0kiOKO1jOmjOmor;) + 3 [bmOmauy + 01k Omio1s)

_ 1 1
— Q1 O by — p_ak [<§amkamau' - Ukiaml’amali> poo:|

o

we deduce that
(U5 (0)V*paV pl(t, Y2) — (U5 (p)V*paV pl(r, Yy

t t
. . 1
> NP — M9 2 / UY (p) S8 pdyp ds + 2 / — 0 (81p0 pUY () [ovi6tm

P - Ukiaml/] amali poo) ds.
Poo

(B.10)

Using (3.1) and the identity oy;0k 0y; = Oprax; — Ox 0ki0y; one can check that

1- 1 - - 1 1
O :§bk’ak’all’ + g(akl’akbl + agOkby) + Zak’kak’kall’ - Z(ak’kak’o'liako'l’i + 01Ok 0104 jOR 014

1 1
+ §Uki(8k’0'liak/l/ + O opiak) Ok In(pes) — §ak/kak/all/8k In(pso)

+ §8k [oki (O oriany + O oviar) — apkOk ay]
Zw + X
2
(B.11)

and therefore, the second integral on the right hand side of (B.10) rewrites as 2 f p)Ou Oy pdypds.

Now, the quadratic variation of M® is bounded above in [0,T) by a constant times
3 * 2 * * *
[ [0 P19 b0V (V) + (030) T (7 pa¥ )V (¥ paVi)] (¥2) .
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This fact and our assumptions imply that M? is a martingale in [0,T) for all 6 > 0 sufficiently
small. Indeed, we have from Remark 3.1 that Uy (r) < U"(5) AU"(r) and |U(§3) ()| < UG (S)| A
UG (r)| for all » > 0. Therefore (since U” > 0) we have UY(r) < (U"(r) A Dignsy<1 +
u’0)(U”(r)/U"(0)) A 1)1ynsys1 whence Ug'(r) < (U"(5) + )(U”(r) A1). As U® is non
decreasing and non positive, either [U®)(8)| # 0 for all § sufficiently small, in which case we
similarly get |U(§3) ()| < (US| + 1)(JUB(r)| A1), or otherwise Uég) identically vanishes for
all §. Assumption H6'),  and the previous then ensure that (M), has finite expectation for
tel0,T).

In order to conclude that inequality (3.2) holds for the function Uy , noting that Vp; vanishes on
{pt = 0}, it is enough to show that the last integral in (B.10) has (well defined) null expectation.
Using (B.9) and Assumption H6'), . we obtain (with the same control for U§ (r) as before) that

t
1

IET/
< Jr Poo

— 0% (81p0r pUS (p) [0vi@mk — Thimir] OO Poo) | (Ys)ds

t
— / /Rd |8lg (&P@upUé/(p) [Ul’iamk — Ukiaml’] amO'li poo) |d$d5 < 0
(B.12)

which shows that the expectation of the last term in (B.10) is well defined. Moreover, the
(everywhere defined) spatial divergence of g(s, ) := 01001 psU§ (ps) [01iGme — Teimir| Om0ii Poo
is L'(dz,R%) for a.e. s. For such s and ¢, € Cgo(]Rd) such that 0 < ¢, <1, 0 < |Vo,| <1,
¢n(xz) =1 for x € B(0,n) and ¢, (z) =0 for x € B(0,2n)¢, we have

0= [ V.(bu(@)g(s,x))dz = /R on@)V.g(s,2)dx + | Vou(w).g(s, x)dr.

R4 R4

Since by Lebesgue’s theorem, the second term of the right-hand-side tends to 0 as n — oo, the
limit [pq V.g(s,z)dz of the first term is equal to 0.

C Dissipation of the Fisher information : comparison with the
computations and results in [2]

In this section we compare our computations and results with those of [2].

