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A trajectorial interpretation of the dissipations of entropy and
Fisher information for stochastic differential equations

J.Fontbona* B.Jourdain'

July 16, 2011

Abstract

We introduce and develop a pathwise description of the dissipation of general convex
entropies for continuous time Markov processes, based on simple backward martingales and
convergence theorems with respect to the tail sigma field. The entropy is in this setting
the expected value of a backward submartingale. In the case of (non necessarily reversible)
Markov diffusion processes, we use Girsanov theory to explicit its Doob-Meyer decomposi-
tion, thereby providing a stochastic analogue of the well known entropy dissipation formula,
valid for general convex entropies (including total variation). Under additional regularity
assumptions, and using It6 calculus and ideas of Arnold, Carlen and Ju [2], we obtain a new
Bakry Emery criterion which ensures exponential convergence of the entropy to 0. This cri-
terion is non-intrisic since it depends on the square root of the diffusion matrix, and cannot
be written only in terms of the diffusion matrix itself. Last, we provide an example where
the classic Bakry Emery criterion fails, but our non-intrisic criterion ensuring exponential
convergence to equilibrium applies without modifying the law of the diffusion process.

Introduction

We are interested in the long-time behaviour of solutions to the stochastic differential equation
where b: RY — R%, o : RY — R and W = (W;,t > 0) is a standard Brownian motion in RY .

We consider a convex function U : [0,00) — R bounded from below and define the U—entropy
of a probability measure p in R% with respect to a probability measure ¢ by

S U (%)) da(a) if p<g
Hy(plg) = { %7 \da™

—+00 otherwise.
The particular cases U(x) = zIn(z)1,>0+(4+00)1z<0 and U(z) = (x—1)? respectively correspond
to the usual entropy and the x2-distance. For U(z) = |z — 1|, Hy(p|q) coincides with the total
variation distance but only when p < q.
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The celebrated Bakry Emery curvature dimension criterion which involves the generator, the
carré du champs and the iterated carré du champs of a continuous-time Markov process is
a sufficient condition for the reversible measure of this Markov process to satisfy a Poincaré
inequality and a logarithmic Sobolev inequality. From these inequalities, one can respectively
deduce exponential convergence to 0 as t — oo of the chi-square distance or the relative entropy
between the marginal at time ¢ of the process and its reversible measure. This criterion has been
generalized to entropy functions U more general than U(r) = (r — 1)? and U(r) = rIn(r) (see
for instance [1]).

In general, even when the stochastic differential equation (0.1) admits an invariant probability
measure, this measure is not reversible. It is well known both from a probabilistic point of view
[7] and the point of view of partial differential equations [2]| that the presence of a contribution
antisymmetric with respect to the invariant measure in the drift may accelerate convergence to
this invariant measure as t — oo.

The primal goal of this work was to recover the results of [2] and [1] about the long-time behaviour
of U-entropy of the law of X; with respect to the invariant measure by arguments based on It6’s
stochastic calculus. To achieve this goal, we introduce and develop in the first section of the
paper a pathwise description of the dissipation of general convex entropies for continuous time
non-homogeneous Markov processes, based on simple backward martingales and convergence
theorems with respect to the tail sigma field. Given two different initial laws, the U-entropy
of the marginal at time ¢ of the Markov process under the first initial law with respect to its
marginal at time ¢ under the second initial law is the expected value of a backward submartingale.
This implies that this U-entropy is non-increasing with ¢ and permits to characterize its limit as
t — oo. To our knowledge, this simple result does not seem to have been used in the study of
the trend to equilibrium of Markov processes.

From the second section of the paper on, we only deal with Markov diffusions given by
dXt == b(t, Xt) + O'(t, Xt)th (02)

where b: Ry xR - R? o : Ry xR? — R4®4" Under assumptions that guarantee that for both
initial laws, the time-reversed processes are still diffusions, we use Girsanov theory to explicit
the Doob-Meyer decomposition of the submartingale obtained in the first section. In this way,
we obtain a stochastic analogue of the well known entropy dissipation formula, valid for general
convex entropies (including total variation). Taking expectations in this formula, we recover the
well known fact that the U-entropy dissipation is equal to the U-Fisher information.

It should be noticed that the idea of considering a trajectorial interpretation of entropy to obtain
functional inequalities is not new, at least for reversible diffusions (see e.g. the work of Cattiaux
[3] whose results nevertheless are of quite different nature). However, even in the reversible case,
time reversal of a diffusion starting out of equilibrium modifies the dynamics of the diffusion. The
simple martingales introduced in the first section take this fact into account and moreover permit
the use of Itd calculus under less regularity than a priori needed when working in the forward
time direction. Their interest thus goes beyond the treatment of non-reversible situations.

In the third section, we further suppose that the stochastic differential equation is time-homogeneous
and that it admits an invariant probability distribution, that is chosen as one of the two initial
laws. Under additional regularity assumptions, and using It6 calculus and ideas of Arnold, Carlen
and Ju [2], we obtain a new Bakry Emery criterion which ensures exponential convergence of
the U-Fischer information to 0 and therefore exponential convergence of the U-entropy to 0.
In addition, under this criterion, the invariant measure satisfies a U-convex Sobolev inequality.
This criterion is non-intrisic : it depends on the square root o of the diffusion matrix a = oo*



and cannot be written only in terms of the diffusion matrix itself whereas, under mild regular-
ity assumptions on b and a, the law of (X;);>0 solving (0.1) is characterized by the associated
martingale problem only written in terms of @ and b. Last, we provide an example where the
classic Bakry Emery criterion fails, but our non-intrisic criterion ensures exponential convergence
to equilibrium without modifying the law of the diffusion process. As future work, we plan to
investigate how to choose the square root ¢ of the diffusion matrix in order to maximize the rate
of exponential convergence to equilibrium given by our non-intrisic Bakry Emery criterion.

Acknowledgements : We thank Tony Lelievre (CERMICS) for pointing out to us the paper
of Arnold, Carlen and Ju [2] at an early stage of this research.

1 Entropy decrease for general continuous-time Markov processes

Throughout this work, we make the following assumption on U:
HO0) U :]0,00) — R is a convex function such that inf U > —oo.

Notice that U is then continuous on (0, 4+00) and such that U(0) > lim,_,o+ U(z).

In this section it is assumed that (X; : ¢ > 0) is a continuous-time Markov process with values
in (E,&).

Let Py, Qo be probability measures on E. We will use throughout the following notation:
o (X[, t>0) and (XtQO,t > 0) denote realizations of the process (X;) with XSDO and X(?O
respectively distributed according to Py and Q.

e For each t > 0, P; and @Q; then stand for the laws of ti % and XtQO, respectively.

Proposition 1.1 The function t € Ry — Hy(FP|Q) € RU {400} is non-increasing.

Moreover, if for some t > 0, P, < Qy, then the law of (Xfo)rzt 1s absolutely continuous with
respect to the one of (XTQO)TZt with density %(X?O), for all s > t it holds that Py < Qs, and

(351 (XSQO))SN is a backward martingale with respect to the filtration Fy = o(X2°,r > s).

Last, if Hy(P| Q) < 400 for somet > 0, then (U(dpz

10 (XSQO))) is a backward submartingale

s>t

with respect to Fy.

Corollary 1.2 If Hy(P|Q:) < +oo for some t > 0, then

lim Hy(P|Qs) =E (U ( lim ;”QDS (X?O))) < 0.

5§—00 s

In particular, if U(1) = 0 and the tail o-field Ng>0Fs is trivial a.s. then lims_,o Hy (Ps|Qs) = 0.

Proof of Proposition 1.1. Let s >t > 0. If P; is not absolutely continuous with respect to



Qy, then 400 = Hy(P|Q¢) > Hy(Ps|Qs). Otherwise, for f : E®+ — R measurable with respect
to the product sigma-field and E; , the conditional expectation given X; = x, one has

o)) Qi)

(X)) (1.1)

E(f(XTI’D()?r Z t)) = /]Rd Et,x(f(er Z 0))Pt(dx) - /Rd Et,x <f(Xr’7,. > O)

dP,
=E(f(X¥0,r >t
U2 050
Hence the law of (X[?),>; is absolutely continuous with respect to the one of (X; o 9>t with
densﬁ:y dby (XQO) and Vr > t, P, < @Q,. Now, for s > t,

E <f(X9°,r > 9GEX)) =B (FXPr 2 ) =B (1000 2 )2

]—"S> = 45+ (X{). By

(xn)

where we used (1.1) with ¢ replaced by s. This ensures that E %(X?O)

Jensen’s inequality, since U is a convex function bounded from below,

E(U X720 )|\ Fs ) =2 U X 1.2
(v (g aq, ") 2
Taking expectations one concludes that Hy(FP|Q¢) > Hy(Ps|Qs)- ||

Proof of Corollary 1.2. If Hy(P;|Q:) < +o0o then P, < Q; and the Fg backward martin-
gale (dPS (XQO))s>t converges a.s. to E (dpt (XQO)' Ns>0 ]:S> when s — oco. By the backward

martingale property, for r > t,

dPp, dP,
Qo)1 _ tyvQo _
B (er (X)L {E(S5E (X20)INs207s) 0}> =k (th (X1 {E(%(xt@”)mszoa)o}) =0

Hence gg:(X,QO) = 0 a.s. on the set {E <%(X?O)

Ns>0 .7:s> = 0}. With the continu-

ity of U on (0,+00), one deduces that the random variables U (dPS (XQO)) converge a.s. to
u (E (%&(xﬁ%
that Hy (Ps|Qs) = E (U <ggz (XSQ°)>) converges as s — 00 to the asserted limit. When the tail

Ns>0 ]:s>> as s — +o0o. Since they are uniformly integrable, one concludes

o-field is trivial a.s., the limit of the backward martingale is equal to E (%(X?O)) =1 and
U <31QDSS (XSQO)> converges a.s. to U(1). ||

2 Entropy dissipation for diffusion processes

From now on we assume that (Xy,¢ > 0) is a Markov diffusion process solution to equation (0.2).

