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A trajectorial interpretation of the dissipations of entropy and

Fisher information for stochastic differential equations

J.Fontbona∗ B.Jourdain†

July 16, 2011

Abstract

We introduce and develop a pathwise description of the dissipation of general convex
entropies for continuous time Markov processes, based on simple backward martingales and
convergence theorems with respect to the tail sigma field. The entropy is in this setting
the expected value of a backward submartingale. In the case of (non necessarily reversible)
Markov diffusion processes, we use Girsanov theory to explicit its Doob-Meyer decomposi-
tion, thereby providing a stochastic analogue of the well known entropy dissipation formula,
valid for general convex entropies (including total variation). Under additional regularity
assumptions, and using Itô calculus and ideas of Arnold, Carlen and Ju [2], we obtain a new
Bakry Emery criterion which ensures exponential convergence of the entropy to 0. This cri-
terion is non-intrisic since it depends on the square root of the diffusion matrix, and cannot
be written only in terms of the diffusion matrix itself. Last, we provide an example where
the classic Bakry Emery criterion fails, but our non-intrisic criterion ensuring exponential
convergence to equilibrium applies without modifying the law of the diffusion process.

Introduction

We are interested in the long-time behaviour of solutions to the stochastic differential equation

dXt = σ(Xt)dWt + b(Xt)dt (0.1)

where b : Rd → Rd, σ : Rd → Rd⊗d′ and W = (Wt, t ≥ 0) is a standard Brownian motion in Rd′ .

We consider a convex function U : [0,∞) → R bounded from below and define the U−entropy
of a probability measure p in Rd with respect to a probability measure q by

HU (p|q) =
{

∫

Rd U
(

dp
dq (x)

)

dq(x) if p ≪ q

+∞ otherwise.

The particular cases U(x) = x ln(x)1x≥0+(+∞)1x<0 and U(x) = (x−1)2 respectively correspond
to the usual entropy and the χ2-distance. For U(x) = |x− 1|, HU (p|q) coincides with the total
variation distance but only when p ≪ q.
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The celebrated Bakry Emery curvature dimension criterion which involves the generator, the
carré du champs and the iterated carré du champs of a continuous-time Markov process is
a sufficient condition for the reversible measure of this Markov process to satisfy a Poincaré
inequality and a logarithmic Sobolev inequality. From these inequalities, one can respectively
deduce exponential convergence to 0 as t → ∞ of the chi-square distance or the relative entropy
between the marginal at time t of the process and its reversible measure. This criterion has been
generalized to entropy functions U more general than U(r) = (r − 1)2 and U(r) = r ln(r) (see
for instance [1]).

In general, even when the stochastic differential equation (0.1) admits an invariant probability
measure, this measure is not reversible. It is well known both from a probabilistic point of view
[7] and the point of view of partial differential equations [2] that the presence of a contribution
antisymmetric with respect to the invariant measure in the drift may accelerate convergence to
this invariant measure as t → ∞.

The primal goal of this work was to recover the results of [2] and [1] about the long-time behaviour
of U -entropy of the law of Xt with respect to the invariant measure by arguments based on Itô’s
stochastic calculus. To achieve this goal, we introduce and develop in the first section of the
paper a pathwise description of the dissipation of general convex entropies for continuous time
non-homogeneous Markov processes, based on simple backward martingales and convergence
theorems with respect to the tail sigma field. Given two different initial laws, the U -entropy
of the marginal at time t of the Markov process under the first initial law with respect to its
marginal at time t under the second initial law is the expected value of a backward submartingale.
This implies that this U -entropy is non-increasing with t and permits to characterize its limit as
t → ∞. To our knowledge, this simple result does not seem to have been used in the study of
the trend to equilibrium of Markov processes.

From the second section of the paper on, we only deal with Markov diffusions given by

dXt = b(t,Xt) + σ(t,Xt)dWt (0.2)

where b : R+×Rd → Rd, σ : R+×Rd → Rd⊗d′ . Under assumptions that guarantee that for both
initial laws, the time-reversed processes are still diffusions, we use Girsanov theory to explicit
the Doob-Meyer decomposition of the submartingale obtained in the first section. In this way,
we obtain a stochastic analogue of the well known entropy dissipation formula, valid for general
convex entropies (including total variation). Taking expectations in this formula, we recover the
well known fact that the U -entropy dissipation is equal to the U -Fisher information.

It should be noticed that the idea of considering a trajectorial interpretation of entropy to obtain
functional inequalities is not new, at least for reversible diffusions (see e.g. the work of Cattiaux
[3] whose results nevertheless are of quite different nature). However, even in the reversible case,
time reversal of a diffusion starting out of equilibrium modifies the dynamics of the diffusion. The
simple martingales introduced in the first section take this fact into account and moreover permit
the use of Itô calculus under less regularity than a priori needed when working in the forward
time direction. Their interest thus goes beyond the treatment of non-reversible situations.

In the third section, we further suppose that the stochastic differential equation is time-homogeneous
and that it admits an invariant probability distribution, that is chosen as one of the two initial
laws. Under additional regularity assumptions, and using Itô calculus and ideas of Arnold, Carlen
and Ju [2], we obtain a new Bakry Emery criterion which ensures exponential convergence of
the U -Fischer information to 0 and therefore exponential convergence of the U -entropy to 0.
In addition, under this criterion, the invariant measure satisfies a U -convex Sobolev inequality.
This criterion is non-intrisic : it depends on the square root σ of the diffusion matrix a = σσ∗
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and cannot be written only in terms of the diffusion matrix itself whereas, under mild regular-
ity assumptions on b and a, the law of (Xt)t≥0 solving (0.1) is characterized by the associated
martingale problem only written in terms of a and b. Last, we provide an example where the
classic Bakry Emery criterion fails, but our non-intrisic criterion ensures exponential convergence
to equilibrium without modifying the law of the diffusion process. As future work, we plan to
investigate how to choose the square root σ of the diffusion matrix in order to maximize the rate
of exponential convergence to equilibrium given by our non-intrisic Bakry Emery criterion.

Acknowledgements : We thank Tony Lelièvre (CERMICS) for pointing out to us the paper
of Arnold, Carlen and Ju [2] at an early stage of this research.

1 Entropy decrease for general continuous-time Markov processes

Throughout this work, we make the following assumption on U :

H0) U : [0,∞) → R is a convex function such that inf U > −∞.

Notice that U is then continuous on (0,+∞) and such that U(0) ≥ limx→0+ U(x).

In this section it is assumed that (Xt : t ≥ 0) is a continuous-time Markov process with values
in (E, E).

Let P0, Q0 be probability measures on E. We will use throughout the following notation:

• (XP0

t , t ≥ 0) and (XQ0

t , t ≥ 0) denote realizations of the process (Xt) with XP0

0 and XQ0

0

respectively distributed according to P0 and Q0.

• For each t > 0, Pt and Qt then stand for the laws of XP0

t and XQ0

t , respectively.

Proposition 1.1 The function t ∈ R+ 7→ HU (Pt|Qt) ∈ R ∪ {+∞} is non-increasing.

Moreover, if for some t ≥ 0, Pt ≪ Qt, then the law of (XP0
r )r≥t is absolutely continuous with

respect to the one of (XQ0
r )r≥t with density dPt

dQt
(XQ0

t ), for all s ≥ t it holds that Ps ≪ Qs, and
(

dPs

dQs
(XQ0

s )
)

s≥t
is a backward martingale with respect to the filtration Fs = σ(XQ0

r , r ≥ s).

Last, if HU (Pt|Qt) < +∞ for some t ≥ 0, then
(

U( dPs

dQs
(XQ0

s ))
)

s≥t
is a backward submartingale

with respect to Fs.

Corollary 1.2 If HU (Pt|Qt) < +∞ for some t ≥ 0, then

lim
s→∞

HU(Ps|Qs) = E

(

U

(

lim
s→∞

dPs

dQs
(XQ0

s )

))

< ∞.

In particular, if U(1) = 0 and the tail σ-field ∩s≥0Fs is trivial a.s. then lims→∞HU (Ps|Qs) = 0.

Proof of Proposition 1.1. Let s ≥ t ≥ 0. If Pt is not absolutely continuous with respect to
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Qt, then +∞ = HU(Pt|Qt) ≥ HU (Ps|Qs). Otherwise, for f : ER+ → R measurable with respect
to the product sigma-field and Et,x the conditional expectation given Xt = x, one has

E(f(XP0

r , r ≥ t)) =

∫

Rd

Et,x(f(Xr, r ≥ 0))Pt(dx) =

∫

Rd

Et,x

(

f(Xr, r ≥ 0)
dPt

dQt
(X0)

)

Qt(dx)

= E(f(XQ0

r , r ≥ t)
dPt

dQt
(XQ0

t )). (1.1)

Hence the law of (XP0
r )r≥t is absolutely continuous with respect to the one of (XQ0

r )r≥t with
density dPt

dQt
(XQ0

t ) and ∀r ≥ t, Pr ≪ Qr. Now, for s ≥ t,

E

(

f(XQ0

r , r ≥ s)
dPt

dQt
(XQ0

t )

)

= E
(

f(XP0

r , r ≥ s)
)

= E

(

f(XQ0

r , r ≥ s)
dPs

dQs
(XQ0

s )

)

where we used (1.1) with t replaced by s. This ensures that E

(

dPt

dQt
(XQ0

t )

∣

∣

∣

∣

Fs

)

= dPs

dQs
(XQ0

s ). By

Jensen’s inequality, since U is a convex function bounded from below,

E

(

U

(

dPt

dQt
(XQ0

t )

) ∣

∣

∣

∣

Fs

)

≥ U

(

dPs

dQs
(XQ0

s ))

)

. (1.2)

Taking expectations one concludes that HU(Pt|Qt) ≥ HU(Ps|Qs).

Proof of Corollary 1.2. If HU (Pt|Qt) < +∞ then Pt ≪ Qt and the Fs backward martin-

gale ( dPs

dQs
(XQ0

s ))s≥t converges a.s. to E

(

dPt

dQt
(XQ0

t )

∣

∣

∣

∣

∩s≥0 Fs

)

when s → ∞. By the backward

martingale property, for r ≥ t,

E

(

dPr

dQr
(XQ0

r )1
{E

(

dPt
dQt

(X
Q0
t )|∩s≥0Fs

)

=0}

)

= E

(

dPt

dQt
(XQ0

t )1
{E

(

dPt
dQt

(X
Q0
t )|∩s≥0Fs

)

=0}

)

= 0.

Hence dPr

dQr
(XQ0

r ) = 0 a.s. on the set

{

E

(

dPt

dQt
(XQ0

t )

∣

∣

∣

∣

∩s≥0 Fs

)

= 0

}

. With the continu-

ity of U on (0,+∞), one deduces that the random variables U
(

dPs

dQs
(XQ0

s )
)

converge a.s. to

U

(

E

(

dPt

dQt
(XQ0

t )

∣

∣

∣

∣

∩s≥0 Fs

))

as s → +∞. Since they are uniformly integrable, one concludes

that HU (Ps|Qs) = E

(

U
(

dPs

dQs
(XQ0

s )
))

converges as s → ∞ to the asserted limit. When the tail

σ-field is trivial a.s., the limit of the backward martingale is equal to E

(

dPt

dQt
(XQ0

t )
)

= 1 and

U
(

dPs

dQs
(XQ0

s )
)

converges a.s. to U(1).

2 Entropy dissipation for diffusion processes

From now on we assume that (Xt, t ≥ 0) is a Markov diffusion process solution to equation (0.2).

