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KAC’S PROGRAM IN KINETIC THEORY

(VERSION OF July 16, 2011)

S. MISCHLER AND C. MOUHOT

Abstract. This paper is devoted to the study of propagation of chaos and mean-field
limit for systems of indistinguable particles undergoing collision processes, as formulated
by M. Kac [42] for a simplified model and extended by H. P. McKean [53] to the Boltz-
mann equation. We prove quantitative and uniform in time estimates measuring the
distance between the many-particle system and the limit system. These estimates imply
in particular the propagation of chaos for marginals in weak measure distances but are
more general: they hold for non-chaotic initial data and control the complete many-
particle distribution. We also prove the propagation of entropic chaos, as defined in [12],
answering a question of Kac about the microscopic derivation of the H-theorem. We
finally prove estimates of relaxation to equilibrium (in Wasserstein distance and relative
entropy) independent of the number of particles. Our results cover the two main Boltz-
mann physical collision processes with unbounded collision rates: hard spheres and true
Maxwell molecules interactions. Starting from an inspirative paper of A. Grünbaum [36]
we develop a new method which reduces the question of propagation of chaos to the one of
proving a purely functional estimate on some generator operators (consistency estimates)
together with fine differentiability estimates on the flow of the limit non-linear equation
(stability estimates). These results provide the first answer to the question raised by
Kac of relating the long-time behavior of a collisional particle system with the one of its
mean-field limit, however using dissipativity at the level of the mean-field limit instead
of using it at the level of the many-particle Markov process.
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L. Boltzmann is best known for the equation bearing his name in kinetic theory [7, 8].
Inspired by Maxwell’s discovery [51] of (what is now called) the Boltzmann equation
and its “maxwellian” (gaussian) equilibrium, Boltzmann [7] discovered the “H-theorem”
(increase of the entropy) for this equation which explains how the solutions should be
driven towards the equilibrium of Maxwell. In the same work he also proposed the deep
idea of “stosszahlansatz” (molecular chaos) for explaining how the irreversible Boltzmann
equation could emerge from the Newton laws on the dynamics of particles. Giving a precise
mathematical meaning to this notion and proving this limit remains a tremendous open
problem to this date (the best and astonishing result so far [45] is only valid for very short
times).

M. Kac proposed in 1956 [42] the simpler and seemingly more tractable question of de-
riving the spatially homogeneous Boltzmann equation from a many-particle jump process,
and he introduced a rigorous notion of molecular chaos1 in this context. The “chaotic-
ity” of the many-particle equilibrium towards the maxwellian distribution, i.e. the fact
that the first marginals of the uniform measure on the sphere S

N−1(
√
N) converges to a

gaussian as N goes to infinity, has been known for a long time, at least since Maxwell.2

However in [42] Kac proposed the first proof of the propagation of chaos along time for a
simplified collision process for which series expansions of the solution are available, and he
showed how the many-particle limit rigorously follows from this property of propagation
of chaos. This proof was later extended to a more realistic collision model, the so-called
cutoff Maxwell molecules, by McKean [53].

Since in this setting both the many-particle system and the limit equation are dissipa-
tive, Kac also raised the natural question of relating their asymptotic behaviors. In his
mind this program was to be achieved by understanding dissipativity at the level of the lin-
ear many-particle jump process and he insisted on the importance of estimating the rate of
relaxation of the many-particle process. This has motivated beautiful works on this “Kac
spectral gap problem” [40, 50, 13, 15, 11], but so far this strategy has proved unsuccessful
in relating the many-particle process asymptotic behavior and that of the limit equation,
see the interesting discussion in [12]. At the time of Kac the study of nonlinear partial
differential equations was rather young and it was plausible that the study of a linear
many-dimension Markov process would be easier. However the mathematical developpe-
ment somehow followed the inverse direction and the theory of existence, uniqueness and
relaxation to equilibrium for the spatially homogeneous Boltzmann is now well-developed
(see the many references along this paper).

This paper is an attempt to develop a quantitative theory of mean-field limit which
strongly relies on detailed knowledge of the limit nonlinear equation, rather than on detailed
properties of the many-particle Markov process. As the main outcome of this theory we
prove uniform in time quantitative propagation of chaos as well as propagation of entropic
chaos, and we prove relaxation rates independent of the number of particles (measured in
Wasserstein distance and relative entropy). All this is done for the two important realistic
and achetypal models of collision, namely hard spheres and true (without cutoff) Maxwell
molecules. This provides a first complete answer to the question raised by Kac, however
our answer is an “inverse” answer in the sense that our methodology is “top-down” from
the limit equation to the many-particle system rather than “bottom-up” as was expecting
Kac.

1Kac in fact called this notion “Boltzmann’s property” in [42] as a clear tribute to the fundamental
intuition of Boltzmann.

2We refer to [23] for a bibliographic discussion, see also [12] where [54] is quoted as the first paper
proving this result.



KAC’S PROGRAM IN KINETIC THEORY 3
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results about entropic chaos and relaxation times.
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1. Introduction and main results

1.1. The Boltzmann equation. The Boltzmann equation (Cf. [19] and [20]) describes
the behavior of a dilute gas when the only interactions taken into account are binary
collisions. It writes

∂f

∂t
+ v · ∇xf = Q(f, f)

where Q = Q(f, f) is the bilinear Boltzmann collision operator acting only on the velocity
variable.

In the case when the distribution function is assumed to be independent on the position
x, we obtain the so-called spatially homogeneous Boltzmann equation, which reads

(1.1)
∂f

∂t
(t, v) = Q(f, f)(t, v), v ∈ R

d, t ≥ 0,

where d ≥ 2 is the dimension.
Let us now focus on the collision operator Q. It is defined by the bilinear symmetrized

form

(1.2) Q(g, f)(v) =
1

2

∫

Rd×Sd−1

B(|v − v∗|, cos θ)
(
g′∗f

′ + g′f ′∗ − g∗f − gf∗
)
dv∗ dσ,

where we have used the shorthands f = f(v), f ′ = f(v′), g∗ = g(v∗) and g′∗ = g(v′∗).
Moreover, v′ and v′∗ are parametrized by

(1.3) v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

d−1.

Finally, θ ∈ [0, π] is the deviation angle between v′− v′∗ and v− v∗ defined by cos θ = σ · û,
u = v − v∗, û = u/|u|, and B is the Boltzmann collision kernel determined by physics
(related to the cross-section Σ(v − v∗, σ) by the formula B = |v − v∗|Σ).

Boltzmann’s collision operator has the fundamental properties of conserving mass, mo-
mentum and energy

∫

Rd

Q(f, f)φ(v) dv = 0, φ(v) = 1, v, |v|2,

and satisfying the so-called Boltzmann’s H theorem which writes (at the formal level)

− d

dt

∫

RN

f log f dv = −
∫

RN

Q(f, f) log(f) dv ≥ 0.

We shall consider collision kernels

B = Γ(|v − v∗|) b(cos θ)
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with Γ, b nonnegative functions. In dimension d = 3, here is a short classification of
possible collision kernels, together with some important examples that we shall consider
in this paper.

(1) Short (finite) range interaction are usually modeled by the hard spheres collision
kernel

(1.4) (HS) B(|v − v∗|, cos θ) = cst |v − v∗|.
(2) Long-range interactions are usually modeled by collision kernels deriving from in-

teraction potentials

V (r) = cst r−s, s > 2.

They satisfy the formula

Γ(z) = |z|γ with γ = (s − 4)/s

and

b(cos θ) ∼θ∼0 Cb θ
−2−ν with ν = 2/s

(b is L1 apart from θ ∼ 0). Such formulas (and others) can be found in [19].
This general class of collision kernels includes in particular the true Maxwell

molecules collision kernel when γ = 0 and ν = 1/2:

(1.5) (tMM) B(|v − v∗|, cos θ) = B(cos θ) ∼θ∼0 Cb θ
−5/2.

It also includes the so-called Grad’s cutoff Maxwell molecules when the
singularity in the θ variable is removed. Without much restriction we shall consider
as a typical such model

(1.6) (GMM) B(|v − v∗|, cos θ) = 1.

1.2. Deriving the Boltzmann equation from many-particle systems. The question
of deriving the Boltzmann equation from particle systems (interacting via Newton’s laws)
is a famous problem. It is related to the so-called 6-th Hilbert problem proposed by Hilbert
at the International Congress of Mathematics at Paris in 1900: axiomatize mechanics by
“developing mathematically the limiting processes [. . . ] which lead from the atomistic view
to the laws of motion of continua”.

At least at the formal level, the correct limiting procedure has been identified by
Grad [34] in the late fourties and a clear mathematical formulation of the open prob-
lem was proposed in [18] in the early seventies. It is now called the Boltzmann-Grad or
low density limit. However the original question of Hilbert remains largely open, in spite
of a striking breakthrough due to Lanford [45], who proved the limit for short times (see
also Illner and Pulvirenti [39] for a close-to-vacuum result). The tremendous difficulty
underlying this limit is the irreversibility of the Boltzmann equation, whereas the particle
system interacting via Newton’s laws is a reversible Hamiltonian system.

In 1954-1955, Kac [42] proposed a simpler and more tractable problem: start from the
Markov process corresponding to collisions only, and try to prove the limit towards the
spatially homogeneous Boltzmann equation. Kac’s jump process runs as follows: consider
N particles with velocities v1,. . . , vN ∈ R

d. Compute random times for each pair of
particles (vi, vj) following an exponential law with parameter Γ(|vi−vj |), take the smallest,
and perform a collision (vi, vj) → (v∗i , v

∗
j ) given by a random choice of a direction parameter

whose rule is related to b(cos θ), then recommence. This process can be considered on
R
dN ; however it leaves invariant some submanifolds of RdN (depending on the number of

conserved quantities during collision) and can be restricted to them. For instance in the
original simplified model of Kac d = 1 (scalar velocities) and the process can be restricted

to S
N−1(

√
EN) the sphere with radius

√
EN , where E is the energy. In the more realistic
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hard spheres of Maxwell molecules models, d = 3 and the process can be restricted to the
sphere

SN := S
dN−1

(√
NE
)
∩ {v1 + · · · + vN = 0} .

Kac formulated the notion of propagation of chaos that we shall now explain. Consider
a sequence (fN )N≥1 of probabilities on EN , where E is some given Polish space (think to
E = R

d for most applications): the sequence is said f -chaotic if

fN ∼ f⊗N when N → ∞
for some given one-particle probability f on E. The meaning of this convergence is the
following: convergence in the weak measure topology for any marginal depending on a
finite number of variables. This is a low correlation assumption.

It was clear since Boltzmann that in the case when the joint probability density fN

of the N -particle system is tensorized during some time interval into N copies f⊗N of a
1-particle probability density, then the latter would satisfy the limit nonlinear Boltzmann
equation during this time interval. But Kac made the key remark that although in general
interactions between a finite number of particles prevents any possibility of propagation of
the “tensorization” property, the weaker property of chaoticity can be propagated (hope-
fully!) in the correct scaling limit.

The framework set by Kac is our starting point. Let us emphasize that the limit
performed in this setting is different from the Boltzmann-Grad limit. The Kac’s limit is
in fact a mean-field limit. This limiting procedure is most well-known for deriving Vlasov-
like equations. In a companion paper [58] we develop systematically our new functional
approach for Vlasov equations, McKean-Vlasov equations, and granular gases driven by a
thermal bath.

1.3. The notion of chaos and how to measure it. Our goal in this paper is to set
up a general robust method for proving the propagation of chaos with quantitative rate in
terms of the number of particles N and of the final time of observation T .

Let us explain briefly what it means. The original formulation of Kac [42] of chaoticity
is: a sequence fN ∈ Psym(E

N ) of symmetric probabilities on EN is f -chaotic, for a given
probability f ∈ P (E), if for any ℓ ∈ N

∗ and any ϕ ∈ Cb(E)⊗ℓ there holds

lim
N→∞

〈
fN , ϕ⊗ 1N−ℓ

〉
=
〈
f⊗ℓ, ϕ

〉

which amounts to the weak convergence of any marginals. This can be expressed for
instance in Wasserstein distance:

lim
N→∞

W1

(
Πℓ
(
fN
)
, f⊗ℓ

)
= 0

where Πℓ denotes the marginal on the ℓ first variables. This is Kac’s definition of chaos
that we shall call finite-dimensional chaos.

We shall deal in this paper with quantitative chaos, in the sense that we measure
precisely the rate of convergence in the above limit. Namely, we say that fN is f -chaotic
with rate ε(N), where ε(N) → 0 when N → ∞ (typically ε(N) = N−r, r > 0 or ε(N) =
(logN)−r, r > 0), if for any ℓ ∈ N

∗ there exists Kℓ ∈ (0,∞) such that

W1

(
Πℓ
(
fN
)
, f⊗ℓ

)
≤ Kℓ ε(N).

Similar statements with other metrics can be also formulated (and shall be used in this
paper): for some normed space of smooth functions F ⊂ Cb(E) (to be specified) and for
any ℓ ∈ N

∗ there exists Kℓ ∈ (0,∞) such that for any ϕ ∈ F⊗ℓ, ‖ϕ‖F ≤ 1, there holds
∣∣
〈
Πℓ
[
fN
]
− f⊗ℓ, ϕ

〉 ∣∣ ≤ Kℓ ε(N).

The Wasserstein distance W1 is recovered when F is the space of Lipschitz functions.
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Observe that in the latter statements the number of variables ℓ considered in the mar-
ginal is kept fixed as N goes to infinity. A stronger notion of infinite-dimensional chaos
would be

lim
N→∞

W1

(
fN , f⊗N

)

N
= 0

with corresponding quantitative formulations. This amounts to say that one can prove a
sublinear control on Kℓ in terms of ℓ in the previous statements. Variants for other metrics
could also be considered.

Finally one can formulate an even stronger notion of (infinite-dimensional) entropic
chaos (see [12] and definition (1.7) of the relative entropy below):

1

N
H
(
fN
∣∣ γN ) N→∞−−−−→ H (f |γ)

with obvious quantitative versions. This notion of chaos is particularly interesting since
it corresponds to the derivation of Boltzmann’s entropy from the many-particle system
entropies, we shall come back to this point.

Now, considering a sequence of symmetric3 N -particle densities

fN ∈ C([0,∞);Psym(E
N ))

and a 1-particle density of the expected mean field limit

f ∈ C([0,∞);P (E)),

we say that there is propagation of chaos on some time interval [0, T ] if the f0-chaoticity
of the initial family fN0 implies the ft-chaoticity of the family fNt for any time t ∈ [0, T ],
according to one of definitions of chaoticity above.

1.4. Kac’s program. As already said Kac proposed the problem of deriving the spatially
homogeneous Boltzmann equation from a many-particle Markov jump process modeling
the binary collisions, through its master equation (the equation on the law of the process).
This amounts intuitively to consider the spatial variable as a hidden variable inducing
ergodicity and markovian properties on the velocity variable. Although the latter point
has not been proved so far to our knowledge, it is worth pointing out that it is at the
same a very natural guess and an extremely interesting (and probably also difficult) open
problem.

Interestingly enough here is in the words of Kac [42, p. 173] how his approach was
inspired by Boltzmann’s ideas: “This formulation led to the well-known paradoxes which
were fully discussed in the classical article of P. and T. Ehrenfest. These writers made it
clear (a) that the “Stosszahlansatz” cannot be strictly derivable from purely dynamic con-
siderations and (b) that the “Stosszahlansatz” has to be interpreted probabilisticaly. The
recent attempts of Born and Green, Kirkwood and Bogoliubov to derive Boltzmann’s equa-
tion from Liouville’s equation and hence to justify the “Stosszahlansatz” dynamically are,
in our opinion, incomplete, inasmuch as they do not make it clear at what point statistical
assumptions are introduced. The “master equation” approach which we have chosen seems
to us to follow closely the intentions of Boltzmann.” Even we partly disagree with this
statement and we still believe that a fully satisfying justification of the “Stosszahlansatz”
(molecular chaos) has to be derived from “purely dynamic consideration” (Newton’s laws)
as was pioneered by Lanford [45], the latter open problem seems tremendously difficult and
it is clear that Kac raised a fascinating more tractable question: if we have to introduce
stochasticity, at least can we keep it under control all along the process of derivation of
the Boltzmann equation and relate it to the dissipativity of the limit equation. This is one
of the main questions we attempt to answer in this work.

3i.e. invariant according to permutations of the particles.
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Let us now discuss more in details the content of Kac’s seminal paper [42]. He goes on

to introduce a jump process on the (N − 1)-dimensional sphere S
N−1(

√
N) with radius√

N corresponding to random rotations among pairs of variables chosen randomly, and
occuring at random times following exponential laws. He then prove finite-dimensional
chaos (with no rate) by a beautiful combinatorial argument, based on an infinite series
“tree” representation of the solution according to the collision history of particles, and
some Leibniz formula for the N -particle operator acting on tensor products.

He then raises several questions that we schematize as follows:

(1) The first one concerns the restriction of the models as compared to realistic collision
processes. The fact that the geometry of collision is simplified was relaxed by
McKean [53] soon afterwards, however for cutoff Maxwell molecules for which the
collision kernel does not depend on the modulus of the relative velocity. This
seemingly technical issue is in fact related to deep difficulty for dealing with jump
process whose jump times follow laws depending on the variables. In the words
of Kac [42, p. 179]: “The above proof suffers from the defect that it works only
if the restriction on time is independent of the initial distribution. It is therefore
inapplicable to the physically significant case of hard spheres because in this case our
simple estimates yield a time restriction which depends on the initial distribution.
A general proof that Boltzmann’s property propagates in time is still lacking.” In
other words the question is: can one prove propagation of chaos for the
hard spheres collision process?

(2) Following closely the spirit of the previous question about going beyond the limit
of Kac’s original combinatorial insight in order to deal with realistic collision pro-
cesses, it seems to us very natural to ask whether one can prove propagation of
chaos for the true Maxwell molecules collision process? The difficulty lies
now in the fact that the particle system can undergo infinite number of collisions
in a finite time interval, and no “tree” representation of solutions is available. This
is related with the physical interesting situation of long-range interactions, as well
as with the mathematical interesting framework of fractional derivative operator
and Lévy walk.

(3) Kac then discusses the H-theorem of Boltzmann, which is not surprising as its
original goal is the derivation of Boltzmann’s equation and its irreversible feature.
He makes the simple observation [42, p. 182] that the “ergodic property of the
Markov process under consideration” steadily implies that it admits an infinite
number of Liapunov functions, including the L2 norm and Boltzmann’s entropy.
In contrast with it, the limit equation admits only (in general) Boltzmann’s en-
tropy as a Liapunov function. Kac then heuristically conjectures [42, Eq. (6.39)]
that (in our notations) H(fNt )/N → H(ft) along time, which would imply Boltz-
mann’s H-theorem from the monotonicity of H(fN )/N for the Markov process.
He concludes with: “If the above steps could be made rigorous we would have a
thoroughly satisfactory justification of Boltzmann’s H-theorem.” In our notation
the question is can one prove propagation of entropic chaos along time?

(4) He finally discusses the relaxation times, with the goal of deriving relaxation times
of the limit equation from the many-particle system. This imposes to have esti-
mates independent of the number of particles on this relaxation times. As a first
natural step he therefore goes on to consider the L2 spectral gap of the Markov
process on the sphere and remark [42, p. 187]: “Surprisingly enough this seems
quite difficult and we have not succeeded in finding a proof. Even for the simplified
model we have been considering, the question remains unsettled although we are
able to give a reasonably explicit solution of the master equation.” This question
has triggered many beautiful works (see the next subsection), however it is easy
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to convince oneself (see the discussion in [12] for instance) that there is no hope
of passing to the limit N → ∞ in this spectral gap estimate, even if the spec-
tral gap is independent of N . The L2 norm is catastrophic in infinite dimension.
Therefore following quite closely the intention of Kac, we reframe the question in
a setting which “tensorizes correctly in the limit N → ∞”, that is in our notation:
can one prove relaxation times independent of the number of particles on the
normalized Wasserstein distance W (fN , γN )/N or on the normalized rel-
ative entropy H(fN |γN )/N , where γN denotes the N-particle invariant
measure?

This paper is concerned with solving the four questions outlined above.
Before concluding this subsection, let us briefly illustrate by some quotation [42, p. 178]

that Kac was firmly believing in a “bottom-up” approach, which deduces properties on
the Boltzmann equation from the Markov process: “Since the master equation is truly
descriptive of the physical situation, and since existence and uniqueness of the solution
of the master equation are almost trivial, the preoccupation with existence and uniqueness
theorems for the Boltzmann equation appears to be unjustified on grounds of physical in-
terest and importance.” Although as the time Kac was writing, almost no mathematical
result (apart from [9, 10]) was available for the nonlinear spatially homogeneous Boltz-
mann equation, mathematical development has not followed this path, and as we have said,
our approach shall be rather “top-down”, taking advantage of the bynow well-developped
theory for this equation.

1.5. Review of previous results. For Boltzmann collision processes, Kac [42]-[43] has
proved the point (1) in the case of his baby one-dimensional model. The key point in
his analysis is a clever combinatorial use of a semi-explicit form of the solution (Wild
sums). It was generalized by McKean [53] to the Boltzmann collision operator but only
for “Maxwell molecules with cutoff”, i.e. roughly when the collision kernel B above is
constant. In this case the combinatorial argument of Kac can be extended. Kac raised
in [42] the question of proving propagation of chaos in the case of hard spheres and more
generally unbounded collision kernels, although his method seemed impossible to extend
(no semi-explicit combinatorial formula of the solution exists in these cases).

In the seventies, Grünbaum [36] then proposed in a very compact and abstract paper
another method for dealing with hard spheres, based on the Trotter-Kato formula for
semigroups and a clever functional framework (partially remindful of the tools used for
mean-field limit for McKean-Vlasov equations). Unfortunately this paper was incomplete
for two reasons: (1) It was based on two “unproved assumptions on the Boltzmann flow”
(page 328): (a) existence and uniqueness for measure solutions and (b) a smoothness
assumption. Assumption (a) was indeed recently proved in [32] using Wasserstein metrics
techniques and in [29] adapting the classical DiBlasio trick [22], but concerning assumption
(b), although it was inspired by cutoff maxwell molecules (for which it is true), it fails for
hard spheres (cf. the counterexample built by Lu and Wennberg in [49]) and is somehow
“too rough” in this case. (2) A key part in the proof in this paper is the expansion of the
“Hf” function, which is a clever idea of Grünbaum (and the starting point for our idea of
developing an abstract differential calculus in order to control fluctuations) — however it
is again too rough and is adapted for cutoff Maxwell molecules but not for hard spheres.

A completely different approach was undertaken by Sznitman in the eighties [66] (see
also Tanaka [68] for partial results concerning non-cutoff Maxwell molecules). Starting
from the observation that Grünbaum’s proof was incomplete, he gave a full proof of prop-
agation of chaos for hard spheres. His work was based on: (1) a new uniqueness result
for measures for the hard spheres Boltzmann equation (based on a probabilistic reasoning
on an enlarged space of “trajectories”); (2) an idea already present in Grünbaum’s ap-
proach: reduce by a combinatorial argument on symmetric probabilities the question of
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propagation of chaos to a law of large numbers on measures; (3) a new compactness result
at the level of the empirical measures; (4) the identification of the limit by an “abstract
test function” construction showing that the (infinite particle) system has trajectories in-
cluded in the chaotic ones. Hence the method of Sznitman proves convergence but does
not provide any rate for chaoticity.

Let us also emphasize that McKean in [52] studied fluctuations around deterministic
limit for 2-speed Maxwellian gas and for the usual hard balls gas. Graham and Méléard
in [35] have obtained a rate of convergence (of order 1/N for the ℓ-th marginal) on any
bounded finite interval of the N -particle system to the deterministic Boltzmann dynamic
in the case of Maxwell molecules under Grad’s cut-off hypothesis. Finally Fournier and
Méléard in [30, 31] have obtained the convergence of the Monte-Carlo approximation (with
numerical cutoff) of the Boltzmann equation for true Maxwell molecules with a rate of
convergence (depending on the numerical cutoff and on the number N of particles).

After we had finished writing our paper, we were told by I. Bailleul about the recent book
[44] by V. N. Kolokoltsov. This book is focused on fluctuation estimates of central limit
theorem type. It does not prove quantitative propagation of chaos but weaker estimates
(and on finite time intervals), however the comparison of generators for the many-particle
and the limit semigroup is reminiscent of our work.

1.6. The method. The main inspiration at first came from Grünbaum’s paper [36]. Our
original goal was to construct a general and robust method able to deal with mixture
of jump and diffusion processes, as it occurs for granular gases (see for this point the
companion paper [58]). It turns out that it leads us to develop a new theory, inspiring
from more recent tools such as the course of Lions on “Mean-field games” at Collège
de France, and the master courses of Méléard [55] and Villani [70] on mean-field limits.
One of the byproduct of our paper is that we make fully rigorous the original intuition
of Grünbaum in order to prove propagation of chaos for the Boltzmann velocities jump
process associated to hard spheres contact interactions.

As Grünbaum [36] we shall use a duality argument. We introduce SNt the semigroup
associated to the flow of the N -particle system and TNt its “dual” semigroup. We also
introduce SNLt the (nonlinear) semigroup associated to the meanfield dynamic (the expo-
nent “NL” recalling that the limit semigroup is nonlinear in the most physics interesting
cases) as well as T∞

t the associated (linear) “pushforward” semigroup (see below for the
definition). Then we will prove the above kind of convergence on the linear semigroups
TNt and T∞

t .
The first step consists in defining a common functional framework in which the N -

particle dynamic and the limit dynamic make sense so that we can compare them. Hence
we work at the level of the “full” limit space P (P (E)) (see below). Then we shall identify
the regularity required in order to prove the “consistency estimate” between the genera-
tors GN and G∞ of the dual semigroups TNt and T∞

t , and finally prove a corresponding
“stability estimate” at the level of the limiting semigroup SNLt .

The latter crucial step shall lead us to introduce an abstract differential calculus for
functions acting on measures endowed with various metrics. More precisely, we shall
define functions of class C1,δ on a probability space by working on affine subspaces of the
probability space for which the tangent space has a Banach space structure. This notion is
related but different from the notion of derivability developed in the theory of gradient flow
by Ambrosio, Otto, Villani and co-authors in [2, 41, 61] as well as to the differentiability
notion introduced by Lions in [46].

Another viewpoint on this method is to consider it as some kind of accurate version (in
the sense that it establishes a rate of convergence) of the BBGKY hierarchy method for
proving propagation of chaos and mean-field limit on statistical solutions. This viewpoint is
extensively explored and made rigorous in Section 8 where we revisit the BBGKY method
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for the spatially homogeneous equation as developped in [3]. The proof of uniqueness for
statistical solutions to the hierarchy becomes straightforward within our framework by
using differentiability of the limit semigroup as a function acting on probabilities.

This general method is the purpose of Theorem 3.1. It is, we hope, interesting per se for
several reasons: (1) it is fully quantitative, (2) it is highly flexible in terms of the functional
spaces used in the proof, (3) it requires a minimal amount of informations on theN -particle
systems but more stability information on the limiting PDE (we intentionally presented
the assumption as for the proof of the convergence of a numerical scheme, which was our
“methodological model”), (4) the “differential stability” conditions that are required on
the limiting PDE seem (to our knowledge) new, at least at the level of Boltzmann or more
generally transport equations.

1.7. Main results. Let us give some simplified versions of the main results in this paper.
All the abstract objects shall be fully introduced in the next sections.

Theorem 1.1 (Summary of the main results). Consider some initial distribution f0 ∈
P (Rd)∩L∞(Rd) with compact support or polynomial moment bounds. Consider the corre-
sponding solution ft to the spatially homogeneous Boltzmann equation for hard spheres or
Maxwell molecules, and the solution fNt of the corresponding Kac’s jump process starting
either from the N -fold tensorization of f0 or the latter conditionned to SN .

The results can be classified into three main statements:

(1) Quantitative uniform in time propagation of chaos, finite or infinite
dimensional, in weak measure distance (cf. Theorems 5.1-5.3-6.1-6.2):

∀N ≥ 1, ∀ 1 ≤ ℓ ≤ N, sup
t≥0

W1

(
Πℓf

N
t ,
(
f⊗ℓt

))

ℓ
≤ α(N)

for some α(N) → 0 as N → ∞. In the case fN0 = f⊗N0 one has moreover explicit
power law (for Maxwell molecules) or logarithmic rate (for hard spheres) estimates
on α,

(2) Propagation of entropic chaos (cf. Theorem 7.10-(i)): Consider the case where
the initial datum of the many-particle system is restricted to SN . If the initial
datum is entropy-chaotic in the sense

1

N
H
(
fN0 |γN

) N→+∞−−−−−→ H (f0|γ)

with

(1.7) H
(
fN0 |γN

)
:=

∫

SN

log
dfN0
dγN

fN0 (dV ) and H (f0|γ) :=
∫

Rd

f0 log
f0
γ
dv

and where γ is the gaussian equilibrium with energy E and γN is the uniform
probability measure on SN , then the solution is also entropy chaotic for any later
time:

∀ t ≥ 0,
1

N
H
(
fNt |γN

) N→+∞−−−−−→ H (ft|γ) .

This proves the derivation of the H-theorem in this context.
(3) Quantitative estimates on relaxation times, independent of the number

of particles (cf. Theorems 5.3-6.2 and Theorem 7.10-(ii)): Consider the case
where the initial datum of the many-particle system is restricted to SN . Then we
have

∀N ≥ 1, ∀ 1 ≤ ℓ ≤ N, ∀ t ≥ 0,
W1

(
Πℓf

N
t ,Πℓ

(
γN
))

ℓ
≤ β(t)
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for some β(t) → 0 as t → ∞. Moreover in the case of Maxwell molecules, and
assuming moreover that the Fisher information of the initial datum f0 is finite:

(1.8) I(f0) :=

∫

Rd

|∇vf0|2
f0

dv < +∞,

the following estimate also holds:

∀N ≥ 1,
1

N
H
(
fNt |γN

)
≤ β(t)

for some function β(t) → 0 as t→ ∞.