We introduce a finite time-horizon T € (0, +00) in order to define a forward martingale associated
with ggz (X2°) by time-reversal. Moreover,

e we denote by P7, QT, PT70 and Q70 the respective laws of (XtPO, t<T), (XtQO,t <T),
(x0T = lefot,t < T) and (X207 .= X%, t < T) on C([0,T],R%) and by ET, E7,

ET—0 and ET—0 the corresponding expectations.



e We also denote by (Y;);<7 the canonical process on C([0,T],R?) and by G; = o(Y;,0 <
s < 't) its filtration.

e For 0 <t <T, let finally H} := U(X'SQ“’T,O <s<t) :U(X?O,T—t <s<T).

Lemma 2.1 If Py < Qq, then PT0 « Q70 j(gﬁji = 452 (Yr) and %(X?“), 0<t<T

is a (uniformly integrable) backward martingale with respect to HY . Last, on the canonical space

def dPT—0 dPr_4
DI'E — o= —=1(V,), 0<t<T,
t dQTHO |gt dQTft( t) =t =
is a Q7% — G, martingale with a right continuous version also denoted D}

]P>T~>O

Proof of Lemma 2.1. Since and QT are the respective images of PT and Q7 by time-
dPT—)O

reversal : (V5,0 < s <T)— (Yr_s,0 < s <T) one deduces that P70 < Q770 with agT=0 =

%(YT). Reasoning as in the proof of Proposition 1.1, one checks that <%(X?“) = %(X?ﬂf))MKT

is a backward martingale with respect to the filtration H%_t. Therefore by time-reversal,

e (X QO’T) is a martingale with respect to the filtration 7. On the canonical space,
dQr—¢ Nt 0<t<T

one deduces that

dQT%O

dQo

FT—0 <dPT_>O
dQr—¢

%) =E70 <@(YT)

G:) = St

Remark 2.2 a) Similar arguments as in (1.2) shows that for each s € [0,T], Hy(Ps|Qs) <

+o0 if and only if U (jg‘;:tt (Y})) ,0 <t <T—s, is a uniformly integrable QT 0 sub-

martingale with respect to G.

b) Given two probability measure Py, Py € C([0,T],R?), the pathwise U—entropy defined by

Jeworrn U (%(M) dPsy(w) if Py < Py

400 otherwise,

Hy (P1[P2) = {
satisfies Hy (Po|Qo) = Hy (PT|QT) = Hy (PT=0|QT—0), thanks to Lemma 2.1.

Since for 0 < ¢ < T, Hy(P|Q:) = E <U <%(X$QT))>, to precise how this quantity decreases

in time we will be interested in the ] -martingale <%(X’?O’T), 0<t< T> and therefore in

the time-reversal (XtQO’T, 0 <t <T) of the diffusion process (XtQO, 0<t<T).

We assume from now on that the Markov process X'tQO’T is again a diffusion process. Condi-
tions ensuring this fact have been studied among other authors by Follmer 4], Hausmann and
Pardoux [6], Pardoux L}Q] and Millet et. al [11], who in particular provide the semimartingale
decomposition of XtQO’ in its filtration. We shall base ourselves on the general results in [11],
which we recall in Theorem 2.3 below in a slightly more restrictive situation, and which rely on
the following conditions:



H1) For each T' > 0, sup;cpo(|b(¢,0)| + |o(t,0)]) < 400 and there exist K7 > 0 such that
Y
Vt € [0,T], Yo,y € RY, [b(t,z) — b(t,y)| + D |oei(t, ) — ouilt,y)| < Krlz -y,
i=1
where o,o; denotes the i-th column of the matrix o.
H2)q, Foreacht > 0, the law Q;(dx) of XtQO has a density ¢;(x) with respect to Lebesgue measure.
H3)g, Denoting a;; = (00*);;, for each i =1, ..., d the distributional derivative 0;(a;;(t, x)q(z))

(with summation over repeated indexes) is a locally integrable function on [0, 7] x R%:

T
/ / 10 (ai;(t, 2)q(x))|dedt < oo for any bounded open set D € RY.
o Jp

We set for (¢,z) € [0,T] x R?

° dz‘j(t,x) = aij(T—t,x),i,j =1,...,d,
(T —t,2) + lauT—to)ar—i(@))

. Bzgo(t,x) (@)
is 0 if gr—¢(x) is 0)

qr—i(x)”

(with the convention that the term involving

~o

and notice that bg, (t, ) is defined dt ® dz a.e. on [0,T] x R? under assumption H3)q,.

Theorem 2.3 Assume that H1) and H2)g, hold.
a) Suppose moreover that H3)qg, holds. Then, Q7Y is a solution to the martingale problem.:
¢
1 _
(MP)g,: M{ := f(Yt)—f(Yo)—/O 5ij (5, Ys) 035 f (Ys) +big, (5, Y5) 0 f (Ys)ds, ¢ € [0, T]

is a continuous martingale with respect to the filtration (G;) for all f € C§°(RY).

b) Let b : Ry x R* = R? and & : Ry x RY — R pe measurable functions such that
fOT Ip la;(t, )| + 0% (t, 2)|qr—i(x)dzdt < co for any bounded open set D C R%. Assume
moreover that Q770 is a solution to the martingale problem w/r to (Gi) for the generator
Lif(x) = 3a;;(t,x)0;; f(x) + bi(t,2)0; f(x). Then, b=">, a=a and H3)g, holds.

Notice when f is C° on R? and vanishes outside the ball B(0, A) that

(| i (507 (V) s

< sup VAT swp  |bls,a) + /
B(0,A) [0,7]x B(0,A) (0,T]xB(0,A)

where the right-hand-side is finite under H1) and H3)g,.

7
Z 9j(aij (s, x)qs(x))

=1

dsdx)

(2.1)

Proof . According to Theorem 2.3 [11], under H1), H2)g, and H3)q, (Mg)te[O,T) is a contin-
uous Gi-martingale under Q7. Since by (2.1) and H1), t + MTJ: is continuous on [0,7] and

IETHO(]M%\) < 400, one deduces that (Mtf )iclo.7] is a continuous Gi-martingale under Q7.
Part b) follows from Theorem 2.2 in [11]. ||



Remark 2.4 i) Under H1), condition H3)q, is implied by the following one

qg (z)dx

W < 400 and

C)q, : Qo has a density gy w.r.t. the Lebesgue measure s.t. Ik > 0, fRd

either
VYT >0, 3e >0, Y(t,z) € [0,T] x RY, a(t,z)=00"(t,x) > ely,

or the second order distribution derivatives a‘?f%z;(t,:c) are bounded on [0, T] x R? for each
10
T > 0. Indeed, by Theorem 3.1 in [6], C)q, ensures condition (A)( i) in p. 1189 therein,

which implies H3)g, when H1) holds.

ii) By Theorem 3.3 in [11] and the proof of Theorem 2.2 therein (see also p. 220 in [11]), the
global Lipschitz assumption H1) in the previous result can be replaced by a local one under
additional regularity of the coefficients and exponential integrability of their derivatives.

The results in this section will be stated under H1), but they also hold in that more general
setting of [11].

The next result will give almost everywhere sense to the functions required to describe the
processes (D} )telo,r]> Without additional assumptions.

Lemma 2.5 Assume that H1) , H2)p, and H3)p, hold.

i) For each i = 1...,d and a.e. t € (0,T], the distribution a;j(t,-)0;jps = 0;(a;j(t, )pt) —
p0;aij(t,-) is a function in L} (dx) and, as a Radon measure in [0,T] x R, one has
a;j(t,x)0jpi(x)dr dt < pi(x)dz dt. A version of the Radon-Nikodyn density (measurable
in (t,x)) is given by [ai;(t,-)0;pe](z)/pe(x). Moreover, there exists a measurable function
(t,x) — KP(t,x) € R? such that for eachi=1...,d

[ai;(t,)0;pi)(x) /pe(z) = aje(t, ) KP(t,2), pi(x)dx dt a.e.

i) If moreover H2)q,, H3)q, and Py < Qo hold, one has a;;(t,x)0;pi(x)dx dt < g (x)dx di
and [ai;(t,)0;pe](z)/q(x) is a (measurable in (t,x)) version of the Radon-Nikodyn deriva-
tive. Furthermore, it holds pr—(x)dx dt (but not necessarily qr—i(x)dx dt) a.e. that

by (t, @) — by, (¢, 2) =[aij (L, -)0jpr—i] () /pr—t(x) — [as;(t, )0jqr—i](x)/qr—¢(x)
=a;e(t, )" (K (T — t,x) — KY(T —t,z)),

and qr—¢(x)dx dt (and thus pr—¢(x)dx dt) a.e. that

pr-1(2) i 7i _prt(x)a. 2V(KP(T —t.z) — KYT —t. ¢
i) O (6@ =By (t,2)) = S i (b, )"(KP(T ~ t,2) = K*(T ~1,).