We introduce a finite time-horizon T ∈ (0,+∞) in order to define a forward martingale associated
with dPs

dQs
(XQ0

s ) by time-reversal. Moreover,

• we denote by PT , QT , PT→0 and QT→0 the respective laws of (XP0

t , t ≤ T ), (XQ0

t , t ≤ T ),
(X̄P0,T

t := XP0

T−t, t ≤ T ) and (X̄Q0,T
t := XQ0

T−t, t ≤ T ) on C([0, T ],Rd) and by ET , ẼT ,

ET→0 and ẼT→0 the corresponding expectations.
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• We also denote by (Yt)t≤T the canonical process on C([0, T ],Rd) and by Gt = σ(Ys, 0 ≤
s ≤ t) its filtration.

• For 0 ≤ t ≤ T , let finally HT
t := σ(X̄Q0,T

s , 0 ≤ s ≤ t) = σ(XQ0
s , T − t ≤ s ≤ T ).

Lemma 2.1 If P0 ≪ Q0, then PT→0 ≪ QT→0, dPT→0

dQT→0 = dP0

dQ0
(YT ) and

dPT−t

dQT−t
(X̄Q0,T

t ), 0 ≤ t ≤ T

is a (uniformly integrable) backward martingale with respect to HT
t . Last, on the canonical space

DT
t

def
=

dPT→0

dQT→0
|Gt=

dPT−t

dQT−t
(Yt), 0 ≤ t ≤ T,

is a QT→0 − Gt martingale with a right continuous version also denoted DT
t .

Proof of Lemma 2.1. Since PT→0 and QT→0 are the respective images of PT and QT by time-
reversal : (Ys, 0 ≤ s ≤ T ) → (YT−s, 0 ≤ s ≤ T ) one deduces that PT→0 ≪ QT→0 with dPT→0

dQT→0 =

dP0

dQ0
(YT ). Reasoning as in the proof of Proposition 1.1, one checks that

(

dPt

dQt
(XQ0

t ) = dPt

dQt
(X̄Q0,T

T−t )
)

0≤t≤T

is a backward martingale with respect to the filtration HT
T−t. Therefore by time-reversal,

(

dPT−t

dQT−t
(X̄Q0,T

t )
)

0≤t≤T
is a martingale with respect to the filtration HT

t . On the canonical space,

one deduces that

ẼT→0

(

dPT→0

dQT→0

∣

∣

∣

∣

Gt

)

= ẼT→0

(

dP0

dQ0
(YT )

∣

∣

∣

∣

Gt

)

=
dPT−t

dQT−t
(Yt).

Remark 2.2 a) Similar arguments as in (1.2) shows that for each s ∈ [0, T ], HU (Ps|Qs) <

+∞ if and only if U
(

dPT−t

dQT−t
(Yt)

)

, 0 ≤ t ≤ T − s, is a uniformly integrable QT→0 sub-

martingale with respect to Gt.

b) Given two probability measure P1,P2 ∈ C([0, T ],Rd), the pathwise U−entropy defined by

HU (P1|P2) =

{

∫

C([0,T ],Rd) U
(

dP1

dP2
(w)
)

dP2(w) if P1 ≪ P2

+∞ otherwise,

satisfies HU(P0|Q0) = HU(P
T |QT ) = HU(P

T→0|QT→0), thanks to Lemma 2.1.

Since for 0 ≤ t ≤ T , HU (Pt|Qt) = E

(

U
(

dPt

dQt
(X̄Q0,T

T−t )
))

, to precise how this quantity decreases

in time we will be interested in the HT
t -martingale

(

dPT−t

dQT−t
(X̄Q0,T

t ), 0 ≤ t ≤ T
)

and therefore in

the time-reversal (X̄Q0,T
t , 0 ≤ t ≤ T ) of the diffusion process (XQ0

t , 0 ≤ t ≤ T ).

We assume from now on that the Markov process X̄Q0,T
t is again a diffusion process. Condi-

tions ensuring this fact have been studied among other authors by Föllmer [4], Hausmann and
Pardoux [6], Pardoux [12] and Millet et. al [11], who in particular provide the semimartingale
decomposition of X̄Q0,T

t in its filtration. We shall base ourselves on the general results in [11],
which we recall in Theorem 2.3 below in a slightly more restrictive situation, and which rely on
the following conditions:
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H1) For each T > 0, supt∈[0,T ](|b(t, 0)| + |σ(t, 0)|) < +∞ and there exist KT > 0 such that

∀t ∈ [0, T ], ∀x, y ∈ Rd, |b(t, x) − b(t, y)|+
d′
∑

i=1

|σ•i(t, x)− σ•i(t, y)| ≤ KT |x− y|,

where σ•i denotes the i-th column of the matrix σ.

H2)Q0
For each t > 0, the law Qt(dx) of XQ0

t has a density qt(x) with respect to Lebesgue measure.

H3)Q0
Denoting aij = (σσ∗)ij , for each i = 1, . . . , d the distributional derivative ∂j(aij(t, x)qt(x))
(with summation over repeated indexes) is a locally integrable function on [0, T ]× Rd:

∫ T

0

∫

D
|∂j(aij(t, x)qt(x))|dxdt < ∞ for any bounded open set D ⊂ Rd.

We set for (t, x) ∈ [0, T ] × Rd

• āij(t, x) := aij(T − t, x), i, j = 1, . . . , d,

• b̄iQ0
(t, x) = −bi(T − t, x)+

∂j(aij (T−t,x)qT−t(x))
qT−t(x)

(with the convention that the term involving

qT−t(x)
−1 is 0 if qT−t(x) is 0)

and notice that b̄Q0
(t, x) is defined dt⊗ dx a.e. on [0, T ]× Rd under assumption H3)Q0

.

Theorem 2.3 Assume that H1) and H2)Q0
hold.

a) Suppose moreover that H3)Q0
holds. Then, QT→0 is a solution to the martingale problem:

(MP )Q0
: Mf

t := f(Yt)− f(Y0)−
∫ t

0

1

2
āij(s, Ys)∂ijf(Ys)+ b̄iQ0

(s, Ys)∂if(Ys)ds, t ∈ [0, T ]

is a continuous martingale with respect to the filtration (Gt) for all f ∈ C∞
0 (Rd).

b) Let b̃ : R+ × Rd → Rd and σ̃ : R+ × Rd → Rd⊗d′ be measurable functions such that
∫ T
0

∫

D |ãij(t, x)| + |b̃i(t, x)|qT−t(x)dxdt < ∞ for any bounded open set D ⊂ Rd. Assume
moreover that QT→0 is a solution to the martingale problem w/r to (Gt) for the generator
Ltf(x) =

1
2 ãij(t, x)∂ijf(x) + b̃i(t, x)∂if(x). Then, b̃ = b̄, ã = ā and H3)Q0

holds.

Notice when f is C∞ on Rd and vanishes outside the ball B(0, A) that

ẼT→0

(
∫ T

0
|b̄iQ0

(s, Ys)||∂if(Ys)|ds
)

≤ sup
B(0,A)

|∇f |
(

T sup
[0,T ]×B(0,A)

|b(s, x)|+
∫

[0,T ]×B(0,A)

∣

∣

∣

∣

∣

d′
∑

i=1

∂j(aij(s, x)qs(x))

∣

∣

∣

∣

∣

dsdx

)

(2.1)

where the right-hand-side is finite under H1) and H3)Q0
.

Proof . According to Theorem 2.3 [11], under H1), H2)Q0
and H3)Q0

(Mf
t )t∈[0,T ) is a contin-

uous Gt-martingale under QT→0. Since by (2.1) and H1), t 7→ Mf
T is continuous on [0, T ] and

ẼT→0(|Mf
T |) < +∞, one deduces that (Mf

t )t∈[0,T ] is a continuous Gt-martingale under QT→0.
Part b) follows from Theorem 2.2 in [11].
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Remark 2.4 i) Under H1), condition H3)Q0
is implied by the following one

C)Q0
: Q0 has a density q0 w.r.t. the Lebesgue measure s.t. ∃k > 0,

∫

Rd

q2
0
(x)dx

1+|x|k
< +∞ and

either
∀T > 0, ∃ε > 0, ∀(t, x) ∈ [0, T ] ×Rd, a(t, x)=σσ∗(t, x) ≥ εId,

or the second order distribution derivatives ∂2aij

∂xi∂xj
(t, x) are bounded on [0, T ]×Rd for each

T > 0. Indeed, by Theorem 3.1 in [6], C)Q0
ensures condition (A)( ii) in p. 1189 therein,

which implies H3)Q0
when H1) holds.

ii) By Theorem 3.3 in [11] and the proof of Theorem 2.2 therein (see also p. 220 in [11]), the
global Lipschitz assumption H1) in the previous result can be replaced by a local one under
additional regularity of the coefficients and exponential integrability of their derivatives.
The results in this section will be stated under H1), but they also hold in that more general
setting of [11].

The next result will give almost everywhere sense to the functions required to describe the
processes (DT

t )t∈[0,T ], without additional assumptions.

Lemma 2.5 Assume that H1) , H2)P0
and H3)P0

hold.

i) For each i = 1 . . . , d and a.e. t ∈ (0, T ], the distribution aij(t, ·)∂jpt := ∂j(aij(t, ·)pt) −
pt∂jaij(t, ·) is a function in L1

loc(dx) and, as a Radon measure in [0, T ] × Rd, one has
aij(t, x)∂jpt(x)dx dt ≪ pt(x)dx dt. A version of the Radon-Nikodyn density (measurable
in (t, x)) is given by [aij(t, ·)∂jpt](x)/pt(x). Moreover, there exists a measurable function
(t, x) 7→ Kp(t, x) ∈ Rd such that for each i = 1 . . . , d

[aij(t, ·)∂jpt](x)/pt(x) = ai•(t, x)
∗Kp(t, x), pt(x)dx dt a.e.

ii) If moreover H2)Q0
, H3)Q0

and P0 ≪ Q0 hold, one has aij(t, x)∂jpt(x)dx dt ≪ qt(x)dx dt
and [aij(t, ·)∂jpt](x)/qt(x) is a (measurable in (t, x)) version of the Radon-Nikodyn deriva-
tive. Furthermore, it holds pT−t(x)dx dt (but not necessarily qT−t(x)dx dt) a.e. that

b̄iP0
(t, x)− b̄iQ0

(t, x) =[āij(t, ·)∂jpT−t](x)/pT−t(x)− [āij(t, ·)∂jqT−t](x)/qT−t(x)

=āi•(t, x)
∗(Kp(T − t, x)−Kq(T − t, x)),

and qT−t(x)dx dt (and thus pT−t(x)dx dt) a.e. that

pT−t(x)

qT−t(x)
(b̄iP0

(t, x)− b̄iQ0
(t, x)) =

pT−t(x)

qT−t(x)
āi•(t, x)

∗(Kp(T − t, x)−Kq(T − t, x)).

Proof . The Lipschitz character of a (following from our assumptions) ensures that a has a.e.
defined derivatives in L∞ and thus that the distribution aij(t, ·)∂jpt as defined is a function in
L1
loc(dx) under H3)P0

. This implies, by Lemma A.2 in [11] (see also Lemma A.2 in [6]), that
aij(t, x)∂jpt(x) vanishes a.e. on {x : pt(x) = 0}. This fact easily yields the remaining assertions,
except for the existence of the functions Kp or Kq, which we establish in what follows.