1.8. Some open questions. Here are a few questions among those raised by this work:

(1) What about the optimal rate in the chaoticity estimates along time? Our method
reduces this question to the chaoticity estimates at initial time, and therefore to
the optimal rate in the quantitative law of large numbers for measures according
to various weak measure distances.

(2) What about the optimal rate in the relaxation times (uniformly in the number
of particles)? Spectral gap studies predict exponential rates, both for the many-
particle system and for the limit system, however our rates are far from it!

(3) Can uniform in time propagation of chaos be proved for non-reversible jump pro-
cesses (such as inelastic collision processes) for which the invariants measures γN

and γ are not explicitely known (e.g. granular gases)?

1.9. Plan of the paper. In Section 2 we set the abstract functional framework together
with the general assumption and in Section 3 we state and prove the abstract Theorem 3.1.
In Section 4 we present some tools and results on weak measure distances, the construction
of initial data restricted to submanifolds for the many-particle system, and the rate for
sampling the limit distribution by empirical measures. In Section 5 we apply the method
to (true) Maxwell molecules (Theorems 5.1 and 5.3). In Section 6 we apply the method
to hard spheres (Theorems 6.1 and 6.2). Section 7 is devoted to the study of entropic
chaos. Finally in Section 8 we revisit the BBGKY hierarchy method for the spatially
homogeneous Boltzmann equation in the light of our framework.

2. The abstract setting

In this section we shall state and prove the key abstract result. This will motivate the
introduction of a general functional framework.

2.1. The general functional framework of the duality approach. Let us set up the
framework. Here is a diagram which sums up the duality approach (norms and duality
brackets shall be specified in Subsections 2.4):

EN/SN

πN
E=µN·

��

Kolmogorov
//

observables
..

Psym(E
N )

πN
P

��

duality
// Cb(E

N )oo

RN

��
PN (E) ⊂ P (E)

Kolmogorov
// P (P (E))

duality
// Cb (P (E))oo

πN
C

KK

In this diagram:

- E denotes a Polish space:
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This is a separable completely metrizable topological space. We shall de-
note the distance on this space by dE in the sequel.

- SN denotes the N -permutation group.

- Psym(E
N ) denotes the set of symmetric probabilities on EN :

Given a permutation σ ∈ S
N , a vector

V = (v1, . . . , vN ) ∈ EN ,

a function ϕ ∈ Cb(E
N ) and a probability fN ∈ P (EN ), we successively

define

Vσ = (vσ(1), . . . , vσ(N)) ∈ EN ,

and

ϕσ ∈ Cb(E
N ) by setting ϕσ(V ) = ϕ(Vσ)

and finally

fNσ ∈ P (EN ) by setting
〈
fNσ , ϕ

〉
=
〈
fN , ϕσ

〉
.

We then say that a probability fN on EN is symmetric if it is invariant
under permutations:

∀σ ∈ S
N , fNσ = fN .

- The probability measure µNV denotes the empirical measure:

µNV :=
1

N

N∑

i=1

δvi , V = (v1, . . . , vN ) ∈ EN

where δvi denotes the Dirac mass on E at point vi ∈ E.

- PN (E) denotes the subset {µNV , V ∈ EN} of empirical measures of P (E).

- P (P (E)) denotes the set of probabilities on the polish space P (E).

- Cb (P (E)) denotes the space of continuous and bounded functions on P (E):

This space shall be endowed with either the weak or strong topologies (see
Subsection 2.4), and later with some metric differential structure.

- The map πNE from EN/SN to PN (E) is defined by

∀V ∈ EN/SN , πNE (V ) := µNV .

- The map πNC from Cb(P (E)) to Cb(E
N ) is defined by

∀Φ ∈ Cb (P (E)) , ∀V ∈ EN ,
(
πNC Φ

)
(V ) := Φ

(
µNV
)
.

- The map RN from Cb(E
N ) to Cb(P (E)) is defined by:

∀ϕ ∈ Cb(E
N ), ∀ ρ ∈ P (E), RNϕ (ρ) :=

〈
ρ⊗N , ϕ

〉
.

- The map πNP from Psym(E
N ) to P (P (E)) is defined by:

〈
πNP f

N ,Φ
〉
=
〈
fN , πNC Φ

〉
=

∫

EN

Φ
(
µNV
)
fN (dV )

for any fN ∈ Psym(E
N ) and any Φ ∈ Cb(P (E)), where the first bracket

means 〈·, ·〉P (P (E)),Cb(P (E)) and the second bracket means 〈·, ·〉P (EN ),Cb(EN ).
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Let us now discuss the “horizontal” arrows:

- The arrows pointing from the first column to the second one consists in writing the
Kolmogorov equation associated with the many-particle stochastic Markov process.

- The arrows pointing from the second column to the third column consists in writing the
dual evolution semigroup (note that the N -particle dynamics is linear). As we shall discuss
later the dual spaces of the spaces of probabilities on the phase space can be interpreted
as the spaces of observables on the original systems.

Remark 2.1. Consider a random variable V on EN with law fN ∈ P (EN ). It is common
notation in probability to simply write µNV for the random variable on P (E) with law

πNP f
N ∈ P (P (E)). Our notation is slightly less compact and intuitive, but at the same

time more accurate.

Remark 2.2. Our functional framework shall be applied to weighted probability spaces
rather than directly in P (E). More precisely, for a given weight function m : E → R+ we
shall use affine subsets of the weighted probability space

{f ∈ P (E); Mm(f) := 〈f,m〉 <∞}
as our basis functional spaces. Typical examples are

m(v) := m̃(dE(v, v0)) for some fixed v0 ∈ E with m̃(z) = zk or m̃(z) =

ea z
k
, a, k > 0.

We shall sometimes abuse notation by writing Mk for Mm when m̃(z) = zk in the above
example.

2.2. The N-particle semigroups. Let us introduce the mathematical semigroups de-
scribing the evolution of objects living in these spaces, for any N ≥ 1.

Step 1. Consider the trajectories VNt ∈ EN , t ≥ 0, of the particles (Markov process
viewpoint). We make the further assumption that this flow commutes with permutations:

For any σ ∈ S
N , the solution at time t starting from

(
VN0
)
σ
is
(
VNt
)
σ
.

This reflects mathematically the fact that particles are indistinguishable.

Step 2. This flow on EN yields a corresponding semigroup SNt acting on Psym(E
N ) for

the probability density of particles in the phase space EN (statistical viewpoint), defined
through the formula

∀ fN ∈ Psym(E
N ), ϕ ∈ Cb(E

N ),
〈
SNt (fN ), ϕ

〉
= E

(
ϕ
(
VNt
))

where the bracket obviously denotes the duality bracket between P (EN ) and Cb(E
N ) and

E denotes the expectation associated to the probability space in which the process VNt
is built. Since the flow (VNt ) commutes with permutation, the semigroup SNt acts on
Psym(E

N ). In other words, if the law fN0 of VN0 belongs to Psym(E
N ), then for later times

the law fNt of VNt also belongs to Psym(E
N ). And one can associate to this semigroup a

linear evolution equation with generator denoted by AN :

∂tf
N = ANfN , fN ∈ Psym(E

N ),

which can be interpreted as the forward Kolmogorov equation on the law of VNt .

Step 3. We assume that there exists a semigroup TNt acting on the functions space Cb(E
N )

of observables on the evolution system (VNt ) on EN (see the discussion in the next remark)
which is dual to the semigroup SNt . More precisely, we assume

∀ fN ∈ P (EN ), ϕ ∈ Cb(E
N ),

〈
fN , TNt (ϕ)

〉
=
〈
SNt (fN ), ϕ

〉
.
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We associate to this semigroup the following linear evolution equation with generator
denoted by GN :

∂tϕ = GN (ϕ), ϕ ∈ Cb(E
N ).

2.3. The mean-field limiting semigroup. We now define the evolution of the limiting
mean-field equation.

Step 1. Consider a semigroup SNLt acting on P (E) associated with an evolution equation
and some operator Q:

For any f0 ∈ P (E) (assuming possibly some additional moment bounds),
then SNLt (f0) := ft where ft ∈ C(R+, P (E)) is the solution to

(2.1) ∂tft = Q(ft), f|t=0 = f0.

This semigroup and the operator Q are typically nonlinear for mean-field
models, namely bilinear in case of Boltzmann’s collisions interactions.

Step 2. Consider then the associated pushforward semigroup T∞
t acting on Cb(P (E)):

∀ f ∈ P (E), Φ ∈ Cb(P (E)), T∞
t [Φ](f) := Φ

(
SNLt (f)

)
.

(Again additional moment bounds can be required on f in order to make this definition
rigorous.) Note carefully that T∞

t is always linear as a function of Φ, although of course
T∞
t [Φ](f) is not linear in general as a function of f . We shall associate (when possible)

the following linear evolution equation on Cb(P (E)) with some generator denoted by G∞:

∂tΦ = G∞(Φ).

Remark 2.3. The semigroup T∞
t can be interpreted physically as the semigroup of the

evolution of observables of the nonlinear equation (2.1). Let us give a short heuristic
explanation. Consider a nonlinear ordinary differential equation

dV

dt
= F (V ) on R

d with ∇v · F ≡ 0 and V|t=0 = v

with divergence-free vector field for simplicity. One can then define formally the linear
Liouville transport partial differential equation

∂tf +∇v · (F f) = 0,

where f = ft(v) is a time-dependent probability density over the phase space R
d, whose

solution is given (at least formally) by following the characteristics backward ft(v) =
f0(V−t(v)).4 Now, instead of the Liouville viewpoint, one can adopt the viewpoint of ob-
servables, that is functions depending on the position of the system in the phase space (e.g.
energy, momentum, etc.) For some observable function ϕ0 defined on R

d, the evolution of
the value of this observable along the trajectory is given by ϕt(v) = ϕ0(Vt(v)) and ϕt is
solution to the following dual linear PDE

∂tϕ− F · ∇vϕ = 0.

Now let us consider a nonlinear evolution system

df

dt
= Q(f) in an abstract space f ∈ H.

4The formula would be slightly more complicated in the case where F is not divergence-free and would
involve the jacobian of F , but this is not relevant for the present heuristic discussion.



KAC’S PROGRAM IN KINETIC THEORY 15

By analogy we define two linear evolution systems on the larger functional spaces P (H)
and Cb(H): first the abstract Liouville equation

∂tπ +
δ

δf
· (Q(f)π) = 0, π ∈ P (H)

and second the abstract equation for the evolution of observables

∂tΦ−Q(f) · δΦ
δf

(f) = 0, Φ ∈ Cb(H).

However in order to make sense of this heuristic, the scalar product have to be defined
correctly as duality brackets, and, most importantly, a differential calculus on H has to
be defined rigorously. Taking H = P (E), this provides an intuition for our functional
construction, as well as for the formula of the generator G∞ below (compare the previous
equation with formula (2.8)). Be careful that when H = P (E), the abstract Liouville and
observable equations refers to trajectories in the space of probabilities P (E) (i.e. solutions
to the nonlinear equation (2.1)), and not trajectories of a particle in E. Note also that
for a dissipative equation at the level of H (such as the Boltzmann equation), it seems
more convenient to use the observable equation rather than the Liouville equation since
“forward characteristics” can be readily used in order to construct the solutions to this
observable equation.

Summing up we obtain the following picture for the semigroups:

PNt on EN/SN

πN
E

��

observables // TNt on Cb(E
N )

RN

��

PN (E) ⊂ P (E)
observables // T∞

t on C (P (E))

πN
C

KK

SNLt on P (E)

observables

OO

Hence a key point of our construction is that, through the evolution of observables, we
shall “interface” the two evolution systems (the nonlinear limiting equation and the N -
particle system) via the applications πNC and RN . From now on we shall denote πN = πNC .

2.4. The metric issue. C(P (E)) is our fundamental space in which we shall compare
(through their observables) the semigroups of the N -particle system and the limiting
mean-field equation. Let us make the topological and metric structures used on P (E)
more precise. At the topological level there are two canonical choices (which determine
two different sets C(P (E))):

(1) The strong topology which is associated to the total variation norm, denoted by
‖ · ‖M1 ; the corresponding set shall be denoted by Cb(P (E), TV ).

(2) The weak topology, i.e. the trace on P (E) of the weak topology on M1(E) (the
space of Radon measures on E with finite mass) induced by Cb(E); the correspond-
ing set shall be denoted by Cb(P (E), w).
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It is clear that

Cb(P (E), w) ⊂ Cb(P (E), TV ).

The supremum norm ‖Φ‖L∞(P (E)) does not depend on the choice of topology on P (E),

and induces a Banach topology on the space Cb(P (E)). The transformations πN and RN

satisfy:

(2.2)
∥∥πNΦ

∥∥
L∞(EN )

≤ ‖Φ‖L∞(P (E)) and
∥∥RNφ

∥∥
L∞(P (E))

≤ ‖φ‖L∞(EN ).

The transformation πN is well defined from Cb(P (E), w) to Cb(E
N ), but in general, it

does not map Cb(P (E), TV ) into Cb(E
N ) since the map

V ∈ EN 7→ µNV ∈ (P (E), TV )

is not continuous.
In the other way round, the transformation RN is well defined from Cb(E

N ) to Cb(P (E), w),
and therefore also from Cb(E

N ) to Cb(P (E), TV ): for any φ ∈ Cb(E
N ) and for any se-

quence fk ⇀ f weakly, we have f⊗Nk ⇀ f⊗N weakly, and then RN [φ](fk) → RN [φ](f).

There are many different possible metric structures inducing the weak topology on
Cb(P (E), w). The mere notion of continuity does not require discussing these metrics,
but any subspace of Cb(P (E), w) with differential regularity shall strongly depend on this
choice, which motivates the following definitions.

Definition 2.4. For a given weight function m : E → R+, we define the subspaces of
probabilities:

Pm := {f ∈ P (E); 〈f,m〉 <∞} .
We also define the corresponding bounded subsets for a > 0

BPm,a := {f ∈ Pm; 〈f,m〉 ≤ a}.
For a given constraint function m : E → R

D such that the components m are controlled
by m, we define the corresponding constrained subsets

Pm,m,r := {f ∈ Pm; 〈f,m〉 = r}, r ∈ R
D.

We also define their corresponding bounded subsets for a > 0

BPm,m,a,r := {f ∈ BPm,a; 〈f,m〉 = r},
and the corresponding vectorial space of “increments”

IPm,m :=
{
f2 − f1; ∃ r ∈ R

D s.t. f1, f2 ∈ Pm,m,r

}

and

IPm,m,a :=
{
f2 − f1; ∃ r ∈ R

D s.t. f1, f2 ∈ BPm,m,r,a

}
.

Let us now define the notion of distances over probabilities that we shall consider.

Definition 2.5. Consider a weight function mG and a constraint function mG . We shall
use for the associated spaces of the previous definition the simplified notation PG for Pm,
PG,r for Pm,m,r, BPG,a for BPm,a, BPG,r,a for BPm,m,a,r, IPG for IPm,m and IPG,a for
IPm,m,a.

We shall consider that a distance dG which

(1) either is defined the whole space PG (i.e. whatever the values of the
constraints),
(2) or such that there is a Banach space G ⊃ IPG endowed with a norm
‖ · ‖G such that dG is defined on any PG,r, r ∈ R

D, by setting

∀ f, g ∈ PG,r, dG(f, g) := ‖g − f‖G.
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Let us finally define a quantitative Hölder notion of equivalence for the distances over
probabilities that we shall consider.

Definition 2.6. Consider some weight and constraint functions mG , mG . We say that
two metrics d0 and d1 defined on PG are Hölder equivalent on bounded sets if there exists
κ ∈ (0,∞) and, for any a ∈ (0,∞), there exists Ca ∈ (0,∞) such that

∀ f, g ∈ BPG,a d0(f, g) ≤ Ca [d1(f, g)]
κ , d1(f, g) ≤ Ca [d0(f, g)]

κ

for some constant Ca depending on a > 0. If d0 and d1 are resulting from some normed
spaces G0 and G1 we generalize this definition as

∀ r ∈ R
D, ∀ f, g ∈ BPG,r,a, d0(f, g) ≤ Ca [d1(f, g)]

κ , d1(f, g) ≤ Ca [d0(f, g)]
κ

for some κ ∈ (0,∞) and some constant Ca depending on a > 0.

Example 2.7. The choice

me = mG := 1, mG := 0, ‖ · ‖G := ‖ · ‖M1

recovers PG(E) = P (E). More generally on can choose

me = 1, mGk
(v) := dE(v, v0)

k, mGk
:= 0, ‖ · ‖Gk

:= ‖ · dE(v, v0)k‖M1 .

For k3 > 0 and k1 > k2, the spaces PGk2
and PGk3

are topologically uniformly equivalent
on bounded sets of PGk1

.

Example 2.8. There are many distances on P (E) which induce the weak topology, see for
instance [64]. In the next section, we present some of them which have a practical interest
for us, and which are all topologically uniformly equivalent on bounded sets of P (E) in
the sense of the previous definition, with the choice of a convenient (strong enough) weight
function.

2.5. Distances on probabilities. Let us discuss some well-known distances on P (Rd)
(or defined on subsets of P (Rd)) which shall be useful for the sequel. These distances are
all topologically equivalent to the weak topology σ(P (E), Cb(E)) on the sets BPk,a(E) for
k large enough and for any a ∈ (0,∞), and they are all uniformly topologically equivalent
(see [69, 17] and section 2.5.6). We refer to [64, 72, 17] and the references therein for more
details on these distances.

2.5.1. Dual-Hölder –or Zolotarev’s– distances. Denote by dE a distance on E and let us
fix v0 ∈ E (e.g. v0 = 0 when E = R

d in the sequel). Denote by C0,s
0 (E), s ∈ (0, 1) (resp.

Lip0(E)) the set of s-Hölder functions (resp. Lipschitz functions) on E vanishing at one
arbitrary point v0 ∈ E endowed with the norm

[ϕ]s := sup
x,y∈E

|ϕ(y)− ϕ(x)|
dE(x, y)s

, s ∈ (0, 1], [ϕ]Lip := [ϕ]1.

We then define the dual norm: take mG := 1, mG := 0 and PG(E) endowed with

∀ f, g ∈ PG , [g − f ]∗s := sup
ϕ∈C0,s

0 (E)

〈g − f, ϕ〉
[ϕ]s

.
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2.5.2. Wasserstein distances. Given q ∈ (0,∞), define Wq on

PG(E) = Pq(E) := {f ∈ P (E); 〈f, dE(·, v0)q〉 <∞}
by

∀ f, g ∈ Pq(E), Wq(f, g) := inf
Π∈Π(f,g)

∫

E×E
dE(x, y)

q Π(dx, dy),

where Π(f, g) denote the set of probability measures Π ∈ P (E ×E) with marginals f and
g:

Π(A,E) = f(A) and Π(E,A) = g(A) for any Borel set A ⊂ E.

Note that for V1, V2 ∈ EN and any q ∈ [1,∞), one has

(2.3) Wq

(
µNV1 , µ

N
V2

)
= dℓq(EN/SN ) (V1, V2) := min

σ∈SN

(
1

N

N∑

i=1

dE
(
(V1)i, (V2)σ(i)

)q
)1/q

,

and that

∀ f, g ∈ P1(E), W1(f, g) = [f − g]∗1 = sup
ϕ∈Lip0(E)

〈f − g, ϕ〉 .

2.5.3. Fourier-based norms. Given E = R
d, mG1 := |v|, mG1 := 0, let us define

∀ f ∈ IPG1 , ‖f‖G1 = |f |s := sup
ξ∈Rd

|f̂(ξ)|
|ξ|s , s ∈ (0, 1],

where f̂ denotes the Fourier transform of f defined through the expression (when say
f ∈ L1)

f̂(ξ) :=

∫

Rd

f(x) e−i x·ξ dx.

Similarly, given E = R
d, mG2 := |v|2, mG2 := v, we define

∀ f ∈ IPG2 , ‖f‖G2 = |f |s := sup
ξ∈Rd

|f̂(ξ)|
|ξ|s , s ∈ (1, 2].

Obviously high-order versions of this norm could be defined similarly by increasing the
number of constraints. However we shall see in the next subsubsection how to extend this
notion of distance without constraints.

2.5.4. More Fourier-based norms. More generally, given E = R
d and k ∈ N

∗, we set

mG := |v|k, mG := (vα)α∈Nd, |α|≤k−1

with |α| = α1 + · · ·+ αd and

vα =
(
vα1
1 , . . . , vjdd

)
, α = (α1, . . . , αd) ∈ N

d,

and we define

∀ f ∈ IPG , ‖f‖G = |f |s := sup
ξ∈Rd

|f̂(ξ)|
|ξ|s , s ∈ (0, k].

In fact, we may extend the above norm to M1
k (R

d) in the following way. We first define
for

f ∈M1
k−1(R

d) and α ∈ N
d, |α| = α1 + · · ·+ αd ≤ k − 1

the following moment:

Mα[f ] :=

∫

Rd

vα f(dv).
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Consider a fixed (once for all) function χ ∈ C∞
c (Rd) (compact support), such that χ ≡ 1

on the set {v ∈ R
d, |v| ≤ 1}. This implies in particular

∫

Rd

F−1(χ)(v) dv = χ(0) = 1.

Then we define Mk[f ] through its Fourier transform

M̂k[f ](ξ) := χ(ξ)


 ∑

|α|≤k−1

Mα[f ]
ξα

α!


 , α! := α1! . . . αd!

Note that this is a mollified version of the (k − 1)-Taylor expansion of f̂ at ξ = 0. Then
we may define the semi-norms

|f |k := sup
ξ∈Rd

∣∣∣f̂(ξ)− M̂k[f ](ξ)
∣∣∣

|ξ|k

and the norms
|||f |||k := |f |k +

∑

α∈Nd, |α|≤k−1

|Mα[f ]| .

2.5.5. Negative Sobolev norms. Given s ∈ (d/2, d/2 + 1/2) and

E = R
d, mG1 := |v|, mG1 := 0

we define the following negative homogeneous Sobolev norm

∀ f ∈ IPG1 , ‖f‖G1 = ‖f‖Ḣ−s(Rd) :=

∥∥∥∥∥
f̂(ξ)

|ξ|s

∥∥∥∥∥
L2

.

Observe that probabilities are included in the corresponding non homogeneous negative
Sobolev space H−s(Rd) as soon as s > d/2.

Similarly, given s ∈ [d/2 + 1/2, d/2 + 1) and

E = R
d, mG2 := |v|2, mG2 := v

we define

∀ f ∈ IPG2 , ‖f‖G2 = ‖f‖Ḣ−s(Rd) :=

∥∥∥∥∥
f̂(ξ)

|ξ|s

∥∥∥∥∥
L2

.

2.5.6. Comparison of distances when E = R
d. All the previous distances are Hölder equiv-

alent on bounded sets in the sense of Definition 2.6. Precise quantitative statements of
these equivalences are given in Lemma 4.1 in Section 4.1.

2.6. Differential calculus in probability spaces. We start with a purely metric defi-
nition in the case of usual Hölder regularity.

Definition 2.9. Given some metric spaces G̃1 and G̃2, some weight function

Λ : G̃1 7→ [1,+∞),

we denote by
UCΛ(G̃1, G̃2)

the weighted space of uniformly continuous functions from G̃1 to G̃2, that is the set of
functions S : G̃1 → G̃2 such that there exists a modulus of continuity ω so that

(2.4) ∀ f1, f2 ∈ G̃1 dG2 (S(f1),S(f2)) ≤ Λ(f1, f2)ω (dG1 (f1, f2)) ,

with
Λ (f1, f2) := max {Λ (f1) ,Λ (f2)}
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and where dGk
denotes the metric of G̃k. Note that the tilde sign in the notation of the

distance has been removed in order to present unified notation with the next definition.
For any η ∈ (0, 1], we denote by

C0,η
Λ (G̃1, G̃2)

the weighted space of functions from G̃1 to G̃2 with η-Hölder regularity, that are the
uniformly continuous functions for which the modulus of continuity satisfies ω(s) ≤ C sη

for some constant C > 0. We then define the semi-norm

[S]C0,η
Λ (G̃1,G̃2)

for S ∈ C0,η
Λ (G̃1, G̃2)

as the infimum of the constants C > 0 such that (2.4) holds with ω(s) = C sη.

We now define a first order differential calculus, for which we require a norm structure
on the functional spaces.

Definition 2.10. Given some Banach spaces G1,G2 and some metric sets G̃1, G̃2 such that

G̃i − G̃i ⊂ Gi, i = 1, 2,

some weight function
Λ : G̃1 7→ [1,∞),

we define
UC1

Λ

(
G̃1,G1; G̃2,G2

)

(later simply denoted by UC1
Λ(G̃1; G̃2)), the space of continuously differentiable functions

from G̃1 to G̃2, whose derivative satisfies some weighted uniform continuity.
More explicitely, this is the set of uniformly continuous functions

S : G̃1 → G̃2

such that there exists a uniformly continuous function

DS : G̃1 → L(G1,G2)

(where L(G1,G2) denotes the space of bounded linear applications from G1 to G2 endowed
with the usual operator norm), some constants Ci > 0, i = 1, 2, and some modulus of
differentiability Ω (that is a function Ω : R+ → R+ such that Ω(s)/s→ 0 when s→ 0) so

that for any f1, f2 ∈ G̃1:

‖S(f2)− S(f1)‖G2
≤ C1Λ(f1, f2) ‖f2 − f1‖G1(2.5)

‖〈DS[f1], f2 − f1〉‖G2
≤ C2Λ(f1, f2) ‖f2 − f1‖G1(2.6)

‖S(f2)− S(f1)− 〈DS[f1], f2 − f1〉‖G2
≤ C3Λ(f1, f2)Ω (‖f2 − f1‖G1) .(2.7)

For any η ∈ (0, 1], we also denote by

C1,η
Λ

(
G̃1,G1; G̃2,G2

)

(later simply denoted by C1,η
Λ (G̃1; G̃2)), the space of continuously differentiable functions

from G̃1 to G̃2, whose derivative satisfies some weighted η-Hölder regularity, which is the set
of continuously differentiable functions such that the modulus of differentiability satisfies
Ω(s) ≤ C s1+η for some constant C > 0. We define respectively CS

1 , C
S
2 , C

S
3 , as the

infimum of the constant C1, C2, C3 > 0 such that respectively (2.5), (2.6), (2.7) with
Ω(s) = C3 s

1+η hold. We then define the semi-norms

[S]C0,1
Λ

:= CS
1 , [S]C1,0

Λ
:= CS

2 , [S]C1,η
Λ

:= CS
3 , ‖S‖C1,η

Λ
:= CS

1 + CS
2 + CS

3 .

In the sequel we omit the subscript Λ or we replace it by the subscript b in the case when
Λ ≡ 1.
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Remark 2.11. In the sequel, we shall apply this abstract differential calculus with some
suitable subspaces G̃i ⊂ P (E). This choice of subspaces is crucial in order to make rigorous
the intuition of Grünbaum [36] (see the — unjustified — expansion of Hf in [36]). It is
worth emphasizing that our differential calculus is based on the idea of considering P (E)
(or subsets of P (E)) as “plunged sub-manifolds” of some larger normed spaces Gi. Our
approach thus differs from the approach of P.-L. Lions recently developed in his course
at Collège de France [46] or the one developed by L. Ambrosio et al in order to deal
with gradient flows in probability measures spaces, see for instance [2]. We develop a
differential calculus in probability measures spaces into a simple and robust framework,
well suited to deal with the different objects we have to manipulate (1-particle semigroup,
polynomial, generators. . . ). And one of the main innovations of our work is the use of
this differential calculus to state some “differential” stability conditions on the limiting
semigroup. Roughly speaking the latter estimates measure how this limiting semigroup
handles fluctuations departing from chaoticity. They are the corner stone of our analysis.

This differential calculus behaves well for composition in the sense that for any given

U ∈ C1,η
ΛU

(G̃1, G̃2) and V ∈ C1,η
ΛV

(G̃2, G̃3)

there holds
S := V ◦ U ∈ C1,η

ΛS
(G̃1, G̃3)

for some appropriate weight function ΛS . We conclude the section by stating a precise
result well adapted to our applications.

Lemma 2.12. For any given

U ∈ C1,η
Λ (G̃1, G̃2) and V ∈ C1,η(G̃2, G̃3)

there holds

S := V ◦ U ∈ C1,η
Λ1+η(G̃1, G̃3) and DS[f ] = DV[U(f)] ◦DU [f ].

More precisely, there holds

[S]
C0,1

Λ
≤ [V]C0,1 [U ]C0,1

Λ
, [S]

C1,0
Λ

≤ [V]C1,0 [U ]C1,0
Λ

and

[S]C1,η

Λ1+η
≤ [V]C1,0 [U ]C1,η

Λ
+ [V]C1,η [U ]1+η

C0,1
Λ

.

When further V ∈ C1,1(G̃2, G̃3), we also have

S := V ◦ U ∈ C1,η
Λ2 (G̃1, G̃3)

with
[S]

C1,η

Λ2
≤ [V]C1,0 [U ]C1,η

Λ
+ [V]C1,1 [U ]2

C
0,(1+η)/2
Λ

.