Proof . The Lipschitz character of a (following from our assumptions) ensures that a has a.e.
defined derivatives in L® and thus that the distribution a;;(¢,-)0;p; as defined is a function in
L} (dz) under H3)p,. This implies, by Lemma A.2 in [11] (see also Lemma A.2 in [6]), that
a;j(t,z)0jpe(x) vanishes a.e. on {z : p;(x) = 0}. This fact easily yields the remaining assertions,
except for the existence of the functions KP or K9, which we establish in what follows.

We will on one hand use the fact, asserted in the proof of Lemma A.2 in [11], that for each ¢ > 0
and each bounded open set ©, a;;(t, 2)0;p:(z) is the o(L1(©), L°°(0))-weak limit of some subse-
quence of a;;(t, z)0;[pn *p¢](x), for rapidly decaying regularizing kernels p,,. It is indeed shown in



Lemma A.1 in [6] that for a suitable bounded sequence a,, > 0, o, !|x| |V p, ()| is again a regu-
larizing kernel. The Lipschitz character of a then yields the domination |a;;(t, x)0;[pn * pe)(x)] <
|pn 0 (aij(t, )pe) ()| +Cayt [ |z —y| [Von(z —y)|p:(y)dy, the right hand side being, by the pre-
vious, an L'(©)-converging sequence. Weak compactness is then provided by the Dunford-Pettis
criterion, and the limit is identified integrating by parts against smooth test functions compactly
supported in ©. On the other hand, we will use the fact that diagonalizing the symmetric posi-
tive semidefinite matrix (a;;(t, z)) = [u1(t, @), ..., uq(t, 2)|A(t, x)[ui (¢, z),. .., uq(t, x)]* provides
orthonormal vectors (ui(t,x))gzl and the corresponding eigenvalues and diagonal components
(\i(t, )L, of A(t,x), that are measurable as functions of (¢,z).

We take © as before and a;;(t, 2)0;[pn * p¢](z) to be the subsequence described above. Defining

the vectorial functions w™ := [uy, ..., ug]*V[pp * p;] and v, = sign(ui[aVp|)ug, k =1,...,d,

we have

/ lvp[aVp| = lim vi[aV]ppxpe]] = lim )\kwén)sign(u;;[ant]) =0,
On{\,=0} n—=00 Jon{i,=0} =0 Jon{i,=0}

(n)
J
and a.e. € R%, the vector [a(t, ) Vp(x)] belongs to the linear space ((u;(t, ®))i1, _a:x(t.x)£0)-

since aV[p, * pt] = Z?Zl Ajw: " u; by the spectral decomposition of a. Consequently, for each ¢
Denote now by w = (wj)?zl = (u;fant)?zl the coordinates of aVp; w.r.t. the orthogonal basis
(uj(t,x))j=1,. 4, S0 that w is a measurable function of (¢,z). If we moreover denote by A the
diagonal matrix with diagonal )\;11)\1.7&0,]' =1,...,d, and set v := [ug, ..., ug]Aw, then

av = [uy, ..., ug)Afur, ..., ug] u, ... ug)Aw = [ug, ..., ug) AAw = [ug, ..., uglw

since w = (wjl)\ﬁéo);l:l. That is, (t,z) — v(t,z) € R? is a measurable function such that for
almost every ¢ € [0,T] and each i, a;e(t, )" v(t,x) = [ai;0;pe(x)], dx a.e. Finally, KP(t,z) :=
v(t, ) /pt(2)1p,(2)>0 has the required properties. ||

Remark 2.6 The function v(t,x) in the proof of Lemma 2.5 gives an a.e. sense to Vp; un-
der H3)p, as far as we are concerned with the products ayVp:. Clearly, v(t,x) satisfying
aje(t, x)*v(t, x) = [a;;05pi(x)] is not unique a.e. unless a(t,x) is a.e. non singular.

Under assumptions H3)p, and H3)g, and in view of the previous remark, Lemma 2.5 justifies
introducing the following notations:

e Vin %(CC) denotes the equivalence class of the the funcion KP(t,z) — K9(t,x) under the
relation f ~P g <= f(t,z) — g(t,x) € Ker(a(t,x)), pi(z)dx dt a.e.

o VZ—:(JU) denotes the equivalence class of the function %(x) (KP(t,x) — K9(t,z)) under the
relation f ~9 g < f(t,z) — g(t,z) € Ker(a(t,z)), ¢(x)dx dt a.e.

It is easily seen that this notation is consistent with the particular case when p; and g; are C'' and
strictly positive (i.e. in that case the true gradient belongs to the equivalence class named after
it). As customary, we identify equivalence classes with their representatives when the context
allows us to do so. Notice then that the relation expected by formal derivation :

Dt Dt vl
a(:ﬂ)VIna(:ﬂ) = vqt( ) (2.2)

holds true by Lemma 2.5 ii), in the sense that %(:ﬂ)kz(t,x) ~1 Z—z(:n) (KP(t,x) — K9(t,z)) when-
ever k(t,z) ~P KP(t,x) — K9(t,x).



Recall now that an element Py € M of a given set M of probability measures in C([0, 7], R%)
is said to be extremal if Py = aP; + (1 — )Py for some P1,P; € M and a € (0,1) implies
]P’() = Pl = PQ. We have

Lemma 2.7 Assume that H1),H2)q, and H3)q, hold. For eachi=1,...,d,
M= Vi Y —/ b, (5, Yo)ds, t € [0,T]
0

is a continuous local martingale w/r to QT=Y and (G;), and (M?, M7); = fot a(s,Ys)ds for all
i, =1,...,d. Moreover, if Q170 is an extremal solution to the martingale problem (MP)q,,
then for any ma,rtmgale (Nt)eeo, T] w/r to Q10 and (G;) such that Ng = 0, there exist predictable

processes (h )te[o T],j=1,..d With Z” 1 fo hlai;(s, Yo)hids < oo, Q70 a.s., and such that ( fo

dMs = 3 75_ lfo hidM3 )te[o 7] i a modification of (N¢)cjor)- In particular, (Ni)icpo,r) has a
continuous modification.

Remark 2.8 Obviously, Q170 is an extremal solution to the martingale problem (MP)q, if
uniqueness holds for it. In particular this is true if pathwise uniqueness for the stochastic differ-
ential equation

dX; = b, (t, Xy) +o(t, Xy)dWy, t€[0,T] (2.3)

holds, where 6(t,z) = o(T — t,z). See Lemma 2.13 below for conditions ensuring pathwise
uniqueness which are related to long time stability.

Proof of Lemma 2.7.  Standard localization arguments show that M in (MP)g, is a
continuous local martingale for any f € C? (see e.g. Proposition 2.2 in Ch. VII of [13], its
proof for deterministic initial condition also being valid in the general case). Moreover, since
M; = M/ for f(x) = ', by Proposition 2.4 , Ch. VII of [13] we get (M, M7), = fg a(s,Ys)ds.
The measure Q7 is therefore a solution to the Problem (12.9) in Jacod [8] in the filtered space
(C([0,T],R%), (Gt )sefo,17), with data given by Gy and (Y;),e(o.7], and characteristics respectively
corresponding to: Qr as the initial law, the d—dimensional process (B! = fO S Y)ds)z 1
the matrix process (C¥ = fo a (s, Y)ds)m:1 and the random measure process on R? given
by p: = 0. The extremality assumption on Q7% and Theorem 12.21 in [8] imply that any
L?(QT7%) —bounded (G;)—martingale is the sum of on one hand the L?(Q7 %) limit of linear
combinations of stochastic integrals with respect to M;,i = 1,...,d and, on the other hand, a
compensated jump martingale in the form of stochastic integral with respect to u; — 14, with py
and v, respectively denoting the (trivial) random jump measure associated with the continuous
process Y; and its predictable dual projection (see also Proposition 12.10 in [8]). The statement
follows by localization arguments. |

We are ready to state the main result of this section. In all the sequel the convention inf () = +oo
is adopted. By convenience, we will also assume that the filtration (G)ic[o,7) is extended to the
whole interval [0, 00) by putting G; = Gp for all ¢ € [T, o0).

Theorem 2.9 Assume that U : [0,00) — R is a convex function and denote respectively by
U’ and U"(dy) the left-hand derivative of the restriction of U to (0,+00) and the non-negative
measure on (0,400) equal to the second order distribution derivative of this restriction.