We will on one hand use the fact, asserted in the proof of Lemma A.2 in [11], that for each t > 0
and each bounded open set Θ, aij(t, x)∂jpt(x) is the σ(L1(Θ), L∞(Θ))–weak limit of some subse-
quence of aij(t, x)∂j [ρn∗pt](x), for rapidly decaying regularizing kernels ρn. It is indeed shown in
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Lemma A.1 in [6] that for a suitable bounded sequence αn > 0, α−1
n |x| |∇ρn(x)| is again a regu-

larizing kernel. The Lipschitz character of a then yields the domination |aij(t, x)∂j [ρn ∗pt](x)| ≤
|ρn∗∂j(aij(t, ·)pt)(x)|+Cα−1

n

∫

|x−y| |∇ρn(x−y)|pt(y)dy, the right hand side being, by the pre-
vious, an L1(Θ)-converging sequence. Weak compactness is then provided by the Dunford-Pettis
criterion, and the limit is identified integrating by parts against smooth test functions compactly
supported in Θ. On the other hand, we will use the fact that diagonalizing the symmetric posi-
tive semidefinite matrix (aij(t, x)) = [u1(t, x), . . . , ud(t, x)]Λ(t, x)[u1(t, x), . . . , ud(t, x)]

∗ provides
orthonormal vectors (ui(t, x))

d
i=1 and the corresponding eigenvalues and diagonal components

(λi(t, x))
d
i=1 of Λ(t, x), that are measurable as functions of (t, x).

We take Θ as before and aij(t, x)∂j [ρn ∗ pt](x) to be the subsequence described above. Defining
the vectorial functions w(n) := [u1, . . . , ud]

∗∇[ρn ∗ pt] and vk = sign(u∗k[a∇p])uk, k = 1, . . . , d,
we have
∫

Θ∩{λk=0}
|v∗k[a∇pt]| = lim

n→∞

∫

Θ∩{λk=0}
v∗k[a∇[ρn∗pt]] = lim

n→∞

∫

Θ∩{λk=0}
λkw

(n)
k sign(u∗k[a∇pt]) = 0,

since a∇[ρn ∗ pt] =
∑d

j=1 λjw
(n)
j uj by the spectral decomposition of a. Consequently, for each t

and a.e. x ∈ Rd, the vector [a(t, x)∇pt(x)] belongs to the linear space
〈

(ui(t, x))i=1,...,d;λi(t,x)6=0

〉

.
Denote now by w = (wj)

d
j=1 := (u∗ja∇pt)

d
j=1 the coordinates of a∇pt w.r.t. the orthogonal basis

(uj(t, x))j=1,...,d, so that w is a measurable function of (t, x). If we moreover denote by Λ the
diagonal matrix with diagonal λ−1

j 1λj 6=0, j = 1, . . . , d, and set v := [u1, . . . , ud]Λw, then

av = [u1, . . . , ud]Λ[u1, . . . , ud]
∗[u1, . . . , ud]Λw = [u1, . . . , ud]ΛΛw = [u1, . . . , ud]w

since w = (wj1λj 6=0)
d
j=1. That is, (t, x) 7→ v(t, x) ∈ Rd is a measurable function such that for

almost every t ∈ [0, T ] and each i, ai•(t, x)∗v(t, x) = [aij∂jpt(x)], dx a.e. Finally, Kp(t, x) :=
v(t, x)/pt(x)1pt(x)>0 has the required properties.

Remark 2.6 The function v(t, x) in the proof of Lemma 2.5 gives an a.e. sense to ∇pt un-
der H3)P0

as far as we are concerned with the products a∗i•∇pt. Clearly, v(t, x) satisfying
ai•(t, x)

∗v(t, x) = [aij∂jpt(x)] is not unique a.e. unless a(t, x) is a.e. non singular.

Under assumptions H3)P0
and H3)Q0

and in view of the previous remark, Lemma 2.5 justifies
introducing the following notations:

• ∇ ln pt
qt
(x) denotes the equivalence class of the the funcion Kp(t, x) − Kq(t, x) under the

relation f ∼p g ⇐⇒ f(t, x)− g(t, x) ∈ Ker(a(t, x)), pt(x)dx dt a.e.

• ∇pt
qt
(x) denotes the equivalence class of the function pt

qt
(x) (Kp(t, x) −Kq(t, x)) under the

relation f ∼q g ⇐⇒ f(t, x)− g(t, x) ∈ Ker(a(t, x)), qt(x)dx dt a.e.

It is easily seen that this notation is consistent with the particular case when pt and qt are C1 and
strictly positive (i.e. in that case the true gradient belongs to the equivalence class named after
it). As customary, we identify equivalence classes with their representatives when the context
allows us to do so. Notice then that the relation expected by formal derivation :

pt
qt
(x)∇ ln

pt
qt
(x) = ∇pt

qt
(x) (2.2)

holds true by Lemma 2.5 ii), in the sense that pt
qt
(x)k(t, x) ∼q pt

qt
(x) (Kp(t, x)−Kq(t, x)) when-

ever k(t, x) ∼p Kp(t, x)−Kq(t, x).
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Recall now that an element P0 ∈ M of a given set M of probability measures in C([0, T ],Rd)
is said to be extremal if P0 = αP1 + (1 − α)P2 for some P1,P2 ∈ M and α ∈ (0, 1) implies
P0 = P1 = P2. We have

Lemma 2.7 Assume that H1),H2)Q0
and H3)Q0

hold. For each i = 1, . . . , d,

M i
t := Y i

t − Y i
0 −

∫ t

0
b̄iQ0

(s, Ys)ds, t ∈ [0, T ]

is a continuous local martingale w/r to QT→0 and (Gt), and 〈M i,M j〉t =
∫ t
0 ā

ij(s, Ys)ds for all
i, j = 1, . . . , d. Moreover, if QT→0 is an extremal solution to the martingale problem (MP )Q0

,
then for any martingale (Nt)t∈[0,T ] w/r to QT→0 and (Gt) such that N0 = 0, there exist predictable

processes (hjt )t∈[0,T ],j=1,...d with
∑d

i,j=1

∫ T
0 hjsāij(s, Ys)h

i
sds < ∞, QT→0 a.s., and such that (

∫ t
0 hs·

dMs =
∑d

j=1

∫ t
0 h

j
sdM

j
s )t∈[0,T ] is a modification of (Nt)t∈[0,T ]. In particular, (Nt)t∈[0,T ] has a

continuous modification.

Remark 2.8 Obviously, QT→0 is an extremal solution to the martingale problem (MP )Q0
if

uniqueness holds for it. In particular this is true if pathwise uniqueness for the stochastic differ-
ential equation

dXt = b̄Q0
(t,Xt) + σ̄(t,Xt)dWt, t ∈ [0, T ] (2.3)

holds, where σ̄(t, x) = σ(T − t, x). See Lemma 2.13 below for conditions ensuring pathwise
uniqueness which are related to long time stability.

Proof of Lemma 2.7. Standard localization arguments show that Mf
t in (MP )Q0

is a
continuous local martingale for any f ∈ C2 (see e.g. Proposition 2.2 in Ch. VII of [13], its
proof for deterministic initial condition also being valid in the general case). Moreover, since
M i

t = Mf
t for f(x) = xi, by Proposition 2.4 , Ch. VII of [13] we get 〈M i,M j〉t =

∫ t
0 ā

ij(s, Ys)ds.
The measure QT→0 is therefore a solution to the Problem (12.9) in Jacod [8] in the filtered space
(

C([0, T ],Rd), (Gt)t∈[0,T ]

)

, with data given by G0 and (Yt)t∈[0,T ], and characteristics respectively
corresponding to: QT as the initial law, the d−dimensional process (Bi =

∫ ·
0 b̄

i(s, Ys)ds)
d
i=1,

the matrix process (Cij =
∫ ·
0 ā

ij(s, Ys)ds)
d
i,j=1 and the random measure process on Rd given

by µt ≡ 0. The extremality assumption on QT→0 and Theorem 12.21 in [8] imply that any
L2(QT→0)−bounded (Gt)−martingale is the sum of on one hand the L2(QT→0) limit of linear
combinations of stochastic integrals with respect to M i

t ,i = 1, . . . , d and, on the other hand, a
compensated jump martingale in the form of stochastic integral with respect to µt − νt, with µt

and νt respectively denoting the (trivial) random jump measure associated with the continuous
process Yt and its predictable dual projection (see also Proposition 12.10 in [8]). The statement
follows by localization arguments.

We are ready to state the main result of this section. In all the sequel the convention inf ∅ = +∞
is adopted. By convenience, we will also assume that the filtration (Gt)t∈[0,T ] is extended to the
whole interval [0,∞) by putting Gt = GT for all t ∈ [T,∞).

Theorem 2.9 Assume that U : [0,∞) → R is a convex function and denote respectively by
U ′
− and U ′′(dy) the left-hand derivative of the restriction of U to (0,+∞) and the non-negative

measure on (0,+∞) equal to the second order distribution derivative of this restriction.
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Let Q0 and P0 be probability measures on Rd such that

HU (P0|Q0) < ∞

and assume that H1) , H2)Q0
, H3)Q0

and H3)P0
hold. Suppose moreover that QT→0 is an

extremal solution to the martingale problem (MP )Q0
. Then, one has

a) (Stochastic U -entropy dissipation) The submartingale (U(DT
t ))t∈[0,T ] has the Doob-Meyer

decomposition

∀t ∈ [0, T ], U(DT
t ) =U(DT

0 ) +

∫ t

0
U ′
−(D

T
s )∇

[

pT−s

qT−s

]

(Ys)1s<R · dMs

+
1

2

∫

(0,+∞)
Lr
t (D

T )U ′′(dr)− 1{0<R≤t}∆U(0),

(2.4)

where R := inf{s ∈ [0, T ] : DT
s = 0}, ∆U(0) = limx→0+ U(x) − U(0) ≤ 0 and Lr

t (D
T )

denotes the local time at level r ≥ 0 and time t of the continuous version of the martingale
(DT

s )s∈[0,T ].

In particular, if U is continuous on [0,+∞) and C2 on (0,+∞), one has

∀t ∈ [0, T ], U(DT
t ) =U(DT

0 ) +

∫ t

0
U ′(DT

s )∇
[

pT−s

qT−s

]

(Ys)1s<R · dMs

+
1

2

∫ t

0
U ′′

(

pT−s

qT−s
(Ys)

)(

∇∗

[

pT−s

qT−s

]

ā(s, ·)∇
[

pT−s

qT−s

])

(Ys)1s<Rds.

(2.5)

b) (U -Entropy dissipation) We have ∀t ∈ [0, T ],

HU(Pt|Qt) = HU(pT |qT )−∆U(0)QT→0(0 < R ≤ T − t)

+
1

2
ẼT→0

(

∫

(0,+∞)
Lr
T−t(D

T )U ′′(dr)

)

. (2.6)

Last, when U is continuous on [0,+∞) and C2 on (0,+∞),

HU(P0|Q0) = HU(pT |qT )

+
1

2

∫ T

0

∫

{ ps
qs

(x)>0}
U ′′

(

ps
qs
(x)

)(

∇∗

[

ps
qs

]

a(s, ·)∇
[

ps
qs

])

(x)qs(x)dxds, (2.7)

where, by a slight abuse of notations, U ′′(r) denotes the second order derivative of U at
point r > 0.

Corollary 2.10 For the choice U(x) = |x − 1|, under the assumptions of Theorem 2.9 and in
particular if P0 ≪ Q0, the total variation distance ‖Pt −Qt‖TV satisfies

∀t ≤ T, ‖Pt −Qt‖TV = ‖P0 −Q0‖TV − ẼT→0(L1
T (D

T )− L1
T−t(D

T )).