Proof of Lemma 2.12. For f1, f2 ∈ G̃1 we have

U(f2) = U(f1) + 〈DU [f1], (f2 − f1)〉+RU (f1, f2)

with
‖〈DU [ρ1], (f2 − f1)〉‖G2

≤ [U ]
C1,0

Λ
Λ (f1, f2) ‖f2 − f1‖G1

and
‖RU (f1, f2)‖G2

≤ [U ]C1,η
Λ

Λ (f1, f2) ‖f2 − f1‖1+θG1
,

and a similar Taylor expansion holds for V: for g1, g2 ∈ G̃2,

V(g2) = V(g1) + 〈DV[g1], (g2 − g1)〉+RV (g1, g2)

with
‖〈DV[g1], (g2 − g1)〉‖G3

≤ [V]C1,0 ‖g2 − g1‖G2
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and
‖RV (g1, g2)‖G3

≤ [V]C1,η ‖g2 − g1‖1+ηG2
.

We then write

‖S(f2)− S(f1)‖G3
≤ [V]C0,1 ‖U(f2)− U(f1)‖G2

≤ [V]C0,1 [U ]C0,1
Λ

Λ (f1, f2) ‖f2 − f2‖G1

which implies
[S]

C0,1
Λ

≤ [V]C0,1 [U ]C0,1
Λ

and

S(f2) = (V ◦ U)(f2) = V
(
U(f1) + 〈DU [f1], (f2 − f1)〉+RU (f1, f2)

)

= V (U (f1)) +RV (U (f2) ,U (f1))

+
〈
DV[U(f1)],

(
〈DU [f1], (f2 − f1)〉+RU (f1, f2)

)〉
.

which implies

〈DS[f1], (f2 − f1)〉 =
〈
DV[U(f1)],

(
〈DU [f1], (f2 − f1)〉

)〉
,

and
[V ◦ U ]C1,0

Λ
≤ [V]C1,0 [U ]C1,η

Λ
.

Finally we estimate the remaining term:

|S(f2)− S(f1)− 〈DS[f1], (f2 − f1)〉|
=
∣∣RV(U(f2),U(f1)) + 〈DV[U(f1)],RU (f1, f2)〉

∣∣

≤
(
Λ (f1, f2)

1+η [V]C1,η [U ]1+η
C0,1

Λ

+ Λ(f1, f2) [V]C1,0 [U ]C1,η
Λ

)
‖f2 − f1‖1+ηG1

.

We hence conclude that

[S]
C1,η

Λ1+η
≤ [V]C1,0 [U ]C1,η

Λ
+ [V]C1,η [U ]1+η

C0,1
Λ

.

The variant
[S]C1,η

Λ2
≤ [V]C1,0 [U ]C1,η

Λ
+ [V]C1,1 [U ]2

C
0,(1+η)/2
Λ

.

is easily obtained by estimating instead
∣∣RV(U(f2),U(f1))

∣∣ ≤ [V]C1,1 ‖U(f2)− U(f1)‖2G2

≤ [V]C1,1 Λ (f1, f2)
2 [U ]

C
0,(1+η)/2
Λ

‖f2 − f1‖1+ηG1
.

�

2.7. The pushforward generator. As a first application of this differential calculus, let
us compute the generator of the pushforward limiting semigroup.

Lemma 2.13. Given some Banach space G and some probability space PG(E) (see Defini-
tions 2.4-2.5) associated to a weight function m and constraint function m, and endowed
with the metric induced from G, then for some δ ∈ (0, 1] and some ā ∈ (0,∞) we assume
that for any a ∈ (ā,∞):

(i) The equation (2.1) generates a semigroup

SNLt : BPG,a → BPG,a

which is δ-Höder continuous locally uniformly in time, in the sense that for any
τ ∈ (0,∞) there exists Cτ ∈ (0,∞) such that

∀ f, g ∈ BPG1,a, sup
t∈[0,τ ]

∥∥SNLt f − SNLt g
∥∥
G1

≤ Cτ ‖f − g‖δG1
.
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(ii) The application Q is bounded and δ-Hölder continuous from BPG,a into G.
Then for any a ∈ (ā,∞) the pushforward semigroup T∞

t defined by

∀ f ∈ BPG,a(E), Φ ∈ UCb(BPG,a(E)), T∞
t [Φ](f) := Φ

(
SNLt (f)

)

is a C0-semigroup of contractions on the Banach space UCb(BPG,a(E)).
Its generator G∞ is an unbounded linear operator on UCb(BPG,a(E)) with domain

Dom(G∞) containing UC1
b (BPG,a(E)). On the latter space, it is defined by the formula

(2.8) ∀Φ ∈ UC1
b (BPG,a(E)), ∀ f ∈ BPG,a(E), (G∞Φ) (f) := 〈DΦ[f ], Q(f)〉 .

Remark 2.14. Note that the restriction to uniformly continuous functions Φ on probability
spaces will be harmless in the sequel for two reasons: first in most cases our choice of
weight, constraints and distance yields a compact space BPG,a(E), and second and most
importantly we shall only manipulate this pushforward semigroup for functions Φ having
at least Hölder regularity.

Proof of Lemma 2.13. The proof is split in several steps.

Step 1. We claim that for any f0 ∈ BPG,a(E) and τ > 0 the application

S (f0) : [0, τ) → PG , t 7→ SNLt (f0)

is right differentiable in t = 0 with

S (f0)
′ (0+) = Q (f0) .

Denote ft := SNLt f0. First, since ft ∈ BPG,a for any t ∈ [0, τ ] and Q is bounded on
BPG,a(E) (assumption (ii)), we deduce that uniformly on f0 ∈ BPG,a(E) we have

(2.9) ‖ft − f0‖G =

∥∥∥∥
∫ t

0
Q(fs) ds

∥∥∥∥
G
≤ K t.

We then use the previous inequality together with the fact that Q is δ-Hölder continuous
(assumption (ii) again), to get

‖ft − f0 − tQ (f0)‖G =

∥∥∥∥
∫ t

0
(Q (fs)−Q (f0)) ds

∥∥∥∥
G

= L

∫ t

0
‖fs − f0‖δG ds

≤ L

∫ t

0
(K s)δ ds = LKδ t

1+δ

1 + δ
,

which implies the claim.
Then the semigroup property of (SNLt ) implies that t 7→ ft is continuous from R+ into

PG(E) and right differentiable at any point.

Step 2. We claim that (T∞
t ) is a C0-semigroup of contractions on UCb(BPG,a(E)).

First for any Φ ∈ UCb(BPG,a(E)), we denote by ωΦ the modulus of continuity of Φ. We
have thanks to the assumption (i):

∀ t ∈ [0, τ ], |(T∞
t Φ) (g) − (T∞

t Φ) (f)| =
∣∣Φ
(
SNLt (g)

)
− Φ

(
SNLt (f)

)∣∣

≤ ωΦ

(∥∥SNLt (g)− SNLt (f)
∥∥
G1

)

≤ ωΦ

(
Cτ ‖g − f‖δG1

)
,
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so that T∞
t Φ ∈ UCb(BPG1,a(E)) for any t ∈ [0, τ ], and then, by iteration, for any t ≥ 0.

Next, we have

‖T∞
t ‖ = sup

‖Φ‖≤1
‖T∞

t Φ‖ = sup
‖Φ‖≤1

sup
f∈BPG,a(E)

∣∣Φ
(
SNLt (f)

)∣∣ ≤ 1

since

‖Φ‖ = sup
f∈BPG,a(E)

|Φ(f)|.

Finally, from (2.9), for any Φ ∈ UCb(BPG,a(E)), we have

‖T∞
t Φ− Φ‖ = sup

f∈BPG,a(E)

∣∣Φ(SNLt (f))− Φ(f)
∣∣ ≤ ωΦ(K t) → 0.

As a consequence (T∞
t ) has a closed generator G∞ with dense domain

Dom(G∞) ⊂ UCb(BPG,a(E))

(see for instance [62, Chapter 1, Corollary 2.5]).

Step 3. We shall now identify this generator, at least on a part of its domain. Let us
construct a natural candidate provided by the heuristic of Remark 2.3. Let us define G̃∞Φ
by

∀Φ ∈ UC1
b (BPG,a(E)), ∀ f ∈ BPG,a(E), (G̃∞Φ)(f) := 〈DΦ[f ], Q(f)〉 .

The right hand side is well defined since

DΦ[f ] ∈ L(G,R) = G′ and Q(f) ∈ G.

Moreover, since both applications

f 7→ DΦ[f ] and f 7→ Q(f)

are uniformly continuous on BPG,a(E), so is the application

f 7→ (G̃∞Φ)(f).

Hence G̃∞Φ ∈ UCb(BPG,a(E)).

Step 4. Finally, by composition, for any fixed Φ ∈ UC1
b (BPG,a(E)) and f ∈ BPG,a(E),

the map

t 7→ T∞
t Φ(ρ) = Φ ◦ SNLt (ρ)

is right differentiable in t = 0 and

d

dt
(T∞
t Φ)(ρ)|t=0 :=

d

dt
(Φ ◦ S(ρ)(t))|t=0

=

〈
DΦ[S(ρ)(0)], d

dt
S(ρ)(0)

〉

= 〈DΦ[ρ], Q(ρ)〉 =
(
G̃∞Φ

)
(ρ),

which precisely means that Φ ∈ Dom(G∞) and that (2.8) holds. �
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2.8. Duality inequalities. Our transformations πN and RN behave nicely for the supre-
mum norm on Cb(P (E), TV ), see (2.2). More generally we shall consider “duality pairs”
of metric spaces as follows:

Definition 2.15. We say that a pair (F , PG) of a normed vectorial space F ⊂ Cb(E)
endowed with the norm ‖ · ‖F and a probability space PG ⊂ P (E) endowed with a metric
dG satisfy a duality inequality if

(2.10) ∀ f, g ∈ PG , ∀ϕ ∈ F , |〈g − f, ϕ〉| ≤ C dG(f, g) ‖ϕ‖F ,

where here 〈·, ·〉 stands fot the usual duality brackets between probabilities and continuous
functions. In the case where the distance dG is associated with a normed vector space G,
this amounts to the usual duality inequality |〈h, ϕ〉| ≤ ‖h‖G ‖ϕ‖F .

The “compatibility” of the transformation RN for any such pair follows from the mul-
tilinearity: if F and G are in duality, F ⊂ Cb(E) and PG is endowed with the metric
associated to ‖ · ‖G , then for any

ϕ = ϕ1 × · · · × ϕN ∈ F⊗N ,

the polynomial function RNϕ in Cb(P (E)) is C1,1(PG ,R). Indeed, given f1, f2 ∈ PG1 , we
define

G → R, h 7→ DRℓϕ [f1] (h) :=
N∑

i=1


∏

j 6=i
〈f1, ϕj〉


 〈h, ϕi〉 ,

and we have

RNϕ (f2)−RNϕ (f1) =

N∑

i=1


 ∏

1≤k<i
〈f2, ϕk〉


 〈f2 − f1, ϕi〉


 ∏

i<k≤ℓ
〈f1, ϕk〉


 ,

and

RNϕ (f2)−RNϕ (f1)−DRNϕ [f1] (f2 − f1) =

=
∑

1≤j<i≤N


 ∏

1≤k<j
〈f2, ϕk〉


 〈f2 − f1, ϕj〉


 ∏

j<k<i

〈f1, ϕk〉


 〈f2 − f1, ϕi〉


 ∏

i<k≤ℓ
〈f1, ϕk〉


 .

Hence for instance RNϕ ∈ C1,1(PG ;R) with
∣∣RNϕ (f2)−RNϕ (f1)

∣∣ ≤ N ‖ϕ‖F⊗(L∞)N−1 ‖f2 − f1‖G ,∣∣DRNϕ [f1](h)
∣∣ ≤ N ‖ϕ‖F⊗(L∞)N−1 ‖h‖G ,

and

(2.11)
∣∣RNϕ (f2)−RNϕ (f1)−DRNϕ [f1](f2 − f1)

∣∣ ≤ N(N − 1)

2
‖ϕ‖F2⊗(L∞)N−2 ‖f2 − f1‖2G ,

where we have defined

‖ϕ‖Fk⊗(L∞)N−k := max
i1,...,ik distincts in [|1,N |]


‖ϕi1‖F . . . ‖ϕik‖F

∏

j 6=(i1,...,ik)

‖ϕj‖L∞(E)


 .

Remarks 2.16. (1) It is easily seen in this computation that the assumption that ϕ is
tensor product is not necessary. In fact it is likely that this assumption could be
relaxed all along our proof. We do not pursue this line of research.
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(2) The assumption F ⊂ Cb(E) could also be relaxed. For instance, when

F := Lip0(E)

is the space of Lipschitz function which vanishes in some fixed point x0 ∈ E, G is
its dual space, and

PG := {f ∈ P1(E); 〈f,distE(·, x0)〉 ≤ a}
for some fixed a > 0, we have RNϕ ∈ C1,1(P1(E);R) with

[
RNϕ
]
C0,1 ≤ N aN−2 ‖ϕ‖F⊗N ,

[
RNϕ
]
C1,1 ≤ N(N − 1)

2
aN−1 ‖ϕ‖F⊗N ,

or equivalently RNϕ ∈ C1,1
Λ (P1(E);R) with Λ(f) := ‖f‖N−2

M1
1
.

In the other way round, for the projection πN it is clear that if the empirical measure
map

V ∈ EN 7→ µNV ∈ P (E)

belongs to Ck,η(EN , PG) for some norm structure G, then by composition one has

(2.12)
∥∥πN (Φ)

∥∥
Ck,η(EN ;R)

≤ Cπ ‖Φ‖Ck,η(PG)
.

However the regularity of the empirical measure of course heavily depends on the choice
of the metric G.
Example 2.17. In the case F = (Cb(E), L∞) and G = (M1(E), TV ), (2.12) trivially holds
with Ck,η replaced by Cb.

Example 2.18. When F = Lip0(E) (Lipschitz function vanishing at some given point v0)
endowed with the norm ‖φ‖Lip and PG(E) (constructed in Subsubsection 2.5.2) is endowed
with the Wasserstein distance W1 with linear cost, one has (2.12) with k = 0, η = 1:

∣∣Φ
(
µNX
)
−Φ

(
µNY
)∣∣ ≤ ‖Φ‖C0,1(PG)W1

(
µNX , µ̂

N
Y

)
≤ ‖Φ‖C0,1(PG) ‖X − Y ‖ℓ1 ,

where we use (2.3), which proves that

‖πN (Φ)‖C0,1(EN ) ≤ ‖Φ‖C0,1(PG),

when EN is endowed with the ℓ1 distance defined in (2.3).

3. The abstract theorem

3.1. Assumptions of the abstract theorem. Let us list the assumptions that we need
for our main abstract theorem.

(A1) Assumptions on the N-particle system.

GN and TNt are well defined on Cb(E
N ) and invariant under permuta-

tion, and they satisfy the following moment conditions:
(i) Propagation of integral moment bound: There exists a weight function

mG1 , a time T ∈ (0,∞] and a constant C1,T ∈ (0,∞), possibly de-
pending on T and mG1 , but not on the number of particles N , such
that

∀N ≥ 1, sup
0≤t<T

〈
fNt ,M

N
mG1

〉
≤ CmG1

,T .

(ii) Support moment bound at initial time: There exists a weight function
mG3 and a constant CN3 ∈ (0,+∞), possibly depending on the number
of particles N , such that

Supp fN0 ⊂
{
V ∈ EN ;MN

mG3
(V ) ≤ CNmG3

,0

}
.
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Note that the name of the weights mG1 and mG3 in (A1) above are chosen for coherence
with the functional spaces in the other assumptions.

(A2) Assumptions for the existence of the pushforward
semigroup.

Given some Banach space G1 and some probability space PG1(E) (see
Definitions 2.4-2.5) associated to a weight function mG1 (as in (A1)-(i))
and a constraint function mG1

, and endowed with the metric induced from
G1, then for some δ ∈ (0, 1] and some ā ∈ (0,∞) we assume that for any
a ∈ (ā,∞):
(i) The equation (2.1) generates a semigroup

SNLt : BPG1,a → BPG1,a

which is δ-Höder continuous locally uniformly in time, in the sense
that for any τ ∈ (0,∞) there exists Cτ ∈ (0,∞) such that

∀ f, g ∈ BPG1,a, sup
t∈[0,τ ]

∥∥SNLt f − SNLt g
∥∥
G1

≤ Cτ ‖f − g‖δG1
.

(ii) The application Q is bounded and δ-Hölder continuous from BPG1,a

into G1.

So in particular the semigroups SNt , TNt , SNLt and T∞
t are well defined as well as the

generators GN and G∞.
We then need the key following consistency assumption. It intuitively states that the N -

particle approximation of the limiting mean-field equation is consistent. More rigorously
this means a convergence of the generators of the N -particle approximation towards the
generator of the limiting pushforward semigroup within the abstract functional framework
we have introduced.

(A3) Convergence of the generators.

In the probability metrized set PG1 introduced in (A2) (associated to
the weight function mG1 and constraint function mG1) we define

RG1
:=
{
r ∈ R

D; ∃ f ∈ PG1 s.t. mG1(f) = r
}
.

We also define a weight function

m′
G1

≤ C mG1

possibly weaker than mG1 and we define the associated weight on the dis-
tribution:

Λ1(f) :=
〈
f,m′

G1

〉
.

Then we assume that for some function

ε(N) → 0 as N → ∞,

the generators GN and G∞ satisfy

∀Φ ∈
⋂

r∈RG1

C1,η
Λ1

(PG1,r;R)

∥∥∥∥
(
MN
mG1

)−1(
GN πN − πN G

∞) Φ
∥∥∥∥
L∞(EN )

≤ ε(N) sup
r∈RG1

[Φ]
C1,η

Λ1
(PG1,r

)
,
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where MN
mG1

is defined by

MN
mG1

:=
1

N

N∑

i=1

mG1 (vi) .

Note the following aspect, which shall be a crucial source of difficulty in the application
of the following abstract theorem: the loss of weight in the consistency estimate
(A3) has to be matched by the moment bounds propagated on the N-particle
system in the assumption (A1)-(i). (In fact the loss of weight in the consistency
estimate mG1 can be even slighlty higher than the one from the stability estimate Λ1, see
the above relation.)

More specifically, the best we are able to prove uniformly in N on the N -particle system
are polynomial moment bounds. This thus constraints the kind of loss of weight we can
afford in the following stability estimate.

We now state the second key stability assumption. Intuitively this corresponds to the
abstract regularity that needs to be transported along the flow of the limiting mean-field
equation so that the fluctuations around chaoticity can be controlled. More rigorously
this means some differential regularity on the pushforward limiting semigroup, which cor-
responds to some differential regularity on the limiting nonlinear semigroup according to
the initial data and in probability spaces.

(A4) Differential stability of the limiting semigroup.

We consider some Banach space G2 ⊃ G1 (where G1 was defined in (A2))
and the corresponding probability space PG2(E) (see Definitions 2.4-2.5)
with the weight function mG2 and the constraint function mG2

, and en-
dowed with the metric induced from G2.

We assume that the flow SNLt is C1,η
Λ2

(PG1,r, PG2) for any r ∈ RG1
in the

sense that there exists C∞
T > 0 such that

sup
r∈RG1

∫ T

0

([
SNLt

]
C1,η

Λ2
(PG1,r

,PG2
)
+
[
SNLt

]1+η′
C0,η′′

Λ2
(PG1,r

,PG2
)

)
dt ≤ C∞

T ,

where η ∈ (0, 1) is the same as in (A3), where

(η′, η′′) = (η, 1) or (η′, η′′) =

(
1,

1 + η

2

)
,

and with the weight (recall that Λ1 was defined in (A3))

Λ2 = Λ
1

1+η′

1 .

We finally state a weaker stability assumption on the limiting semigroup. It shall be used
intuitively for proving that initial error in the law of large number when approximating
a probability by empirical measures is propagated by the limiting semigroup. The reason
for dissociating this assumption from the previous one is because we need some flexibility
in the independent choice of distances for these two assumptions.

(A5) Weak stability of the limiting semigroup.

We assume that, for some probabilistic space PG3(E) associated to the
weight function mG3 (as in (A1)-(ii)), a constraint function mG3 and some



KAC’S PROGRAM IN KINETIC THEORY 29

metric structure dG3 , for any a, T > 0 there exists a concave modulus of
continuity Θa,T such that we have

∀ f1, f2 ∈ BPG3,a(E)

sup
[0,T )

dG3

(
SNLt (f1), S

NL
t (f2)

)
≤ Θa,T (dG3 (f1, f2)) .

Observe that in the latter assumption, we require that f1, f2 ∈ BPG3,a(E) which implies
in particular that we require the bounds

MmG3
(f1) =

∫

Rd

f1mG3 dv ≤ a, MmG3
(f2) =

∫

Rd

f2mG3 dv ≤ a.

When applying the assumption to some empirical measure for one of the argument f1 or
f2, this shall induces the requirement of controlling pointwise terms like MN

mG3
. This is

the reason for the assumption (A1)-(ii).

3.2. Statement of the result. We are now in position to state the main abstract result.
This result can be considered intuitively as a convergence in approximation theory, in
the sense of proving that approximation errors between the N -particle system and the
limiting mean-field system are propagated along time without instability amplification
mechanism. More specifically the approximation error means in the present context some
kind of distance between the discrete N -particle system and the limiting mean-field system,
within our abstract functional framework. This result implies in particular the propagation
of chaos.

Theorem 3.1. Consider a family of N -particle initial conditions

fN0 ∈ Psym(E
N ), N ≥ 1

and the associated solutions

fNt = SNt
(
fN0
)
.

Consider a 1-particle initial condition f0 ∈ P (E) and the associated solution

ft = SNLt (f0)

of the limiting mean-field equation.
Assume that the assumptions (A1)-(A2)-(A3)-(A4)-(A5) hold for some spaces PGk

,
Gk and Fk, k = 1, 2, 3 with Fk ⊂ Cb(E), and where Fk and Gk are in duality (that is (2.10)
holds).

Assume also that the 1-particle distribution satisfies the moment bound

MmG3
(f0) = 〈f0,mG3〉 < +∞.

Then there is an explicit absolute constant C ∈ (0,∞) such that for any N, ℓ ∈ N
∗, with

N ≥ 2ℓ, and for any

ϕ = ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕℓ ∈ (F1 ∩ F2 ∩ F3)
⊗ℓ

we have

sup
[0,T )

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣(3.1)

≤ C

[
ℓ2

‖ϕ‖∞
N

+CmG1
,T C

∞
T ε(N) ℓ2 ‖ϕ‖F2

2⊗(L∞)ℓ−2

+ℓ ‖ϕ‖F3⊗(L∞)ℓ−1 ΘaN ,T

(
WdG3

(
πNP f

N
0 , δf0

))
]
,
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where aN > 0 depends on CNG3,0
and MG3(f0), and where WdG3

stands for an abstract

Monge-Kantorovich distance in P (PG3(E)) (see the third point in the next remark)

(3.2) WdG3

(
πNP f

N
0 , δf0

)
=

∫

EN

dG3(µ
N
V , f0) f

N
0 (dV ).

Remarks 3.2. (1) The spirit of this method is to first treat the N -particle system as a
perturbation (in a very degenerated sense) of the limiting problem, and second to
minimize assumptions on the many-particle systems in order to avoid complications
of many dimensions dynamics.

(2) In the applications the worst decay rate in the right-hand side of (3.1) is always
the last one. This last term controls two kind of errors: (1) the chaoticity of the

initial data, that is how well fN0 ∼ f⊗N0 , (2) the rate of convergence in the law of
large numbers for measures in the distance dG3 .

(3) Let us discuss more the meaning of this last term and the related issue of sampling
by empirical measures in statistics (see also Section 4).

Following the abstract definition of the optimal transport Wasserstein distance
we define

∀µ1, µ2 ∈ P (PG3) , WdG3
(µ1, µ2) = inf

π∈Π(µ1,µ2)

∫

PG3
×PG3

dG3 (ρ1, ρ2) π(dρ1, dρ2),

where Π(µ1, µ2) denotes the probability measures on the product space PG3 × PG3

with first marginal µ1 and second marginal µ2. In the case when µ2 = δf0 then

Π(µ1, δf0) = {µ1 ⊗ δf0}
has only one element, and therefore

WdG3

(
πNP f

N
0 , δf0

)
= inf

π∈Π(πN
P f

N
0 ,δf0)

∫

PG3
×PG3

dG3 (ρ1, ρ2) π (dρ1, dρ2)

=

∫

EN

dG3

(
µNV , f0

)
fN0 (dV ).

which explains the notation (3.2). We simply denote in the tensorized case:

WN
dG3

(f0) := WdG3

(
πNP f

⊗N
0 , δf0

)

Comparisons of the WN
d functionals and estimates on the rate

WN
d (f) → 0 as N → ∞

depending on the choice of the distance d are discussed in Subsection 4.2.

3.3. Proof of the abstract theorem. For a given function

ϕ ∈ (F1 ∩ F2 ∩ F3)
⊗ℓ,

we break up the term to be estimated into three parts:
∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ⊗ 1⊗N−ℓ

〉∣∣∣ ≤

≤
∣∣∣
〈
SNt (fN0 ), ϕ ⊗ 1⊗N−ℓ

〉
−
〈
SNt (fN0 ), Rℓϕ ◦ µNV

〉∣∣∣ (=: T1)

+
∣∣∣
〈
fN0 , T

N
t (Rℓϕ ◦ µNV )

〉
−
〈
fN0 , (T

∞
t Rℓϕ) ◦ µNV )

〉∣∣∣ (=: T2)

+
∣∣∣
〈
fN0 , (T

∞
t Rℓϕ) ◦ µNV )

〉
−
〈
(SNLt (f0))

⊗ℓ, ϕ
〉∣∣∣ (=: T3).

We deal separately with each part step by step:
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• T1 is controlled by a purely combinatorial arguments introduced in [36]. Roughly
speaking it is the combinatorial price we have to pay when we use the injection
πNE based on empirical measures.

• T2 is controlled thanks to the consistency estimate (A3) on the generators, the dif-
ferential stability assumption (A4) on the limiting semigroup and the propagation
of integral moment bounds (A1)-(i).

• T3 is controlled in terms of the chaoticity of the initial data thanks to the weak
stability assumption (A5) on the limiting semigroup and the support moment
bounds at initial time (A1)-(ii).

Step 1: Estimate of the first term T1. Let us prove that for any t ≥ 0 and any N ≥ 2ℓ
there holds

(3.3) T1 :=
∣∣∣
〈
SNt (fN0 ), ϕ ⊗ 1⊗N−ℓ

〉
−
〈
SNt (fN0 ), Rℓϕ ◦ µNV

〉∣∣∣ ≤
2 ℓ2 ‖ϕ‖L∞(Eℓ)

N
.

Since SNt (fN0 ) is a symmetric probability measure, estimate (3.3) is a direct consequence
of the following lemma.

Lemma 3.3. For any ϕ ∈ Cb(E
ℓ) we have

(3.4) ∀N ≥ 2ℓ,

∣∣∣∣
(
ϕ⊗ 1⊗N−ℓ

)
sym

− πNR
ℓ
ϕ

∣∣∣∣ ≤
2 ℓ2 ‖ϕ‖L∞(Eℓ)

N

where for a function φ ∈ Cb(E
N ), we define its symmetrized version φsym as:

φsym =
1

|SN |
∑

σ∈SN

φσ

where we recall that SN is the set of N -permutations.
As a consequence for any symmetric measure we have

(3.5) ∀ fN ∈ Psym(E
N ),

∣∣∣〈fN , Rℓϕ(µNV )〉 − 〈fN , ϕ〉
∣∣∣ ≤

2 ℓ2 ‖ϕ‖L∞(Eℓ)

N
.

Proof of Lemma 3.3. This lemma is a simple and classical combinatorial computation. We
briefly sketch the proof for the sake of completeness.

For a given ℓ ≤ N/2 we introduce

AN,ℓ :=
{
(i1, . . . , iℓ) ∈ [|1, N |]ℓ : ∀ k 6= k′ ∈ [|1, ℓ|], ik 6= ik′

}

and

BN,ℓ := AcN,ℓ =
{
(i1, . . . , iℓ) ∈ [|1, N |]ℓ

}
\ AN,ℓ.

Since there are N !/(N − ℓ)! ways of choosing ℓ distinct indices among [|1, N |] we get

|BN,ℓ|
N ℓ

= 1− N !

(N − ℓ)!N ℓ

= 1−
(
1− 1

N

)
· · ·
(
1− ℓ− 1

N

)
= 1− exp

(
ℓ−1∑

i=0

log

(
1− i

N

))

≤ 1− exp

(
−2

ℓ−1∑

i=0

i

N

)
≤ 2

ℓ−1∑

i=0

i

N
≤ ℓ2

N
,

where we have used

∀x ∈ [0, 1/2], log(1− x) ≥ −2x and ∀x ∈ R, e−x ≥ 1− x.
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Then we compute

Rℓϕ
(
µNV
)
=

1

N ℓ

N∑

i1,...,iℓ=1

ϕ (vi1 , . . . , viℓ)

=
1

N ℓ

∑

(i1,...,iℓ)∈AN,ℓ

ϕ (vi1 , . . . , viℓ) +
1

N ℓ

∑

(i1,...,iℓ)∈BN,ℓ

ϕ (vi1 , . . . , viℓ)

=
1

N ℓ

1

(N − ℓ)!

∑

σ∈SN

ϕ
(
vσ(1), . . . , vσ(ℓ)

)
+O

(
ℓ2

N
‖ϕ‖L∞

)

We now use the same estimate

1− N !

(N − ℓ)!N ℓ
≤ ℓ2

N

as above to get

Rℓϕ
(
µNV
)
=

1

N !