Let Qo and Py be probability measures on R¢ such that

HU(PO‘QO) < 0

and assume that H1) , H2)g,, H3)g, and H3)p, hold. Suppose moreover that QT is an
extremal solution to the martingale problem (M P)q,. Then, one has

a) (Stochastic U-entropy dissipation) The submartingale (U(D]))cio,r) has the Doob-Meyer

decomposition
t
vt € [0,T], U(D]) =U(D}) + /U’_(DST)V [pT—‘] (Yy)1lscp - dM,
0 qr—s
) (2.4)
3 [ LN ) - Lerey AU(O),
(0,400)

where R = inf{s € [0,7] : DI = 0}, AU(0) = lim,_,o+ U(z) — U(0) < 0 and L;(DT)
denotes the local time at level r > 0 and time t of the continuous version of the martingale
(DZ)SG[O,T}'

In particular, if U is continuous on [0, +00) and C? on (0,+0c0), one has

e 0.7), uof) =Uof)+ [ 00D [E2] e au.
N T

b) (U-Entropy dissipation) We have ¥t € [0,T1],

Hy(P|Q:) = Hy(prlgr) — AU0)QT°(0 < R< T —1t)

1~T—>O T Tyr! r
+ 2E </(0’+OO) (DU (d )) . (2.6)

Last, when U is continuous on [0,+00) and C? on (0, +00),

Hy(Py|Qo) = Hy(prlar)

/ /{psmo} (%(@) (v* [z_} a(s, )V [%])(m)qs(x)dxds, 2.7)

where, by a slight abuse of notations, U"(r) denotes the second order derivative of U at
point v > 0.

Corollary 2.10 For the choice U(x) = |z — 1|, under the assumptions of Theorem 2.9 and in
particular if Py < Qo, the total variation distance ||P, — Qq||Tv satisfies

vt < T, ||P; — Qillrv = ||Po — Qollrv — ET7(Lp(DT) — L4 (D")).

When —t( Y;) is a continuous QT-G; semimartingale and in particular if (t,x) Z—Z(x) is well-
defined and of class CV2, we deduce that

Vt <T, ||P, — Qillrv = [|[Po — QollTv — ET(Ll(g(Y)))-
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Remark 2.11  a) Notice when Hy(Py|Qo) < oo that H2)q, implies H2)p, by Lemma 2.1.

b) If condition C)q, in Remark 2.4 1) holds (and thus H3)q, holds), then also C')p, (and thus
H3)p,) holds if for instance % has at most polynomial growth.

To prove Theorem 2.9 we first obtain explicit expressions for the martingale (D} )ee[o,7] intro-
duced in Lemma 2.1, relying on the extremality assumption in order to use Girsanov theory in
the absolutely-continuous setting. The last of the three following assertions will not be needed
but provides additional information about that process.

Lemma 2.12 Assume that H1), H2)q,, H3)g, and H3)p, hold together. Suppose moreover
that Py < Qo and that Q770 is an extremal solution to the martingale problem (MP)g,. Let
(Df)te[o,T) be the Girsanov density process defined in Lemma 2.1.

i) With R the (Gi)-stopping time R := inf{s € [0,T] : DI = 0}, we have QT7°—a.s. that

t k
we ), | <v [p“} <Ys>> a5, Vo)V [p“] (Yo)loer ds < o0, and
0 qTr—s qTr—s

Vt € [0, R), /Ot <v {m Zi] (y;)>* a(s,Y,)V [m Z:] (Y,)ds < 00 on {R > 0}.

i1) The process (D;‘F)te[oﬂ has a continuous version, denoted in the same way, such that

t
QT%a.s, ¥t € [0,T], DT :@(Y())Jr/ v [p—Ts] (Ys)lscr - dM,
qr 0 qTr—s

t
br PTr—s
g A P [P RE

qr qr—s
and (D)= [ (9[22 020) a(e. 70w [222] (vt s

ii1) Finally, if we define the (Gy)-stopping times 7° := 0 - 1pr—o+00-1prsg and

7= inf {t €10,7]: /Ot (v [m @] (Y;)>*a(s,YS)V [m @} (Y,)ds = oo} ,

47 —s 47 —s

then QT7%—a.s. R=71AT°, and Vt € [0,T],

dpr
Df = 1{t<7}dq—T(Y0)><

exp { /Ot v [m pT—S] (YS)-dMS—% Ot (v [m pT‘S} (Ys)> ) a(s, V)V [m pT‘S} (Ys)ds}.

qr—s qr—s qr—s
(2.8)
In particular, on {R > 0} the second integral in i) is a.s. divergent at t = R.
Proof of Lemma 2.12. By Lemma 2.7, the QT *-martingale (D] )07 admits the

continuous version Dg + 2?21 fot hIdM? still denoted by D] for simplicity. The martingale
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representation property and standard properties of stochastlc integrals moreover imply that
D' is determined by the processes (DT, M) = [/ 3°9_ hla;(t,Y;)dt, @ = 1,...,d. Conse-

quently, hy can be replaced (leaving DT unchanged) by any predlctable process kt such that for
each 1, fo h]ELU (t,Y)dt = fo j 1 k‘]dw (t,Y;)dt Q10 ass. fo ” 1 k]dij(s,Ys)kgds =
fo ” 1hsaw(s,YS)h§ds < oo QT7Y as. immediately follows). Furthermore, since D} =
DMR, we may and shall assume that Q7% as. hy = hyl,cp = htng‘>0 for all t € [0,T]. Let us

also notice that, by Fubini’s Theorem, it Q7 %—a.s. holds that DT(Y;) = Z ——(Y;) (and then

Ligssy = 1{’;;—:5(YS)>0}) for a.e. s €[0,7].

Now, by our assumptions and Theorem 2.3 a), PT=0 « Q70 are probability measures respec-
tively solving the martingale problems (M P)p, and (MP)g,. The processes [, b , (1 Y1)dt and
Jo b, (t, Y2)dt + [o(DF) “Ihld(M?, M), then are PT—0— indistinguishable (see e.g. Proposition
12.18 v) in [8]). Using these facts, the expression for (M*, M7) in Lemma 2.7 and part ii) of
Lemma 2.5 we deduce first that, PT70—a.s.,

by (8, Ye) — by, (1, Ye) = Zaw (&, ¥y)" ( - t(YJ) = e (1, Y2)*(KP(T — ,Y;) = KT — ,Yy))
t

(2.9)
for a.e. t € [0, 7] and each i. By part ii) of Lemma 2.5 we then also get

pr—t(Y2)

dt, i=1,...,d,
QTft(Y;%)

. d .
/Zhidzj(t,Yt)dt:/ Gie(t,Y2)"(KP(T — t,Y;) — KYT — t,Y}))
0 j=1 0

PT=0_a.s., and then QT7%—a.s. because of our assumption on h. From these identities and

. . . _ uPr—t —
our previous discussion we deduce the that we can choose h; = VqTit ()1 {Z:: )50} =

Vg;:: (Y:)1{r>¢y- This proves part ii). The first property of the process VZ;: (V) in i) is thus
consequence of the general properties of h in the representation formula for Df. The second
assertion in i) easily follows from the first one, taking into account the definitions of V%(Yt)

and VIn Z —(Y?), the relation (2.2) (in its rigorous sense) and the properties of DI

To establish iii), we again use the extremality of Q7 ? in order to apply Theorem 12.48 in [8].
Thanks to part ii) of Lemma 2.5 and equation (2.9), the objects z, K, B and T,, in (12.32), (12.35)
and (12.42) of [8] alluded in that theorem, correspond in our setting to, respectively, Z—;(Yo),

Vin |:pT s} (Ys), the increasing process A; := [} (V [ln Zi:] (S@))*(z(s,YS)V [ln Z;—:j (Ys)ds
and the stopping time 7, := inf {¢ € [0,7] : A; > n}. This and Lemma 12.36 d) in [8], yield the
fact that D] equals (2.8), Q770 a.s in the set Upen{t € [0,7] : t < 7,}. It is also established
therein that 7, 7 Q70 a.s., impling that the latter random set equals the interval [0,7) N

[0,T]. Moreover, on this interval, the integrals which appear in the exponential factor in (2.8)
are finite. Therefore, either 7° = 0 and then R = 0, or 7° = oo and then R > 7.

By Theorem 12.48 in [8] as well, we have D} = liminf,, o DI for ¢ in [r,T], Q77" a.s. Thus,
t + DT is constant in [r,T], @T%O a.s.. By Theorem 12.39 in [8] we have PT0(7 < o0) = 0.
Since PT70(1 < o0) = P77 < T) = QT7%(1; <1y D), the as. constancy of ¢ — DI on
[7,T) ensures that Q7% a.s. D' = 0 for all ¢ € [, T], when the latter interval is non empty. As
a consequence Q770 as., R < 7 so that R = 7 A 7°. This completes the proof. [ |

@T*)O

Proof of Theorem 2.9. Since (D} )te[o,r] 1s a continuous non-negative -martingale
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and U’ is locally bounded on (0,400), t fot [U’_(DST)]Qd(DT>S is finite and continuous
on [0,7] when R > T and finite and continuous on [0, R) otherwise. In the latter case,

fOR [U',(D?)fd(DT)s makes sense but is possibly infinite. Define for any positive integer n
the stopping time

1 t
R, ::inf{te[O,T/\R]:Dg‘Fggor/ [U,_(DST)}2d<DT>SZ”}'
0

For all ¢ € (0,77, OMR" [U’_(DST)]Qd(DT>S < n and E (fOtAR" U’_(DZ)dDZ) = 0. Moreover
R, /R asn — oo.

Let t € [0,T]. By Tanaka’s formula,

tAR
n 1
U(DhR,) <UD+ [ U OTaDT 45 [ L, 00, (200)
0 2 J(0,400)
The assumption that Hy(Py|Qo) < oo and Remark 2.2 a) imply that (U(DI))sepo7) is a uni-
formly integrable Q7 70-submartingale. Since the QT 7%-expectation of the stochastic integral is
zero, one deduces

BT (U(Dh ) = B 0(U(DE)) + 5B ( /(0+ | I;ARn(DT)U"(dr)).