When pt
qt
(Yt) is a continuous QT -Gt semimartingale and in particular if (t, x) 7→ pt

qt
(x) is well-

defined and of class C1,2, we deduce that

∀t ≤ T, ‖Pt −Qt‖TV = ‖P0 −Q0‖TV − ẼT (L1
t (
p.
q.
(Y.))).
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Remark 2.11 a) Notice when HU(P0|Q0) < ∞ that H2)Q0
implies H2)P0

by Lemma 2.1.

b) If condition C)Q0
in Remark 2.4 i) holds (and thus H3)Q0

holds), then also C)P0
(and thus

H3)P0
) holds if for instance dP0

dQ0
has at most polynomial growth.

To prove Theorem 2.9 we first obtain explicit expressions for the martingale (DT
t )t∈[0,T ] intro-

duced in Lemma 2.1, relying on the extremality assumption in order to use Girsanov theory in
the absolutely-continuous setting. The last of the three following assertions will not be needed
but provides additional information about that process.

Lemma 2.12 Assume that H1), H2)Q0
, H3)Q0

and H3)P0
hold together. Suppose moreover

that P0 ≪ Q0 and that QT→0 is an extremal solution to the martingale problem (MP )Q0
. Let

(DT
t )t∈[0,T ) be the Girsanov density process defined in Lemma 2.1.

i) With R the (Gt)-stopping time R := inf{s ∈ [0, T ] : DT
s = 0}, we have QT→0−a.s. that

∀t ∈ [0, T ],

∫ t

0

(

∇
[

pT−s

qT−s

]

(Ys)

)∗

ā(s, Ys)∇
[

pT−s

qT−s

]

(Ys)1s<R ds < ∞, and

∀t ∈ [0, R),

∫ t

0

(

∇
[

ln
pT−s

qT−s

]

(Ys)

)∗

ā(s, Ys)∇
[

ln
pT−s

qT−s

]

(Ys)ds < ∞ on {R > 0}.

ii) The process (DT
t )t∈[0,T ] has a continuous version, denoted in the same way, such that

QT→0 a.s, ∀t ∈ [0, T ], DT
t =

pT
qT

(Y0) +

∫ t

0
∇
[

pT−s

qT−s

]

(Ys)1s<R · dMs

=
pT
qT

(Y0) +

∫ t

0
∇
[

pT−s

qT−s

]

(Ys)1{ pT−s
qT−s

(Ys)>0}
· dMs

and 〈DT 〉t =
∫ t

0

(

∇
[

pT−s

qT−s

]

(Ys)

)∗

ā(s, Ys)∇
[

pT−s

qT−s

]

(Ys)1s<R ds.

iii) Finally, if we define the (Gt)-stopping times τ o := 0 · 1DT
0
=0 +∞ · 1DT

0
>0 and

τ := inf

{

t ∈ [0, T ] :

∫ t

0

(

∇
[

ln
pT−s

qT−s

]

(Ys)

)∗

ā(s, Ys)∇
[

ln
pT−s

qT−s

]

(Ys)ds = ∞
}

,

then QT→0−a.s. R = τ ∧ τ o, and ∀t ∈ [0, T ],

DT
t = 1{t<τ}

dpT
dqT

(Y0)×

exp

{
∫ t

0
∇
[

ln
pT−s

qT−s

]

(Ys)·dMs−
1

2

∫ t

0

(

∇
[

ln
pT−s

qT−s

]

(Ys)

)∗

ā(s, Ys)∇
[

ln
pT−s

qT−s

]

(Ys)ds

}

.

(2.8)

In particular, on {R > 0} the second integral in i) is a.s. divergent at t = R.

Proof of Lemma 2.12. By Lemma 2.7, the QT→0-martingale (DT
t )t∈[0,T ] admits the

continuous version DT
0 +

∑d
j=1

∫ t
0 h

j
sdM

j
s still denoted by DT

t for simplicity. The martingale
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representation property and standard properties of stochastic integrals moreover imply that
DT

t is determined by the processes 〈DT ,M i〉 =
∫ ·
0

∑d
j=1 h

j
t āij(t, Yt)dt, i = 1, . . . , d. Conse-

quently, ht can be replaced (leaving DT
t unchanged) by any predictable process kt such that for

each i,
∫ ·
0

∑d
j=1 h

j
t āij(t, Yt)dt =

∫ ·
0

∑d
j=1 k

j
t āij(t, Yt)dt QT→0 a.s. (

∫ T
0

∑d
i,j=1 k

j
s āij(s, Ys)k

i
sds =

∫ T
0

∑d
i,j=1 h

j
sāij(s, Ys)h

i
sds < ∞ QT→0 a.s. immediately follows). Furthermore, since DT

t =

DT
t∧R, we may and shall assume that QT→0 a.s. ht = ht1t<R = ht1DT

t >0 for all t ∈ [0, T ]. Let us

also notice that, by Fubini’s Theorem, it QT→0−a.s. holds that DT
s (Ys) =

pT−s

qT−s
(Ys) (and then

1{R>s} = 1
{
pT−s
qT−s

(Ys)>0}
) for a.e. s ∈ [0, T ].

Now, by our assumptions and Theorem 2.3 a), PT→0 ≪ QT→0 are probability measures respec-
tively solving the martingale problems (MP )P0

and (MP )Q0
. The processes

∫ ·
0 b̄

i
P0
(t, Yt)dt and

∫ ·
0 b̄

i
Q0

(t, Yt)dt+
∫ ·
0(D

T
t )

−1hjtd〈M i,M j〉t then are PT→0− indistinguishable (see e.g. Proposition
12.18 v) in [8]). Using these facts, the expression for 〈M i,M j〉 in Lemma 2.7 and part ii) of
Lemma 2.5 we deduce first that, PT→0−a.s.,

b̄iP0
(t, Yt)− b̄iQ0

(t, Yt) =
d
∑

j=1

āij(t, Yt)
∗

(

hjt
qT−t

pT−t
(Yt)

)

= āi•(t, Yt)
∗(Kp(T − t, Yt)−Kq(T − t, Yt))

(2.9)
for a.e. t ∈ [0, T ] and each i. By part ii) of Lemma 2.5 we then also get

∫ ·

0

d
∑

j=1

hjt āij(t, Yt)dt =

∫ ·

0
āi•(t, Yt)

∗(Kp(T − t, Yt)−Kq(T − t, Yt))
pT−t(Yt)

qT−t(Yt)
dt, i = 1, . . . , d,

PT→0−a.s., and then QT→0−a.s. because of our assumption on h. From these identities and
our previous discussion we deduce the that we can choose ht = ∇pT−t

qT−t
(Yt)1{ pT−t

qT−t
(Yt)>0}

=

∇pT−t

qT−t
(Yt)1{R>t}. This proves part ii). The first property of the process ∇pT−t

qT−t
(Yt) in i) is thus

consequence of the general properties of h in the representation formula for DT
t . The second

assertion in i) easily follows from the first one, taking into account the definitions of ∇pT−t

qT−t
(Yt)

and ∇ ln
pT−t

qT−t
(Yt), the relation (2.2) (in its rigorous sense) and the properties of DT

t .

To establish iii), we again use the extremality of QT→0 in order to apply Theorem 12.48 in [8].
Thanks to part ii) of Lemma 2.5 and equation (2.9), the objects z, K, B and Tn in (12.32), (12.35)
and (12.42) of [8] alluded in that theorem, correspond in our setting to, respectively, pT

qT
(Y0),

∇ ln
[

pT−s

qT−s

]

(Ys), the increasing process At :=
∫ t
0

(

∇
[

ln
pT−s

qT−s

]

(Ys)
)∗

ā(s, Ys)∇
[

ln
pT−s

qT−s

]

(Ys)ds

and the stopping time τn := inf {t ∈ [0, T ] : At ≥ n}. This and Lemma 12.36 d) in [8], yield the
fact that DT

t equals (2.8), QT→0 a.s in the set ∪n∈N{t ∈ [0, T ] : t ≤ τn}. It is also established
therein that τn ր τ QT→0 a.s., impling that the latter random set equals the interval [0, τ) ∩
[0, T ]. Moreover, on this interval, the integrals which appear in the exponential factor in (2.8)
are finite. Therefore, either τ o = 0 and then R = 0, or τ o = ∞ and then R ≥ τ .

By Theorem 12.48 in [8] as well, we have DT
t = lim infn→∞DT

τn for t in [τ, T ], QT→0 a.s. Thus,
t 7→ DT

t is constant in [τ, T ], QT→0 a.s.. By Theorem 12.39 in [8] we have PT→0(τ < ∞) = 0.
Since PT→0(τ < ∞) = PT→0(τ ≤ T ) = QT→0(1{τ≤T}D

T
T ), the a.s. constancy of t 7→ DT

t on
[τ, T ] ensures that QT→0 a.s. DT

t = 0 for all t ∈ [τ, T ], when the latter interval is non empty. As
a consequence QT→0 a.s., R ≤ τ so that R = τ ∧ τ o. This completes the proof.

Proof of Theorem 2.9. Since (DT
t )t∈[0,T ] is a continuous non-negative QT→0-martingale
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and U ′
− is locally bounded on (0,+∞), t 7→

∫ t
0

[

U ′
−(D

T
s )
]2

d〈DT 〉s is finite and continuous
on [0, T ] when R > T and finite and continuous on [0, R) otherwise. In the latter case,
∫ R
0

[

U ′
−(D

T
s )
]2

d〈DT 〉s makes sense but is possibly infinite. Define for any positive integer n
the stopping time

Rn := inf

{

t ∈ [0, T ∧R] : DT
t ≤ 1

n
or
∫ t

0

[

U ′
−(D

T
s )
]2

d〈DT 〉s ≥ n

}

.

For all t ∈ [0, T ],
∫ t∧Rn

0

[

U ′
−(D

T
s )
]2

d〈DT 〉s ≤ n and E

(

∫ t∧Rn

0 U ′
−(D

T
s )dD

T
s

)

= 0. Moreover

Rn ր R as n → ∞.

Let t ∈ [0, T ]. By Tanaka’s formula,

U(DT
t∧Rn

) =U(DT
0 ) +

∫ t∧Rn

0
U ′
−(D

T
s )dD

T
s +

1

2

∫

(0,+∞)
Lr
t∧Rn

(DT )U ′′(dr). (2.10)

The assumption that HU(P0|Q0) < ∞ and Remark 2.2 a) imply that (U(DT
s ))s∈[0,T ] is a uni-

formly integrable QT→0-submartingale. Since the QT→0-expectation of the stochastic integral is
zero, one deduces

ẼT→0
(

U(DT
t∧Rn

)
)

= ẼT→0(U(DT
0 )) +

1

2
ẼT→0

(

∫

(0,+∞)
Lr
t∧Rn

(DT )U ′′(dr)

)

.

When n → ∞, since U is continuous on (0,+∞) by convexity, U(DT
t∧Rn

) converges to U(DT
t∧R)+

∆U(0)1{0<R≤t} = U(DT
t )+∆U(0)1{0<R≤t} and by uniform integrability, E(U(DT

t∧Rn
)) converges

to E(U(DT
t )) + ∆U(0)QT→0(0 < R ≤ t). Dealing with the expectation of the integral in the

right-hand-side by monotone convergence, one obtains

E(U(DT
t )) = ẼT→0(U(DT

0 ))−∆U(0)QT→0(0 < R ≤ t) +
1

2
ẼT→0

(

∫

(0,+∞)
Lr
t∧R(D

T )U ′′(dr)

)

.