The form of the term ¢r(AsI") in Proposition 3.2 is inspired from the term ¢r(XY) in [2] pp
163-164 where X = 2As. One has

* 1 *
T2 = (V7p a); 9j(oriOkp)ondip =5 (V" p a); [0;(0kidkp)oiidip + 9(91:01p)okiOkp)
1 % 1 * *
=5(V'p a);0; [Opandyp] = 5(V7p )V (V" paVp)
which, with % := (0jv;);,; denoting the Jacobian matrix of vector field v, equals

1 1
§(V*P a);0; [0k pari0;p) :i(V*P a);j (Orjp ax Oip + 0; [ag, Oip] Okp)

9(Vp) ,2aVp)”
ox or

and corresponds to 4Y 12 in [2] p. 164 (noting that in their notation, D(z) = a(x)/2). Similarly,
I'yo = 4Y 9. However I'y; cannot in general be identified with 4Y1;. For instance, in the case

aVp+ - V*

1
:§V*p a Vp
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of scalar diffusion D(z) = a(x)/2 = D(z)I; for some real valued function D, the term I'j;(z)
above when written in terms of D reads

1 1
§|VD|2|VP|2 + §(VD-VP)2 +4D0;D0;pdjp + 4D Y (9y5p)”
]

for the choice o(x) = \/2D(x)1,, whereas

n 1 1

AY1 =4 | D?) (9p)° + (Z - 5) (Vp-VD)?+2D3;Dd;pdijp — D(NVp- VD) Ap + 5|VD|2|V,0|2
]

Moreover, our term I'y; is non-intrinsic, in the sense that it cannot in general be written in

terms of the diffusion matrix a only (without making explicit use of o), contrary to the term

Y; in the matrix of [2].

We will next check that the criterion in [2] can also be derived from the computations in Propo-
sition 3.2 in the case a is non singular, which amounts to make an alternative choice in the
expression for d [Uf (p)V*paVp] of the quantities in the roles of the coefficient I'y; and of the
term #. This will also allow us to compare and combine both criteria.

Recall first that the matrix D(z) in [2] equals half of our matrix a(z), and notice that our
forward drift term writes in their notation as b = —DV¢ — DF + V.D where (V.D); = 9;D;;,
e™® = pPoo is the invariant density, and F' a is vector field satisfying V.(DFe~?) = 0. Thus,
b=aVinpse +V.a —b=-DV¢+DF 4 V.D.

The factor of Uy (p) in (B.7) takes the intrinsic form

gk’ [Ok1po1i Ok poys + Ok poiOp pOrr s + Oy pOk 01Ok poyrs + Oy pOk a1 Oy POy 011
+ 2070y pay O 01,0 p + O pOy pagk Ok k0101 — 2611 Oy POy Okt POt + by Oy Oy pOpr p — 2ayy Oy pOi pO1 by,
= apk [Ok1pOk1 pary + 20k pOp pOl ayy!|

1 _ _
+ §akk’alpal//)akk/all’ — ay Oy pOki pOL Gty + by Oy Oy p0Oy p — 2ayy: Oy pOy, pOy b

where to the second and third terms in the bracket on the lh.s., brought together, we have
added the first term after the bracket, and moreover the fourth term in the bracket on the lLh.s.
was added to the the second term outside the bracket. Hence, writing

Q1 := —ay Oy pOrp pOLakky + b Omaw O1pdy p — 2ay Oy p0y, pd; by,

1
Q2 := app [Ok1 POk payr + 20k pOy pOxrayy] + §akk’alpal’/06kk’all’a

and using the last expression above for I'15, we can write

1 1 R U// U(4)
La[020)v*pavp) = 2awt® + B0, 4 u)ar + Y 9 pavop ar
(3) *
U 0 0
Us_(r) V*p a (Vp) aVp+Vipa (aVp) Vp | dt.
2 ox Oz
Lo U 0) , U d(Vp) d(aVp)”
=—dM© + | 22 \V*paVpl* + 2L (Vi a aVp+V*pa————= Vp || dt
2 4 4 ox ox
U U U(3) *
+ |2 () Qi |dt+ |22 () Qo+ 2 () V*p a@(Vp) aVp+Vp aLan) Vp || dt.
2 2 4 ox oz

(C.1)
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The latter identity yields the expression for the dissipation of entropy dissipation computed
in [2]. Indeed, denoting respectively by Jy, Jo and J3 the expectations of the first, second
and third terms in square brackets in the right-hand side, we observe that J; is, up to time
reversal ¢ — T — t, exactly equal to the term R; on top of p. 162 in [2]. Starting from the
last expression of T3 p. 160 and the definition (2.23) of Ry and T} and replacing DF by its
expression b — 1(aV In(pso) + V.a) in our notations, one obtains that Ry + T3 + Ty is equal to