When n — oo, since U is continuous on (0, +00) by convexity, U(Dg;\Rn) converges to U(DL, o)+
AU(0)1go<p<sy = U(D{)+AU(0)119< p<sy and by uniform integrability, E(U(DE\RR)) converges
to E(U(D!)) + AU(0)QT%(0 < R < t). Dealing with the expectation of the integral in the
right-hand-side by monotone convergence, one obtains

E(WU(D])) = BT*(U(DE)) ~ AUO)QT (0 < R < 1) + 577 ( /( | :AR<DT>U”<dr>> .
0,400

Since according to Lemma 2.12 ii), D’ is equal to zero on [R,T], one can replace t A R by t

in the last expectation. Replacing ¢ by 7' — ¢ in this equation, one gets (2.6). Moreover Q70
a.s., f(o to0) L;(DTYU"(dr) is the finite limit of the integral with respect to U”(dr) in the right-
hand-side of (2.10) as n — oco. Since the left-hand-side converges to U(D]) + AU (0)1{o<r<s}

we deduce that the stochastic integral in the right-hand-side also has a finite limit. Hence

fg/\R [U’(DST)]Qd(DT>s < +0o0, g/\R U'(DI)dDT makes sense and (2.4) holds. When U is
continuous on [0, +00) and C? on (0, 4+00), (2.6) written for ¢ = 0 combined with the occupation

times formula and Lemma 2.12 imply (2.5) and that
Hy(Po|Qo) =Hu (prlar)
L7150 g T Pr—s " P1T—s
+ EE U(Ds )s<ry |V (Ys) | a(s,Ys)V (Yy)ds | .

0 qr—s 4T —s

Since Y admits the density gr_s and for almost all s € [0,T), DI = Z%(Ys) and {R > s} =

{{]’5—:(1{9) > 0}, by changing variables s — T — s we have established (2.7). ||

We end this section with the following two statements concerning the important case when
Qo(dx) = qo(x)dx = pso(z)dz is a stationary probability law for the Markov diffusion (0.2).
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Lemma 2.13 Suppose that the functions o and b do not depend on time and that the Markov
diffusion process (0.1) has an invariant density poo(x), such that [ ]0; (aij(x)pes(x))] dz < oo
for any open bounded set D C R?, where a = oo* and the derivatives are meant in the distribution
sense. Set fori=1,...,d
- ~ 3 (a1(2)poo (@)
Vi) ==y o

Poo ()

if Poo(x) >0
j=1

and 0 otherwise, and ¥ = (W) ,. Finally, assume that Qo(dr) = peo(w)dx, that H1) and
H2)g, hold , and that W is the sum of a locally Lipschitz continuous function ¥ and a monotone

function V: . .
(U(z) — U(y),x —y) >0 for all z,y € R%

Then, pathwise uniqueness holds for the stochastic differential equation (3.1). In particular,
QT=0 is an extremal solution to the martingale problem (MP)g, .

Observe that if d = d’, 0 = Id is the identity matrix, and poo(z) = Ce=2V(®) for some convex
function V : R? — R, then ¥(x) = 2VV (z) satisfies the monotonicity condition. More generally,
if the matrix a has locally Lipschitz derivates, then W satisfies the above condition for instance
if 2 +— a(x)KP>(z) is moreover monotone or, alternatively, if p () is strictly positive and has
locally bounded second oder derivatives.

Proof . Let X; and Y; be two solutions to (3.1) constructed on the same probability space and
equal at t = 0. By Itd’s formula and the assumption on ¥ we get

X viP <2 [0 (09X - 0 (1)) aw
0
- 2/0 (X — Y} (bl’(Xs) — b (V) + U(X,) — \iﬂ‘(Ys)) ds
+ [ o) ~ oo — o).
0

Thanks to the local Lipschitz-continuity of b, o and U, and after localizing, taking expectations,
and using the BDG inequality, it is standard to conclude with Gronwall’s lemma that X =Y. i

Proposition 2.14 Assume that the functions o and b do not depend on time and are Lipschitz
continuous. Assume moreover that the Markov diffusion process (0.2) has an invariant density
Poo(x) and a strictly positive transition density oi(x,y) w.r.t. dy, which is continuous in (z,y)
for each t > 0. Last, assume that Hy(P;|Q¢) < oo for some t > 0. Then

lim Hy (Py|Q,) = 0.
S—00

Remark 2.15 For conditions ensuring the joint continuity of the transition density with respect
to (x,y), we refer to [5] Chapter 9 under uniform ellipticity and to [10] Theorem 4.5 under
hypoellipticity.
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Proof . According to Corollary 1.2, it is enough to check that the tail o-field ﬂszoa(XrQO, r>s)
is trivial a.s..

First, by our assumptions on the coefficients o and b, the semigroup (F;)¢>( associated with (0.2)
is Feller, and moreover strongly Feller by the continuity in (z,y) of ¢(x,y) (it is enough that
P, f be continuous for all f such that 0 < f < 1, which is true because P,f and P;(1 — f) are
both l.s.c. functions summing 1, by Fatou’s Lemma).

The positivity of the transition density implies that any invariant probability measure is equiva-
lent to the Lebesgue measure on RY. Therefore po(z)dx is the unique invariant measure, which
thus is ergodic. Moreover, po(x) > 0 dz a.e.. Let Py, denote the law of the solution to (0.2) start-
ing from an initial condition distributed according to poo(x)dz and (Y;)i>0 denote the canonical
process on C([0, +00), R?). For simplicity we also write P, instead of Py . By the ergodic theo-
rem and the strict positivity of pso, we have fooo 14(Y;)dt = +00, Po— a.s. for each Borel set A
in R? with strictly positive Lebesgue measure. If A = {y € C([0, 4+00),R%) : Jo" 1a(ys)ds = oo},
we deduce that P,(A) = 1 for dz— almost every . But A is a tail event, and by the Markov
property one has P,(A) = E,(Py,(A")) for any ¢ > 0 and a suitable measurable set A' of
C(]0,4+00),R9). The strong Feller property then yields ]P’x(fi) =1 for all z € R% That is, X
defined by (0.2) is Harris recurrent.

By Theorem 1.3.9 in [9] (and noting that its proof uses only continuity of ¢;(x,y) in (z,y) for
each ¢ > 0 but not continuity in (¢, x,y)), we get that any tail event B is such that P,(B) =1
for all z € R? or P,(B) = 0 for all z € R? which concludes the proof. ||

Remark 2.16 Under the positivity assumption on the transition density, P and Q¢ admit pos-
itive densities p; and q; as soon as t > 0. For the choice U(x) = |x — 1|, Hy(P|Q:) =
Jga Ipe(z) — qe(x)|da is equal to the total variation distance between P, and Q. According to
Theorem 1.3.8 [9], the tail o-field is trivial a.s. if and only if this total variation distance con-
verges to O for all choices of the initial distributions Py and Q.

3 Dissipation of the Fisher information and non-intrisic Bakry
Emery criterion

We will from now on focus in the case when Qo(dx) = poo(z)dz is a stationary probability law
for the Markov diffusion (0.1) . We denote

1 S * S S
Iy (ps|poo) = 5/ U’ (p—> (V [p—] v [p—Dpoodm
{£=>0} Poo Poo Poo

the integral that appears in the right-hand-side of (2.7), and we refer to it as the U— Fisher
information.

Inspired by the famous Bakry-Emery approach, we want to compute the derivative of Iy (ps|poo)
with respect to the time variable.

In all the sequel, we make the following assumptions :

H4) The drift function b is time-homogeneous and has first order derivatives which are globally
bounded and Holder-continuous uniformly in R?, and
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the matrix o is time-homogeneous and has up to second order derivatives which are globally
bounded and Holder-continuous uniformly in R9.

H5),.. The Markov process defined by (0.1) has an invariant density poo(x), and Qo(dxr) =
Poo(z)dz. Moreover, po has locally bounded derivatives up to the second order which

are globally Holder continuous, and peo(z) > 0 for all 2 € R9.

oo

H6),, The initial distribution Py admits a probability density py with respect to the Lebesgue
measure. Moreover, we assume that H3), holds, and that p;(z) = %Ct(z) has space
derivatives up to the second order for each ¢ > 0, which are continuous in (t,z) € (0, T]x R?
and bounded and Hélder continuous in # € R? uniformly in (t,2) € [6,T] x R? for each

d € (0,77.

Notice that H4) implies H1). Next, H5),_ implies H2)q, for Qo(dzr) = poo(x)dz and combined
with H1) (or with H4)), it implies H3)g,. Assumptions H4) and Hb5) together imply by
Lemma 2.13 that uniqueness holds for the martingale problem (M P),, . Therefore the hypothe-
ses of Theorem 2.9 hold within the present Section. If H5),, and H6),, hold, V}% is defined
everywhere. Since the gradient of a C' non-negative function is equal to 0 when this function
is equal to 0, V]% is equal to I% <1pt>0% - %
respect to poo) defined after Remark 2.6. We will throughout in the sequel use this everywhere
defined representative, in particular in Equation (2.7) which states that the U-entropy dissipation
is equal to the U-Fisher information.