Since according to Lemma 2.12 ii), DT is equal to zero on [R,T ], one can replace t ∧ R by t
in the last expectation. Replacing t by T − t in this equation, one gets (2.6). Moreover QT→0

a.s.,
∫

(0,+∞) L
r
t (D

T )U ′′(dr) is the finite limit of the integral with respect to U ′′(dr) in the right-

hand-side of (2.10) as n → ∞. Since the left-hand-side converges to U(DT
t ) + ∆U(0)1{0<R≤t}

we deduce that the stochastic integral in the right-hand-side also has a finite limit. Hence
∫ t∧R
0

[

U ′(DT
s )
]2

d〈DT 〉s < +∞,
∫ t∧R
0 U ′(DT

s )dD
T
s makes sense and (2.4) holds. When U is

continuous on [0,+∞) and C2 on (0,+∞), (2.6) written for t = 0 combined with the occupation
times formula and Lemma 2.12 imply (2.5) and that

HU(P0|Q0) =HU (pT |qT )

+
1

2
ẼT→0

(
∫ T

0
U ′′(DT

s )1{s<R}

(

∇
[

pT−s

qT−s

]

(Ys)

)∗

ā(s, Ys)∇
[

pT−s

qT−s

]

(Ys)ds

)

.

Since Ys admits the density qT−s and for almost all s ∈ [0, T ), DT
s =

pT−s

qT−s
(Ys) and {R > s} =

{pT−s

qT−s
(Ys) > 0}, by changing variables s 7→ T − s we have established (2.7).

We end this section with the following two statements concerning the important case when
Q0(dx) = q0(x)dx = p∞(x)dx is a stationary probability law for the Markov diffusion (0.2).
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Lemma 2.13 Suppose that the functions σ and b do not depend on time and that the Markov
diffusion process (0.1) has an invariant density p∞(x), such that

∫

D |∂j (aij(x)p∞(x))| dx < ∞
for any open bounded set D ⊂ Rd, where a = σσ∗ and the derivatives are meant in the distribution
sense. Set for i = 1, . . . , d

Ψi(x) := −
d′
∑

j=1

∂j (aij(x)p∞(x))

p∞(x)
if p∞(x) > 0

and 0 otherwise, and Ψ = (Ψi)di=1. Finally, assume that Q0(dx) = p∞(x)dx, that H1) and
H2)Q0

hold , and that Ψ is the sum of a locally Lipschitz continuous function Ψ̂ and a monotone
function Ψ̃:

〈Ψ̃(x)− Ψ̃(y), x − y〉 ≥ 0 for all x, y ∈ Rd.

Then, pathwise uniqueness holds for the stochastic differential equation (3.1). In particular,
QT→0 is an extremal solution to the martingale problem (MP )Q0

.

Observe that if d = d′, σ = Id is the identity matrix, and p∞(x) = Ce−2V (x) for some convex
function V : Rd → R, then Ψ(x) = 2∇V (x) satisfies the monotonicity condition. More generally,
if the matrix a has locally Lipschitz derivates, then Ψ satisfies the above condition for instance
if x 7→ a(x)Kp∞(x) is moreover monotone or, alternatively, if p∞(x) is strictly positive and has
locally bounded second oder derivatives.

Proof . Let Xt and Yt be two solutions to (3.1) constructed on the same probability space and
equal at t = 0. By Itô’s formula and the assumption on Ψ̃ we get

|Xt − Yt|2 ≤ 2

∫ t

0
(Xi

s − Y i
s )
(

σij(Xs)− σij(Ys)
)

dW j
s

− 2

∫ t

0
(Xi

s − Y i
s )
(

bi(Xs)− bi(Ys) + Ψ̂i(Xs)− Ψ̂i(Ys)
)

ds

+

∫ t

0
tr(σ(Xs)− σ(Ys))(σ(Xs)− σ(Ys))

∗ds.

Thanks to the local Lipschitz-continuity of b, σ and Ψ̂, and after localizing, taking expectations,
and using the BDG inequality, it is standard to conclude with Gronwall’s lemma that X = Y .

Proposition 2.14 Assume that the functions σ and b do not depend on time and are Lipschitz
continuous. Assume moreover that the Markov diffusion process (0.2) has an invariant density
p∞(x) and a strictly positive transition density ϕt(x, y) w.r.t. dy, which is continuous in (x, y)
for each t > 0. Last, assume that HU (Pt|Qt) < ∞ for some t ≥ 0. Then

lim
s→∞

HU(Ps|Qs) = 0.

Remark 2.15 For conditions ensuring the joint continuity of the transition density with respect
to (x, y), we refer to [5] Chapter 9 under uniform ellipticity and to [10] Theorem 4.5 under
hypoellipticity.
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Proof . According to Corollary 1.2, it is enough to check that the tail σ-field ∩s≥0σ(X
Q0
r , r ≥ s)

is trivial a.s..
First, by our assumptions on the coefficients σ and b, the semigroup (Pt)t≥0 associated with (0.2)
is Feller, and moreover strongly Feller by the continuity in (x, y) of ϕt(x, y) (it is enough that
Ptf be continuous for all f such that 0 ≤ f ≤ 1, which is true because Ptf and Pt(1 − f) are
both l.s.c. functions summing 1, by Fatou’s Lemma).

The positivity of the transition density implies that any invariant probability measure is equiva-
lent to the Lebesgue measure on Rd. Therefore p∞(x)dx is the unique invariant measure, which
thus is ergodic. Moreover, p∞(x) > 0 dx a.e.. Let P∞ denote the law of the solution to (0.2) start-
ing from an initial condition distributed according to p∞(x)dx and (Yt)t≥0 denote the canonical
process on C([0,+∞),Rd). For simplicity we also write Px instead of P0,x. By the ergodic theo-
rem and the strict positivity of p∞, we have

∫∞
0 1A(Yt)dt = +∞, P∞− a.s. for each Borel set A

in Rd with strictly positive Lebesgue measure. If Ã = {y ∈ C([0,+∞),Rd) :
∫∞
0 1A(ys)ds = ∞},

we deduce that Px(Ã) = 1 for dx− almost every x. But Ã is a tail event, and by the Markov
property one has Px(Ã) = Ex(PYt(Ã

t)) for any t > 0 and a suitable measurable set Ãt of
C([0,+∞),Rd). The strong Feller property then yields Px(Ã) = 1 for all x ∈ Rd. That is, X
defined by (0.2) is Harris recurrent.

By Theorem 1.3.9 in [9] (and noting that its proof uses only continuity of ϕt(x, y) in (x, y) for
each t > 0 but not continuity in (t, x, y)), we get that any tail event B is such that Px(B) = 1
for all x ∈ Rd or Px(B) = 0 for all x ∈ Rd, which concludes the proof.

Remark 2.16 Under the positivity assumption on the transition density, Pt and Qt admit pos-
itive densities pt and qt as soon as t > 0. For the choice U(x) = |x − 1|, HU(Pt|Qt) =
∫

Rd |pt(x) − qt(x)|dx is equal to the total variation distance between Pt and Qt. According to
Theorem 1.3.8 [9], the tail σ-field is trivial a.s. if and only if this total variation distance con-
verges to 0 for all choices of the initial distributions P0 and Q0.

3 Dissipation of the Fisher information and non-intrisic Bakry

Emery criterion

We will from now on focus in the case when Q0(dx) = p∞(x)dx is a stationary probability law
for the Markov diffusion (0.1) . We denote

IU (ps|p∞) =
1

2

∫

{ ps
p∞

>0}
U ′′

(

ps
p∞

)(

∇∗

[

ps
p∞

]

a∇
[

ps
p∞

])

p∞dx

the integral that appears in the right-hand-side of (2.7), and we refer to it as the U− Fisher
information.

Inspired by the famous Bakry-Emery approach, we want to compute the derivative of IU (ps|p∞)
with respect to the time variable.

In all the sequel, we make the following assumptions :

H4) The drift function b is time-homogeneous and has first order derivatives which are globally
bounded and Hölder-continuous uniformly in Rd, and
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the matrix σ is time-homogeneous and has up to second order derivatives which are globally
bounded and Hölder-continuous uniformly in Rd.

H5)p∞ The Markov process defined by (0.1) has an invariant density p∞(x), and Q0(dx) =
p∞(x)dx. Moreover, p∞ has locally bounded derivatives up to the second order which
are globally Hölder continuous, and p∞(x) > 0 for all x ∈ Rd.

H6)p0 The initial distribution P0 admits a probability density p0 with respect to the Lebesgue
measure. Moreover, we assume that H3)p0 holds, and that pt(x) = dPt

dx (x) has space
derivatives up to the second order for each t > 0, which are continuous in (t, x) ∈ (0, T ]×Rd

and bounded and Hölder continuous in x ∈ Rd uniformly in (t, x) ∈ [δ, T ] × Rd for each
δ ∈ (0, T ].

Notice that H4) implies H1). Next, H5)p∞ implies H2)Q0
for Q0(dx) = p∞(x)dx and combined

with H1) (or with H4)), it implies H3)Q0
. Assumptions H4) and H5)∞ together imply by

Lemma 2.13 that uniqueness holds for the martingale problem (MP )p∞ . Therefore the hypothe-
ses of Theorem 2.9 hold within the present Section. If H5)∞ and H6)p0 hold, ∇ pt

p∞
is defined

everywhere. Since the gradient of a C1 non-negative function is equal to 0 when this function

is equal to 0, ∇ pt
p∞

is equal to pt
p∞

(

1pt>0
∇pt
pt

− ∇p∞
p∞

)

and belongs to the equivalence class (with

respect to p∞) defined after Remark 2.6. We will throughout in the sequel use this everywhere
defined representative, in particular in Equation (2.7) which states that the U -entropy dissipation
is equal to the U -Fisher information.

Under H4), if moreover a and b are bounded with a uniformly elliptic, then H6)p0 holds for any
compactly supported probability density p0, by [5] Chapter 9. We refer to [10] for conditions
ensuring that H6)p0 holds under hypoellipticity.

Let us establish some notation.

• We write PT→0
∞ := QT→0 and b̄i := b̄iQ0

, i = 1, . . . , d .

• (A−1)kl denotes the (k, l) coordinate of the inverse A−1 of an invertible matrix A.

• By possibly enlarging the probability space Gt − PT→0
∞ , we introduce a Brownian motion

W̄ such that Yt solves the stochastic differential equation :

dYt = b̄(Yt)dt+ σ(Yt)dW̄t, t ∈ [0, T ] where b̄i(y) = −b(y) +
∂j(aij(y)p∞(y))

p∞(y)
. (3.1)

By Lemma 2.13, under assumptions H4) and H5)∞, existence of a unique strong solution
holds for this SDE.

• We write ρt(x) :=
pT−t

p∞
(x), t ∈ [0, T ].