∑

σ∈SN

ϕ
(
vσ(1), . . . , vσ(ℓ)

)
+O

(
2 ℓ2

N
‖ϕ‖L∞

)

=
(
ϕ⊗ 1⊗N−ℓ

)
sym

+O
(
2 ℓ2

N
‖ϕ‖L∞

)

and the proof of (3.4) is complete.
Next for any fN ∈ Psym(E

N ) we have

〈
fN , ϕ

〉
=

〈
fN ,

(
ϕ⊗ 1⊗N−ℓ

)
sym

〉
,

and (3.5) trivially follows from (3.4). �

Step 2: Estimate of the second term T2. Let us prove that for any t ∈ [0, T ) and
any N ≥ 2ℓ there holds

T2 :=
∣∣∣
〈
fN0 , T

N
t

(
Rℓϕ ◦ µNV

)〉
−
〈
fN0 ,

(
T∞
t Rℓϕ

)
◦ µNV

〉∣∣∣(3.6)

≤ CmG1
,T C

∞
T ε(N) ℓ2 ‖ϕ‖F2

2⊗(L∞)ℓ−2 .

We start with the following algebraic identity

TNt πN − πNT
∞
t = −

∫ t

0

d

ds

(
TNt−s πN T

∞
s

)
ds =

∫ t

0
TNt−s

[
GNπN − πNG

∞] T∞
s ds.

We then use assumptions (A1)-(i) and (A3) and we get for any t ∈ [0, T )
∣∣∣
〈
fN0 , T

N
t

(
Rℓϕ ◦ µNV

)〉
−
〈
fN0 ,

(
T∞
t Rℓϕ

)
◦ µNV

〉∣∣∣

≤
∫ T

0

∣∣∣∣
〈
MN
mG1

SNt−s
(
fN0
)
,
(
MN
mG1

)−1 [
GNπN − πNG

∞] (T∞
s Rℓϕ

)〉∣∣∣∣ ds

≤
(

sup
0≤t<T

〈
fNt ,M

N
mG1

〉)
×

(∫ T

0

∥∥∥∥
(
MN
mG1

)−1 [
GNπN − πNG

∞] (T∞
s Rℓϕ

)∥∥∥∥
L∞(EN )

ds

)

≤ CmG1
,T ε(N) sup

r∈RG1

∫ T

0

[
T∞
s Rℓϕ

]
C1,η

Λ1
(PG1

,r)
ds.(3.7)
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Now, let us fix r ∈ RG1 . Since

T∞
t (Rℓϕ) = Rℓϕ ◦ SNLt with SNLt ∈ C1,η

Λ2
(PG1,r;PG2)

and Rℓϕ ∈ C1,1(PG2) because ϕ ∈ F⊗ℓ
2 (see subsection 2.8), we can apply Lemma 2.12 and

use assumption (A4) to obtain

T∞
t (Rℓϕ) ∈ C1,η

Λ1
(PG1,r)

with
[
T∞
s

(
Rℓϕ

)]
C1,η

Λ1
(PG1,r

)
≤
([
SNLt

]
C1,η

Λ2
(PG1,r

,PG2
)
+
[
SNLt

]1+η′
C0,η′′

Λ2
(PG1,r

,PG2
)

) ∥∥∥Rℓϕ
∥∥∥
C1,η(PG2

)

and

Λ2 = Λ
1/(1+η′)
1 .

Note that the two different sets of indices

(η′, η′′) = (η, 1) or (η′, η′′) = (1, (1 + η)/2)

in Lemma 2.12 correspond to the two cases discussed in Lemma 2.12.
We then deduce thanks to (2.11) and assumption (A4):

(3.8)

∫ T

0
[T∞
s (Rℓϕ)]C1,η

Λ1
(PG1,r

)
ds ≤ C∞

T ℓ2
(
‖ϕ‖F2⊗(L∞)ℓ−2 + ‖ϕ‖F2⊗(L∞)ℓ−1

)
.

Then we go back to the computation (3.7), and plugging (3.8) we deduce (3.6).

Step 3: Estimate of the third term T3. Let us prove that for any t ≥ 0 and N ≥ ℓ
we have

T3 :=
∣∣∣∣
〈
fN0 ,

(
T∞
t Rℓϕ

)
◦ µNV

〉
−
〈(

SNLt (f0)
)⊗ℓ

, ϕ

〉∣∣∣∣ ≤

≤ [Rϕ]C0,1 ΘaN ,T

(
W1,PG3

(
πNP f

N
0 , δf0

))

where Θa,T was introduced in assumption (A5), and a = aN is defined by

aN := max
{
MG3(f0) , C

N
mG3

,0

}

where CNmG3
,0 was introduced in assumption (A1)-(ii).

Assumption (A1)-(ii) indeed implies that

Supp fN0 ⊂ K :=

{
V ∈ R

dN s. t. MN
mG3

(
µNV
)
=

1

N

N∑

i=1

mG3(vi) ≤ CNmG3
,0

}
.

Hence we are in position to apply (A5) for the functions f0 and µNV on the support of

fN0 since MmG3
(f0) is bounded by assumption, and MG3(µ

N
V ) is bounded by CNmG3

,0 when

restricting to V ∈ K thanks to the previous equation.
Let us also recall that Rℓϕ ∈ C0,1(PG3 ,R) because ϕ ∈ F⊗ℓ

3 .
We then write

T3 =
∣∣∣
〈
fN0 , R

ℓ
ϕ

(
SNLt (µNV )

)〉
−
〈
fN0 , R

ℓ
ϕ

(
SNLt (f0)

)〉∣∣∣

=
∣∣∣
〈
fN0 , R

ℓ
ϕ

(
SNLt (µNV )

)
−Rℓϕ

(
SNLt (f0)

)〉∣∣∣
≤

[
Rϕ
]
C0,1(PG3

)

〈
fN0 , dG3

(
SNLt (f0), S

NL
t (µNV )

)〉
.

We now apply (A5) to get

∀ t ∈ [0, T ], dG3

(
SNLt (f0), S

NL
t (µNV )

)
≤ ΘaN ,T

(
dG3

(
f0, µ

N
V

))
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on the support of fN0 , and therefore

T3 ≤
[
Rϕ
]
C0,1(PG3

)

〈
fN0 , ΘaN ,T

(
dG3

(
f0, µ

N
V

))〉
.

We can further rewrite the last equation in the following way by using the concavity of
the ΘaN ,T function:

T3 ≤
[
Rϕ
]
C0,1(PG3

)
ΘaN ,T

(〈
fN0 , dG3

(
f0, µ

N
V

)〉)

which concludes the proof of this step.

The proof of Theorem 3.1 is complete by piling the previous steps.

4. The N-particle approximation at initial time

4.1. Comparison of distances on probabilities. In the following lemma we compare
the different metrics and norms defined Subsection 2.5. Let us denote

Mk(f, g) := max
{〈
f, 〈v〉k

〉
;
〈
g, 〈v〉k

〉}
.

Lemma 4.1. Let f, g ∈ P (Rd) and k ∈ (0,∞), then the following estimates hold:

(i) For any q ∈ (1,+∞) and any k ∈ [q − 1,∞):

(4.1) W1(f, g) ≤Wq(f, g) ≤ 2
k+1
q Mk+1(f, g)

q−1
qk W1(f, g)

1
q (1−

q−1
k ).

(ii) For any s ∈ (0, 1],

(4.2) |f − g|s ≤ 2(1−s)Ws(f, g) ≤ 2(1−s)W1(f, g)
s.

(iii) For any s ∈ (d/2, d/2 + 1),

(4.3) ‖f − g‖2
Ḣ−s ≤

8
∣∣Sd−1

∣∣
(2s − d)

(
(2s − d)

4(d+ 2− 2s)

)s− d
2

|f − g|2s−d1 .

(iv) For any s > 0 and k > 0 we have

(4.4) [f − g]∗1 ≤ C(d, s, k)Mk+1(f, g)
d

d+k(d+s) |f − g|
k

d+k(d+s)
s

for some constant C(d, s, k) > 0 depending on d, s and k.
(v) For any

s ∈
(
max

{
d

2
; 1

}
,
d

2
+ 1

)

and k > 0 we have

(4.5) [f − g]∗1 ≤ C(d, s, k)Mk+1(f, g)
d

d+2ks ‖f − g‖
2k

d+2ks

Ḣ−s

for some constant C(d, s, k) > 0 depending on d, s and k.

Proof of Lemma 4.1. Let us consider each inequality one by one.

Point (i). The inequality (4.1) is well-known in optimal transport theory, we refer for
instance to [69, 17].

Point (ii). Let us prove inequality (4.2). Let π ∈ Π(f, g). We write

|f̂(ξ)− ĝ(ξ)| =

∣∣∣∣
∫

Rd×Rd

(
e−i v·ξ − e−i w·ξ

)
π(dv, dw)

∣∣∣∣

≤
∫

Rd×Rd

∣∣∣e−i v·ξ − e−i w·ξ
∣∣∣ π(dv, dw)

≤ 2(1−s)
∫

Rd×Rd

|v − w|s |ξ|s π(dv, dw),
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which yields the first inequality in (4.2) by taking the supremum in ξ ∈ R
d and the infimum

in π ∈ Π(f, g). The second inequality is then immediate from the concavity estimate

Ws(f, g) ≤ (W1(f, g))
s .

Point (iii). Let us prove the inequality (4.3). Consider R > 0 and the ball

BR :=
{
x ∈ R

d ; |x| ≤ R
}
,

and write

‖f − g‖2
Ḣ−s =

∫

BR

|f̂(ξ)− ĝ(ξ)|2
|ξ|2s dξ +

∫

Bc
R

|f̂(ξ)− ĝ(ξ)|2
|ξ|2s dξ

≤ |f − g|21
∫

BR

dξ

|ξ|2(s−1)
+ 4

∫

Bc
R

dξ

|ξ|2s

≤
∣∣∣Sd−1

∣∣∣ Rd−2s

(
R2

(d+ 2− 2s)
|f − g|21 +

4

(2s − d)

)
.

We optimize this estimate by choosing

R =

(
4(d+ 2− 2s)

(2s − d)

) 1
2

|f − g|−1
1

which yields

‖f − g‖2
Ḣ−s ≤ 8

∣∣Sd−1
∣∣

(2s − d)

(
(2s− d)

4(d+ 2− 2s)

)s− d
2

|f − g|2s−d1

which concludes the proof of (4.3).

Point (iv). Let us now prove inequality (4.4). We introduce a truncation function

χR(x) = χ
( x
R

)
, R > 0

where

χ ∈ C∞
c (Rd), [χ]1 ≤ 1, and 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1)

and a mollifier

γε(x) = ε−d γ
(x
ε

)
, ε > 0 with γ(x) =

e−
|x|2

2

(2π)d/2
.

In particular we have an explicit formula for the Fourier transform of this mollifier:

γ̂ε(ξ) = γ̂(ε ξ) = e−ε
2 |ξ|2

2 .

Fix ϕ ∈W 1,∞(Rd) such that [ϕ]1 ≤ 1, ϕ(0) = 0 and define

ϕR := ϕχR, ϕR,ε = ϕR ∗ γε
and write∫

ϕ (df − dg) =

∫
ϕR,ε (df − dg) +

∫
(ϕR − ϕR,ε) (df − dg) +

∫
(ϕ− ϕR) (df − dg).

For the last term, we have
∣∣∣∣
∫

(ϕR − ϕ) (df − dg)

∣∣∣∣ ≤
∫

(1− χR) |ϕ| (df + dg)(4.6)

≤
∫

Bc
R

[ϕ]1
|x|k+1

Rk
(df + dg) ≤ Mk+1(f, g)

Rk
.
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Concerning the second term, we observe that

|∇ϕR(x)| ≤ χ
( x
R

)
+ |ϕ(x)| |∇(χR)(x)| ≤ χ

( x
R

)
+

|x|
R

∣∣∣∇χ
( x
R

)∣∣∣ ,
so that

∀ q ∈ [1,∞], ‖∇ϕR‖Lq ≤ C(q, d, χ)R
d
q ,

for some constant depending on q, d and χ. Next, using that

‖ϕR − ϕR,ε‖∞ ≤ ‖∇ϕR‖∞
(∫

Rd

γε(x) |x| dx
)

= ε ‖∇ϕR‖∞
(∫

Rd

γ(x) |x| dx
)

≤ C(q, d, χ) ε,

we find

(4.7)

∣∣∣∣
∫

(ϕR − ϕR,ε) (df − dg)

∣∣∣∣ ≤ C(q, d, χ) ε.

Concerning the first term, using Parseval’s identity, we have (the “hat” denotes as usual
the Fourier transform)

∣∣∣∣
∫
ϕR,ε (f − g)

∣∣∣∣ =
1

(2π)d

∣∣∣∣
∫
ϕ̂R γ̂ε (f̂ − ĝ) dξ

∣∣∣∣

≤ 1

(2π)d
‖∇ϕR‖L1

∥∥∥∥∥
f̂ − ĝ

|ξ|s

∥∥∥∥∥
L∞

(∫

Rd

|ξ|s−1 e−ε
2 |ξ|2

2 dξ

)

≤ C(d, χ)Rd |f − g|s ε−(d+s−1)

≤ C Rd ε−(d+s−1) |f − g|s.(4.8)

Gathering (4.6), (4.7) and (4.8), we get

[f − g]∗1 ≤ C(q, d, χ)

(
Mk+1(f, g)

Rk
+ ε+Rd ε−(d+s−1) |f − g|s

)
.

This yields (4.4) by optimizing the parameters ε and R with

R =Mk+1(f, g)
1

d+k |f − g|−
1

d+k
s ε

d+s−1
d+k

and then

ε =Mk+1(f, g)
d

d+k(d+s) |f − g|
k

d+k(d+s)
s .

Point (v). Let us now prove inequality (4.5).
Let us consider some smooth ϕ such that [ϕ]1 ≤ 1, ϕ(0) = 0 and let us perform the

same decomposition as before:∫
ϕ (df − dg) =

∫
ϕR,ε (df − dg) +

∫
(ϕR − ϕR,ε) (df − dg) +

∫
(ϕ− ϕR) (df − dg).

The first term is controlled by
∣∣∣∣
∫
ϕR,ε (df − dg)

∣∣∣∣ =
∣∣∣∣∣

∫
ϕ̂R,ε |ξ|s

(f̂ − ĝ)

|ξ|s

∣∣∣∣∣ ≤ ‖ϕR,ε‖Ḣs ‖f − g‖Ḣ−s

with

‖ϕR,ε‖Ḣs =

(∫
|ξ|2 |ϕ̂R|2 |ξ|2(s−1) |γ̂ε|2 dξ

)1/2

≤ ‖∇(ϕR)‖L2

∥∥|ξ|s−1 γ̂ε(ξ)
∥∥
L∞

≤ C(s) ‖∇(ϕR)‖L2 ε
1−s ≤ C(d, s)R

d
2 ε−(s−1)
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with the same arguments as above.
The second term and the last term are controlled exactly as in (4.6) and (4.7), which

yields

[f − g]∗1 ≤ C

(
ε+

Mk+1(f, g)

Rk
+R

d
2 ε−(s−1) ‖f − g‖Ḣ−s

)
.

This yields (4.5) by optimizing the parameters ε and R with

R =Mk+1(f, g)
2

d+2k ‖f − g‖−
2

d+2k

Ḣ−s
ε

2(s−1)
d+2k

and then

ε =Mk+1(f, g)
d

d+2ks ‖f − g‖
2k

d+2ks

Ḣ−s
.

�

4.2. Quantitative law of large numbers for measures. Let us recall and extend the
definition of the functional WN

d (f) which was introduced in (3.2). For any function

D : Pk(E)× Pk(E) → R+, (f, g) 7→ D(f, g)

(where k ≥ 0 is the index of a polynomial weight possibly required for the correct definition
of D) such that

D(f, g) = 0 if and only if f = g

it is legitimate to define

∀ f ∈ Pk(Rd), WN
D (f) :=

〈
f⊗N ,D

(
πNE , f

)〉
=

∫

EN

D
(
µNV , f

)
f⊗N(dV )

(D should be thought as some function of a proper distance).
For well chosen function D, the goal of the next lemma is to quantity the rate of

convergence

WN
D (f)

N→+∞−−−−−→ 0 in the case E = R
d.

Lemma 4.2. We have the following rates for the W function:

(i) Let us consider

∀ f, g ∈ P2(R
d), D1(f, g) := ‖f − g‖2

Ḣ−s .

Then for any s ∈ (d/2, d/2 + 1) and N ≥ 1 there holds

(4.9) ∀ f ∈ P2(R
d), WN

D1
(f) =

∫

RdN

∥∥µNV − f
∥∥2
Ḣ−s df

⊗N (V ) ≤ C

N

for some constant C depending on the second moment of f .
(ii) Let us consider

∀ f, g ∈ P2(R
d), D2(f, g) := ‖f − g‖2H−s .

Then for any s > d/2 and N ≥ 1 there holds

(4.10) ∀ f ∈ P2(R
d), WN

D2
(f) =

∫

RdN

∥∥µNV − f
∥∥2
H−s df

⊗N (V ) ≤ C

N

for some constant C depending on the second moment of f .
(iii) Let us consider

∀ f, g ∈ P1(R
d), D3(f, g) :=W1(f, g).

Then for any η > 0 there exists k ≥ 1 such that for any N ≥ 1

(4.11) ∀ f ∈ Pk(Rd), WN
D3

(f) =

∫

RdN

W1

(
µNV , f

)
df⊗N(V ) ≤ C

N
1

max{d,2}+η

for some constant C depending on η and the k-th moment of f .
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(iv) Let us consider

∀ f, g ∈ P2(R
d), D4(f, g) := (W2(f, g))

2 .

Then for any η > 0 there exists k ≥ 2 such that for any N ≥ 1

(4.12) ∀ f ∈ Pk(R
d), WN

D4
(f) =

∫

RdN

(
W2

(
µNV , f

))2
df⊗N(V ) ≤ C

N
1

max{d,2}+η

for some constant C depending on η and the k-th moment of f .

Remarks 4.3. (1) Estimate (4.12) has to be compared with the following classical es-
timate (see e.g. [64]): for any and any N ≥ 1 there holds

(4.13) ∀ f ∈ Pd+5(R
d), WN

W 2
2
(f) ≤ C

N
2

d+4

where the constant C > 0 depends on the (d + 5)-th moment of f . It is worth
mentioning that our estimate (4.12) improves on (4.13) when d ≤ 3 and k is large
enough.

Similarly, if we try to deduce from (4.13) some estimate on the rate for the W1

distance, by using a Hölder inequality we get that for any N ≥ 1

∀ f ∈ Pd+5(R
d), WN

W1
(f) ≤ C

N
1

d+4

where the constant C > 0 depends on the (d+5)-th moment of f . For any d this is
worst than (4.11) as soon as when the probability f ∈ Pk(R

d) with k large enough.
(2) When f, g ∈ P (Rd) are compactly supported, observe that the estimate (4.5)

improves into

∀ s ≥ 1 [f − g]∗1 ≤ C ‖f − g‖1/s
Ḣ−s

,

for a constant C depending on s and on a common bound R of the support of f
and g.

If furthermore d = 1, we can take s = 1 in order to apply (4.9) in the proof of
(4.11) below and we obtain the “optimal rate” of convergence in the functional law
of large numbers in Wasserstein distance W1:

∀N ≥ 1 WN
W1

(f) ≤ C√
N
.

In higher dimension d ≥ 2, the restriction s > d/2 means that we do not produce
a better estimate than (4.11) by this line of argument.

(3) As was kindly pointed out by M. Hauray, estimate (4.12) should also be compared
with some estimates in [25] where the related quantity

ZN (f) :=

∫

R2dN

W1

(
µNV1 , µ

N
V2

)
df⊗N (V1) df

⊗N (V2)

is considered. When f ∈ P (Rd) has compact support and d ≥ 3, they prove that

ZN (f) ≤ C

N1/d

where the constant depends on the support of f .
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Since for any f, g ∈ P1(R
d) and for any ϕ ∈ Lip1(R

d) we have
∫

RdN

W1

(
g, µNV

)
df⊗N(V ) ≥

∫

Rd(N+1)

ϕ(v)
(
dg − dµNV

)
(v) df⊗N (V )

=

∫

Rd

ϕ(v) dg(v) − 1

N

N∑

i=1

∫

RdN

ϕ (vi) df
⊗N(V )

=

∫

Rd

ϕ(v) (dg − df)(v),

we deduce by minimizing in ϕ that

W1(f, g) ≤
∫

RdN

W1

(
g, µNV

)
df⊗N (V ),

and therefore

WN
W1

(f) ≤ ZN (f).

As a consequence, when f ∈ P (Rd) has compact support and d ≥ 3 we obtain
from this line of argument the stronger estimate

WN
W1

(f) ≤ C

N1/d
.

It is likely that one could obtain similar estimates to (4.11) by tracking the formula
for the constants in the results of [25] and combining them with moment bounds
and some interpolation.

On the other hand, observe that our estimate (4.11) is almost optimal in the
sense that we can not expect a better convergence rate than (4.11) with η = 0, as
it is stressed in [63, Appendix].

Proof of Lemma 4.2. We split the proof into two steps.

Step 1. Let us prove (4.9) (note that (4.10) is then readily implied by (4.9)).
Let us fix f ∈ P2(R

d). We write in Fourier transform

(
µ̂NV − f̂

)
(ξ) =

1

N

N∑

j=1

(
e−i vj ·ξ − f̂(ξ)

)
,

which implies

WN
‖·‖2

Ḣ−s
(f) =

∫

RNd



∫

Rd

∣∣∣µ̂NV − f̂
∣∣∣
2

|ξ|2 s dξ


 df⊗N(V )

=
1

N2

N∑

j1,j2=1

∫

R(N+1)d

(
e−i vj1 ·ξ − f̂(ξ)

) (
e−i vj2 ·ξ − f̂(ξ)

)

|ξ|2 s dξ df⊗N (V ).

Observe then that
∫

Rd

(e−i vj ·ξ − f̂(ξ)) df(vj) = 0, j = 1, . . . , d,

which implies that

∫

R(N+1)d

(
e−i vj1 ·ξ − f̂(ξ)

) (
e−i vj2 ·ξ − f̂(ξ)

)

|ξ|2 s dξ df⊗N (V ) = 0
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as soon as j1 6= j2, and∫

Rd

∣∣∣e−i v·ξ − f̂(ξ)
∣∣∣
2
df(v) =

∫

Rd

[
1− e−i v·ξ f̂(ξ)− ei v·ξ f̂(ξ) + |f̂(ξ)|2

]
df(v)

= 1− |f̂(ξ)|2.
We deduce that

WN
‖·‖2

Ḣ−s
(f) =

1

N2

N∑

j=1

∫

R(N+1)d

∣∣∣e−i vj ·ξ − f̂(ξ)
∣∣∣
2

|ξ|2 s dξ f⊗N(dV )

=
1

N

∫

R2 d

∣∣∣e−i v·ξ − f̂(ξ)
∣∣∣
2

|ξ|2 s dξ f(dv)

=
1

N

∫

Rd

(1− |f̂(ξ)|2)
|ξ|2 s dξ.

Finally, denoting

M2 :=

∫

Rd

〈v〉2 df(v)

we have

f̂(ξ) = 1 + i 〈f, v〉 · ξ +O(M2 |ξ|2),
and therefore

|f̂(ξ)|2 =
(
1 + i 〈f, v〉 · ξ +O(M2 |ξ|2)

) (
1− i 〈f, v〉 · ξ +O(M2 |ξ|2)

)

= 1 +O
(
M2 |ξ|2

)
,

which implies

WN
‖·‖2

Ḣ−s
(f) =

1

N

(∫

|ξ|≤1

(1− |f̂(ξ)|2)
|ξ|2 s dξ +

∫

|ξ|≥1

(1− |f̂(ξ)|2)
|ξ|2 s dξ

)

=
1

N

(∫

|ξ|≤1

M2

|ξ|2 (s−1)
dξ +

∫

|ξ|≥1

1

|ξ|2 s dξ
)

≤ C

N

from which (4.9) follows.

Step 2. Let us now prove (4.11).
We use first (4.5) in order to get

WN
W1

(f) =

∫

RdN

[
µNV − f

]∗
1
df⊗N(V )

≤ C

∫

RdN

(
Mk+1(f) +Mk+1

(
µNV
)) d

d+2ks

(∥∥µNV − f
∥∥2
Ḣ−s

) k
d+2ks

df⊗N (V ).

We then perform a Hölder inequality with exponents

p =
d+ 2ks

k
, p′ =

d+ 2ks

d+ k(2s − 1)

and get

WN
W1

(f) ≤ C

(∫

RdN

(
Mk+1(f) +Mk+1

(
µNV
)) d

d+k(2s−1) df⊗N(V )

) d+k(2s−1)
d+2ks

×
(∫

RdN

∥∥µNV − f
∥∥2
Ḣ−s df

⊗N (V )

) k
d+2ks

.



KAC’S PROGRAM IN KINETIC THEORY 41

Since
∫

RdN

(
Mk+1(f) +Mk+1

(
µNV
)) d

d+k(2s−1) df⊗N(V )

≤
∫

RdN

(
Mk+1(f) +Mk+1

(
µNV
))
df⊗N (V )

≤Mk+1(f) +

∫

RdN

Mk+1

(
µNV
)
df⊗N (V )

≤Mk+1(f) +
1

N

N∑

i=1

∫

RdN

〈vi〉k+1 df⊗N (V ) ≤ 2Mk+1(f)

we deduce by using (4.9) that

WN
W1

(f) ≤ C(f, k)

N
k

d+2ks

where the constant C(f, k) depends on the (k + 1)-th moment of f .
This allows to conclude the proof of (4.11) since

• if d = 1 we can take s = 1 in (4.5) and then k large enough so that k/(d+ 2ks) =
2 + η with some η > 0 as small as wanted,

• if d ≥ 2 we take s close to d/2 and then k large enough so that k/(d+2ks) = 1/d+η
with some η > 0 as small as wanted.

Then the estimate (4.12) follows from (4.11) with the help of (4.1) and a Hölder in-
equality.

�

4.3. Chaotic initial data with prescribed energy and momentum. In many as-
pects, the simplest N -particle initial data is the sequence of tensorized initial data f⊗N ,
N ≥ 1, where f is a 1-particle distribution. This means perfect chaoticity. On the other
hand it has a drawback: since in all applications we shall use pointwise bounds on the
energy of the N -particle system (and also sometimes pointwise higher moment bound as in
(A1)-(ii)), this implies for this kind of initial data that f has to be compactly supported.
There is another “natural” choice of initial data, by restricting to one of the subspaces left
invariant by the dynamics:

SN =

{
V ∈ R

dN s. t.
1

N

N∑

i=1

|vi|2 = E , 1

N

N∑

i=1

vi = M
}
.

Without loss of generality we shall often set M = 0 and E = 1 in this formula in the
sequel.

The drawback is now that an initial data on SN cannot be perfectly tensorized, and
some additional chaoticity error is paid at initial time. However an advantage of this
viewpoint is that it is simpler to study the asymptotic behavior of both the N -particle
and the limiting mean-field equation in this setting. Moreover it has historical value since
this approach was introduced by Kac (see the discussion in [42, Section 5 “Distributions
having Boltzmann’s property”]), although in his case there was only one conservation

law, namely the energy, and therefore SN was replaced by S
N−1(

√
N). We shall present

some results on the construction of chaotic initial data on SN , whose proofs are mostly
extensions of the precise statements and estimates recently established in [12] on this issue
in the setting of Kac on S

N−1. We refer to the work in progress [16] where an extensive
study and precise computations of rates shall be performed.

Lemma 4.4. Consider an initial data

f0 ∈ P4

(
R
d
)
∩ L∞

(
R
d
)
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which fulfills some moment conditions

MmG1
(f) = 〈f,mG1〉 < +∞, MmG3

(f) = 〈f,mG3〉 < +∞

for some positive radially symmetric increasing weight functions mG1 and mG3, and let us
denote ∫

Rd

|v|2 f0(dv) = E ∈ (0,∞).

Let us define a non-decreasing sequence (αN )N≥1 as follows:

• If f0 has compact support

(4.14) Suppf0 ⊂
{
v ∈ R

d , |v| ≤ A
}

for some A > 0, then

∀N ≥ 1, αN := mG3(A).

• If f0 has not compact support, then (αN )N≥1 can be chosen as any non-decreasing
sequence such that

lim
N→∞

αN = +∞

(note in particular that this sequence can grow as slow as wanted).

Then there exists

fN0 ∈ P (RdN ), N ≥ 1,

such that

(i) The sequence (fN0 )N≥1 is f0-chaotic.
(ii) Its support satisfies

Supp fN0 ⊂ SN .
(iii) It satisfies the following integral moment bound based on m1:

∀N ≥ 0,
〈
fN0 ,M

N
mG1

〉
≤ C 〈f0,mG1〉

where the constant C > 0 depends on MNL
0,m1

.

(iv) It satisfies the following “support moment bound”:

Supp fN0 ⊂
{
V ∈ R

dN ; MN
mG3

(V ) ≤ αN

}
.

(v) It satisfies a uniform relative entropy bound

1

N
H(fN0 |γN ) ≤ C,

for some constant C > 0 (see (1.7) for notations).
(vi) If furthermore the Fisher information associated to f0 is bounded, that is I(f0) <∞

(see (1.8) for notations), then fN0 can be built in such a way that it satisfies a
uniform relative Fisher information bound

I(fN0 |γN ) := 1

N

∫

SN

∣∣∣∣∇ log
dfN0
dγN

∣∣∣∣
2

fN0 ≤ C,

for some constant C > 0, where the gradient in this formula stands for the Rie-
mannian gradient on the manifold SN .
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Proof of Lemma 4.4. For the sake of simplicity, we assume with no loss of generality that
the energy E = 1 and that f0 is centered.