U// U// U//
/ — (S)leoo —/ [ 54(p) (0ip0;aikOrp + 26¢jpaik3kp)] X Oy(a1jPos) —/ 52(p) [@1;04j1pOk Paki] Poo
R4 R4 Rd

up to time reversal. The first term corresponds to J. Integrating by parts the second term to get
rid of the derivative w.r.t. the [-th coordinate in the second factor, one checks that its sum with
the last one is equal to J3. Hence, up to time reversal, we have J; +Jo+J3 = (}?1 +1T3) +(R2+T4)
which is the expression for the dissipation of entropy dissipation computed in [2] p. 160.

In order to recover the Bakry Emery criterion in [2], we rewrite Q1 + Q2 = K1(p) + Ka(p) where

_ - 1
K1(p) = bmOmay 01p0y p — 2ay Oy pOy pOyby, + §akk’alpal’foakk’all’

and
Ka(p) := agrOpip aw Oy p 4 244 O pOy pOyr gy — gy O Oy pOyr gy -
When a is non singular, introducing Gx(p) = Oy par O aji, and Hy;(p) = 0jay Oy p we can write
aV?p)? + 2H(p) aV?p — G(p)V?p]
)2+ H(p)aV?p + aH(p)*V?p — G(p)a~'aV?p]

1
=tr|(aV?p)* + 5 (H(p)aV?p + aH (p)"V?p — G(p)a™'aV?p)
(aV2pH (p) +aV?paH (p)*a™" = aVpG(p)a™")

where we have used the cyclicity of the trace and its invariance by transposition. Following [2],
we complete the trace of a squared sum of matrices to get

2

Ks(p) = tr |aV?p + %(H(p) +aH(p)'a™! = G(p)a™) —%tr [H(p) + aH(p)*a™! = G(p)a™]".

The finite variation part on the right hand side of the first line in (C.1) therefore rewrites

2

U0 16y 0) — S [11(p) + a0 — Glp)a™

2 4 )

U5 (p) 2 1 * —1 -1 ?
+ Ttr aV<p + 5(]‘[(,0) +aH(p)'a™ —G(p)a™ )| dt
(3) X (C.2)
U
+ 57('0) V*p a@(Vp) aVp+ V¥ a@(an) Vp | dt
2 Ox ox
(4)
U
‘ST('O) IV*paV p|? dt.

The sum of the second, third and fourth lines correspond to the matrix product XY in [2] and
is shown to be nonnegative in p. 164 therein. We can then check that for a smooth function
v: R? — R, the term (K (v) — +tr [H(v) + aH (v)*a™ — G(v)ail]Q) is twice the expression
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on the Lh.s. of the inequality (2.13) in p. 158 of [2] (with Vv corresponding to their vector
field “U”). Consequently, their Bakry Emery criterion (2.13) corresponds, in our notation, to
imposing the condition

I\ > 0 such that for all smooth function v : R — R and all x € R%:

%(Kl(v) - %tr [H(v) + aH(v)*a~" — Gw)a ']} (x) > AV aVo(z),

which implies exponential convergence at rate 2\ of the U—Fisher information and the U—
relative entropy.

We may combine this criterion with ours by introducing some C' function a : R? — [0,1]
and writing the finite variation part on the right hand side of the first line in (C.1) as (1 — «)
multiplied by the expression (C.2) plus %a multiplied by the finite variation part in the right
hand side of (B.8). Because of the integration by parts performed in the proof of Theorem 3.4,
the mixed criterion involves the derivatives of a. Let

1
Gﬁ/?:a@u'—'§3M1Q0mamk—-Umamﬂ]amUu%-buamk—-UmamﬂamUVJ-

This ultimate mixed criterion writes

I\ > 0 such that for all smooth function v : R — R and all x € R%:

Vu*0*Vou(z)+(1—a(z)) <%(K1 (v) — itr [H(v) + aH(v)*a ! — G(v)al]z)(m)> > AVv*aVu(zx)

and also implies exponential convergence at rate 2\ of the U—Fisher information and the U—
relative entropy.
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