We will make use of the stochastic flow defined by the two-parameter process ξt(x) satisfying

dξit(x) = σik(ξt(x))dW̄
k
t + b̄i(ξt(x))dt, (t, x) ∈ [0, T ) × Rd, i = 1, . . . d, (3.2)

and ξ0(x) = x, and we notice that ξt(Y0) = Yt. We shall also deal with the family of continuous
Gt − PT→0

∞ − local martingales (Dt(x) = ρt(ξt(x)) : t ∈ [0, T ])x∈Rd defined by

dDt(x) = [σik∂iρ] (t, ξt(x))dW̄
k
t , D0(x) =

pT
p∞

(x) = ρ0(x). (3.3)
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According to Lemmas 2.7 and 2.12 and Equation (3.1), Dt(Y0) is equal to the process DT
t

considered in the previous section. Writing ∇ρt(ξt(x)) = (∇xξt(x))
−1∇x[ρt(ξt(x))], we remark

that d∇ρt(ξt(x)) can be obtained with the Itô product rule, by computing d(∇xξt(x))
−1 and

d∇x[ρt(ξt(x))], as we do in the two next Lemmas:

Lemma 3.1 The process (t, x) 7→ ξt(x) has a PT→0
∞ a.s. continuous version such that the map-

ping x 7→ ξt(x) is a global diffeomorphism of class C1,α for some α ∈ (0, 1) and every t ∈ [0, T ].
Moreover, we have

d∂jξ
i
t(x) = ∂pσik(t, ξt(x))∂jξ

p
t (x)dW̄

k
t + ∂pb̄i(t, ξt(x))∂jξ

p
t (x)dt, (t, x) ∈ [0, T ) × Rd (3.4)

with ∂jξ
i
0(x) = δij . Finally, writing ∇ξt(x) = (∂jξ

i
t(x))ij , it holds that

d(∇ξt(x))
−1
kl =− (∇ξt(x))

−1
ki [∂lσir](t, ξt(x))dW̄

r
t −∇ξt(x))

−1
ki [∂l b̄i](t, ξt(x))dt

+ (∇ξt(x))
−1
ki [∂mσir∂lσmr](t, ξt(x))dt, (t, x) ∈ [0, T ) ×Rd.

(3.5)

Proof . Under assumptions H4) and H5)∞, classic results by Kunita [9] (see Theorem 4.7.2)
imply the asserted regularity properties of the stochastic flow, as well as the PT→0

∞ a.s. existence of
the inverse matrix (∇ξt(x))

−1 for all (t, x) ∈ [0, T ]×Rd. Since the smooth map A 7→ A−1, defined
on non singular matrices, has first and second derivatives respectively given by the linear and
bilinear operators F 7→ −A−1FA−1 and (F,K) 7→ A−1FA−1KA−1 + A−1KA−1FA−1 (where
F,K are generic square-matrices), we deduce that for A = (aij)i,j=1...d,

∂(A−1)kl
∂aij

= −A−1
ki A

−1
jl , and

∂2(A−1)kl
∂aij∂amn

= A−1
ki A

−1
jmA−1

nl +A−1
kmA−1

ni A
−1
jl

for all k, l, i, j,m, n ∈ {1, . . . , d}. Equation 3.5 follows by applying Itô’s formula to each of the
functions A 7→ (A−1)kl and the semimartingales (∂jξ

i
t(x)), i, j = 1 . . . d.

Lemma 3.2 The process Dt(x) has a modification still denoted Dt(x) such that PT→0
∞ a.s. the

function (t, x) 7→ Dt(x) is continuous and x 7→ Dt(x) is of class C1 for each t. This modification
is indistinguishable from (ρt(ξt(x)) : (t, x) ∈ [0, T ) × Rd) and we have

d∂kDt(x) = ∂m [σir∂iρ] (t, ξt(x))∂kξ
m
t (x)dW̄ r

t = d [∂mρ(t, ξt(x))∂kξ
m
t (x)] (3.6)

for all (t, x) ∈ [0, T )× Rd.

Proof . Thanks to assumption H6)p0 and the regularity of x 7→ ξt(x) established in Lemma
3.1, the statements follow from Theorem 3.3.3 of Kunita [9] (see also Exercise 3.1.5 therein).

Evaluating expressions (3.5) and (3.6) in x = Y0, we obtain using Itô’s product rule that

d∂lρt(Yt) = [σkr∂lkρ] (t, Yt)dW̄
r
t −

[

σkr∂kjρ∂lσjr + ∂kρ∂l b̄k
]

(t, Yt)dt

= [σkr∂lkρ] (t, Yt)dW̄
r
t −

[

1

2
∂kjρ∂lakj + ∂kρ∂l b̄k

]

(t, Yt)dt
(3.7)

From now on, for notational simplicity the argument (t, Yt) will sometimes be omitted.

To compute the dissipation of the U -Fischer information, in all the sequel we make the following
regularity assumption on U :
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H7) The convex function U : [0,∞) → R is of class C4 on (0,+∞), continuous on [0,+∞) and
satisfies U(1) = U ′(1) = 0.

The assumption that U ′(1) = 0 is inspired in the analysis on admissible entropies developed in
Arnold et al. [1]. It is granted without modifying the functions p 7→ HU (p|p∞) and p 7→ IU (p|p∞)
by replacing U(r) by U(r) − U ′(1)(r − 1) if needed. Notice that if H7) holds, U(r) attains the
minimum 0 at r = 1 and therefore U ≥ 0 by convexity.

We do not assume that the entropy function U is C4 on the closed interval [0,+∞), since we
want to deal with U(r) = r ln(r) − (r − 1). That is why we introduce some regularization Uδ

indexed by a positive parameter δ : we chose Uδ such that Uδ(r) = U(r + δ) for r ≥ 0 and Uδ is
extended to a C4 function on R.

Proposition 3.3 One has

d
[

U ′′
δ (ρ)∇∗ρa∇ρ

]

= tr(ΛδΓ)dt+ U ′′
δ (ρ)θ̄dt+ dM̂ (δ)

where M̂ (δ is the Gt − PT→0
∞ −local martingale

dM̂ (δ) :=
{

2 U ′′
δ (ρ)σl′i ∂l′ρ∂k [∂lρσli] + [∇ρ∗a∇ρ]U

(3)
δ (ρ)∂kρ

}

σkrdW̄
r = ∂k

[

U ′′
δ (ρ)∇∗ρa∇ρ

]

σkrdW̄
r,

Λδ and Γ are the square matrices defined by

Λδ :=

[

U ′′
δ (ρ) U

(3)
δ (ρ)

U
(3)
δ (ρ) 1

2U
(4)
δ (ρ)

]

Γ :=

[ ∇∗(σ•i · ∇ρ)a∇(σ•i · ∇ρ) (σ•i · ∇ρ)∇∗ρ a∇(σ•i · ∇ρ)

(σ•i · ∇ρ)∇∗ρ a∇(σ•i · ∇ρ) |∇∗ρa∇ρ|2
]

and

θ̄ = 2

{

[σl′i∂l′ρamk∂mσli∂lkρ] + σl′i∂l′ρ∂lρ

[

b̄m∂mσli +
1

2
amk∂mkσli

]

− all′∂l′ρ
[

σkr∂kjρ∂lσjr + ∂kρ∂lb̄k
]

}

= 2

{

∂l′ρ∂lρ

[

1

2
b̄m∂mall′ +

1

2
σl′iamk∂mkσli − akl′∂k b̄l

]

+ [σl′iamk − σkiaml′ ] ∂l′ρ∂mσli∂klρ

}

.

Remark 3.4 The form of the term tr(ΛδΓ) in the above proposition is inspired from the term
tr(XY) in [2] pp 163-164 where X = 2Λδ. One has

Γ12 = (∇∗ρ a)j ∂j(σki∂kρ)σli∂lρ =
1

2
(∇∗ρ a)j [∂j(σki∂kρ)σli∂lρ+ ∂j(σli∂lρ)σki∂kρ]

=
1

2
(∇∗ρ a)j∂j [∂lρakl∂kρ] =

1

2
(∇∗ρ a)∇(∇∗ρa∇ρ)

which, with ∂F
∂x := (∂Fi

∂xj
)i,j denoting the Jacobian matrix, equals

1

2
(∇∗ρ a)j∂j [∂lρakl∂kρ] =

1

2
(∇∗ρ a)j (∂kjρ akl ∂lρ+ ∂j [akl ∂lρ] ∂kρ)

=
1

2
∇∗ρ a

∂(∇ρ)

∂x
a∇ρ+

1

2
∇∗ρ a

∂(a∇ρ)

∂x

∗

∇ρ
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and corresponds to 4Y12 in [2], p. 164. Similarly, Γ22 = 4Y22. However Γ11 cannot in general
be identified with 4Y11. For instance, in the case of scalar diffusion D(x) = a(x)/2 = D(x)Id
for some real valued function D, the term Γ11(x) above when written in terms of D reads

|∇D|2|∇ρ|2 + 4D∂jD∂iρ∂ijρ+ 4D2
∑

ij

(∂ijρ)
2,

for the choice σ(x) =
√

D(x)Id, whereas

4Y11 = 4



D2
∑

ij

(∂ijρ)
2 +

(

n

4
− 1

2

)

(∇ρ · ∇D)2 + 2D∂jD∂iρ∂ijρ−D(∇ρ · ∇D)△ρ+
1

2
|∇D|2|∇ρ|2



 .

Moreover, our term Γ11 above is non-intrinsic, in the sense that it cannot in general be written
in terms of the diffusion matrix a only (without making explicit use of σ), contrary to the term
Y11 in the matrix of [2].

Before proving Proposition 3.3, following [1], we introduce an additional assumption on U that
will be made in all the sequel :

H7′) ∀r ∈ (0,∞), (U (3)(r))2 ≤ 1
2U

′′(r)U (4)(r).

By H7′), Λδ is a positive semidefinite matrix. Since by Cauchy Schwarz inequality,

((σ•i · ∇ρ)∇∗ρ a∇(σ•i · ∇ρ))2 = ((σ•i · ∇ρ)σ∗∇ρ.σ∗∇(σ•i · ∇ρ))2

≤
∑

i

(σ•i · ∇ρ)2|σ∗∇ρ|2
∑

i

|σ∗∇(σ•i · ∇ρ)|2

= |∇∗ρa∇ρ|2 ×∇∗(σ•i · ∇ρ)a∇(σ•i · ∇ρ).

the determinant of the matrix Γ is nonnegative, and this matrix also is positive semidefinite. As
an easy consequence we have

Corollary 3.5

∀δ > 0, d
[

U ′′
δ (ρ)∇∗ρa∇ρ

]

≥ U ′′
δ (ρ)θ̄dt+ dM̂ (δ).

Notice that one could preserve the positive semidefiniteness of the matrix Γ when replacing Γ11

by the smaller coefficient
∑d′

i=1 (∇∗ρ a∇(σ•i · ∇ρ))2 / |∇∗ρa∇ρ|, which amounts to replace the
squared norms of the vectors σ∗∇(σ•i · ∇ρ) by the ones of their orthogonal projection on σ∗∇ρ.
Unfortunately, we have not been able to take advantage of this possibility.

Proof of Proposition 3.3.