We aim at defining our initial data fN0 by conditioning the tensorized initial data f⊗N0

to SN :

fN0 (V ) =
[
f⊗N0

]
SN

:=



∏N
j=1 f0(vj)

FN

(√
N
)



∣∣∣∣∣
SN

with

FN (r) :=

∫

SdN−1(r)∩(
∑N

i=1 vi=0)

N∏

j=1

f0(vj) dω.

Such a construction obviously satisfies (ii).
It is proved similarly as in [12] (see for instance Theorem 9 in this reference) that this

conditioned measure is well-defined, and that it is f0-chaotic, which proves (i).

Remark 4.5. Among many interesting intermediate steps and other results, it is also proved
in [12] the following estimate: assume for simplicity that d = 1 and that f0 has energy 1,
then the function

F̄N (r) :=
FN (r)

γN (r)

is asymptotically divergent except for r =
√
N , for which

F̄N
(√

N
)
∼N→+∞

√
2

Σ

with

Σ =

√∫

R

(v2 − 1)2 df(v).

(In fact this result was sketched by Kac [42] but the proof is made more precise in [12].

This shows in particular that the sequence of chaotic initial data f⊗N0 , N ≥ 1, as
considered many times in the sequel, asymptotically concentrates on the energy sphere
with the energy of f0. This manifestation of the central limit theorem explains why
the construction of Kac (to condition to a given energy sphere) is very natural. It also
enlightens why it is possible to expect the kind of uniform in time propagation of chaos
results that we shall prove in the next sections for such chaotic initial data.

Point (iii) is just a consequence of the chaoticity with the test function MN
mG1

(actually

an easy truncation and passage to the limit proceedure is needed in full rigor).
Concerning point (iv), first if f0 is compactly supported (4.14) we deduce that

Supp fN0 ⊂
{
V ∈ R

dN , MN
mG3

(V ) ≤ mG3(A)
}

and (iv) holds.
In the non compactly supported case, for any increasing sequence (Ak)k≥1 of positive

reals (with A0 big enough for the following to be well-defined) we define

f0,k :=
f0 1|v|≤Ak

f0 ({|v| ≤ Ak})
.

Using the previous we know that

fN0,k :=
[
f⊗N0,k

]

(conditioning to the sphere) is f0,k-chaotic. Conditions (ii) and (iii) will therefore be
immediately satisfied.
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We now want to choose a sequence kN → ∞ such that (iv) is satisfied and at the same
proving chaoticity towards f0. It is clear that

Supp fN0,k ⊂
{
V ∈ R

dN ; MN
m3

(V ) ≤ m3(Ak)
}
.

For any given sequence (αN ) which tends to infinity, we define kN in such a way that
m3(AkN ) ≤ αN so that kN → ∞ when N → ∞. The chaos property is equivalent to the
weak convergence of the 2-marginal, which can be expressed in Wasserstein distance for
instance:

W1

((
fN0,k
)
2
, f⊗2

0

)
≤W1

((
fN0,k
)
2
, f⊗2

0,k

)
+W1

(
f⊗2
0,k , f

⊗2
0

)
.

The last term of the RHS converges to zero only depending on k → 0, while the first term
in the RHS converges to zero for fixed k as N → 0 from the previous part of the proof.
Therefore, maybe at the price of a slower increasing sequence kN we can have both the
support moment condition (iv) and

W1

((
fN0,kN

)
2
, f⊗2

0

)
N→0−−−→ 0

which shows the chaoticity and concludes the proof.

For the proof of (v) and (vi) we refer to [16]. �

Remarks 4.6. (1) We note that if one only wants to get rid of the compact support
requirement in f0 (used for deriving the support bounds on fN0 on the energy and
mG3), and not necessarily to prescribe a given energy, another strategy could have
been to simply perform the cutoff in the end of the previous proof. In principle
it could allow to get better information on the rate of convergence. However a
drawback of this approach is that, in the absence of conditioning to an energy
sphere, the bound on the support of the energy of fN0 shall grow with N . In our
applications it induces a growth in N of the moment bounds that we prove along
time on the N -particle system. This growth should be matched by the decay of the
scheme and a precise optimized balance could be searched for. We do not pursue
this line of research.

(2) Observe that the process of conditioning on the energy sphere is obviously com-
patible with the equilibrium states in the following sense: if one denotes by γ a
centered gaussian equilibrium of the limiting equation with energy normalized to
1, then

γN (V ) :=
[
γ⊗N

]
SN

is the uniform measure on SN , i.e. an equilibrium of the N -particle system.

Let us also state a refinement of the previous lemma which is needed for the applications.

Lemma 4.7. We use the same setting and assumptions as in Lemma 4.4. We consider
some function Θa(x) such that

∀ a > 0, Θa(x)
N→+∞−−−−−→ 0.

Then the sequence (fN0 ), N ≥ 1 of Lemma 4.4 satisfies the more precise chaoticity
estimate:

(4.15) WW1

(
πNP
(
fN0
)
, f0
)
=

∫

RdN

W1

(
µNV , f0

)
dfN0 (V )

N→+∞−−−−−→ 0.

as well as

(4.16) ΘaN
(
WW1

(
πNP
(
fN0
)
, f0
))
)
N→+∞−−−−−→ 0.

with
aN = max {αN ; 〈f0,mG3〉} .
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Remarks 4.8. (1) Using Lemma 4.1 it would be immediate to extend the previous
statement to the other weak measure distances we have discussed so far.

(2) Some polynomial rates could be obtained by refining the techniques from [12], see
[16].

Proof of Lemma 4.7. Let us prove that (4.15) holds. First, thanks to [66, Proposition 2.2]
and the fact that the sequence fN0 constructed in Lemma 4.4 is f0-chaotic, we deduce that

πNP f
N
0 ⇀ δf0 in P

(
P
(
R
d
))

(which means convergence when testing against functions in C(P (Rd))).
Next, thanks to [72, Theorem 7.12], (4.15) boils down to prove the tightness estimate

lim
R→∞

sup
N∈N∗

∫

W1(ρ,f0)≥R
W1 (ρ, f0) dπ

N
P f

N
0 (ρ) = 0.(4.17)

Let us prove that it follows easily from the following bound

sup
N∈N∗

∫

EN

(
W1

(
µNV , f0

))2
dfN0 (V ) <∞.(4.18)

Indeed (4.18) implies that uniformly in N ≥ 1
∫

W1(ρ,f0)≥R
W1 (ρ, f0) dπ

N
P f

N
0 (ρ) =

∫

V ∈EN s.t. W1(µNV ,f0)≥R
W1

(
µN0 , f0

)
dfN0 (V )

≤ 1

R

∫

EN

(
W1

(
µNV , f0

))2
dfN0 (V ) ≤ C

R

R→∞−−−−→ 0

which concludes the proof of (4.17).
In order to show (4.18), we infer that from [72, Theorem 7.10]

(
W1

(
µNV , f0

))2 ≤
∥∥µNV − f0

∥∥2
M1

1
≤ 2

∥∥µNV
∥∥2
M1

1
+ 2 ‖f0‖2M1

1

≤ 2
(
MN

1 (V )
)2

+ 2 ‖f0‖2M1
1
≤ 2MN

2 (V ) + 2 ‖f0‖2M1
1
,

which implies ∫

EN

(
W1

(
µNV , f0

))2
dfN0 (V ) ≤ 2 ‖f0‖2M1

1
+ 2

〈
fN0 ,M

N
2

〉
,

which, together with (ii) in Lemma 4.4, ends the proof of (4.18) and then of (4.15).
Then it is an easy diagonal process exercise to build a sequence (αN ) such that (4.16)

holds by using the assumption on the function Θa together with (4.15). �

5. True Maxwell molecules

5.1. The model. Let us consider E = R
d, d ≥ 2, and a N -particle system undergoing

space homogeneous random Boltzmann type collisions according to a collision kernel

B = Γ(z) b(cos θ)

(see Subsection 1.1). More precisely, given a pre-collisional system of velocity variables

V = (v1, . . . , vN ) ∈ EN = (Rd)N ,

the stochastic process is:

(i) for any i′ 6= j′, draw a random time TΓ(|vi′−vj′ |) of collision accordingly to an

exponential law of parameter Γ(|vi′ − vj′ |), and then choose the collision time T1
and the colliding pair (vi, vj) (which is a.s. well-defined) in such a way that

T1 = TΓ(|vi−vj |) := min
1≤i′ 6=j′≤N

TΓ(|vi′−vj′ |);
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(ii) then draw σ ∈ Sd−1 according to the law b(cos θij), where

cos θij = σ · (vj − vi)/|vj − vi|;
(iii) the new state after collision at time T1 becomes

(5.1) V ∗
ij = (v1, . . . , v

∗
i , . . . , v

∗
j , . . . , vN ),

where only velocities labelled i and j have changed, according to the rotation

(5.2) v∗i =
vi + vj

2
+

|vi − vj |σ
2

, v∗j =
vi + vj

2
− |vi − vj |σ

2
.

The associated Markov process

(Vt)t≥0 on (Rd)N

is then built by iterating the above construction.
After rescaling time t → t/N in order that the number of interactions is of order O(1)

on finite time interval (see [65]) we denote by fNt the law of Vt and SNt the associated
semigroup. We recall the notation GN and TNt respectively for the dual generator and
dual semigroup, as in the previous abstract construction.

The so-called Master equation on the law fNt is given in dual form by

(5.3) ∂t
〈
fNt , ϕ

〉
=
〈
fNt , G

Nϕ
〉

with

(5.4)
(
GNϕ

)
(V ) =

1

N

∑

1≤i<j≤N
Γ (|vi − vj |)

∫

Sd−1

b(cos θij)
[
ϕ∗
ij − ϕ

]
dσ

where ϕ∗
ij = ϕ

(
V ∗
ij

)
and ϕ = ϕ(V ) ∈ Cb

(
R
Nd
)
.

This collision process is invariant under velocities permutations and satisfies the micro-
scopic conservations of momentum and energy at any collision time

N∑

j=1

v∗j =
N∑

j=1

vj and |V ∗|2 =
N∑

j=1

|v∗j |2 =
N∑

j=1

|vj |2 = |V |2.

As a consequence, for any symmetric initial law fN0 ∈ Psym(R
Nd) the law fNt at later times

is also a symmetric probability, and it conserves momentum and energy:

∀α = 1, . . . , d,

∫

RdN




N∑

j=1

vj,α


 fNt (dV ) =

∫

RdN




N∑

j=1

vj,α


 fN0 (dV ),

where (vj,α)1≤α≤d denote the components of vj ∈ R
d, and

(5.5) ∀φ : R+ → R+,

∫

RdN

φ(|V |2) fNt (dV ) =

∫

RdN

φ(|V |2) fN0 (dV )

(equality between possibly infinite non-negative quantities).

The (expected) limiting nonlinear homogeneous Boltzmann equation is defined by (1.1),
(1.2), (1.3). The equation generates a nonlinear semigroup

SNLt (f0) := ft for any f0 ∈ P2

(
R
d
)

where P2(R
d) denotes the space of probabilities with bounded second moment.

Concerning the Cauchy theory for the limiting Boltzmann equation:

• In the case (GMM) (Maxwell molecules with angular cutoff), see equation (1.6)
in Subsection 1.1, we refer to [67];
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• In the case (tMM) (true Mawell molecules without angular cutoff), see equa-
tion (1.5) in Subsection 1.1, we refer to [69];

• In the case (HS) of hard spheres, see equation (1.4) in Subsection 1.1, we refer to
[59] (L1 theory) and [29, 32, 48] (P2(R

d) theory).

For these solutions, one has the conservation of momentum and energy

∀ t ≥ 0,

∫

Rd

v ft(dv) =

∫

Rd

v f0(dv),

∫

Rd

|v|2 ft(dv) =
∫

Rd

|v|2 f0(dv).

Observe that the change of variable

σ ∈ S
d−1 7→ −σ ∈ S

d−1

maps the domain

θ ∈ [−π, π/2] ∩ [π/2, π] in θ ∈ [−π/2, π/2].
Therefore without restriction we can consider, for the limiting equation as well as the
N -particle system, kernel function b such that Supp b ⊂ [0, 1]. We still denote by b the
symmetrized version of b by a slight abuse of notation.

In this section we aim at considering the case of the Maxwell molecules kernel. We shall
indeed make the following general assumption:

(5.6)





Γ ≡ 1, b ∈ L∞
loc([0, 1))

∀α > 0, Cα(b) :=

∫

Sd−1

b(cos θ) (1− cos θ)
1
4
+α dσ <∞.

Let us show that Maxwell molecules model (1.5) enters this general framework. Indeed
for any positive real function ψ and any given vector u ∈ R

d we have
∫

Sd−1

ψ(û · σ) dσ = |Sd−2|
∫ π

0
ψ(cos θ) sind−2 θ dθ.

Therefore the model (1.5) satisfies (in dimension d = 3)

b(z) ∼ K (1− z)−5/4 as z → 1,

which hence fulfills (5.6). This assumption also trivially includes the Grad’s cutoff Maxwell
molecules model (1.6).

5.2. Statement of the results. Our main propagation of chaos estimate result for this
model then states as follows:

Theorem 5.1 (Maxwell molecules detailed chaos estimates). Let us consider a 1-particle
initial distribution f0 ∈ P (Rd). and a hierarchy of N -particle distributions

fNt = SNt

(
f⊗N0

)

as well the 1-particle of the limiting semigroup

ft = SNLt (f0)

where we assume that the collision satisfies (5.6).
Then for any η > 0, for any ℓ ∈ N

∗ and for any

ϕ = ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, ϕi ∈ F , i = 1, . . . , ℓ,

where F shall be specified below, we have:

(i) Cases (GMM) and (tMM): Consider a tensorized initial datum fN0 = f⊗N0 for
the N -particle system and assume that f0 has compact support, and take

F :=

{
ϕ : Rd → R; ‖ϕ‖F :=

∫

Rd

(1 + |ξ|4) |ϕ̂(ξ)| dξ <∞
}
.



48 S. MISCHLER AND C. MOUHOT

Then we have

∀N ≥ 2ℓ, sup
t≥0

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣(5.7)

≤ Cη

[
ℓ2

‖ϕ‖∞
N

+
ℓ2

N1−η ‖ϕ‖F2⊗(L∞)ℓ−2 + ℓ ‖ϕ‖W 1,∞⊗(L∞)ℓ−1 WN
W2

(f0)

]

for some constant Cη > 0 (possibly blowing up as η → 0) depending only η, on the
collision kernel, and on the size of the support and some moments on f0.

We deduce the following rate of convergence as N goes infinity by using (4.12)-
(4.13):

sup
t≥0

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣ ≤

C ′
η ℓ

2

Nκ(d,η)
‖ϕ‖F⊗ℓ

with

κ(d, η) :=





1
4 − η if d ≤ 2,

1
6 − η if d = 3,

1
d+4 if d ≥ 4.

The constant C ′
η > 0 may blow up when η → 0, and depend on b and on f0 through

the size of its support and its moments.
(ii) Case (GMM) with optimal rate for finite time: On a finite time interval [0, T ],

the following variant is available: consider tensorized initial data fN0 = f⊗N0 for
the N -particle system and assume that f0 has compact support, and take F = Hs

with s > d/2 high enough. Then we have

sup
0≤t≤T

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣

≤ C

[
ℓ2

‖ϕ‖∞
N

+ CNT,4
C∞
η,∞

N1−η ℓ
2 ‖ϕ‖F2⊗(L∞)ℓ−2 + ℓ ‖ϕ‖Hs⊗(L∞)ℓ−1 WN

H−s(f0)

]
.

By using (4.9) this proves

sup
t∈[0,T ]

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣ ≤ ℓ2

Cη,T

N1/2
‖ϕ‖F⊗ℓ

with F = Hs, with the optimal rate of the law of large number.
(iii) Cases (GMM) and (tMM) conditoned to the sphere: Finally consider F as in

(i), some initial data

f0 ∈ P4

(
R
d
)
∩ L∞

(
R
d
)

and the N -particle initial data the sequence (fN0 )N≥1 constructed in Lemma 4.4
and 4.7 by conditioning to the energy sphere. Then we have

sup
t≥0

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣

Cη

[
ℓ2

‖ϕ‖∞
N

+
ℓ2

N1−η ‖ϕ‖F2⊗(L∞)ℓ−2 + ℓ ‖ϕ‖W 1,∞⊗(L∞)ℓ−1 WN
W2

(
πNP f

N
0 , δf0

)
]

which goes to zero as N goes infinity thanks to Lemma 4.7, and hence proves the
propagation of chaos, uniformly in time.
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Remark 5.2. Observe that by using the point (iii) below and taking t → ∞ we deduce
that

γNℓ
N→∞−−−−→ γ⊗ℓ

for any fixed ℓ ≥ 1, where γNℓ is the ℓ-marginal of the uniform measure on the energy

sphere γN , and γ is the gaussian equilibrium with energy E . However in our proof we
need to build a sequence of initial data fN0 which is supported on SN and chaotic. And
the only proof we know makes use of the fact that γN is γ-chaotic. Nevertheless, this
line of argument is not really based on an explicit computation nor on variational or
entropy optimization characterization of the equilibrium. It only relies on the action of
the N -particle and limiting semigroups. As a consequence, it can be applied to other
situations where neither the steady states for the N -particle system nor the steady state
for the mean-field equation are known explicitely and where a direct computation cannot
be made (which is typical of open systems). We refer to the work in progress [57] for a
application to some dissipative Boltzmann equation related to granular gases.

We now state the key Wasserstein version of the propagation of chaos estimate, which is
valid for any number of marginals, although with a possibly worse (but still constructive)
rate. Combined with previous results on the relaxation of the N -particle system we also
deduce some estimate of relaxation to equilibrium independent of N and, again, for any
number of marginals.

Theorem 5.3 (Maxwell molecules Wasserstein chaos). Under the same setting as in The-
orem 5.1, either

(a) with f0 compactly supported and fN0 = f⊗N0 or
(b) with f0 ∈ P4 ∩ L∞ and fN0 constructed by Lemma 4.4,

we have

(5.8) ∀N ≥ 1, ∀ 1 ≤ ℓ ≤ N, sup
t≥0

W1

(
Πℓf

N
t ,
(
f⊗ℓt

))

ℓ
≤ α(N)

for some α(N) → 0 as N → ∞ (in the case (a) one has moreover explicit power law rate
estimates on α).

Then in the case (b) we have

(5.9) ∀N ≥ 1, ∀ 1 ≤ ℓ ≤ N, ∀ t ≥ 0,
W1

(
Πℓf

N
t ,Πℓ

(
γN
))

ℓ
≤ β(t)

for some β(t) → 0 as t → ∞, where γ is the gaussian equilibrium with energy E and γN

is the uniform probability measure on SN (E).
In order to prove Theorem 5.1, we have to establish the assumptions (A1)-(A2)-(A3)-

(A4)-(A5) of Theorem 3.1 with T = ∞. The application of the latter theorem then
exactly yields Theorem 5.1 by following carefully each constant computed below. Then
the proof of Theorem 5.3 will be done in Subsection 5.9: it is deduced from Theorem 5.1
by using Lemma 4.1 together a result from [37].

5.3. Proof of (A1). When the collision kernel B is bounded the operator GN is a linear
bounded operator on C(BR) with BR := {V ∈ R

dN ; |V | ≤ R} for any R ∈ (0,∞) with an
operator norm independent of R. As a consequence, GN is also well defined and bounded
on

C0
−k,0(R

dN ) :=

{
ϕ ∈ C(RdN ) s. t.

ϕ(V )

|V |k → 0 as |V | → ∞
}

endowed with the norm

‖ϕ‖L∞
−k

:= sup
V

|ϕ(V )| 〈V 〉−k
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for any k ∈ R. It is also easy (and classical) to verify that GN is dissipative in the sense
that

∀ϕ ∈ C0
−k,0

(
R
dN
)
, ∀λ > 0

∥∥(λ−GN
)
φ
∥∥
L∞
−k

≤ λ ‖φ‖L∞
−k
.

From the Hille-Yosida theory we deduce that GN generates a Markov type semigroup TNt
on C0

−k,0(R
dN ) and we may also define SNt by duality as a semigroup on Pk(R

dN ). The

nonlinear semigroup SNLt is also well defined on Pk(R
d), see for instance [69, 32, 29, 48].

For the true Maxwell molecules model, the operator GN is not bounded anymore and
some additional explanations are needed. The fastest way to argue is just to say this in
that case B can be approximated by a sequence of bounded collision kernels

Bε := bε(cos θ) with bε ∈ L∞ and bε ր b.

We may then define the associated generator GN,ε, the associated semigroups TN,ε on

continuous functions and SN,εt on probabilities and the nonlinear semigroup SNL,εt on
probabilities. We first write estimate (5.7) for any fixes ε > 0. Then since (1) the right-
hand side term in (5.7) does not depend on ε > 0 (as a consequence of the estimates
established in the proof below) and (2) SNL,ε(f0) ⇀ SNL(f0) weakly in P (Rd) and (3)
SN,ε(fN0 )⇀ fNt weakly in P (RNd), we can conclude that (5.7) holds for the true Maxwell
molecules model by letting ε go to 0.

Possible other direct arguments (without using approximations) could be (1) to establish
and use Wasserstein W1 stability of the many-particle equation, or (2) use the following

core C := W 1,∞
k+2 and prove that ϕ ∈ W 1,∞

k+2 implies GNϕ ∈ Ck,0 (this follows from an easy

decomposition between singular and non-singular angles in the formula for GN ).

Hence the semigroups TNt and

SNt =
(
TNt
)∗

= TNt

are well defined on C0
−k,0(R

dN ). Moreover since for ϕ ∈ L2(SN ) we have

〈
GNϕ,ϕ

〉
L2(SN )

= − 1

N

N∑

i,j=1

∫

SN

∫

Sd−1

b(cos θij)
[
ϕ∗
ij − ϕ

]2
dσ γN (dV ) ≤ 0

it is easily seen by arguing similarly as above that they are C0-semigroups of contractions
on this space L2(SN ).

Then it remains to prove bounds on the polynomial moments of the N -particle system.
We shall prove the following more general lemma:

Lemma 5.4. Consider the collision kernel

B = |v − v∗|γ b(cos θ) with γ = 0 or 1

and b ≥ 0 such that ∫ 1

0
b(z) (1 − z)2 dz < +∞.

This covers the three cases (HS), (tMM) and (GMM).
Assume that the initial datum of the N -particle system satisfies:

Supp fN0 ⊂
{
V ∈ R

Nd; MN
2 (V ) ≤ E0

}
where MN

2 =
1

N

N∑

j=1

|vj |2

and
〈
fN0 ,M

N
k

〉
≤ C0,k <∞ where MN

k =
1

N

N∑

j=1

|vj |k, k ≥ 2.
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Then we have
sup
t≥0

〈
fNt ,M

N
k

〉
≤ max {C0,k; āk}

where āk ∈ (0,∞) depends on k and E0.
Proof of Lemma 5.4. By using (5.5) with the function of the energy

φ(z) := 1z>N E0

and the assumption on fN0 we deduce

(5.10) ∀ t ≥ 0, Supp fNt ⊂
{
V ∈ R

Nd; MN
2 (V ) ≤ E0

}
.

Next, we write the differential equality on the k-th moment:

d

dt

〈
fNt ,

1

N

N∑

j=1

|vj |k
〉

=
1

N2

N∑

j1 6=j2

〈
fNt , |vj1 − vj2 |γ K (vj1 , vj2)

〉
,

with

K (vj1 , vj2) =
1

2

∫

Sd−1

b(θj1j2)
[
|v∗j1 |

k + |v∗j2 |
k − |vj1 |k − |vj2 |k

]
dσ.

We then apply the so-called Povner’s Lemma proved in [59, Lemma 2.2] (valid for
singular collision kernel as in our case) which implies

K(vj1 , vj2) ≤ C1

(
|vj1 |k−1 |vj2 |+ |vj1 | |vj2 |k−1

)
− C2

(
|vj1 |k + |vj2 |k

)

for some constants C1, C2 ∈ (0,∞) depending only on k and b.
By using the inequalities |vj1 − vj2 | ≥ |vj1 | − |vj2 | and |vj1 − vj2 | ≥ |vj2 | − |vj1 | in order

to estimate the last term when γ = 1, we then deduce

|vj1 − vj2 |γ K(vj1 , vj2) ≤ C3 [(1 + |vj1 |k+γ−1) (1 + |vj2 |2)
+ (1 + |vj1 |2) (1 + |vj2 |k+γ−1)]− C2 (|vj1 |k+γ + |vj2 |k+γ),

for a constant C3 depending on C1 and C2.
Using (symmetry hypothesis) that

∀ k ≥ 0,
〈
fNt , |v1|k

〉
=
〈
fNt ,M

N
k

〉
,

and (5.10) we get

d

dt

〈
fNt , |v1|k

〉
≤ 2C3

〈
fNt , (1 +MN

k+γ−1) (1 +MN
2 )
〉
− 2C2

〈
fNt ,Mk+γ

〉

≤ 2C3 (1 + E)
(
1 +

〈
fNt , |v1|k+γ−1

〉)
− 2C2

〈
fNt , |v1|k+γ

〉
.

Using finally Hölder’s inequality
〈
fN1 , |v|k−γ+1

〉
≤
〈
fN1 , |v|k+γ

〉(k−γ+1)/(k+γ)

we conclude that y(t) = 〈fNt , |v1|k〉 satisfies a differential inequality of the following kind

y′ ≤ −K1 y
θ1 +K2 y

θ2 +K3

with θ1 ≥ 1 and θ2 < θ1, and for some constants K1, K2, K3 > 0, which concludes the
proof of the lemma. �

Lemma 5.4 proves (A1)-(i) with

mG1(v) := 〈v〉6.
Moreover we do not need (A1)-(ii) in the present case since we may take mG3 ≡ 0.
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5.4. Proof of (A2). Let us define

PG1 :=
{
f ∈ P (Rd) ; 〈f,me〉 ≤ E and 〈f,mG1〉 < +∞

}

endowed with the distance induced by | · |2, as well as
BPG1,a := {f ∈ PG1 ; 〈f,mG1〉 ≤ a} .

Let us recall the following result proved in [67, 33, 14, 69]. We briefly outline its proof
for the the sake of completeness and most importantly because we shall need to modify it
in order to adapt it to our purpose in the next sections.

Lemma 5.5. For any f0, g0 ∈ P2(R
d), the associated solutions ft and gt to the Boltzmann

equation for Maxwell molecules satisfy

(5.11) sup
t≥0

|ft − gt|2 ≤ |f0 − g0|2 .

Moreover, there exists ā ∈ (0,∞) such that

∀ a ∈ [ā,∞), SNLt : BPG1,a → BPG1,a.

Proof of Lemma 5.5. We only prove (5.11) and we refer to the above quoted references for
the moment estimates in the statement of the Lemma (which is nothing but a variation
on the arguments presented in the proof of Lemma 5.4).

We recall Bobylev’s identity for maxwellian collision kernel (cf. [6])

F
(
Q+(f, g)

)
(ξ) = Q̂+(F,G)(ξ) =:

1

2

∫

Sd−1

b
(
σ · ξ̂

) [
F+G− + F−G+

]
dσ,

with

F = f̂ , G = ĝ, F± = F
(
ξ±
)
, G± = G

(
ξ±
)
, ξ̂ =

ξ

|ξ|
and

ξ+ =
1

2
(ξ + |ξ|σ), ξ− =

1

2
(ξ − |ξ|σ).

With the shorthand notation D = ĝ − f̂ , S = ĝ + f̂ , the following equation holds

(5.12) ∂tD = Q̂(S,D) =

∫

Sd−1

b
(
σ · ξ̂

) [D+ S−

2
+
D− S+

2
−D

]
dσ.

We perform the following cutoff decomposition on the angular collision kernel:

b = bK + bcK with

∫

Sd−1

bK

(
σ · ξ̂

)
dσ = K, bK = b1|θ|≥δ(K)

for some well-chosen δ(K). As in [69] observe that

RK(ξ) =

∫

Sd−1

bcK

(
σ · ξ̂

) [D+ S−

2
+
D− S+

2
−D

]
dσ

satisfies

∀ ξ ∈ R
d, |RK(ξ)| ≤ rk |ξ|2 where rk

K→∞−−−−→ 0

and rK depends on moments of order 2 on d and s (hence bounded by the energy).
Using that ‖S‖∞ ≤ 2, we deduce in distributional sense

d

dt

|D|
|ξ|2 +K

|D|
|ξ|2 ≤

(
sup
ξ∈Rd

|D|
|ξ|2

) (
sup
ξ∈Rd

∫

Sd−1

bK

(
σ · ξ̂

) (∣∣∣ξ̂+
∣∣∣
2
+
∣∣∣ξ̂−
∣∣∣
2
)
dσ

)
+ rK

with ∣∣∣ξ̂+
∣∣∣ = 1√

2

(
1 + σ · ξ̂

)1/2
,

∣∣∣ξ̂−
∣∣∣ = 1√

2

(
1− σ · ξ̂

)1/2
.
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By using ∣∣∣ξ̂+
∣∣∣
2
+
∣∣∣ξ̂−
∣∣∣
2
= 1,

we deduce
d

dt

|D|
|ξ|2 +K

|D|
|ξ|2 ≤ K

(
sup
ξ∈Rd

|D|
|ξ|2

)
+ rK

which implies

sup
ξ∈Rd

|Dt(ξ)|
|ξ|2 ≤ sup

ξ∈Rd

|D0(ξ)|
|ξ|2 + C

rK
K

for any value of the cutoff parameter K. Therefore by relaxing K → ∞, we deduce
(5.11). �

Hence we deduce that SNLt ∈ C0,1(PG1 , PG1) and (A2)-(i) is proved.