> and belongs to the equivalence class (with

Under H4), if moreover a and b are bounded with a uniformly elliptic, then H6),, holds for any
compactly supported probability density pg, by [5] Chapter 9. We refer to [10] for conditions
ensuring that H6),, holds under hypoellipticity.

Let us establish some notation.

We write PZ70 := Q70 and b; := BZQO, i=1,...,d.

(A=Y denotes the (k,1) coordinate of the inverse A~! of an invertible matrix A.

T'—0
— Poo

By possibly enlarging the probability space G; , we introduce a Brownian motion
W such that Y; solves the stochastic differential equation :

dY; = b(Yy)dt + o(Yy)dW;, t €[0,T] where b;(y) = —b(y) + 53((11;)(2/21;;0@))

(3.1)

By Lemma 2.13, under assumptions H4) and H5),, existence of a unique strong solution
holds for this SDE.

We write pi(x) := %(m), te0,7].

We will make use of the stochastic flow defined by the two-parameter process & (x) satisfying
déj(z) = o (&(2))dWE + bi(&(x))dt, (t,z) € [0,T) xRY, i=1,...d, (3.2)

and &o(x) = x, and we notice that &(Yp) = Y;. We shall also deal with the family of continuous
G — P70~ local martingales (Dy(z) = p(&:(x)) : t € [0,T])yera defined by

AD(w) = [oudip] (1. G@)AWE . Do(z) = P (x) = po(a). (3.3)
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According to Lemmas 2.7 and 2.12 and Equation (3.1), Dy(Yp) is equal to the process DY
considered in the previous section. Writing Vp;(&(2)) = (Vu&i(2)) " Valpi(&:(2))], we remark
that dVp;(&(x)) can be obtained with the Ité product rule, by computing d(V & (z))~! and
dV;[pe(&(x))], as we do in the two next Lemmas:

Lemma 3.1 The process (t,x) + &(x) has a P79 a.s. continuous version such that the map-
ping x +— &(x) is a global diffeomorphism of class CY for some a € (0,1) and every t € [0,T].
Moreover, we have
do;€i(x) = Opoin(t, &u())0587 (x)AW] + Opbi(t, &1(2))0;€f (x)dt,  (t,x) € 0,T) x R? (3.4
with 0;€4(z) = &;;. Finally, writing V& (x) = (9;€}(x))ij, it holds that
d(V&(2)y! == (V&(@) [Dr0i](t, &(2))dW] — V() [Obi] (¢, & (x))dt (3.5)
+ (V&(2))1) [0m0ir O10my ] (¢, & (2))dt, (t,x) € 0,T) x R%. '

Proof . Under assumptions H4) and H5), classic results by Kunita [9] (see Theorem 4.7.2)
imply the asserted regularity properties of the stochastic flow, as well as the ngo a.s. existence of
the inverse matrix (V& (x))~! for all (¢,z) € [0, T]xR%. Since the smooth map A +— A~! defined
on non singular matrices, has first and second derivatives respectively given by the linear and
bilinear operators F' +— —A71FA™! and (F,K) = AT'FAT'KA™1 + A7' KA 'FA~! (where
F, K are generic square-matrices), we deduce that for A = (a;;); j=1..d,

(A ) (A _ATAT AT AT A

({90,2‘]‘ 4 J

8aij 8amn gm*nl km* ni

—1 4-1
= —AL; Ajl , and
for all k,1,4,j,m,n € {1,...,d}. Equation 3.5 follows by applying Ito6’s formula to each of the
functions A — (A1) and the semimartingales (9;&}(x)), 4,5 =1...d.
| |

Lemma 3.2 The process Dy(x) has a modification still denoted Dy(x) such that P70 a.s. the
function (t,x) — Dy(z) is continuous and x — Dy(x) is of class C* for each t. This modification
is indistinguishable from (py(& () : (t,x) € [0,T) x R?) and we have

0k Dy(w) = Om [0ir0ip)] (t, &4(2)) 0™ (2) AW = d [Omp(t, &:(2)) 0" ()] (3.6)
for all (t,z) € [0,T) x R%.

Proof . Thanks to assumption H6),, and the regularity of z — & (x) established in Lemma
3.1, the statements follow from Theorem 3.3.3 of Kunita [9] (see also Exercise 3.1.5 therein).

Evaluating expressions (3.5) and (3.6) in x = Yp, we obtain using It6’s product rule that

doipe(Yy) = [okrOep) (8, Yy)dAW] — [01yOkjpOiojr + OrpOiby] (t,Yy)dt

_ 1 _ (3.7)
= [owrOup] (6, Y0)AW] — | SOkjpiar; + Opdibr| (¢, Ye)dt

From now on, for notational simplicity the argument (¢,Y;) will sometimes be omitted.

To compute the dissipation of the U-Fischer information, in all the sequel we make the following
regularity assumption on U:
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H7) The convex function U : [0,00) — R is of class C* on (0, +00), continuous on [0, +-00) and
satisfies U(1) =U’'(1) = 0.

The assumption that U’(1) = 0 is inspired in the analysis on admissible entropies developed in
Arnold et al. [1]. It is granted without modifying the functions p — Hy (p|peo) and p — Iy (p|pso)
by replacing U(r) by U(r) — U’(1)(r — 1) if needed. Notice that if H7) holds, U(r) attains the
minimum 0 at 7 = 1 and therefore U > 0 by convexity.

We do not assume that the entropy function U is C* on the closed interval [0, +00), since we
want to deal with U(r) = rln(r) — (r — 1). That is why we introduce some regularization Us
indexed by a positive parameter 0 : we chose Uy such that Us(r) = U(r + ¢) for r > 0 and Uy is
extended to a C* function on R.

Proposition 3.3 One has
d (U5 (p)V*pa¥Vp| = tr(AsT)dt + Ug (p)0dt + dM @
where M is the G — ngo—local martingale
dM©®) = {2 U} (p)owi Oy pdy, [0po] + [V p*aVp] UL (P)akp} O dW" = 0, (U5 (p)V* paV p| oprdW,

As and I' are the square matrices defined by

As =

Ui (p) U (p) r._ [ V(0w - Vp)aV(oei - Vo) (i Vo)V"p aV(owi - Vp)
o) 50 (0) (00 - VO)V*p aV(0ui - Vp)  |[V*paVpl

and
_ i 1
0= 2{ (01501 Pk Om 0101 p) + 01O pOyp |:bmamali + §amkamk0'li:|
— aw Oy p [04r O pBi0jr + OOy }

1- 1 _
= 2{31',051/) [ibmamall’ + §Jl’iamkamkali — akz@kbz] + [ovi@mk — TkiGmr] 3l'p3m01i3kzp}-

Remark 3.4 The form of the term tr(AsT') in the above proposition is inspired from the term
tr(XY) in [2] pp 163-164 where X = 2As. One has

1
I'e = (V' a); 0j(0kiOkp)oiiOip =§(V*P a); [0j(0riOkp)o1:01p + 0;(01:01p) 01i Ok p)

1 * 1 * *
=5(Vp a);0; [Oipandypl = 5(V'p a)V (V7 paVp)

which, with %—f = (25]')” denoting the Jacobian matriz, equals

1 1
§(V*P a);0; [Oupandp] =5 (V" p a); (Okjp arr dip + j lawi Oip] Orp)

9(Vp) 9(aVp)”
ox ox

1
=—V*pa

1
5 aVp+ §v*,0 a

Vp
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and corresponds to 4Y 12 in [2], p. 164. Similarly, T'ao = 4Y 9. However Ty cannot in general
be identified with 4Y11. For instance, in the case of scalar diffusion D(z) = a(z)/2 = D(x)Iy
for some real valued function D, the term I'11(z) above when written in terms of D reads

IVD?|Vp|® + 4D0;D;pdijp + AD* > (9i;0),
]

for the choice o(x) = \/D(x)14, whereas

n 1 1
AY1 =4 D*) (9;p)° + (Z - 5) (Vp-VD)?+2D3;Dd;ipdijp — D(NVp- VD) p + 5|VD|2|V,0|2
]

Moreover, our term I'11 above is non-intrinsic, in the sense that it cannot in general be written
in terms of the diffusion matriz a only (without making explicit use of o), contrary to the term
Y11 in the matriz of [2].

Before proving Proposition 3.3, following [1|, we introduce an additional assumption on U that
will be made in all the sequel :

HT') Vr € (0,00), (UG (r)? < IU"(r)\UW (7).

N[

By H7'), As is a positive semidefinite matrix. Since by Cauchy Schwarz inequality,
((0i - VP)V*p aV(0ei - Vp))* = ((04i - V)V p.0*V(0ei - Vp))®
<D (00 V) o"Vp? Y |o" V(0w - Vp)I?
= |V*paVp|® X V*(04; - Vp)aV(oei - V).

the determinant of the matrix I' is nonnegative, and this matrix also is positive semidefinite. As
an easy consequence we have

Corollary 3.5 R
V8 >0, d [Uf(p)V*pa¥Vp| > Uf(p)fdt + dM ).

Notice that one could preserve the positive semidefiniteness of the matrix I' when replacing I'11
by the smaller coefficient Z?lzl (V*p aV(0ei - Vp))? /|[V*paVp|, which amounts to replace the
squared norms of the vectors 0%V (oe; - Vp) by the ones of their orthogonal projection on o*Vp.
Unfortunately, we have not been able to take advantage of this possibility.