By Itô ’s formula we get dσli = [σmr∂mσli] dW̄
r
t +

[

b̄m∂mσli +
1
2amk∂mkσli

]

dt. We then have

d [σli∂lρ] = σlid∂lρ+ ∂lρdσli + d〈∂lρ, σli〉

= ∂k [∂lρσli]σkrdW̄
r + ∂lρ

[

b̄m∂mσli +
1

2
amk∂mkσli

]

− σli
[

σkr∂kjρ∂lσjr + ∂kρ∂lb̄k
]

+ amk∂lkρ∂mσli
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where we used in the stochastic integral the fact that ∂lρσmr∂mσli + σliσkr∂lkρ = ∂lρσkr∂kσli +
σliσkr∂lkρ = ∂k [∂lρσli]σkr . It follows that

d [∇∗ρa∇ρ] = d [σli∂lρ σl′i∂l′ρ]

= 2 σl′i ∂l′ρ∂k [σli∂lρ] σkrdW̄
r + 2

{

[σl′i∂l′ρamk∂mσli∂lkρ]

+ σl′i∂l′ρ∂lρ

[

b̄m∂mσli +
1

2
amk∂mkσli

]

− all′∂l′ρ
[

σkr∂kjρ∂lσjr + ∂kρ∂lb̄k
]

}

dt

+ akk′∂k [∂lρσli] ∂k′ [∂l′ρσl′i] dt

On the other hand, using (3.3) at x = Y0 we have dU ′′
δ (ρ) = U

(3)
δ (ρ)σnr∂nρ dW̄

r+1
2U

(4)
δ (ρ)anj∂nρ∂jρ dt

which combined with the previous expression yields

d
[

U ′′
δ (ρ)∇∗ρa∇ρ

]

=2U ′′
δ (ρ)

{

[σl′i∂l′ρamk∂mσli∂lkρ] + σl′i∂l′ρ∂lρ

[

b̄m∂mσli +
1

2
amk∂mkσli

]

− all′∂l′ρ
[

σkr∂kjρ∂lσjr + ∂kρ∂lb̄k
]

}

dt + dM̂ (δ)

+ U ′′
δ (ρ)akk′∂k [∂lρσli] ∂k′ [∂l′ρσl′i] dt+

1

2
U

(4)
δ (ρ) |∇∗ρa∇ρ|2 dt

+ 2U
(3)
δ (ρ)σl′i∂l′ρ∂k [σli∂lρ] ajk∂jρdt.

Equivalently,

d
[

U ′′
δ (ρ)∇∗ρa∇ρ

]

=2U ′′
δ (ρ)

{

[σl′i∂l′ρamk∂mσli∂lkρ] + σl′i∂l′ρ∂lρ

[

b̄m∂mσli +
1

2
amk∂mkσli

]

− all′∂l′ρ
[

σkr∂kjρ∂lσjr + ∂kρ∂lb̄k
]

}

dt + dM̂ (δ)

+

(

U ′′
δ (ρ)∇∗(σ•i · ∇ρ)a∇(σ•i · ∇ρ) +

1

2
U

(4)
δ (ρ) |∇∗ρa∇ρ|2

+ 2U
(3)
δ (ρ)(σ•i · ∇ρ)∇∗ρ a∇(σ•i · ∇ρ)

)

dt

(3.8)

We recall properties of the function U pointed out in [1] (see Remark 2.3 therein) which will be
used in proving the following results.

Remark 3.6 Condition H7′) implies that
(

1
U ′′

)′′ ≤ 0 at points where U ′′ 6= 0. Since U ′′ ≥ 0, and
excluding the uninteresting case where U ′′ identically vanishes, the previous implies that 1

U ′′ is

finite in [0,∞), and therefore that U is strictly convex. We then deduce from H7′) that U (4) ≥ 0
in (0,∞). By concavity and positivity of 1

U ′′ this function is moreover non decreasing, and we

deduce that U (3) ≤ 0 in (0,∞).

We introduce one last assumption on the density flow ρt:

H6′)p0 For each T ′ ∈ (0, T ] the following integrals are finite:

•
∫ T ′

0

∣

∣U (3)(ρ) ∨−1
∣

∣

2 |∇∗ρa∇ρ|3p∞(x)dxdt
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•
∫ T ′

0 (U ′′(ρ) ∧ 1)2 ∇∗(∇∗ρa∇ρ)a∇(∇∗ρa∇ρ)p∞(x)dxdt

•
∫ T ′

0 (U ′′(ρ)∧1)
[

|(σl′iam• − σ•iaml′)∂mσli|+|∂k ([σl′iamk − σkiaml′ ] ∂mσli)|
]

|∂l′ρ||∂lρ|p∞(x)dxdt

•
∫ T ′

0 (U ′′(ρ) ∧ 1)
[

|(σl′iamk − σkiaml′)∂mσli(∂lρ∂k ln p∞ + ∂lkρ)|
]

|∂l′ρ|p∞(x)dxdt

Notice that in the case that a ≥ cId for some c > 0, the third integral converges always as it can
be upper bounded by the Fisher information.

Theorem 3.7 Let Θ denote the d× d matrix defined by

Θll′ = σl′i[b̄m∂mσli +
1

2
amk∂mkσli]− akl′∂k b̄l + (σkiaml′ − σl′iamk)∂mσli∂k ln(p∞)

+ ∂k[(σkiaml′ − σl′iamk)∂mσli]

and assume that the symmetric matrix (Θ + Θ∗)(t, x) is p∞(x)dxdt − a.e. positive semidefinite.
Then, for a.e. t ∈ [0, T ] one has

d

dt

∫

ρt>0
U ′′(ρt)[∇∗ρta∇ρt]p∞dx ≥

∫

ρt>0
U ′′(ρt)∇∗ρt(Θ + Θ∗)∇ρtp∞dx. (3.9)

If moreover, HU (ps|p∞) is finite for some s ≥ 0 and the diffusion matrix a is locally uniformly
strictly positive definite, then HU (pt|p∞) converges to 0 as t → ∞.

Proof . Let us first suppose that (3.9) holds and deduce the last assertion. Reverting time
in (3.9), we obtain that t 7→ IU (pt|p∞) is non-increasing. When HU (ps|p∞) is finite for some
s ≥ 0, writing (2.7) on the interval [s, T ] in place of [0, T ], we deduce that IU (pt|p∞) tends to 0
as t → ∞. When a is locally uniformly strictly positive definite, the beginning of the proof of
Theorem 2.5 (before Part(a)) [2], ensures that pt tends to p∞ in L1(Rd). As a consequence, in

the notations of Proposition 1.1, E
∣

∣

∣

dPt

dQt
(XQ0

t )− 1
∣

∣

∣
tends to 0 as t → ∞ and therefore the a.s.

limit of dPt

dQt
(XQ0

t ) is equal to 1. By corollary 1.2, one concludes that HU (pt|p∞) tends to 0.

Let us now check (3.9). Since U ′′ is continuous and non increasing in (0,∞) by Remark 3.6, one
has U ′′

δ (r) ր U ′′(r) for each r > 0 as δ → 0. It is therefore enough to obtain (the integrated
version of) inequality (3.9) with U ′′

δ instead of U ′′, as monotone convergence allows us to pass to
the limit as δ → 0 on both sides. For 0 ≤ r ≤ t < T we have by Corollary 3.5 that

[U ′′
δ (ρ)∇∗ρa∇ρ](t, Yt)− [U ′′

δ (ρ)∇∗ρa∇ρ](r, Yr)

≥ M̂
(δ)
t − M̂ (δ)

r + 2

∫ t

r
U ′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂l′ρ∂mσli∂klρds

+ 2

∫ t

r
U ′′
δ (ρ)∂l′ρ∂lρ

(

σl′i

[

b̄m∂mσli +
1

2
amk∂mkσli

]

− aml′∂mb̄l

)

ds.

Since ∂kl′ρU
′′
δ (ρ) [σl′iamk − σkiaml′ ] = 0 and

∂k(U
′′
δ (ρ))∂l′ρ [σl′iamk − σkiaml′ ] = U

(3)
δ (ρ)∂kρ∂l′ρ [σl′iamk − σkiaml′ ] = 0,

one has

U ′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂l′ρ∂mσli∂klρ =

1

p∞
∂k
(

∂lρ∂l′ρU
′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂mσli p∞

)

− ∂lρ∂l′ρU
′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂mσli∂k ln p∞

− ∂lρ∂l′ρU
′′
δ (ρ)∂k ([σl′iamk − σkiaml′ ] ∂mσli) .

(3.10)
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We deduce that

[U ′′
δ (ρ)∇∗ρa∇ρ](t, Yt)− [U ′′

δ (ρ)∇∗ρa∇ρ](r, Yr)

≥ M̂
(δ)
t − M̂ (δ)

r + 2

∫ t

r
U ′′
δ (ρ)Θll′∂l′ρ∂lρ ds+ 2

∫ t

r

1

p∞
∂k
(

∂lρ∂l′ρU
′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂mσli p∞

)

ds.

(3.11)

Now, the quadratic variation of M̂ (δ) is bounded above in [0, T ) by a constant times

∫ t

0

[

|U (3)
δ (ρ)|2|∇∗ρa∇ρ|3(Ys) +

(

U ′′
δ (ρ)

)2 ∇∗(∇∗ρa∇ρ)a∇(∇∗ρa∇ρ)
]

(Ys)ds.

This and our assumptions imply that M̂ δ is a martingale in [0, T ) for all δ > 0 sufficiently

small. Indeed, we have from Remark 3.6 that U ′′
δ (r) ≤ U ′′(δ)∧U ′′(r) and |U (3)

δ (r)| ≤ |U (3)(δ)| ∧
|U (3)(r)| for all r ≥ 0. Therefore (since U ′′ > 0) we have U ′′

δ (r) ≤ (U ′′(r) ∧ 1)1U ′′(δ)≤1 +

U ′′(δ)(U ′′(r)/U ′′(δ)) ∧ 1)1U ′′(δ)>1 whence U ′′
δ (r) ≤ (U ′′(δ) + 1)(U ′′(r) ∧ 1). As U (3) is non de-

creasing and non positive, either |U (3)(δ)| 6= 0 for all δ sufficiently small, in which case we

similarly get |U (3)
δ (r)| ≤ (|U (3)(δ)| + 1)(|U (3)(r)| ∧ 1) , or otherwise U

(3)
δ identically vanishes for

all δ. Assumption H6′)p∞ and the previous then ensure that 〈M (δ)〉t has finite expectation for
t ∈ [0, T ).

In order to conclude that inequality (3.9) holds for the function Uδ , noting that ∇ρt vanishes on
{ρt = 0}, it is enough to show that the last integral in (3.11) has (well defined) null expectation.
Using (3.10) and Assumption H6′)p∞ we obtain (with the same control for U ′′

δ (r) as before) that

ET→0
∞

∫ t

r

∣

∣

∣

∣

1

p∞
∂k
(

∂lρ∂l′ρU
′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂mσli p∞

)

∣

∣

∣

∣

(Ys)ds

=

∫ t

r

∫

Rd

∣

∣∂k
(

∂lρ∂l′ρU
′′
δ (ρ) [σl′iamk − σkiaml′ ] ∂mσli p∞

) ∣

∣dxds < ∞

(3.12)

which shows that the expectation of the last term in (3.11) is well defined. Moreover, the
(everywhere defined) spatial divergence of g(s, x) := ∂lρs∂l′ρsU

′′
δ (ρs) [σl′iam• − σ•iaml′ ] ∂mσli p∞

is L1(dx,Rd) for a.e. s. For such s and φn ∈ C∞
0 (Rd) such that 0 ≤ φn ≤ 1, 0 ≤ |∇φn| ≤ 1,

φn(x) = 1 for x ∈ B(0, n) and φn(x) = 0 for x ∈ B(0, 2n)c,

0 =

∫

Rd

∇.(φn(x)g(s, x))dx =

∫

Rd

φn(x)∇.g(s, x)dx +

∫

Rd

∇φn(x).g(s, x)dx.

Since by Lebesgue’s theorem, the second term of the right-hand-side tends to 0 as n → ∞, the
limit

∫

Rd ∇.g(s, x)dx of the first term is equal to 0.