Lemma 5.6. For any f, g ∈ P (Rd) with finite second moment
∫

Rd

f |v|2 dv <∞,

∫

Rd

g |v|2 dv <∞

and same momentum ∫

Rd

f vi dv =

∫

Rd

g vi dv, i = 1, . . . , d,

we have

(5.13) |Q(f, f)|2 ≤ C

(∫

Rd

(
1 + |v|2

)
df(v)

)2

and

(5.14) |Q(f + g, f − g)|2 ≤ C

(∫

Rd

(1 + |v|) (df(v) + dg(v))

) (
|f − g|2 +

∣∣(f − g) v
∣∣
1

)
.

Proof of Lemma 5.5. We prove the second inequality (5.14). The first inequalities (5.13)
then follows immediately by writing

Q(f, f) = Q(f, f)−Q(M,M) = Q(f −M,f +M)

where M is the maxwellian distribution with same momentum and energy as f , and then
applying (5.14) with f −M and f +M .

We write in Fourier:

F (Q(f + g, f − g)) = Q̂(D,S)

=
1

2

∫

Sd−1

b(σ · ξ̂)
(
S(ξ+)D(ξ−) + S(ξ−)D(ξ+)− 2D(ξ)

)

where Q̂ is the Fourier form the symmetrized collision operator Q, which we can rewrite∣∣∣Q̂(D,S)
∣∣∣

|ξ|2 ≤ T1 + T2 + T3.

We have

T1 ≤
∫

Sd−1

b(σ · ξ̂)
∣∣S(ξ+)

∣∣ |D(ξ−)|
|ξ−|2

|ξ−|2
|ξ|2 dσ ≤ C |D|2

for some constant C > 0, where we have used

|ξ−|2
|ξ|2 = (1− cos θ)2

which permits to control the angular singularity of b.
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Similarly we compute

T2 ≤
∫

Sd−1

b(σ · ξ̂) |D(ξ+)|
|ξ+|

|S(ξ−)− 2|
|ξ−|

|ξ−|
|ξ| dσ ≤ C |D|1

(∫

Rd

(1 + |v|) (df(v) + dg(v))

)

for some constant C > 0, and

T3 ≤ 2

∫

Sd−1

b(σ · ξ̂) |D(ξ+)−D(ξ)|
|ξ| dσ

≤
∫

Sd−1

b(σ · ξ̂) |ξ
−|
|ξ|

∫ 1

0

|∇D(θξ + (1− θ)ξ+)|
|θξ + (1− θ)ξ+| dθ dσ ≤ C |(f − g) v|1

for some constant C > 0. This concludes the proof of (5.14) by piling these estimates. �

The proof of (A2)-(ii) is a consequence of (5.14). Indeed, from (4.2) we have

∀ f, g ∈ BPḠ,a, |(f − g) v|1 ≤ C [(f − g) v]∗1 .

Moreover for f, g ∈ BPG1,a,

[(f − g) v]∗1 ≤ inf
R>0

{
[(f − g) v χR]

∗
1 + [(f − g) v (1− χR)]

∗
1

}

≤ inf
R>0

{
C R [f − g]∗1 + C ′ a

R2

}

≤ C a1/3 ([f − g]∗1)
2/3

where we have used the bound on the fourth moment.
Finally, from (4.4), we conclude that

∀ f, g ∈ BPG1,a, [f − g]∗1 ≤ C |f − g|ν2 ,

for some constants C > 0 and ν ∈ (0, 1) depending on d and a.
Gathering all these estimates as well as (5.14) we deduce that

|Q(f + g, f − g)|2

≤ C

(∫

Rd

(1 + |v|) (df(v) + dg(v))

) (
|f − g|2 +

∣∣f − g
∣∣ν
2

)
.

5.5. Proof of (A3). Let us define m′
G1

and

Λ1(f) :=
〈
f,m′

G1

〉
=
〈
f, 〈v〉4

〉

for any f ∈ PG1 .
Let us prove that for any

r ∈ RG1 and Φ ∈ C1,η
Λ1

(PG1,r)

we have
∥∥∥∥
(
MN
mG1

(V )
)−1 (

GN πN − πN G∞) Φ
∥∥∥∥
L∞(EN )

≤ C1 E
N

[Φ]
C1,η

Λ1
(PG1,r)

,

for some constant C1 > 0.
First, consider velocities v, v∗, w,w∗ ∈ R

d such that

w =
v + v∗

2
+

|v − v∗|
2

σ, w∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

d−1.
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Then δv + δv∗ − δw − δw∗ ∈ IPG1 . Performing Taylor expansions, we get

eiv·ξ + eiv∗·ξ − eiw·ξ − eiw∗·ξ

= i (w − v) ξ eiv·ξ +O
(
|w − v|2 |ξ|2

)
+ i (w∗ − v∗) ξ e

iv∗·ξ +O
(
|w∗ − v∗|2 |ξ|2

)

= i (w − v) ξ eiv·ξ +O
(
|w − v|2 |ξ|2

)

+i (w∗ − v∗) ξ (e
iv·ξ +O (|v − v∗| |ξ|) +O

(
|w∗ − v∗|2 |ξ|2

)

= O
(
|v − v∗|2 |ξ|2 sin θ/2

)

thanks to the impulsion conservation and the fact that

|w − v| = |w∗ − v∗| = |v − v∗| sin
θ

2
.

We hence deduce

|δv + δv∗ − δw − δw∗ |2 = sup
ξ∈Rd

∣∣eiv·ξ + eiv∗·ξ − eiw·ξ − eiw∗·ξ
∣∣

|ξ|2 ≤ C |v − v∗|2 (1 − cos θ).

As an immediate consequence, for any V ∈ EN and V ∗
ij defined by (5.2), we have

∣∣∣µNV ∗
ij
− µNV

∣∣∣
2
≤ C

N
|vi − vj|2 (1− cos θij).

Consider V ∈ EN and define

rV :=
(〈
µNV , z1

〉
, . . . ,

〈
µNV , zd

〉
,
〈
µNV , |z|2

〉)
∈ RE .

Then for a given Φ ∈ C1,η
Λ1

(PG1,rV ), we set

φ := DΦ
[
µNV
]

and uij = (vi − vj)

and we compute:

GN
(
Φ ◦ µNV

)
=

1

2N

N∑

i,j=1

∫

Sd−1

[
Φ
(
µNV ∗

ij

)
− Φ

(
µNV
)]
b (cos θij) dσ

=
1

2N

N∑

i,j=1

∫

Sd−1

〈
µNV ∗

ij
− µNV , φ

〉
b (cos θij) dσ

+
[Φ]C1,η

Λ (PG1,rV
)

2N

N∑

i,j=1

∫

Sd−1

[
Mm′

G1

(
µNV ∗

ij

)
+Mm′

G1

(
µNV
)]

O
(∣∣∣µNV ∗

ij
− µNV

∣∣∣
1+η

2

)
dσ

=: I1(V ) + I2(V ).

Concerning the first term I1(V ), thanks to Lemma 2.13, we have

I1(V ) =
1

2N2

N∑

i,j=1

∫

Sd−1

b (cos θij)
[
φ(v∗i ) + φ(v∗j )− φ(vi)− φ(vj)

]
dσ

=
1

2

∫

v

∫

w

∫

Sd−1

b(cos θ) [φ(v∗) + φ(w∗)− φ(v)− φ(w)] µNV (dv)µ
N
V (dw) dσ

=
〈
Q(µNV , µ

N
V ), φ

〉
= (G∞Φ) (µNV ).
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For the second term I2(V ), using that

Mm′
G1

(
µNV ∗

ij

)
:=

1

N

N∑

ℓ=1

m′
G1

(
(V ∗
ij)ℓ
)

≤ C


1 +

1

N




∑

ℓ 6=i,j
|vℓ|4


+ |v∗i |4 + |v∗j |4






≤ C


1 +

1

N




∑

ℓ 6=i,j
|vℓ|4


+ 2

(
|vi|2 + |vj |2

)2





≤ C

(
1 +

23

N

(
N∑

ℓ=1

|vℓ|4
))

≤ CMm′
G1

(
µNV
)
= CMN

m′
G1

(V ),

we deduce

|I2(V )| ≤ C

N2+η
MN
m′

G1

(V ) [Φ]C1,η
Λ (PG1,rV

)

×
N∑

i,j=1

O
(∫

Sd−1

b (cos θij)
(
1 + |vi|2 + |vj |2

)
(1− σ · ûij) dσ

)
.

We finally use that

1

N2
MN
m′

G1

(V )O
(∫

Sd−1

b (cos θij)
(
1 + |vi|2 + |vj |2

)
(1− σ · ûij) dσ

)

≤ CMN
m′

G1

(V )

(
1

N

N∑

i=1

|vi|2
)

≤ CMN
mG1

(V )

(recall for the last line that mG1(v) = 〈v〉6 and m′
G1
(v) = 〈v〉4), which implies

|I2(V )| ≤ C

Nη
MN
mG1

(V ) [Φ]C1,η
Λ (PG1,rV

)

and concludes the proof.

5.6. Proof of (A4) uniformly in time. Let us consider some 1-particle initial data
f0, g0 ∈ P4(R

d) (probability with bounded fourth moment). And let us define the associ-
ated solutions ft and gt to the nonlinear Boltzmann equation (1.1) under the assumption
(5.6). We then define

ht := LNLt [f0] (g0 − f0)

the solution to the linearized Boltzmann equation around ft, given by




∂tft = Q(ft, ft), f|t=0 = f0

∂tgt = Q(gt, gt), g|t=0 = g0

∂tht = 2Q(ht, ft), h|t=0 = h0 := g0 − f0.

We shall prove assumption (A4) with the choice of indices

(η′, η′′) = (η, 1)

which means that the weight which has to be used is
We shall now expand the limiting nonlinear semigroup in terms of the initial data,

around f0.
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Lemma 5.7. There exists λ ∈ (0,∞) and, for any η ∈ (0, 1), there exists Cη > 0 such
that for any

r ∈ RG1
and f0, g0 ∈ PG1,r

we have

(5.15) |ft − gt|2 ≤ Cη e
−(1−η) λ t (max {M4(f0),M4(g0)})

1
1+η |f0 − g0|η2 ,

and

(5.16) |ht|2 ≤ Cη e
−(1−η) λ t (max {M4(f0),M4(g0)})

1
1+η |f0 − g0|η2

where we recall that

∀ f ∈ P (Rd), M4(f) :=
〈
f, 〈v〉4

〉
.

As a consequence, the operator LNLt [f0](·) is bouned from G1,r to itself.

Remark 5.8. Observe that the loss of weight exactly matches the need of assumption (A4)
since

Λ2 = Λ
1

1+η

1

(recall that we have made the choice the indices (η′, η′′) = (η, 1) in (A4) in the present
application).

Proof of Lemma 5.7. We shall proceed in several steps.

Step 1. Estimate in | · |4. We closely follow ideas in [67, 14]. We shall use the notation

M = M4, M̂ = M̂4,

introduced in Example 2.5.4, as well as

d := f − g, s := f + g

and

d̃ := d−M[d], D := F(d), S := F(s) and D̃ := F(d̃) = D − M̂[d].

The equation satisfied by D̃ is

∂tD̃ = Q̂(D,S)− ∂tM̂[d](5.17)

= Q̂(D̃, S) +
(
Q̂
(
M̂[d], S

)
− M̂[Q(d, s)]

)
.

We infer from [67] that for any α ∈ N
d, there exists some absolute coefficients (aα,β), β ≤ α

(which means βi ≤ αi for any 1 ≤ i ≤ d), depending on the collision kernel b through

(5.18)

∫

Sd−1

b(cos θ)
[
(vα)′ + (vα)′∗ − (vα)− (vα)∗

]
dσ =

∑

β, β≤α
aα,β

(
vβ
) (

vα−β
)
∗

where α, β ∈ N
d are coordinates indices and

vα := vα1
1 vα2

2 . . . vαd
d .

These multi-indices are compared through the usual lexicographical order, and we use the
standart notation

|α| :=
d∑

k=1

αk.

We deduce that

∀ |α| ≤ 3, ∇α
ξ M̂[Q(d, s)]∣∣ξ=0

=Mα[Q(d, s)] =
∑

β, β≤α
aα,βMβ[d]Mα−β [s]
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together with

∀ |α| ≤ 3, ∇α
ξ Q̂(M̂[d], S)∣∣ξ=0

=Mα[Q(M[d], s)]

=
∑

β, β≤α
aα,βMβ [M[d]]Mα−β [s] =

∑

β, β≤α
aα,βMβ[d]Mα−β [s]

since
Mα[M[d]] =Mα[d]

for any |α| ≤ 3 by construction. As a consequence, we get

(5.19) ∀ ξ ∈ R
d,

∣∣∣M̂[Q(d, s)]− Q̂(M̂[d], S)
∣∣∣ ≤ C |ξ|4


∑

|α|≤3

|Mα[ft − gt]|


 .

On the other hand, from [67, Theorem 8.1] and its corollary, we know that there exists
some constants C, λ ∈ (0,∞) such that

(5.20) ∀ t ≥ 0,


∑

|α|≤3

|Mα[ft − gt]|


 ≤ C e−λ t


∑

|α|≤3

|Mα[f0 − g0]|


 .

We perform the same decomposition on the angular collision kernel

b = bK + bcK with

∫

Sd−1

bK

(
σ · ξ̂

)
dσ = K, bK = b1|θ|≥δ(K)

as in the proof of Lemma 5.5 and use the straightforward estimate

RK(ξ) := Q̂bcK (D̃, S)(ξ)

satisfies

∀ ξ ∈ R
d, |RK(ξ)| ≤ rK |ξ|4 where rK

K→∞−−−−→ 0

where QbcK denotes the collision operator associated with the part bcK of the decomposition
of the angular collision kernel, and where rK depends on moments of order 4 on d and s.

Then we gather (5.17), (5.19) and (5.20) and we have

d

dt

|D̃(ξ)|
|ξ|4 +K

|D̃(ξ)|
|ξ|4 ≤

(
sup
ξ∈Rd

|D̃(ξ)|
|ξ|4

) (
sup
ξ∈Rd

∫

Sd−1

bK

(
σ · ξ̂

) (∣∣∣ξ̂+
∣∣∣
4
+
∣∣∣ξ̂−
∣∣∣
4
)
dσ

)

+ C e−λ t


∑

|α|≤3

|Mα[f0 − g0]|


+ rK .

Let us compute (the supremum has been droped thanks to the spherical invariance)

λK :=

∫

Sd−1

bK

(
σ · ξ̂

) (∣∣∣ξ̂+
∣∣∣
4
+
∣∣∣ξ̂−
∣∣∣
4
)
dσ =

∫

Sd−1

bK

(
σ · ξ̂

)


1 +

(
σ · ξ̂

)2

2


 dσ,

so that

λK −K = −



∫

Sd−1

bK

(
σ · ξ̂

)


1−

(
σ · ξ̂

)2

2


 dσ




−−−−→
K→∞

−
∫

Sd−1

b
(
σ · ξ̂

)


1−

(
σ · ξ̂

)2

2


 dσ := −λ̄ ∈ (−∞, 0)
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where in the last step we used the factor


1−

(
σ · ξ̂

)2

2


 ∼ C θ2 as θ ∼ 0

in order to control the singularity of b.
Then, thanks to Gronwall lemma, we get

(
sup
ξ∈Rd

|D̃t(ξ)|
|ξ|4

)
≤ e(λK−K) t

(
sup
ξ∈Rd

|D̃0(ξ)|
|ξ|4

)

+ C3


∑

|α|≤3

|Mα[f0 − g0]|



(

e−λ t

K − λK − λ
− e(λK−K) t

K − λK − λ

)
+ C

rK
K(K − λK)

.

Therefore, passing to the limit K → ∞ and choosing (without restriction) λ ∈ (0, λ̄),
we obtain

sup
ξ∈Rd

|D̃t(ξ)|
|ξ|4 ≤ C e−λ t


 sup
ξ∈Rd

|D̃0(ξ)|
|ξ|4 +

∑

|α|≤3

|Mα[f0 − g0]|




or equivalently (and with the notations of Example 2.5.4),

|||dt|||4 ≤ C e−λ t |||d0|||4.

Step 2. From | · |4 to | · |2 on the difference. From the preceding step and a straightforward
interpolation argument, we have

|f − g|2 ≤ |f − g −M[f − g]|2 + C


∑

|α|≤3

|Mα[f − g]|




≤ ‖f − g −M[f − g]‖1/2
M1

4
|f − g −M[f − g]|1/24 + C


∑

|α|≤3

|Mα[f − g]|




≤ C (1 +M4(f0) +M4(g0)) e
−(λ/2) t.

Then by writing

|f − g|2 ≤ |f − g|η2 |f − g|1−η2 ,

using Lemma 5.11 for the first term of the right hand side and the previous decay estimates
for the second term, we obtain

|ft − gt|2 ≤ Cη e
−(1−η) λ t (max {M4(f0),M4(g0)})(1−η) |f0 − g0|η2 .

This concludes the proof of (5.15) by using (1− η) ≤ 1/(1 + η).

Step 3. From the difference to the linearized semigroup. The same computations imply
exactly the same estimate on ht as on the difference (ft − gt), that is inequality (5.16) in
Lemma 5.7. �

We can now consider the second-order term in the expansion of the semigroup. Let us
recall that the crucial point here is to prove that this second-order term is controlled in
terms of some power strictly greater than 1 of the initial difference.
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Lemma 5.9. There exists λ ∈ (0,∞) and, for any η ∈ (0, 1), there exists Cη such that
for any

r ∈ RG1
and f0, g0 ∈ PG1,r,

we have

|ωt|4 ≤ C e−(1−η) λ t ∣∣g0 − f0
∣∣1+η
2

where

ωt := gt − ft − ht = SNLt (g0)− SNLt (f0)− LNLt [f0](g0 − f0).

Remark 5.10. As proved below ωt always has vanishing moments up to order 3, which
implies that the norm |ωt|4 is well-defined. Moreover observe that in this estimate there
is no loss of weight.

Proof of Lemma 5.9. We consider the angular cutoff decomposition as in Lemma 5.5. Con-
sider the error term

ω := g − f − h, Ω := ω̂.

which satisfies the evolution equation

∂tωt = Q (ωt, f + g)−Q+(h, f − g), ω0 = 0

and (in the Fourier side)

∂tΩ = Q̂(Ω, S)− Q̂+(H,D).

Let us prove that

∀ |α| ≤ 3, ∀ t ≥ 0, Mα[ωt] :=

∫

Rd

vα dωt(v) = 0.

We shall use again the fact that, for maxwell molecules, the α-th moment of Q(f1, f2)
is a sum of terms given by product of moments of f1 and f2 whose orders sum to |α|, see
equation (5.18).

We obtain

∀ |α| ≤ 3,
d

dt
Mα[ωt] =

∑

β≤α
aα,βMβ[ωt]Mα−β [ft + gt] +

∑

β≤α
aα,βMβ [ht]Mα−β [ft − gt]

and since

∀ |α| ≤ 1, Mα[ht] =Mα[ft − gt] = 0,

we deduce

∀ |α| ≤ 3,
d

dt
Mα[ωt] =

∑

β≤α
aα,βMβ [ωt]Mα−β [ft + gt].

This concludes the proof of the claim about the moments of ωt since ω0 = 0.
We now consider the equation in Fourier form

∂tΩ = Q̂(Ω, S)− Q̂+(H,D)

and we deduce in distributional sense
(
d

dt

|Ω(ξ)|
|ξ|4 +K

|Ω(ξ)|
|ξ|4

)
≤ T1 + T2 + rK , rK

K→∞−−−−→ 0
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(depending on some moments of order 1 of ω, h, d), and

T1 := sup
ξ∈R3

∫

Sd−1

b
(
σ · ξ̂

)

|ξ|4
(∣∣∣∣

Ω(ξ+)S(ξ−)
2

∣∣∣∣+
∣∣∣∣
Ω(ξ−)S(ξ+)

2

∣∣∣∣
)
dσ

≤ sup
ξ∈R3

∫

Sd−1

b
(
σ · ξ̂

) ( |Ω(ξ+)|
|ξ+|4

|ξ+|4

|ξ|4
+

|Ω(ξ−)|
|ξ−|4

|ξ−|4

|ξ|4

)
dσ

≤
(
sup
ξ∈R3

|Ω(ξ)|2

|ξ|2

) (
sup
ξ∈R3

∫

Sd−1

b
(
σ · ξ̂

) (∣∣∣ξ̂+
∣∣∣
4
+
∣∣∣ξ̂−
∣∣∣
4
)
dσ

)

≤ λK

(
sup
ξ∈R3

|Ω(ξ)|
|ξ|4

)
,

where λK was defined in Lemma 5.5, and

T2 :=
1

2
sup
ξ∈R3

∫

Sd−1

b
(
σ · ξ̂

)

|ξ|4
∣∣H(ξ+)D(ξ−) +H(ξ−)D(ξ+)

∣∣ dσ

≤ 1

2
sup
ξ∈R3

∫

Sd−1

b
(
σ · ξ̂

) ( |H(ξ+)|
|ξ+|2

|D(ξ−)|
|ξ−|2

|ξ−|2
|ξ|2 +

|D(ξ+)|2
|ξ+|2

|H(ξ−)|2
|ξ−|2

|ξ−|2
|ξ|2

)
dσ

≤ |ht|2 |dt|2
∫

Sd−1

b
(
σ · ξ̂0

) (
1− σ · ξ̂0

)
dσ

= C e−(1−η) λ t |h0|2 |d0|η2 ≤ C e−(1−η) λ t |d0|1+η2

by using the estimates of Lemma 5.5.
Hence we obtain

(
d

dt

|Ω(ξ)|
|ξ|4 +K

|Ω(ξ)|
|ξ|4

)
≤ λK

(
sup
ξ∈R3

|Ω(ξ)|
|ξ|4

)
+ C e−(1−η) λ t |d0|1+η2 + rK .

We then deduce from the Gronwall inequality, relaxing the cutoff parameter K as in
Lemma 5.7 and assuming without restriction (1− η)λ ≤ λ̄, that

(
sup
ξ∈R3

|Ωt(ξ)|
|ξ|4

)
≤ C e−(1−η) λ t |g0 − f0|1+η2 .

This concludes the proof. �

5.7. Proof of (A5) uniformly in time in Wasserstein distance. We know from [67]
that

sup
t≥0

W2

(
SNLt f0, S

NL
t g0

)
≤W2 (f0, g0) .

As a consequence, by using
[·]∗1 =W1 ≤W2,

we deduce that (A5) holds with

Θ(x) = x, F3 = Lip(Rd) and PG3 = P2(R
d)

endowed with the distance dG3 =W2.
By using Theorem 3.1 whose assumptions have been proved above, this proves point (i)

in Theorem 5.1 and the rate follows from the estimate on WN
W 2

2
(f) from Lemma 4.2.

By using Lemma 4.1 in order to relate WW 2
2
(πNP (fN0 ), f0) with WW1(π

N
P (fN0 ), f0) and

then Lemma 4.7 in order to estimate

WW1

(
πNP
(
fN0
)
, f0
) N→∞−−−−→ 0
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for the sequence of initial data conditioned on the energy sphere constructed in Lemma 4.4,
we then deduce point (iii) in Theorem 5.1.

5.8. Proof of (A5) with time growing bounds in negative Sobolev norms. It is
also possible (and in fact easier) to prove, in the cutoff case, that the weak stability holds
in Sobolev space on finite time:

Lemma 5.11. For any T ≥ 0 and s > d/2 there exists CT,s such that for any ft, gt
solutions of the Boltzmann equation for Maxwell molecules (5.6) and initial data f0 and
g0, there holds

sup
[0,T ]

‖ft − gt‖H−s ≤ CT,s ‖f0 − g0‖H−s .

Sketch the proof of Lemma 5.11. We integrate (5.12) against D/(1 + |ξ|2)s:
d

dt
‖D‖2H−k =

1

2

∫

ξ

∫

Sd−1

b
(
σ · ξ̂

) [D−S+D +D+S−D − 2 |D|2
]

(1 + |ξ|2)s dσ dξ

and we use Young’s inequality together with the bounds
∥∥S+

∥∥
∞ ,

∥∥S−∥∥
∞ ≤ ‖f + g‖M1 ≤ 2

to conclude. �

This proves (A5) with the alternate choice

Θ(x) = x, F3 = Hs(Rd) and PG3 = P2(R
d)

endowed with the distance of the normed space G3 = Hs(Rd). Then point (ii) in Theo-
rem 5.1 follows from the abstract theorem 3.1 where the rate is provided by the estimate
on WN

(H−s)2(f) from Lemma 4.2.

5.9. Proof of infinite-dimensional Wasserstein chaos. We shall prove Theorem 5.3
in this subsection. Let us proceed in several steps. Let us emphasize that we do not search
for optimality on the rate functions given by our argument.

Step 1: Finite-dimensional Wasserstein chaos. It is immediate that Theorem 5.1
implies that, under one of the two possible assumptions on the initial data, for any given
ℓ ≥ 1, one has

sup
t≥0

∥∥∥Πℓ
[
fNt
]
− f⊗ℓt

∥∥∥
H−s

≤ α0(ℓ,N)

for some power law rate function α0(ℓ,N) → 0 as N → 0.
Then by using Lemma 4.1 we deduce that

sup
t≥0

W1

(
Πℓ
[
fNt
]
, f⊗ℓt

)
≤ α(ℓ,N)

for some power law rate function α(ℓ,N) → 0 as N → 0.
Note carefully that at this point our rate function still depends on ℓ and in fact a quick

look at Theorem 5.1 shows that they scale like ℓ2, therefore making impossible to choose
ℓ ∼ N .

Step 2: Infinite-dimensional Wasserstein chaos. We shall use here the following
result obtained in [37], see also [56, Théorème 2.1]: for any f ∈ P (Rd) and sequence
fN ∈ Psym(R

d) we have

∀ 1 ≤ ℓ ≤ N,
W1

(
Πℓ
[
fN
]
, f⊗ℓ

)

ℓ
≤ C

(
W1

(
Π2

[
fN
]
, f⊗2

)α1
+

1

Nα2

)

for some constructive constant C, α1, α2 > 0.
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By combining this estimate with the previous step we immediately obtain

sup
1≤ℓ≤N

sup
t≥0

W1

(
Πℓ
[
fNt
]
, f⊗ℓt

)
≤ α(N)

for some power law rate function α(N) → 0 as N → 0. This concludes the proof of (5.8).

Step 3: Relaxation in Wasserstein distance. We shall prove (5.9) and we shall

consider here initial data fN0 constructed by conditioning f⊗N0 to the energy sphere. We
first write

W1

(
fNt , γ

N
)

N
≤
W1

(
fNt , f

⊗N
t

)

N
+
W1

(
f⊗Nt , γ⊗N

)

N
+
W1

(
γ⊗N , γN

)

N
.

Since fNt → γN in L2 and ft → γ in L1 as t → +∞, one can pass to the limit in the
Wasserstein distance and get from the previous step

W1

(
γ⊗ℓ,Πℓ

[
γN
])

N
≤ α(N).

Moreover it is immediate that

W1

(
f⊗Nt , γ⊗N

)

N
=W1 (ft, γ) .

Finally it was proved in [60] that under our assumptions on f0 one has

‖(ft − γ) 〈v〉‖L1 ≤ C e−λ1 t

for some constants C > 0 and λ1 > 0 which implies

W1 (ft, γ) ≤ ‖(ft − γ) 〈v〉‖L1 ≤ C e−λ1 t.

Hence, gathering these three estimates, we deduce that

(5.21)
W1

(
fNt , γ

N
)

N
≤ 2α(N) + C e−λ1 t.

It was proved in [15] that there exists λ2 > 0 such that

∀N ≥ 1, ∀ t ≥ 0
∥∥hN − 1

∥∥
L2(SN ,γN )

≤ e−λ2 t
∥∥hN0 − 1

∥∥
L2(SN ,γN )

,

where hN = dfN/dγN is the Radon-Nikodym derivative of fN with respect to the measure

γN so that fN = hN γN . When fN0 = [f⊗N0 ]SdN−1(
√
N) with f0 ∈ P4(R

d) we easily upper

bound the right hand side term by
∥∥hN0 − 1

∥∥
L2(SN ,γN )

≤ AN ,

where A = A(f0) > 1. Thanks to Cauchy-Schwartz inequality and the control of the
Wasserstein distance in terms of a weighted total variation norm (see [72, Proposition
7.10]) we also have

∥∥hN − 1
∥∥
L2(SdN−1(

√
N),γN) ≥

∥∥hN − 1
∥∥
L1(SdN−1(

√
N),γN)

≥
∫

RdN

1

N

N∑

i=1

|vi|
∣∣dfN − dγN

∣∣ (V )

≥ 1

N
W1

(
fN , γN

)

and we deduce

(5.22) ∀N ≥ 1, ∀ t ≥ 0, W1

(
fNt , γ

N
)
≤ AN e−λ2 t.



64 S. MISCHLER AND C. MOUHOT

Finally by combining (5.21) and (5.22) and taking the better of these two estimates
depending on N and t, we easily obtain

∀N ≥ 1, ∀ t ≥ 0, W1

(
fNt , γ

N
)
≤ β(t)

for some β(t) → 0 as t→ +∞, which concludes the proof of (5.9).

6. Hard spheres

6.1. The model. The limiting equation was introduced in Subsection 1.1 and the sto-
chastic model has been already discussed Subsection 5.1.

We consider here the case of the Master equation (5.3), (5.4) and the limit nonlinear
homogeneous Boltzmann equation (1.1), (1.2), (1.3) with

(6.1) B(z, cos θ) = Γ(z) b(cos θ) = Γ(z) = |z|.
6.2. Statement of the result. Our fluctuations estimate result for this model then states
as follows:

Theorem 6.1 (Hard spheres detailed chaos estimates). Let us consider a 1-particle initial
distribution f0 ∈ P (Rd) with energy less than E

M2(f0) ≤ E ,
and a hierarchy of N -particle distributions

fNt = SNt

(
f⊗N0

)

issued from the initial data fN0 , as well the 1-particle of the limiting semigroup

ft = SNLt (f0)

where we assume that the collision satisfies (6.1).
Let us finally fix some δ ∈ (0, 1).
Then

(i) Suppose that f0 has compact support

Supp f0 ⊂
{
v ∈ R

d, |v| ≤ A
}

and that the N -particle initial data is tensorized

∀N ≥ 1, fN0 = f⊗N0 .