Proof of Proposition 3.3.
By It6 ’s formula we get doy; = [0yr-Omoys] AW] + [Bmamah- -+ %amkamkali] dt. We then have
d[01;01p] = 01;d01p + Oypdoy; + d{(Orp, o1;)
_ _ 1 _
= Ok [O1poii] okrdW" 4 O01p | b Omori + §amkamkali — 01 [0krOkjpOiojr + Ok pO;by]

+ kOl POm ol
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where we used in the stochastic integral the fact that 00000y + 010k Ol p = O1p0krOr01; +
01i0kr Ol p = Ok [O1po;) ok . 1t follows that

d[V*paVp| = d[01;01p o101 p]
= 2 oy Oy pOy, [01:01p] ORrdW" + 2{ (0150 Pk Om T1: 011 p]
-~ 1 B
+ o0y pOyp |:bmam0'li + §amkamk0u} — ay Oy p [0k Ok pO10jr + OrpOiby) }dt
+ agk Ok [O1poi] Ops (O poy;] di

On the other hand, using (3.3) at x = Y we have dUj (p) = Uég) (P)OnrOnp dW”—i—%UgD (p)anjOnpd;p dt
which combined with the previous expression yields

" - 1
d [U§ (p)V*paVp) ZQUS/(P){ (01501 Pk O 01501k p) + 015 Op O p [bmam% + §amkamkali]
— aw Oy p [0y O pBy0jr + OOy }dt + dM®

1 *
+ U5 (p)ayk Ok [01p01:) Oy (O poi] dt + §U§4) (p) [V*paVpl|? dt
T 2U§3) (p)oviOv pOy, [01:01p] a;x0;pdt.

Equivalently,
d [U5 (p)V*paVp] =2U<§'(P){ (0130 P O 0101t p) + 0123 Oy pOip [Bmamau + %amk@nkdu
— ay Oy p [O4r Ok piojr + OrpOiby) }dt + dM®
+ (O 0w TVl 95) + 50 0) 97 paT

+ 2U§3) (p)(0ei - Vp)V*p aV (0e; - V,o))dt
(3.8)
||

We recall properties of the function U pointed out in [1] (see Remark 2.3 therein) which will be
used in proving the following results.

Remark 3.6 Condition HT") implies that (%)” < 0 at points where U” # 0. Since U” > 0, and
excluding the uninteresting case where U" identically vanishes, the previous implies that % 18

finite in [0,00), and therefore that U is strictly convex. We then deduce from HT') that U® >0
in (0,00). By concavity and positivity of % this function is moreover non decreasing, and we
deduce that UB) <0 in (0, 00).

We introduce one last assumption on the density flow p;:

H6'),, For each T' € (0, 7] the following integrals are finite:
T 2 .
* ‘U(?’)(p) V —1|" |V*paV p*poc () dadt
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o OTI (U"(p) A1)2V*(V*paV p)aV (V*paV p)pes () dzdt
o foT (U"(p)AD) [ |(01itme — Teitmi)Omaii|+|0k ([01iamik — Oriamir] Omoi)| ||0v pl|01p|pos () dadt

/5 (U (p) A1) [ [(o1i@mpk — Tkitmi ) Omo1i (01pOk In pos + Oip)| | 101 plpoc () dadt

Notice that in the case that a > cl; for some ¢ > 0, the third integral converges always as it can
be upper bounded by the Fisher information.

Theorem 3.7 Let © denote the d X d matriz defined by
_ 1 _
Ou = 0vi[bmdmon + 5amkOmkon] — ar O + (Tkiamy — oviamk)Omo10k (poo)
+ Okl(Tkiamp — oviamk)Omo]
and assume that the symmetric matriz (© + ©*)(t,x) is poo(x)dxdt — a.e. positive semidefinite.
Then, for a.e. t € [0,T] one has
d

pn U" (p¢)[V* praV pt]pocdr > / U (p1)V* pi(© + ©")V pipocd. (3.9)
pt>0

pt>0

If moreover, Hy(ps|pso) is finite for some s > 0 and the diffusion matriz a is locally uniformly
strictly positive definite, then Hy (pi|poo) converges to 0 as t — oo.

Proof . Let us first suppose that (3.9) holds and deduce the last assertion. Reverting time
in (3.9), we obtain that ¢ — I (pt|pec) is non-increasing. When Hy(ps|pso) is finite for some
s > 0, writing (2.7) on the interval [s,T] in place of [0,T], we deduce that I (pt|psc) tends to 0
as t — 0o. When a is locally uniformly strictly positive definite, the beginning of the proof of

Theorem 2.5 (before Part(a)) [2], ensures that p; tends to poo in L'(R?). As a consequence, in
the notations of Proposition 1.1, E ‘%(X?O) - 1‘ tends to 0 as t — oo and therefore the a.s.
limit of %(X?O) is equal to 1. By corollary 1.2, one concludes that Hy (pt|poo) tends to 0.
Let us now check (3.9). Since U” is continuous and non increasing in (0, 00) by Remark 3.6, one
has Uy (r) , U"(r) for each r > 0 as 6 — 0. It is therefore enough to obtain (the integrated
version of)) inequality (3.9) with Uy’ instead of U”, as monotone convergence allows us to pass to
the limit as 6 — 0 on both sides. For 0 < r <t < T we have by Corollary 3.5 that

[U5 (p)V" paVp](t,Yy) — [U5 (p) V" paVpl(r,Y;)

t
> NP — MO 42 / U3 (p) [oviamp — Orkitmir] Oy pOmo1i Ok pds

t - 1 -
+ 2/ U5 (p)Ov pdyp (01'1‘ |:bmam0-li + §amkamkali] - aml’ambl> ds.
Since Oy pU{ (p) [oviamk — Oki@my] = 0 and

(UL (0)00 p [ovitmp — ohitmpr] = UL (p)Okpdu p [o1itmp — Opittmpr] = 0,

one has
1
U5 (p) [oviampk — Okiamir] Oy pOm 01 0ip :p_ak (010w pUS (p) lovittumic — Thitlnir] Om 01 Poo)
o0

— 01p0y U3 (p) [o1i@mk — Oki@mir] Omo1i0 In poo
— 01pBy pU3 (p) Ok ([01imk — OkiCmir] Omors) -
(3.10)
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We deduce that
[U5 (0)V*paN pl(t, Y1) — [U5 (p)V*paV pl(r, Yy)

t t
~ ~ 1
> 0 — M© + 2/ U3 (p)Ouw Ov pdyp ds + 2/ — 0 (01pOy pUF (p) [01i@mks — Oki@mir] Om0ii Poo) ds.
(3.11)

Now, the quadratic variation of M©® is bounded above in [0,7) by a constant times
t
3 * 2 T o *
[ [0 P19 b0Vl (V) + (030)) 9 (9 pa¥ )V (¥ paVi)] (¥2) .

This and our assumptions imply that M is a martingale in [0,T) for all 6§ > 0 sufficiently
small. Indeed, we have from Remark 3.6 that Uy (r) < U"(6) AU"(r) and ]U(gg) (r)| < |[U®(6)| A
[UG)(r)| for all » > 0. Therefore (since U” > 0) we have U/(r) < (U"(r) A Dlynesy<i +
U’(6)(U"(r)/U"(0)) A 1)1yn(s>1 whence Uy (r) < (U"(6) + 1)(U"(r) A 1). As U®) is non de-
creasing and non positive, either [U®)(§)] # 0 for all § sufficiently small, in which case we
similarly get \Uég) (r)] < (UB©S)] + 1)(JUB(r)] A1), or otherwise U(gg) identically vanishes for
all §. Assumption H6),_ and the previous then ensure that (M ()Y, has finite expectation for
tel0,T).

In order to conclude that inequality (3.9) holds for the function Uy , noting that Vp; vanishes on
{pt = 0}, it is enough to show that the last integral in (3.11) has (well defined) null expectation.
Using (3.10) and Assumption H6'),  we obtain (with the same control for U (r) as before) that

t

T—0
ET /
T

1
p_ak (0100 pUS (p) [ovittmk — Oki@mir] Omois Poo) | (Ys)ds

t
= / /d mk (81P51/PU§/(P) [0ViQmk — OkiGmi] Omoti poo) {dxds < 00
r R
(3.12)

which shows that the expectation of the last term in (3.11) is well defined. Moreover, the
(everywhere defined) spatial divergence of g(s,x) := 01ps0y psU5 (ps) [01iGme — Teimir] Om0ii Poo
is L!(dx,R%) for a.e. s. For such s and ¢, € C§°(RY) such that 0 < ¢, < 1, 0 < |[Vog,| < 1,
¢n(z) =1 for z € B(0,n) and ¢, (z) = 0 for z € B(0,2n)¢,

0= V.(pn(z)g(s,x))dx = / On(x)V.g(s,x)dx + Voén(x).9(s, x)dx.
R4 R4 R4

Since by Lebesgue’s theorem, the second term of the right-hand-side tends to 0 as n — oo, the
limit [pq V.g(s, z)dz of the first term is equal to 0. ||

Theorem 3.8 Under the hypotheses of Theorem 3.7 and if the matriz © satisfies the non-
intrinsic Bakry-Emery criterion

NIBEC) 3X >0, Yz € R, 1(© + ©%)(2) > Aa(z).

then the non-increasing function t — Hy(pi|pso) converges at exponential rate 2\ to its limit as
t — oo. When, moreover, the diffusion matriz a s locally uniformly strictly positive definite,
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then this limit is equal to 0 as soon as Hy(ps|peo) is finite for some s > 0 and the convex Sobolev
inequality

Hy(plpss) < %IU(pu)oo) (3.13)

holds for any probability density p on R,

Remark 3.9 In view of Remark 2.15, the local uniform strict positive definiteness assumption
on the diffusion matriz a may be replaced by some hypoellipticity assumption for the convex
Sobolev inequality (3.13) to hold for any probability density p on R,

Proof . Reverting time in (3.9) and using NIBEC), one obtains

d
EIU(I)SU)OO) < =20y (ps|poo)-

Hence Vs > 0, I7(ps|pso) < eI (polpeo). Since by Theorem 2.9, one has %HU(pS\pOO) =
—Iy(ps|pec), one deduces that

672)\3

2\

o
0< Hy(plpo) = Ji Hy (ol = [ To(lpo) < S5 Tl
S
When a is locally uniformly strictly positive definite, if Hy (po|pso) < 400, then limy_, oo Hy (pt|poc) =
0 by Theorem 3.7. Moreover, the convex Sobolev inequality for p = pg is just the last inequality
written for s = 0. It can be extended to arbitrary probability densities p on R by simple closure.