Theorem 3.8 Under the hypotheses of Theorem 3.7 and if the matrix Θ satisfies the non-
intrinsic Bakry-Emery criterion

NIBEC) ∃λ > 0, ∀x ∈ Rd, 1
2(Θ +Θ∗)(x) ≥ λa(x).

then the non-increasing function t 7→ HU (pt|p∞) converges at exponential rate 2λ to its limit as
t → ∞. When, moreover, the diffusion matrix a is locally uniformly strictly positive definite,
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then this limit is equal to 0 as soon as HU(ps|p∞) is finite for some s ≥ 0 and the convex Sobolev
inequality

HU(p|p∞) ≤ 1

2λ
IU (p|p∞) (3.13)

holds for any probability density p on Rd.

Remark 3.9 In view of Remark 2.15, the local uniform strict positive definiteness assumption
on the diffusion matrix a may be replaced by some hypoellipticity assumption for the convex
Sobolev inequality (3.13) to hold for any probability density p on Rd.

Proof . Reverting time in (3.9) and using NIBEC), one obtains

d

ds
IU(ps|p∞) ≤ −2λIU (ps|p∞).

Hence ∀s ≥ 0, IU (ps|p∞) ≤ e−2λsIU (p0|p∞). Since by Theorem 2.9, one has d
dsHU(ps|p∞) =

−IU(ps|p∞), one deduces that

0 ≤ HU(ps|p∞)− lim
t→∞

HU (pt|p∞) =

∫ ∞

s
IU (ps|p∞) ≤ e−2λs

2λ
IU (p0|p∞).

When a is locally uniformly strictly positive definite, if HU (p0|p∞) < +∞, then limt→∞HU(pt|p∞) =
0 by Theorem 3.7. Moreover, the convex Sobolev inequality for p = p0 is just the last inequality
written for s = 0. It can be extended to arbitrary probability densities p on Rd by simple closure.

Remark 3.10 i) Notice that 1
2(Θ + Θ∗) rewrites as

1

2
b̄m∂mall′ −

1

2
(akl′∂k b̄l + akl∂k b̄l′) +

1

4
amk∂mkall′ −

1

2
amk∂mσli∂kσl′i

+
1

2
σki(∂mσliaml′ + ∂mσl′iaml)∂k ln(p∞)− 1

2
amk∂mall′∂k ln(p∞)

+
1

2
∂k[σki(∂mσliaml′ + ∂mσl′iaml)− amk∂mall′ ]

=− 1

2
bm∂mall′ +

1

2
(akl′∂kbl + akl∂kbl′)−

1

4
amk∂mkall′ −

1

2
(akl′∂kjalj + akl∂kjal′j)

− aklajl′∂kj ln(p∞)− 1

2
(akl∂kal′j + akl′∂kalj)∂j ln(p∞)− 1

2
amk∂mσli∂kσl′i

+
1

2
σki(∂mσliaml′ + ∂mσl′iaml)∂k ln(p∞) +

1

2
∂k[σki(∂mσliaml′ + ∂mσl′iaml)],

(3.14)

both being non-intrisic expressions that cannot be rewritten without making use of the square
root σ. Since we have got rid of the nonnegative term tr(ΛδΓ) which appears in the first
equation in Proposition 3.3 and involves the non-intrisic term Γ11, it is natural that we
obtain a non-intrisic Bakry Emery criterion.

ii) In case σ =
√
2νId and b = −(∇V+F ) with F such that ∇.(e−V/νF ) = 0, then p∞ ∝ e−V/ν ,

b̄ = −b+ 2ν∇ ln p∞ = −∇V + F and Θ = 2ν(∇2V −∇F ). Therefore condition NIBEC)
writes ∃λ > 0, ∀x ∈ Rd, ∇2V (x) − ∇F+∇F ∗

2 (x) ≥ λId which is exactly condition (A2) in
the introduction of [2], page 158.
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4 An example

The next example shows that our criterion and an appropriate choice of the square root of the
diffusion matrix can ensure the exponential convergence to equilibrium when the classic Bakry
Emery criterion fails.

We consider a reversible diffusion process in Rd with d = 2, such that for each (x1, x2) ∈ R2,

a(x1, x2) = I2, and b(x1, x2) = −∇V (x1, x2)

where, for some α ∈ (0, 1), V is the convex potential

V (x1, x2) := |x1|2+v(|x1−x2|)+v(|x2|) with v(z) =

{

z2+α if z ∈ [0, 1]

1 + (2 + α)(z − 1) (1+α)z+(1−α)
2 if z ≥ 1

.

The choice of v ensures that V is globally C2 and quadratic far from the origin, which implies
that b is globally Lipschitz continuous. The invariant measure is in this case p∞ ∝ e−2V , and we
have

∂1V =2x1 + (2 + α)sign(x1 − x2)[|x1 − x2|1+α
1{|x1−x2|≤1} + ((1 + α)|x1 − x2| − α)1{|x1−x2|>1}]

∂2V =(2 + α)sign(x2)[|x2|1+α
1{|x2|≤1} + ((1 + α)|x2| − α)1{|x2|>1}]

+ (2 + α)sign(x2 − x1)[|x2 − x1|1+α
1{|x2−x1|≤1} + ((1 + α)|x2 − x1| − α)1{|x2−x1|>1}]

and

∇2V =

(

2 0
0 (2 + α)(1 + α)(|x2| ∧ 1)α

)

+ (2 + α)(1 + α)(|x1 − x2| ∧ 1)α
(

1 −1
−1 1

)

.

Notice that the classic Bakry-Emery criterion fails in this case since ∇2V (0, 0) is singular. We
consider moreover a square root σ of the identity matrix of the form

σ =

(

cosφ sinφ
− sinφ cosφ

)

for a function φ : R2 → R2 of class C2 to be chosen later. Starting from (3.14), we obtain after
some computations

1

2
(Θ+Θ∗) = ∇2V−1

2
|∇φ|2I2+

(

∂12φ
∂22φ−∂11φ

2
∂22φ−∂11φ

2 −∂12φ

)

+

(

−2∂1φ∂2V ∂1φ∂1V − ∂2φ∂2V
∂1φ∂1V − ∂2φ∂2V 2∂2φ∂1V

)

We now consider a parameter ε > 0 which will be chosen small and a C2 function ϕ : R → R

such that ϕ(s) = s if |s| ≤ 1 and ϕ(s) = 0 if |s| ≥ 2. Then, we define

φ(x1, x2) = −εϕε(x1)ϕε(x2), (x1, x2) ∈ R2

where ϕε(s) = εϕ(s/ε). Notice that

ϕε = O(ε), ϕ′′
ε = O(1/ε), and ϕ′

ε =







1 if |s| ≤ ε,
O(1) if ε < |s| < 2ε,
0 if |s| ≥ 2ε.

Then, defining Bε := {(x1, x2) ∈ R2 s.t. |x1| ∨ |x2| ≤ ε} and Cε := B2ε\Bε, we have

∂1φ(x1, x2), ∂2φ(x1, x2) =

{

O(ε2) if (x1, x2) ∈ B2ε,
0 if (x1, x2) ∈ Bc

2ε,
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∂12φ(x1, x2) =







−ε if (x1, x2) ∈ Bε,
O(ε) if (x1, x2) ∈ Cε,
0 if (x1, x2) ∈ Bc

2ε,

1

2
(∂11φ(x1, x2)− ∂22φ(x1, x2)) =







0 if (x1, x2) ∈ Bε,
O(ε) if (x1, x2) ∈ Cε,
0 if (x1, x2) ∈ Bc

2ε,

and ∂1V = O(ε), ∂2V = O(ε1+α) on B2ε. It follows that

1

2
(Θ +Θ∗) = ∇2V +

(

−ε 0
0 ε

)

+O(ε3) ≥
(

2− ε 0
0 ε

)

+O(ε3) on Bε.

Next, the smallest eigenvalue of ∇2V (x1, x2), is given by

γ− := 1 + κ1 + κ2/2−
√

1 + κ21 − κ2 + κ22/4 ≥ 0

with κ1 = κ1(x1, x2) := (2+α)(1+α)(|x1−x2|∧1)α and κ2 = κ2(x1, x2) := (2+α)(1+α)(|x2 |∧1)α.
Since γ− = κ1+κ2+O(κ21+κ22) as κ21+κ22 → 0 and |x2|α+ |x1−x2|α ≥ (|x2|+ |x1−x2|)α ≥ |x1|α,
one deduces that on Cε,

1

2
(Θ + Θ∗) = ∇2V +O(ε) ≥ (2 + α)(1 + α)εαI2 +O(ε).

Last, since κ1 and κ2 are continuous and bounded functions of (x1, x2), and γ− is a continuous
function of (κ1, κ2) only vanishing at the origin, inf(x1,x2)∈Bc

2ε
γ− > 0. One concludes that for ε

small enough NIBEC) holds.

Remark 4.1 • The potential V is a particular case of the examples considered by Arnold,
Carlen and Ju in the Section 3 of [2]. But they first modify the Fokker-Planck equation
by adding a non-symmetric drift term F like in Remark 3.10 ii) to check that p∞ satisfies
the convex Sobolev inequality (3.13). Exponential convergence to 0 of HU(pt|p∞) for the
solution pt of the original Fokker-Planck equation is only deduced in a second step. With
our non-intrisic Bakry Emery criterion, we are able to prove without considering a modified
partial differential equation that p∞ satisfies the convex Sobolev inequality (3.13) and that
HU(pt|p∞) converges exponentially to 0. We modify the stochastic differential equation but
not the law of its solution.

• We have supposed that V is quadratic far from the origin to ensure that b satisfies H4).
But the boundedness assumption on the first order derivatives of b in H4) may be relaxed to
local boundedness when conditions ensuring existence for the SDE and preservation of the
diffusion property under time reversal are added. In the case of constant diffusion a(x) = Id
with drift b(x) = −∇V (x) for a nonnegative C2 potential V , the following hypotheses on
the behaviour of V at infinity:

lim sup
|x|→∞

−x∗∇V (x)

|x|2 < +∞, lim sup
|x|→∞

∆V

|∇V |2 (x) < 2 and lim sup
|x|→∞

√
∂ikV ∂ikV

V
(x) = 0 (4.1)

provide such sufficient additional conditions for the SDE dXt = σ(Xt)dWt − ∇V (Xt)dt,
when σ(x) is any globally Lipschitz continuous choice of the square root of the identity.
Indeed, by computing d|Xt|2, one sees that the first condition prevents explosion for the
SDE which has locally Lipschitz coefficients. Since for c > 0,

decV (Xt) = ecV (Xt)
(

∇∗V (Xt)σ(Xt)dWt +
c

2
[∆V + (c− 2)|∇V |2](Xt)dt

)

,
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the second condition ensures that for c small enough, t 7→ E(ecV (Xt)) is locally bounded
when E(ecV (X0)) < +∞. With the inequality

E

(

exp(4

∫ T

0

√

∂ikV ∂ikV (Xt)dt)

)

≤ KE

(

exp(
c

T

∫ T

0
V (Xt)dt)

)

deduced from the third assumption, one concludes by Jensen’s inequality that

E

(

exp(4
∫ T
0

√

∂ikV ∂ikV (Xt)dt)
)

is finite as soon as E(ecV (X0)) < +∞. Hence condition

(3.9) in Theorem 3.3 of [11], which is enough for Theorem 2.3 to hold, is satisfied. Notice
that (4.1) is satisfied for instance by the potential V (x1, x2) = x21 + |x1 − x2|2+α + |x2|2+α

from which the potential in the above example was derived by replacing the super-quadratic
terms by quadratic ones outside the unit ball.
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