Then there are
– some constants k1 ≥ 2 depending on δ and E;
– some constant Cδ > 0 depending on δ and E, and blowing up as δ → 1;
– some constant Cb > 0 depending on the collision kernel,

such that for any ℓ ∈ N
∗, and for any

ϕ = ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕℓ ∈W 1,∞(Rd)⊗ℓ,

we have

(6.2) ∀N ≥ 2 ℓ, sup
[0,T ]

∣∣∣
〈(
SNt (fN0 )−

(
SNLt (f0)

)⊗N)
, ϕ
〉∣∣∣

≤ ‖ϕ‖W 1,∞(Rd)⊗ℓ

[
2 ℓ2

N
+
Cδ ℓ

2‖f0‖M1
k1

N1−δ + ℓ eCb A θ(N)

]
.

The last term of the right hand side (which is also the dominant error term as
N goes to infinity in our estimate) is given by

θ(N) =
C

(1 + | logN |)α
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for some constants C,α > 0.
(ii) Under the same setting but assuming instead for the limiting initial data

f0 ∈ L∞
(
R
d
)

s. t.

∫

Rd

ez |v| df0(v) < +∞

for some z > 0, and taking for the N -particle initial data the sequence (fN0 )N≥1

constructed in Lemma 4.4 and 4.7, we have the same estimate (6.2) however with
no information on the rate

θ(N)
N→0−−−→ 0.

This nevertheless proves the propagation of chaos, uniformly in time.

We now state the key Wasserstein version of the propagation of chaos estimate, which is
valid for any number of marginals, although with a possibly worse (but still constructive)
rate. Combined with previous results on the relaxation of the N -particle system we also
deduce some estimate of relaxation to equilibrium independent of N and, again, for any
number of marginals.

Theorem 6.2 (Hard spheres Wasserstein chaos). Under the same setting as in Theo-
rem 6.1, either

(a) with f0 compactly supported and fN0 = f⊗N0 or
(b) with

f0 ∈ L∞
(
R
d
)

s. t.

∫

Rd

ez |v| df0(v) < +∞

and fN0 constructed by Lemma 4.4,

we have

(6.3) ∀N ≥ 1, ∀ 1 ≤ ℓ ≤ N, sup
t≥0

W1

(
Πℓf

N
t ,
(
f⊗ℓt
))

ℓ
≤ α(N)

for some α(N) → 0 as N → ∞ (in the case (a) one has moreover explicit estimates on
the rate α like a power of a logarithm).

Then in case (b) we have

(6.4) ∀N ≥ 1, ∀ 1 ≤ ℓ ≤ N, ∀ t ≥ 0,
W1

(
Πℓf

N
t ,Πℓ

(
γN
))

ℓ
≤ β(t)

for some β(t) → 0 as t → ∞, where γ is the gaussian equilibrium with energy E and γN

is the uniform probability measure on SN (E).

In order to prove Theorem 6.1, we shall prove assumptions (A1)-(A2)-(A3)-(A4)-
(A5) of Theorem 3.1 with T = ∞. The application of the latter theorem then exactly
yields Theorem 6.1 by following carefully each constant computed below. We fix

F1 = F2 = Cb(R
d) and F3 = Lip(Rd).

Then the proof of Theorem 6.2 is deduced from Theorem 6.1 in a similar way as Theo-
rem 5.3 was deduced from Theorem 5.1, see Subsection 6.9.
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6.3. Proof of (A1). From the discussion made in section 5.3 we easily see that for the
Hard sphere model the operator GN is bounded from C−k+1,0(R

dN ) onto C−k,0(RdN ) for
any k ∈ R. Since GN is close, dissipative and C−k+1,0(R

dN ) is dense in C−k,0(RdN ), the
Hille-Yosida theory implies thatGN generates a Markov type semigroup TNt on C−k,0(RdN )
and we may also define SNt by duality as a semigroup on Pk(R

dN ). The nonlinear semigroup
SNLt is also well defined on Pk(R

d), k ≥ 2, see for instance [32, 29, 48].
Lemma 5.4 was proved both for Maxwell molecules and hard spheres. It first shows

that

∀ t ≥ 0, Supp fNt ⊂ EN :=
{
V ∈ R

dN ; MN
2 (V ) ≤ E

}
.

It also proves that for any k ≥ 2,

sup
t≥0

〈
fNt ,M

N
k

〉
≤ CNk

where CNk depends on k, E , on the collision kernel and on the initial value

〈fN0 ,MN
k 〉

which is uniformly bounded in N in terms of k and A. This shows that (A1)-(i) holds
with m1(v) := |v|k1 for any k1 ≥ 2. The precise value of k1 shall be chosen in Section 6.7.

As for (A1)-(ii), we remark that for a given N -particle velocity

V = (v1, . . . , vN ) ∈ R
dN ,

we have

V ∈ Supp f⊗N0 ⇐⇒ ∀ i = 1, . . . , N, vi ∈ Supp f0

which implies

∀ i = 1, . . . , N, mG3(vi) ≤ mG3(A) with mG3(v) := ea |v|

for any constant a > 0, which shall chosen later on.
We conclude that

Supp f⊗N0 ⊂
{
V ∈ R

dN ; MN
mG3

(V ) ≤ mG3(A)
}
,

and (A1)-(ii) holds for the exponential growing weight mG3 .

6.4. Proof of (A2). We define

PG1 :=
{
f ∈ P (Rd);

〈
f, 〈v〉k1

〉
< +∞

}

that we endow with the total variation norm ‖ · ‖G1 := ‖ · ‖M1 . Note that since k1 ≥ 2,
elements of PG1 have in particular finite energy.

This assertion (A2)-(i) reads:

For some constant ak1 > 0 and for any a ≥ ak1 and for any t > 0, the
application

f0 7→ SNLt f0

maps

BPG1,a :=
{
f ∈ PG1 , Mk1(f) =

〈
f, 〈v〉k1

〉
≤ a

}

continuously into itself.

It is postponed to section 6.6, where we prove in (6.6) a Hölder continuity of the flow in
BPG1,a.

Let us consider assertion (A2)-(ii), that is the fact that the operator Q is bounded and
Hölder continuous from PG1 to G1.
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For any f, g ∈ PG1 we have

‖Q(g, g) −Q(f, f)‖M1 = ‖Q(g − f, g + f)‖M1

≤ 2

∫

Rd

∫

Rd

∫

Sd−1

b(θ) |v − v∗| |f − g| |f∗ + g∗| dσ dv∗ dv

(1 + E) ‖b‖L1 ‖(f − g) 〈v〉‖M1 .

We deduce that

‖Q(g, g) −Q(f, f)‖M1 ≤ 2 (1 + E)3/2 ‖b‖L1 ‖f − g‖1/2
M1

which yields

Q ∈ C0,1/2(PG1 ;G1)

and also implies that Q is bounded on PG1 since we can choose g to be a maxwellian
distribution.

6.5. Proof of (A3). For any k1 ≥ 2, any energy

rd+1 ≥ 0

and any mean velocity
(r1, . . . , rd) ∈ BRd

(
0,
√
rd+1

)

we define

PG1,r :=
{
f ∈ PG1 ; 〈f, vj〉 = rj , j = 1, . . . , d, 〈f, |v|2〉 = rd+1

}

with the notation
r := (r1, . . . , rd+1) .

This corresponds to the vector of constraints

m =
(
v1, . . . , vd, |v|2

)

in Definition 2.4.
We also denote by R the set of all admissible contraint vectors r ∈ R

d+1:

R =

{
(r1, . . . , rd+1) ∈ R

d+1 s. t. rd+1 ≥ 0 and

d∑

i=1

r2i ≤ rd+1

}
.

Let us finally define the weight

Λ1(f) :=Mk1−2(f) =
〈
f, 〈v〉k1−2

〉

(this means that we choose m′
G1
(v) = 〈v〉k1−2 in assumption (A3)).

We claim that there exists a constant Ck1 > 0 (depending on k1) such that for any
η ∈ (0, 1) and any function

Φ ∈
⋂

r∈RE

C1,η
Λ1

(PG1,r;R),

we have

(6.5) ∀V ∈ R
Nd,

∣∣GN (Φ ◦ µNV )− (G∞Φ)(µNV )
∣∣ ≤ Ck1

(
sup
r∈RE

[Φ]C1,η
Λ1

(PG1,r
)

)
MN
k1
(V )

Nη

where we recall that

MN
k1(V ) :=

1

N

N∑

i=1

〈vi〉k1 .

This would prove assumption (A3) with the rate

ε(N) =
Ck1
Nη

, η := 1− δ.
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Consider V ∈ R
dN and define

rV :=
( 〈
µNV , z1

〉
, . . . ,

〈
µNV , zd

〉
,
〈
µNV , |z|2

〉 )
∈ RE .

Then let us consider a given

Φ ∈ C1,η
Λ1

(PG1,rV ;R),

and let us set

φ := DΦ[µNV ].

We compute

GN
(
Φ ◦ µNV

)
=

1

2N

N∑

i,j=1

|vi − vj |
∫

Sd−1

[
Φ
(
µNV ∗

ij

)
− Φ

(
µNV
)]
b(θij) dσ

=
1

2N

N∑

i,j=1

|vi − vj |
∫

Sd−1

〈
µNV ∗

ij
− µNV , φ

〉
b(θij) dσ

+
[Φ]C1,η

Λ1
(PG1,rV

)

2N

N∑

i,j=1

|vi − vj| ×

∫

Sd−1

max
{
Mm′

G1

(
µNV ∗

ij

)
; Mm′

G1

(
µNV
)}

O
(∥∥∥µNV ∗

ij
− µNV

∥∥∥
1+η

M1

)
dσ

=: I1(V ) + I2(V ).

As for the first term I1(V ), we have

I1(V ) =
1

2N2

N∑

i,j=1

|vi − vj |
∫

Sd−1

b(θij)
[
φ(v∗i ) + φ(v∗j )− φ(vi)− φ(vj)

]
dσ

=
1

2N2

∫

v

∫

w
|v − w|

∫

Sd−1

b(θ) [φ(v∗) + φ(w∗)− φ(v) − φ(w)] µNV (dv)µ
N
V (dw) dσ

=
〈
Q
(
µNV , µ

N
V

)
, φ
〉

which is precisely the term we are searching for thanks to assumption (A2) and Lemma 2.13:

I1(V ) =
〈
Q
(
µNV , µ

N
V

)
, φ
〉
= (G∞Φ)

(
µNV
)
.

As for the second term I2(V ), using that

Mm′
G1

(
µNV ∗

ij

)
:= MN

k1−2

(
V ∗
ij

)
=

1

N




∑

ℓ 6=i,j
〈vℓ〉k1−2


+ 〈v∗i 〉k1−2 + 〈v∗j 〉k1−2




≤ 1

N




∑

ℓ 6=i,j
〈vℓ〉k1−2


+ 2

(
〈vi〉2 + 〈vj〉2

)k1
2
−1




≤ 2k1/2

N

(
N∑

ℓ=1

〈vℓ〉k1−2

)
= CMN

k1−2(V ) = CMm′
G1

(
µNV
)
,
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we deduce

|I2(V )| ≤ CMN
k1−2(V ) [Φ]C1,η

Λ (PG1,rV
)


 1

2N

N∑

i,j=1

|vi − vj |
(

4

N

)1+η



≤ CMN
k1−2(V ) [Φ]

C1,η
Λ (PG1,rV

)


 1

Nη

1

N2

N∑

i,j=1

(
〈vi〉+ 〈vj〉

)



≤ C

Nη
MN
k1−2(V )MN

2 (V ) [Φ]C1,η
Λ (PG1,rV

).

We then use the elementary inequality

MN
k1−2(V )MN

2 (V ) ≤ Ck1 M
N
k1(V )

for a constant Ck1 depending on k1 but not on N , which yields

|I2(V )| ≤ C

Nη
MN
k1(V ) [Φ]C1,η

Λ (PG1,rV
).

We conclude that (6.5) holds by piling the two last estimates for I1 and I2.

6.6. Proof of (A4) with time growing bounds. Let us consider some 1-particle initial
data

f0, g0 ∈ PG1 .

Similary as in the previous section, we then define (under the assumption (6.1) on the
collision kernel) the associated solutions ft and gt to the nonlinear Boltzmann equation
(1.1), as well as

ht := LNLt [f0] (g0 − f0)

the solution to the linearized Boltzmann equation around ft, given by





∂tft = Q(ft, ft), f|t=0 = f0

∂tgt = Q(gt, gt), g|t=0 = g0

∂tht = 2Q(ft, ht), h|t=0 = h0 := g0 − f0.

We also define as before

ωt := gt − ft − ht.

We shall now again expand the limiting nonlinear semigroup in terms of the initial data,
around f0. The goal is to prove assumption (A4) with the choice of indices

(η′, η′′) = (1, (1 + η)/2).

This imposes the choice of weight

Λ2(f) = Λ1(f)
1
2 =

√
Mk1−2(f).

Lemma 6.3. For any given energy E > 0 and any η > 0 there exists

• some constant k1 ≥ 2 (depending on E and δ),
• some constant C (depending on E),

such that for any

r ∈ RE and f0, g0 ∈ PG1,r
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we have for any t ≥ 0:

‖gt − ft‖M1
2
≤ eC (1+t)

√
max {Mk1−2(f0),Mk1−2(g0)} ‖f0 − g0‖M1

2
,(6.6)

‖ht‖M1
2
≤ eC (1+t)

√
Mk1−2(f0) ‖f0 − g0‖M1

2
,(6.7)

‖ωt‖M1
2
≤ eC (1+t)

√
max {Mk1−2(f0),Mk1−2(g0)} ‖f0 − g0‖2−ηM1

2
.(6.8)

Proof of Lemma 6.3. We proceed in several steps and number the constant for clarity.
Let us define

∀ f ∈M1(Rd), ‖f‖M1
k
:=

∫

Rd

〈v〉k |f |(dv), ‖f‖M1
k,ℓ

:=

∫

Rd

〈v〉k (1 + log〈v〉)ℓ |f |(dv).

Step 1. The strategy. Existence and uniqueness for ft, gt and ht is a consequence of the
following important stability argument that we use several times. This estimate is due to
DiBlasio [22] in a L1 framework, and it has been recently extended to a measure framework
in [29, Lemma 3.2] (see also [32] and [48] for other argument of uniqueness for measure
solutions of the spatially homogeneous Boltzmann equation).

Let us sketch the argument for h. We first write

(6.9)
d

dt

∫
〈v〉2 |ht|(dv) ≤

∫∫∫
|ht|(dv) ft(dv∗) |u| b(θ)

[
〈v′〉2+〈v′∗〉2−〈v〉2−〈v∗〉2

]
dσ

+ 2

∫∫∫
|ht|(dv) ft(dv∗) |u| b(θ) 〈v∗〉2 dσ

(this formal computation can be justified by a regularization proceedure, we refer to [29]
for instance). Since the first term vanishes, we deduce that

(6.10)
d

dt
‖ht‖M1

2
≤ C1 ‖f‖M1

3
‖ht‖M1

2

for some constant C1 > 0 only depending on b.
Then in the case when

(6.11) ‖fs‖M1
3
∈ L1(0, t) on some time interval s ∈ [0, t]

we may integrate this differential inequality and we deduce that h is unique.
More precisely, we have established

(6.12) sup
s∈[0,t]

‖hs‖M1
2
≤ ‖g0 − f0‖M1

2
exp

(
C1

∫ t

0
‖fs‖M1

3
ds

)
,

and similar arguments imply

(6.13) sup
s∈[0,t]

‖fs − gs‖M1
2
≤ ‖g0 − f0‖M1

2
exp

(
C1

∫ t

0
‖fs + gs‖M1

3
ds

)
.

It is worth mentioning that one cannot prove (6.11) under the sole assumption

‖f0‖M1
2
<∞

on the initial data since it would contradict the non-uniqueness result of [49]. However, as
we prove in (6.15) below, one may show (thanks to the Povzner inequality, as developped
in [59, 47]) that (6.11) holds as soon as

‖f0‖M1
2,1
<∞.

This will be a key step for establishing (6.6) and (6.7).
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Now, our goal is to estimate the M1
2 norm of

ωt := gt − ft − ht

in terms of ‖g0 − f0‖M1
2
. The measure ωt satisfies the evolution equation:

∂tωt = Q(gt, gt)−Q(ft, ft)−Q(ht, ft)−Q(ft, ht), ω0 = 0

which can be rewritten as

∂tωt = Q(ωt, ft + gt) +Q(ht, gt − ft).

The same arguments as in (6.9)-(6.10) yield the following differential inequality

d

dt
‖ωt‖M1

2
≤ C2 ‖ωt‖M1

2
‖ft + gt‖M1

3
+ ‖Q(ht, gt − ft)‖M1

2
, ‖ω0‖M1

2
= 0

for some constant C2 > 0 depending on b.
We deduce

sup
s∈[0,t]

‖ωs‖M1
2
≤
(∫ t

0
‖Q(hs, fs − gs)‖M1

2
ds

)
exp

(
C2

∫ t

0
‖fs + gs‖M1

3
ds

)
.

Since

∫ t

0
‖Q(hs, fs − gs)‖M1

2
ds ≤ C2

(
sup
s∈[0,t]

‖hs‖M1
2

) (∫ t

0
‖gs − fs‖M1

3
ds

)

+ C2

(
sup
s∈[0,t]

‖gs − fs‖M1
2

) (∫ t

0
‖hs‖M1

3
ds

)
,

we deduce from (6.12) and (6.13)

(6.14) sup
s∈[0,t]

‖ωs‖M1
2
≤ C2 ‖g0 − f0‖M1

2
exp

(
C2

∫ t

0

(
‖fs‖M1

3
+ ‖gs‖M1

3

)
ds

)
×

×
[(∫ t

0
‖gs − fs‖M1

3

)
exp

(
C1

∫ t

0
‖fs‖M1

3

)

+

(∫ t

0
‖hs‖M1

3

)
exp

(
C1

∫ t

0

(
‖fs‖M1

3
+ ‖gs‖M1

3

)
ds

)]
.

Hence the problem now reduces to the obtaining of time integral controls over

‖fs‖M1
3
, ‖gs‖M1

3
, ‖fs − gs‖M1

3
and ‖hs‖M1

3
.

Step 2. Time integral control of f and g in M1
3 . In this step we prove

(6.15)

∫ t

0
‖fs‖M1

3,ℓ−1
dt ≤ C3(E) t+ C4 ‖f0‖M1

2,ℓ
ℓ = 1, 2,

for the solution ft, where C3(E) > 0 is a constant depending on the energy, and C4 > 0 is
a numerical constant. The same estimate obviously holds for the solution gt.

The estimates (6.15) are a consequence of the accurate version of the Povzner inequality
which has been proved in [59, 47]. Indeed it was shown in [59, Lemma 2.2] that for any
function

Ψ : Rd → R, Ψ(v) = ψ(|v|2) with ψ convex,

the solution ft to the hard spheres Boltzmann equation satisfies

d

dt

∫

Rd

Ψ(v) ft(dv) =

∫

Rd

∫

Rd

ft(dv) ft(dv∗) |v − v∗|KΨ(v, v∗)
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with KΨ = GΨ −HΨ, where the term GΨ “behaves mildly” (see below) and the term HΨ

is given by (see [59, formula (2.7)])

HΨ(v, v∗) = 2π

∫ π/2

0

[
ψ
(
|v|2 cos2 θ + |v∗|2 sin2 θ

)
− cos2 θ ψ

(
|v|2
)
− sin2 θ ψ

(
|v∗|2

) ]
dθ.

Note that HΨ ≥ 0 since its integrand is nonnegative because of the convexity of ψ.
More precisely, in the cases that we are interested with, namely

Ψ(v) = ψ2,ζ(|v|2) with ψk,ζ(r) = rk/2 (log r)ζ and ζ = 1, 2,

it is established in [59] that (with obvious notation)

∀ v, v∗ ∈ R
d,

∣∣Gψ2,ζ
(v, v∗)

∣∣ ≤ Cζ 〈v〉 (log 〈v〉)ζ 〈v∗〉 (log 〈v∗〉)ζ

for some constant C5(ζ) > 0 depending on ζ.
On the other hand, in the case ζ = 1 we compute, with the help of the the notation

x := cos2 θ and u = |v∗|/|v|,

∀x ∈ [1/4, 3/4], ∀u ∈ [0, 1/2],

ψ2,1

(
|v|2 cos2 θ + |v∗|2 sin2 θ

)
− cos2 θ ψ2,1

(
|v|2
)
− sin2 θ ψ2,1

(
|v∗|2

)
=

= |v|2
[
(1− x)ψ2,1

(
u2
)
+ xψ2,1(1)− ψ2,1

(
(1− x)u2 + x

) ]
≥ C6 |v|2,

for some numerical constant C6 > 0, which only depends on the strict convexity of the
real function ψ2,1. We deduce that there exists a constant C7 > 0 such that

Hψ2,1(v, v∗) ≥ C7 |v|2 1|v|≥2 |v∗|.

Similarly, in the case ζ = 2, we have

∀x ∈ [1/4, 3/4], ∀u ∈ [0, 1/2],

ψ2,2

(
|v|2 cos2 θ + |v∗|2 sin2 θ

)
− cos2 θ ψ2,2

(
|v|2
)
− sin2 θ ψ2,2

(
|v∗|2

)
=

= 2 |v|2 log |v|2
{
(1− x)ψ2,1

(
u2
)
+ xψ2,1(1) − ψ2,1

(
(1− x)u2 + x

)}

+ |v|2
[
(1− x)ψ2,2

(
u2
)
+ xψ2,2(1) − ψ2,2

(
(1− x)u2 + x

) ]
≥ C8 |v|2 log |v|2,

for some constant C8 > 0 depending on the strict convexity of ψ2,1 and ψ2,2. Hence we
obtain for some constant C9 > 0

Hψ2,2(v, v∗) ≥ C9 |v|2 log |v|2 1|v|≥2 |v∗|.

Putting together the estimates obtained on G2,ζ and H2,ζ we deduce

|v − v∗|K2,ζ ≤ C10 〈v〉2 〈v∗〉2 log 〈v〉 log 〈v∗〉 − C11 |v − v∗| |v|2 (log |v|)ζ−1 1|v|≥2 |v∗|

for some constants C10, C11 > 0. Since

|v − v∗| |v|2 (log |v|)ζ−1 1|v|≥2 |v∗| ≥ Cst. 〈v〉3 (log〈v〉)ζ−1 1|v|≥2 |v∗| −Cst.

≥ Cst. 〈v〉3 (log〈v〉)ζ−1 −Cst. 〈v〉2 〈v∗〉2 log 〈v〉 log 〈v∗〉
we deduce

(6.16) |v − v∗|K2,ζ ≤ C12 (〈v〉2 + 〈v∗〉2)− C13 〈v〉3 (log〈v〉)ζ−1

for some constants C12, C13 > 0, and we finally obtain the differential inequality

d

dt
‖ft‖M1

2,ζ
≤ 2C12 (1 + E)− C13M3,ζ−1,

from which (6.15) follows.

Step 3. Exponential time integral control of f and g in M1
3 .
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This step yields a proof of (6.6) and (6.7)).
Let us first prove that

(6.17) ∀ t ≥ 0, e
(2C1+C2)

∫ t
0

(

‖fs‖M1
3
+‖gs‖M1

3

)

ds
≤ eC14 (1+E) t (max {Mk(f0),Mk(g0)})

1
6 ,

for some constant C14 > 0, for any k ≥ kE , with kE big enough depending on the energy
E .

We shall use the previous step and an interpolation argument. For any given probability
measure

f ∈ Pk(R
d) with M2(f) ≤ E ,

we have for any a > 2

‖f‖M1
2,1

=

∫

Rd

〈v〉2
(
1 +

log(〈v〉2)
2

) (
1〈v〉2≤a + 1〈v〉2≥a

)
f(dv)

≤ (1 + E)
(
1 +

log a

2

)
+

1

a

∫

Rd

〈v〉4 (1 + log〈v〉) f(dv)

≤ (1 + E)
(
1 +

log a

2

)
+

1

a
‖f‖M1

5

where we have used inequality log x ≤ x− 1 on x ≥ 1 in the last step.
By choosing

a := ‖f‖2M1
5
,

we get

(6.18) ‖f‖M1
2,1

≤ 2 (1 + E)
(
1 + log ‖f‖M1

5

)
.

Remark 6.4. Observe here that it was absolutely crucial to be able to control the right
hand side of (6.15) in terms of theM1

2,1 moment, that is only a logarithmic loss of moment

as compared to M1
2 . This is what allows us to control this right hand side in terms of the

logarithm of a higher moment of f , so that the exponential in (6.17) can be controlled
in terms of some polynomial moment of f , hence fulfilling the requirement on the loss
of weight of the stability on the semigroup for the abstract method. Recall indeed that
the moment associated with the weight Λ1 has to be propagated along the flow of the
N -particle system. And we have been unable to control an exponential moment for such
a high-dimension evolution.

On the other hand, the following elementary Hölder inequality holds

(6.19) ∀ k, k′ ∈ N, k′ ≤ k, ∀ f ∈M1
k , ‖f‖M1

k′
≤ ‖f‖1−k

′/k
M1 ‖f‖k

′/k

M1
k

≤ ‖f‖k
′/k

M1
k
.

Then estimate (6.17) follows from (6.15), (6.18) and (6.19) with k′ = 5 and k ≥ 5 large
enough in such a way that

(C1 + C2) C4 2 (1 + E) 5
k
≤ 1

6
.

We then deduce (6.6) from (6.13), and (similarly) (6.7) from (6.12).

Step 4. Time integral control on d and h. Let us denote as before

dt := ft − gt.
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Let us prove

(6.20)

(∫ t

0
‖ds‖M1

3
ds

)
and

(∫ t

0
‖hs‖M1

3
ds

)

≤ C15 ‖d0‖M1
2
e
C1

∫ t
0

(

‖fs‖M1
3
+‖gs‖M1

3

)

ds (
C3(E) t+ C4 ‖f0‖M1

2,2

)
+ ‖d0‖M1

2,1
.

for some energy dependent constant CE and some numerical constant C ′. Performing
similar computations to those leading to (6.9), we obtain

d

dt
‖ht‖M1

2,1
≤

∫ ∫
|ht|(dv) ft(dv∗) |v − v∗| K2,1(v, v∗)

+C16

∫ ∫ ∫
|ht|(dv) ft(dv∗) |v − v∗| 〈v∗〉2 (1 + log〈v∗〉)

for some constant C16 > 0 depending on b. Thanks to the Povzner inequality (6.16) (with
ζ = 1), we deduce for some constants C17, C18 > 0

d

dt
‖ht‖M1

2,1
≤ C17 ‖ht‖M1

2
‖ft‖M1

3,1
−C18 ‖ht‖M1

3
.

Integrating this differential inequality yields

‖ht‖M1
2,1

+ C18

∫ t

0
‖hs‖M1

3
ds ≤ C17

(
sup
s∈[0,t]

‖hs‖M1
2

) (∫ t

0
‖fs‖M1

3,1
ds

)
+ ‖h0‖M1

2,1
.

Using the previous pointwise control on ‖ht‖M1
2
and (6.15) (with ζ = 2) we get

∫ t

0
‖hs‖M1

3
ds ≤ C16

C17
‖d0‖M1

2
e
C1

∫ t
0 ‖fs‖M1

3
ds
(
C3(E) t+ C4 ‖f0‖M1

2,2

)
+ ‖d0‖M1

2,1
.

Arguing similarly for dt, we deduce (6.20).

Step 5. Conclusion. We first rewrite (6.14) as

sup
s∈[0,t]

‖ωs‖M1
2

≤ C2 ‖d0‖M1
2
e
(C1+C2)

∫ t
0

(

‖fs‖M1
3
+‖gs‖M1

3

)

ds
(∫ t

0

(
‖ds‖M1

3
+ ‖hs‖M1

3

)
ds

)
.

Then we use the estimate (6.20) for the last term:

sup
s∈[0,t]

‖ωs‖M1
2

≤ C2C15 ‖d0‖M1
2
‖d0‖M1

2,1
e
(2C1+C2)

∫ t
0

(

‖fs‖M1
3
+‖gs‖M1

3

)

ds (
C3(E) t+ C4 ‖f0‖M1

2,2

)
.

Finally we use estimate (6.17) for the exponential term with k = k1 and we obtain

sup
s∈[0,t]

‖ωs‖M1
2
≤ C2 C15 ‖d0‖M1

2
‖d0‖M1

2,1
×

× eC14 (1+E) t (max {Mk(f0),Mk(g0)})
1
4

(
C3(E) t+ C4 ‖f0‖M1

2,2

)
.

Then arguing as in the end of Step 3, for any η ∈ (0, 1), using (6.19) with k1 large enough,
we have

‖d0‖M1
2,1

≤ (max {Mk(f0),Mk(g0)})
1
6 ‖d0‖1−ηM1

2

and

‖f0‖M1
2,2

≤ (max {Mk(f0),Mk(g0)})
1
6 .
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We conclude with

sup
s∈[0,t]

‖ωs‖M1
2
≤ eC (1+t)

√
max {Mk(f0),Mk(g0)} ‖f0 − g0‖2−ηM1 ,

from which estimate (6.8) follows. �

6.7. Proof of (A4) uniformly in time. Let us start from an auxiliary result from [60].
Let us define the linearized Boltzmann collision operator at γ

Lγ(f) = 2Q(γ, f)

where

γ =
e−

|v−u|2

2T

(2πT )d

is a maxwellian distribution with momentum u ∈ R
d and temperature T > 0.