[ |
Remark 3.10 i) Notice that 3(© + ©%) rewrites as
1- 1 _ _ 1 1
§bmamall/ - §(akl/akbl + apOkby) + Zamkamkall’ - §amkamaliakal/i
1 1
+ §Uki(am0'liaml’ + Om0oviam) Ok In(pos) — §amkamall’ak In(poo)
1
+ §3k [0ki (OmOtiGmpr + Omoritmi) — Gk Oma]
(3.14)

1 1 1 1
=— §bmamall’ + §(akl’8kbl + apOkby) — Zamkamkall’ - §(akl’akjalj + agOkjay )
1 1
— a1 Oy In(poo) — §(aklakal’j + apy Or )0 In(pos) — §amkamali8k0l’i

1 1
+ §Uki(am0'liaml’ + Omoriami) Ok In(poo) + 50k (04 (Omotiamy + Omoriam)],
both being non-intrisic expressions that cannot be rewritten without making use of the square
root o. Since we have got rid of the nonnegative term tr(AsI') which appears in the first
equation in Proposition 3.3 and involves the non-intrisic term I'11, it is natural that we
obtain a non-intrisic Bakry Emery criterion.

i) In case 0 = \2vlq andb = —(VV+F) with F such that V.(e"V/YF) = 0, then pso o e V7%,
b=—b+2vVInps, = —VV + F and © = 2v(V?V — VF). Therefore condition NIBEC)
writes IX > 0, Vo € RY, V2V (z) — YEEVE () > A1y which is exactly condition (A2) in
the introduction of [2], page 158.
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4 An example

The next example shows that our criterion and an appropriate choice of the square root of the
diffusion matrix can ensure the exponential convergence to equilibrium when the classic Bakry
Emery criterion fails.

We consider a reversible diffusion process in R? with d = 2, such that for each (x1,29) € R?,
a(xi,x9) = I, and b(z1,22) = —VV (21, 22)
where, for some a € (0,1), V is the convex potential

22T if 2 €00,1]

1+ (24 a)(z — 1)LFztl=a) 46, >

V(x1,x2) = |21 +o(|z —2o|)+0v(|22]) With v(z) = {
2

The choice of v ensures that V is globally C? and quadratic far from the origin, which implies
that b is globally Lipschitz continuous. The invariant measure is in this case poo o e 2V, and we
have

nV =2z1 + (2 + a)sign(z1 — x2)[|lz1 — o T L p, uyi<1y + (1 + @)|z1 — 22| — )1, _gpi>1y)
92V =(2 + a)sign(za)[|wa|" T Lyjpy <1y + (14 @) |22] — ) L{jzy)>1)]
+ (24 a)sign(zz — 1) |z — 21| L pay <1y + (1 + )|z — 21| — @)L {j4p—sy|>1}]

and

2 0 N 1 -1
V2V:<0 (2+a)(1+a)(|x2|/\1)a)+(2+a)(1+0¢)(\x1—x2\/\1) <_1 1 >

Notice that the classic Bakry-Emery criterion fails in this case since V2V (0,0) is singular. We
consider moreover a square root ¢ of the identity matrix of the form

o — cos¢p sing
~\ —sing cos¢
for a function ¢ : R? — R? of class C? to be chosen later. Starting from (3.14), we obtain after
some computations

1 N p Opp ~ Zz2e70ud =219V 01901V — 02002V
2(@+@ )— AVl 74 2‘V¢’ 12+< w O + DOV — DydByV 20,00,V

We now consider a parameter £ > 0 which will be chosen small and a C? function ¢ : R — R
such that ¢(s) = s if |s| <1 and (s) = 0 if |s| > 2. Then, we define

¢(x1,19) = —ee(21)pe(w2),  (21,22) € R?
where . (s) = ep(s/e). Notice that

1 if |s| <e,
pe=0(), ¢l =0(/e), and gL =4 O(1) ife<|s|<2e,
0 if|s| > 2.

Then, defining B. := {(z1,72) € R?s.t. |z1| V |72| < €} and C. := Ba.\ B, we have

O(e?) if (x1,29) € B,
) <
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—€ if (x1,22) € B,
(912¢($1,$2) = 0(6) if ($1,$2) e .,
0 if (.%'1,1‘2) S Bg&?

0 if (x1,x2) € Be,

1
5(311¢(361,362) — Op¢(r1,22)) = ¢ O(e) if (z1,22) € Cs,
0 if (z1,x2) € BS,,

and 9V = O(g), 0,V = O(e!*®) on Bs.. It follows that

l *\ 2 — 0 3 2—¢ 0 3
2(@+@)—VV+<O 6)—!—0(6)2( 0 6>+O(6) on B..

Next, the smallest eigenvalue of V2V (1, z3), is given by

Y ::1—{—51—}—/{2/2—\/1‘1'5%_’{2_{"%%/420

with k1 = k1 (21, 22) = (24a)(1+a)(|Jz1—22|A1)® and ke = kao(z1, 22) := (24+a)(1+a)(Jz2|A1)“.
Since y_ = k1 +ro+O (K3 +kK3) as K2+ K2 — 0 and |x2|+ |21 — 22|* > (|T2| + |21 —22|)* > |21]%,
one deduces that on C.,

%(@ 4O = V2V 4 0(e) > (24 a)(1 + )T + O(c).

Last, since k1 and kg are continuous and bounded functions of (z1,z2), and v_ is a continuous

function of (1, #2) only vanishing at the origin, inf

1,02)eBs, V- > 0. One concludes that for e

small enough NIBEC) holds.

Remark 4.1 o The potential V' is a particular case of the examples considered by Arnold,

Carlen and Ju in the Section 3 of [2]. But they first modify the Fokker-Planck equation
by adding a non-symmetric drift term F' like in Remark 3.10 ii) to check that po satisfies
the convexr Sobolev inequality (3.13). Exponential convergence to 0 of Hy(pt|pso) for the
solution p; of the original Fokker-Planck equation is only deduced in a second step. With
our non-intrisic Bakry Emery criterion, we are able to prove without considering a modified
partial differential equation that ps satisfies the convex Sobolev inequality (3.13) and that
Hy(pt|poo) converges exponentially to 0. We modify the stochastic differential equation but
not the law of its solution.

We have supposed that V is quadratic far from the origin to ensure that b satisfies Hj).
But the boundedness assumption on the first order derivatives of b in Hj) may be relazed to
local boundedness when conditions ensuring existence for the SDE and preservation of the
diffusion property under time reversal are added. In the case of constant diffusion a(z) = I4
with drift b(x) = —VV(x) for a nonnegative C? potential V', the following hypotheses on
the behaviour of V' at infinity:

—z* A )
limsupL‘;(x) < 400, limsup —V2(az) <2 and limsupw(x) =0 (4.1)

provide such sufficient additional conditions for the SDE dX; = o(Xy)dWy — VV(Xy)dt,
when o(z) s any globally Lipschitz continuous choice of the square root of the identity.
Indeed, by computing d|X;|?, one sees that the first condition prevents explosion for the
SDE which has locally Lipschitz coefficients. Since for ¢ > 0,

deV X0 — V0 (VY (X))o (X0)dWs + SIAV + (e = 2| VV (Xt )
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the second condition ensures that for ¢ small enough, t — E(ecv(xt)) 1s locally bounded
when B(eV(X0)) < 400, With the inequality

E (exp<4 / ' deo) < KE (exp<% / ' v<Xt>dt>>

deduced from the third assumption, one concludes by Jensen’s inequality that

E <exp(4 fOT 8Z-kV3ikV(Xt)dt)) is finite as soon as E(e®V(X0)) < 400, Hence condition
(3.9) in Theorem 3.3 of [11], which is enough for Theorem 2.3 to hold, is satisfied. Notice
that (4.1) is satisfied for instance by the potential V (x1,z2) = o3 + |11 — 22| T + |22?T*
from which the potential in the above example was derived by replacing the super-quadratic
terms by quadratic ones outside the unit ball.
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