Theorem 6.5 (Theorem 1.2 in [60]). First the linearized Boltzmann semigroup eLγ t for
hard spheres satisfies

(6.21)
∥∥eLγ t

∥∥
L1(m−1

z )
≤ Cz e

−λ t

where

mz(v) := ez |v|, z > 0,

and λ = λ(T ) is the optimal rate, given by the first non-zero eigenvalue of the linearized
operator Lγ in the smaller space L2(γ−1).

Second the nonlinear Boltzmann semigroup SNLt satisfies

(6.22)
∥∥SNLt (f0)− γ

∥∥
L1(m−1

z )
≤ Cz e

−λ t ‖f0 − γ‖L1(m−1
z )

where γ = γf0 is the maxwellian equilibrium associated with f0:

γ(v) =
e−

|v−u|2

2T

(2πT )d

with

∀ i = 1, . . . , d, ui =

∫

Rd

f0 vi dv and T =
1

d

∫

Rd

f0 |v|2 dv

and Cz is some constant possibly depending on z and the energy E of the solution consid-
ered, and λ = λ(T ) is the same rate function as before.

Let us now prove uniform in time estimate for the expansion of the limiting semigroup
in terms of the initial data.

Lemma 6.6. For any given energy E > 0 and for any η ∈ (0, 1), there exists

• some constant kE,η ≥ 2 (depending on E and η),
• some constant C (depending on E),

such that for any

f0, g0 ∈ PG1(R
d)

satisfying

∀ i = 1, . . . , d, 〈f0, vi〉 = 〈g0, vi〉 and
〈
f0, |v|2

〉
=
〈
g0, |v|2

〉
≤ E ,
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and for any k ≥ kE,η we have

‖gt − ft‖M1
2
≤ C e−

λ
2
t
√

max {Mk(f0), Mk(g0)} ‖g0 − f0‖1−ηM1
2
,(6.23)

‖ht‖M1
2
≤ C e−

λ
2
t
√
Mk(f0) ‖g0 − f0‖1−ηM1

2
,(6.24)

‖ωt‖M1
2
≤ C e−

λ
2
t
√

max {Mk(f0), Mk(g0)} ‖g0 − f0‖2−ηM1
2
.(6.25)

Note that these estimates imply (A4) with T = ∞, PG2 = PG1 .

Remark 6.7. Observe that in the following proof we shall use moment production bounds
on the limiting equation. Indeed once stability estimates for small times have been secured
(as in Lemma 6.3), one can use, for t ≥ T0 > 0, moments production whose bounds only
depend on the energy of the solution. This, together with the linearized theory in L1

setting with exponential moment bounds of Theorem 6.5, will be the key to the following
proof.

Proof of Lemma 6.6. From [48, Theorem 1.2-(b)] (see also [1] for a simpler different proof),
there exists some constants z, Z (only depending on the collision kernel and the energy of
the solutions) such that

(6.26) sup
t≥1

‖ft + gt + ht‖L1
m2z

≤ Z, m2z(v) := e2 z |v|

(note that the proof in [48] applies to the solutions ft and gt, however it is straightforward
to apply exactly the same proof to the linearized solution ht around ft, once exponential
moment is known on ft).

We also know from (6.22) that (maybe by choosing a larger Z)

(6.27) ∀ t ≥ 1 ‖ft − γ‖L1
m2z

+ ‖gt − γ‖L1
m2z

≤ 2Z e−λ t,

where

γ := γf0 = γg0 =
e−

|v−u|2

2T

(2πT )d

with

∀ i = 1, . . . , d, ui = 〈f, vi〉 = 〈f, vi〉 and T =
1

d
〈f, |v|2〉 = 1

d
〈g, |v|2〉

stands for the normalized maxwellian associated to f0 and g0.
We write

∂t(ft − gt) = Q(ft − gt, ft + gt)

= Lγ(ft − gt) +Q(ft − gt, ft − γ) +Q(ft − gt, gt − γ)

and, using also (6.21) on the linearized semigroup, we deduce for

u(t) := ‖ft − gt‖M1
mz

the following differential inequality for t ≥ T0 ≥ 1

u(t) ≤ C e−λ (t−T0) u(T0)

+ C

∫ t

T0

e−λ (t−s)
(
‖Q(fs − gs, fs − γ)‖M1(mz)

+ ‖Q(fs − gs, gs − γ)‖M1(mz)

)
ds

(this formal inequality and next ones can easily be justified rigorously by a regulariz-
ing proceedure and using a uniqueness result for measure solutions such as [32, 29, 48]).
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Therefore we obtain

u(t) ≤ C e−λ (t−T0) u(T0)

+ C

∫ t

T0

e−λ (t−s)
(
‖fs − γ‖M1(〈v〉mz)

+ ‖gs − γ‖M1(〈v〉mz)

)
‖fs − gs‖M1(〈v〉mz)

ds.

We then use the control of M1(〈v〉mz) by M
1(m2z) together with the controls (6.26)-

(6.27), the decay control (6.21) and the estimate

e−λ s−λ (t−s) ≤ e−
λ
2
t−λ

2
s.

We get

u(t) ≤ C e−λ (t−T0) u(T0) + C e−
λ
2
t

∫ t

T0

e−
λ
2
s ‖fs − gs‖M1(〈v〉mz)

ds.

We then use the following control for any a > 0:

‖f − g‖M1
〈v〉mz

=

∫
|f − g| 〈v〉 ez |v|

≤ a

∫

|v|≤a
|f − g| ez |v| + e−z a

∫

|v|≥a
(f + g) e2 z |v|

≤ a u(t) + e−z a Z.

Hence we get

‖f − g‖M1
〈v〉mz

≤
{
u+ e−z Z ≤ (1 + Z)u when u ≥ 1, (choosing a := 1)

1
z | log u|u+ uZ when u ≤ 1 (choosing − z a := log u)

and we deduce

‖f − g‖M1
〈v〉mz

≤ K u (1 + (log u)−) , K := 1 +
1

z
+ Z.

Then for any δ ∈ (0, 1), we have, by choosing T0 large enough,

∀ t ≥ T0, e−
λ
2
t ≤ δ e−

λ
4
t

and we conclude with the following integral inequality

(6.28) u(t) ≤ C e−λ (t−T0) u(T0) + δ e−
λ
4
t

∫ t

T0

e−
λ
2
s us

(
1 + (log us)−

)
ds.

Let us prove that this integral inequality implies

(6.29) ∀ t ≥ T0, u(t) ≤ C e−
λ
4
t u(T0)

1−δ .

Consider the case of equality in (6.28). Then we have

u(t) ≥ e−λ (t−T0) u (T0)

and therefore (
1 + (log ut)−

)
≤
(
1 + (log u(T0))− + λ (t− T0)

)
.

We then have

U(t) :=

∫ t

T0

e−
λ
2
s us

(
1 + (log us)−

)
ds

≤
∫ t

T0

e−
λ
2
s us

(
1 + (log u(T0))− + λ (s− T0)

)
ds

≤
(
1 + (log u(T0))−

) ∫ t

T0

e−
λ
4
s us ds.
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By a Gronwall-like argument we can therefore obtain

u(t) ≤ C e−λ (t−T0) u(T0) + C δ e−
λ
4
t
(
1 + (log u(T0))−

)
u(T0).

Then thanks to the inequality

∀x ∈ (0, 1], −(log x)x ≤ x1−δ

δ

we can prove (6.29) when u(T0) ≤ 1, and in the case when u(T0) ≥ 1, we can use (6.26)
again to get

u(T0) ≤ (2Z)δ u(T0)
1−δ .

This concludes the proof of the claimed inequality (6.29).
Then estimate (6.23) follows by choosing δ small enough (in relation to η) and then

connecting the last estimate (6.29) from time T0 on together with the previous finite time
estimate (6.6) from time 0 until time T0.

Then the estimate (6.24) is proved exactly in the same way by using the equation

∂tht = Lγ(ft − gt) +Q(ht, ft − γ)

(which is even simpler than the equation for ft − gt).
Concerning the estimate (6.25) we start from the equation

∂tωt = 2Lγ(ht) +Q(ωt, ft − γ) +Q(ωt, gt − γ) +Q(ht, dt).

Then we establish on
y(t) := ‖ωt‖M1

mz

the following differential inequality

y(t) ≤ C e−λ (t−T0) y(T0) + C δ e−
λ
4
t
(
1 + (log y(T0))−

)
y(T0)

+ C e−
λ
2
t ‖dT0‖1−δM1

mz
‖hT0‖1−δM1

mz

which implies

y(t) ≤ C e−
λ
4
t
(
y(T0)

1−δ + ‖dT0‖1−δM1
mz

‖hT0‖1−δM1
mz

)
.

Then estimate (6.25) follows by choosing δ small enough (in relation to η) and then
connecting the last estimate from time T0 on together with the previous finite time estimate
(6.8) from time 0 until time T0. �

6.8. Proof of (A5) uniformly in time. Let us prove that for any z̄,Mz̄ ∈ (0,∞) there
exists some continuous function

Θ : R+ → R+, Θ(0) = 0,

such that for any

f0, g0 ∈ Pmz̄ (R
d), mz̄(v) := ez̄ |v|

such that
‖f0‖M1

mz̄
≤ Mz̄, ‖g0‖M1

mz̄
≤ Mz̄,

there holds
sup
t≥0

W1

(
SNLt (f0), S

NL
t (g0)

)
≤ Θ(W1 (f0, g0)) .

where Wt stands for the Kantorovich-Rubinstein distance. Let us denote

Wt :=W1

(
SNLt (f0), S

NL
t (g0)

)
.

As we shall see, we may choose

(6.30) Θ(w) := min

{
Θ̄, Θ̄ e1−(1+| logw|))1/2 ,

C1

(1 + | logw|) λ
2K

+ C2 w
α

}
, Θ(0) = 0,
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for some constants Θ̄, C1, C2 > 0 (only depending on z̄ and Mz̄).
We start off with the inequality

∀ t ≥ 0 Wt ≤ ‖(ft − gt)|v|‖M1 ≤ 1

2

∥∥(ft + gt)〈v〉2
∥∥
M1 = 1 + E =: Θ̄.

Let us now improve this inequality for small value of W0. Therefore we assume without
restriction that

W0 ≤
1

2
in the sequel.

On the one hand, it has been proved in [32, Theorem 2.2 and Corollary 2.3] that

(6.31) Wt ≤W0 +K

∫ t

0
Ws (1 + (logWs)−) ds,

for some constant K.
One can then check that the function

W̄ (t) := e1−e
−Kt

(W0)
e−Kt

satisfies

W̄ ′(t) = K
(
1− log W̄ (t)

)
W̄ (t), W̄ (0) =W0.

Therefore it is a super-solution of the differential inequality (6.31) as long as Wt ≤ 1. It
is an easy computation that this super-solution satisfies

W̄ (t) ≤ 1 as long as t ≤ t0 :=
log (1 + | logW0|)

K
.

Observe also that W̄ (t) is increasing on t ∈ [0, t0].
We then define

(6.32) t1 :=
t0
2

=
log (1 + | logW0|)

2K

and we deduce the following bound on the solution of (6.31):

(6.33) ∀ t ∈ [0, t1] , Wt ≤ W̄t ≤ W̄t1 = e1−(1+| logW0|))1/2 .

On the other hand, from (6.22), there are constants λ,Z > 0, z ∈ (0, z̄) such that

(6.34) ∀ t ≥ 0 ‖ft − γf0‖L1
mz

+ ‖gt − γg0‖L1
mz

≤ Z e−λ t,

where γf0 and γg0 stand again for the normalized maxwellian associated to f0 and g0.
We denote by uf0 and ug0 the momentum of f0 and g0

uf0 = 〈f0, v〉 , ug0 = 〈g0, v〉 ,
by Tf0 and Tg0 the temperature of f0 and g0

Tf0 =
1

d

〈
f0, |v − uf0 |2

〉
, Tg0 =

1

d

〈
g0, |v − ug0 |2

〉
,

and by Ef0 and Eg0 the energy of to f0 and g0

Ef0 =
〈
f0, |v|2

〉
, Eg0 =

〈
g0, |v|2

〉
.

Then we can use (4.5) for some

s > 0 large enough and α ∈
(
0,

1

2s

)
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and we compute

W1 (γf0 , γg0) ≤ C
(
‖γf0 − γg0‖2H−s

)α

≤ C




∫

Rd

∣∣∣∣e
−θf0

|ξ|2

2
−i uf0

√
θf0 ξ − e−θg0

|ξ|2

2
−i ug0

√
θg0 ξ

∣∣∣∣
2

〈ξ〉2s dξ




α

≤ C

(∫

Rd

|Tf0 − Tg0 |2 |ξ|4 +
∣∣uf0

√
Tf0 − ug0

√
Tg0
∣∣2 |ξ|2

〈ξ〉2s dξ

)α

≤ C
(
|Tf0 − Tg0 |2α + |uf0 − ug0 |2α

)

≤ C
(
|Ef0 − Eg0 |2α + |uf0 − ug0 |2α

)

≤ C
(
W2(f0, g0)

2α +W1(f0, g0)
2α
)

≤ C
(
W1(f0, g0)

α +W1(f0, g0)
2α
)

(6.35)

where the final constant C > 0 depends on s > 0 as well as on upper and lower bounds
on the temperatures of f0 and g0.

Remark 6.8. We also refer to [21] for more general estimates of the Wasserstein distance
between two gaussians. Such refined estimates are however not needed in our study.

Then we combine (6.34) and (6.35) by triangular inequality to get

(6.36) ∀ t ≥ 0 Wt ≤ C1 e
−λ t + C2W

α
0

for two constants C1, C2 > 0.
We then consider times t ≥ t1 and we deduce from (6.32) and (6.36) the following bound

from above

(6.37) ∀ t ≥ t1, Wt ≤ C1 e
−λ t1 + C2W

α
0 =

C1

(1 + | logW0|)
λ
2K

+ C2W
α
0 .

It is then straightforward to conclude the proof of (A5) uniformly in time for the function
(6.30) by combining (6.33) and (6.37).

By using Theorem 3.1 whose assumptions have been proved above, this concludes
the proof of point (i) in Theorem 6.1 together with the the estimate on WN

W1
(f) from

Lemma 4.2.
One can also conclude the proof of point (ii) in Theorem 6.1 by using

• Lemma 4.4 for the construction of the sequence initial data fN0 which satisfies the
required integral and support moment bounds,

• The previous in order to apply Theorem 3.1,
• Lemma 4.7 in order to estimate

WW1

(
πNP
(
fN0
)
, f0
) N→∞−−−−→ 0.

6.9. Proof of infinite-dimensional Wasserstein chaos. Let us now prove Theorem 6.2.
Its proof is similar to Theorem 5.3.

First the proof of (6.3) as a consequence of point (i) in Theorem 6.1 and [37, Theo-
rem 1.1] is strictly similar to the one of (5.8) as a consequence of point (i) in Theorem 5.1
and [37, Theorem 1.1].

Then the proof of (6.4) is also similar to the one of (5.9), the only difference being that
one needs the following result of lower bound (independent of N) on the spectral gap of
the N -particle system.
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Theorem 6.9 ([11]). Consider the operator LHS for the hard spheres N -particle model
with collision kernel B(v−w) = |v−w|. Then there is a constant λ > 0 such that for any
probability fN on SN one has

〈
LHSf

N , fN
〉
L2(SN )

≤ −λ
∥∥fN

∥∥
L2(SN )

.

where SN is the hypersurface

SN :=

{
V ∈ EN ;

1

N

N∑

k=1

vk = 0 and
1

N

N∑

k=1

|vk|2 = 1

}
.

and for some constant λ > 0 independent of N .

Then using Theorem 6.9 we deduce that

∀N ≥ 1, ∀ t ≥ 0
∥∥hN − 1

∥∥
L2(SN ,γN )

≤ e−λ t
∥∥hN0 − 1

∥∥
L2(SN ,γN )

,

where hN = dfN/dγN is the Radon-Nikodym derivative of fN with respect to the measure
γN and the end of proof of (6.4) is then exactly similar to the one of (5.9).

7. H-theorem and entropic chaos

This section is concerned with the H-theorem. We answer a question raised by Kac [42]
about the derivation of the H-theorem.

7.1. Statement of the results. Our main results of this section state as follows:

Theorem 7.10. Consider the Boltzmann collision process for Maxwell molecules (with or
without cutoff) or hard spheres, and some initial data

f0 ∈ L∞
(
R
d
)

s. t.

∫

Rd

ez |v| df0(v) < +∞

for some z > 0, and the sequence of N -particle initial data (fN0 )N≥1 constructed in
Lemma 4.4 and 4.7.

Then we have:

(i) In the case of Maxwell molecules with cut-off and hard spheres, if the initial data
is entropy-chaotic in the sense

1

N
H
(
fN0 |γN

) N→+∞−−−−−→ H (f0|γ) ,

with

H
(
fN0
)
:=

∫

SN

hN0 log hN0 γN (dV ), hN0 :=
dfN0
dγN

,

then the solution is also entropy chaotic for any later time:

∀ t ≥ 0,
1

N
H
(
fNt |γN

) N→+∞−−−−−→ H (ft|γ) .

This proves the derivation of the H-theorem in this context.
(ii) In the case of Maxwell molecules, and assuming moreover that the Fisher informa-

tion of the initial data f0 is finite:
∫

Rd

|∇vf0|2
f0

dv < +∞,

the following estimate on the relaxation induced by the H-theorem uniformly in the
number of particles also holds:

∀N ≥ 1,
1

N
H
(
fNt |γN

)
≤ β(t)

for some function β(t) → 0 as t→ ∞.
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Remarks 7.11. (1) The assumptions on the initial data could be relaxed to just P4∩L∞

as in point (iii) of Theorem 5.1. However this stronger allows to apply the previous
theorems for hard spheres and Maxwell molecules. We do not search for optimal
statement here, but rather emphasize the ideas of our method.

(2) A stronger notion of entropy chaoticity could be

1

N
H
(
fN |

[
f⊗N

]
SN

) N→+∞−−−−−→ 0.

The propagation of such a stronger property is an interesting open question.
(3) The point (ii) holds for the hard spheres conditionally to a bound on the Fisher

information uniformly in time and in the number of particle. However at now,
proving such a bound for the many-particle hard spheres jump process is an open
problem.

(4) In point (ii) one could expect to have

∀N ∈ N
∗, ∀ t ≥ 0

1

N
H
(
fNt |γN

)
≤ C e−λ t.

7.2. Propagation of entropic chaos and derivation of the H-theorem. In this
subsection we shall prove the point (i) of Theorem 7.10. Its proof relies on a convexity
argument.

Let us define hN := dfN/dγN and then compute

d

dt

1

N
H
(
fNt |γN

)
= −DN

(
fNt
)

:= − 1

2N2

∫

SN

∑

i 6=j

∫

Sd−1

(
hNt (V

∗
ij)− hNt (V )

)
log

hNt (V
∗
ij)

hNt (V )
B(vi − vj , σ) dσ γ

N (dV )

where we recall that V ∗
ij was defined in (5.1), which implies

(7.38) ∀ t ≥ 0,
1

N
H
(
fNt |γN

)
+

∫ t

0
DN

(
fNs
)
ds =

1

N
H
(
fN0 |γN

)
.

We also note that the same kind of equality is true at the limit (see e.g. [47])

∀ t ≥ 0, H (ft|γ) +
∫ t

0
D∞ (fs) ds = H (f0|γ)

with

D∞ (f) :=
1

2

∫

Rd×Rd×Sd−1

(
f ′f ′∗ − ff∗

)
log

f ′f ′∗
ff∗

B(v − v∗, σ) dv dv∗ dσ

(be careful to the factor 1/2 in our definition of the collision operator (1.2) when computing
the entropy production functional).

We then have the following lower semi-continuity property on these functionals, as a
consequence of their convexity property.

Lemma 7.12. The many-particle relative entropy and entropy production functionals de-
fined above are lower semi-continuous: if the sequence (fN )N≥1 is f -chaotic then

lim inf
N→∞

1

N
H
(
fN |γN

)
≥ H(f |γ)

and

lim inf
N→∞

1

N
DN

(
fN
)
≥ D∞(f).
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Let us first explain how to conclude the proof of point (i) of Theorem 7.10 with this
lemma at hand. We first deduce from (7.38) and the entropic chaoticity of the initial data
that

∀ t ≥ 0,
1

N
H
(
fNt |γN

)
+

∫ t

0
DN

(
fNs
)
ds

N→∞−−−−→ H (f0|γ)

= H (ft|γ) +
∫ t

0
D∞ (fs) ds

Second we use Lemma 7.12 on the LHS to deduce that

∀ t ≥ 0, lim inf
N→∞

(
1

N
H
(
fNt |γN

)
+

∫ t

0
DN

(
fNt
))

≥ H (ft|γ) +
∫ t

0
D∞ (fs) ds

where each of the limit of the two non-negative terms on the LHS is greater that the
corresponding non-negative term in the RHS. We deduce from the two last equations that
necessarily

∀ t ≥ 0,
1

N
H
(
fNt |γN

) N→∞−−−−→ H (ft|γ)

and

∀ t ≥ 0,

∫ t

0
DN

(
fNs
)
ds

N→∞−−−−→
∫ t

0
D∞ (fs) ds

which concludes the proof of point (i) of Theorem 7.10.

Proof of Lemma 7.12. These inequalities are consequences of convexity properties. The
lower continuity property on the relative entropy on the spheres was proved in [12, Theo-
rem 12] (actually the proof in this reference is performed on the sphere SN−1, but extending
it to the invariant subspaces of our jump processes SN is straightforward). We refer to
[16] for a detailed proof of the latter.

Let us now prove the inequality for the entropy production functional DN . Denoting
Z = hN (V ∗

12)/h
N , we first rewrite thanks to the symmetry of fN as

DN
(
fN
)
=
N(N − 1)

2N2

∫

SN

∫

Sd−1

J(Z)B(v1 − v2, σ) f
N
2 (v1, v2) dσ

fN(dV )

fN2 (v1, v2)
,

where J(z) := (z − 1) log z and fN2 denotes the 2-marginal. Since the function z 7→ J(z)
is convex, we can apply a Jensen inequality according to the variables v3, . . . , vN with
reference probability measure fN/fN2 , which yields

DN
(
fN
)
≥ N(N − 1)

2N2

∫

v1,v2∈Rd

∫

Sd−1

J(Z̄)B(v1 − v2, σ) f
N
2 (v1, v2) dσ dv1 dv2

with

Z̄(v1, v2) :=

∫

v3,...,vN∈SN (v1,v2)
Z

fN(V )

fN2 (v1, v2)
=
fN2 ((V ∗

12)1, (V
∗
12)2)

fN2 (v1, v2)
,

where SN (v1, v2) := {v3, . . . , vN ∈ EN−2, (v1, . . . , vN ) ∈ SN}. We therefore deduce a
control from below of the N -particle entropy production functional in terms of the 2-
particle entropy production functional, denoting (fN2 = fN2 ((V ∗

12)1, (V
∗
12)2)):

DN
(
fN
)
≥ N(N − 1)

2N2

∫

v1,v2∈Rd

∫

Sd−1

(
(fN2 )∗ − fN2

)
log

(fN2 )∗

fN2
B(v1 − v2, σ) dσ dv1 dv2

Finally we take advantage of the convexity of the functional

h(x, y) = (x− y) log
x

y
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which implies that the function

(f2, g2) →
∫

v1,v2∈Rd

∫

σ∈Sd−1

(f2 − g2) log
f2
g2
B(v1 − v2, σ)

is lower semi-continuous for the weak convergence of the 2-particle distributions f2 and
g2 as proved in [24, Step 2 of the proof]. Hence we obtain thanks to the chaoticity of the
second marginal

lim inf
N→∞

DN
(
fN
)

≥ 1

2

∫

v,v∗∈Rd

∫

Sd−1

(
f(v′)f(v′∗)− f(v)f(v∗)

)
log

f(v′)f(v′∗)
f(v)f(v∗)

B(v − v∗, σ) dσ dv dv∗

= D∞(f)

which concludes the proof. �

7.3. Many-particle relaxation rate in the H-theorem. In this subsection we shall
prove point (ii) in Theorem 7.10. Its proof goes in two steps. First we shall prove that
it follows from an estimate on the Fisher information thanks to the so-called “HWI”
interpolation inequality [72]. Second we shall prove such a uniform bound on the Fisher
information in the case of Maxwell molecules. Let us take the opportunity to thank
Maxime Hauray who kindly communicated to us a proof for the latter step.

Let us define the Fisher informations for the N -particle distribution:

I
(
fN
)
:=

∫

RdN

∣∣∇fN
∣∣2

fN
dV

and

I
(
fN |γN

)
:=

∫

SN

∣∣∇SNhN
∣∣2

hN
γN (dV ), hN :=

dfN

dγN

for a probability fN having a density with respect to the Lebesgue measure in R
dN and

with respect to the measure γN respectively. The gradient in this formula has to be
understood as the usual Riemannian geometry gradient in the manifold SN . The tangent
space TSNV (of dimension Nd− 2) at some given point V ∈ SN is given by

TSNV =

{
W ∈ R

dN s. t.
N∑

i=1

wi = 0 and W ⊥V

}
.

For more informations and other results on the Fisher informations on S
N−1 we refer

to [5]. We shall prove the following lemma whose proof is inspired from [71]).

Lemma 7.13. Consider the N -particle jump process for Maxwell molecules as defined in
Subsection 5.1 for a give N ≥ 1, and some initial data fN0 whose Fisher information is
finite I(fN0 |γN ) < +∞ on SN . Then one has the following uniform in time bound on the
Fisher information of the solution

∀ t ≥ 0, I
(
fNt |γN

)
≤ I

(
fN0 |γN

)
.

Proof of Lemma 7.13. We shall first consider the case of cutoff Maxwel molecules whose
collision kernel b is integrable, and for a positive and smooth solution fN on SN . These
assumptions can be relaxed by a mollification argument.

It is possible to study directly the estimate to be proved on the manifold SN , however
it means that one has to consider some local coordinates and local basis for the tangent
space. Another simpler method is to take advantage of the fact that the dynamics leaves
the energy unchanged.
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Starting from an initial data fN0 on SN we consider the flatened initial data

f̃N0 := α(E(V ))β(m(V )) fN0

(
V −m(V )√

E(V )

)

with E(V ) =

∑N
i=1 |vi|2
N

and m(V ) =

∑N
i=1 vi
N

.

Observe that from the conservation of energy and momentum and the uniqueness of the
solutions to the linear master N -particle equation

∀ t ≥ 0, f̃Nt := α(E(V ))β(m(V )) fNt

(
V −m(V )√

E(V )

)

where f̃Nt denotes the solution in R
dN starting from f̃N0 . If the functions α and β are

regular and compactly supported, as well as fN0 , this produces a smooth solution on R
dN .

Assume that the result on the Fisher information is true in R
dN :

I
(
f̃Nt

)
:=

∫

RdN

∣∣∣∇f̃Nt
∣∣∣
2

f̃Nt
dV ≤

∫

RdN

∣∣∣∇f̃N0
∣∣∣
2

f̃N0
dV = I

(
f̃N0

)
.

Then we have the orthogonal decomposition of the gradient locally in terms of radial and
ortho-radial directions

∇RdN f̃Nt = ∇E f̃
N
t +∇mf̃

N
t +∇SN f̃Nt = (∇Eα+∇mβ) f̃

N
t +∇SN f̃Nt

that we can plug into the Fisher information inequality:

I
(
f̃Nt

)
:= (∇Eα+∇mβ)

2 +

(∫

E,m
α(E)β(m)

) ∫

SN

∣∣∇SNhNt
∣∣2

hNt
γN (dV )

≤ (∇Eα+∇mβ)
2 +

(∫

E,m
α(E)β(m)

) ∫

SN

∣∣∇SNhN0
∣∣2

hN0
γN (dV ) = I

(
f̃N0

)
.

Dropping the terms which do not depend on time we obtain the desired inequality on SN .
Let us now prove the inequality on R

dN . Let us first fix some notation: the N -particle
solution fNt satisfies

∂tf
N =

1

N

N∑

i,j=1,i 6=j

∫

Sd−1

(
fN (rij,σ(V )) b (cos θij) dσ − fN (V )

)
dσ

=: NB
(
Q+,N (fN )− fN

)

where we use the following notations. We define

Q+,N(fN ) :=
1

N2

N∑

i,j=1,i 6=j
Q+,N
ij

(
fN
)
, Q+,N

ij

(
fN
)
:=

∫

Sd−1

fNij b (cos θij) dσ,

cos θij := σ · kij with kij = (vi − vj)/|vi − vj|
and where we assume that b is even and that∫

Sd−1

b(σ · k) dσ = CB for any k, |k| = 1.

For any function gN on R
dN shall use the shorthand notation gNij to denote the function

V 7→ g(rij,σ(V )), which depends also implicitly on σ. We shall make use of the measure
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preserving involution

Θij :




R
n × R

n × S
d−1 → R

n × R
n × S

d−1

(vi, vj , σ) 7→ (v′i, v
′
j , σ

′)

where σ′ = (vi − vj)/|vi − vj| = kij .

Finally as in [71], we shall use the following endomorphism of Rd

Mσk(x) = (k · σ)x− (k · x)σ
Pσk(x) = (σ · x)k +Mσk

and we recall that ‖Pσk(x)‖ ≤ ‖x‖ with equality only if x, σ, k are coplanar.

We claim that it is enough to prove that

(7.39) I
(
Q+,N (fN )

)
= I


 1

N2

N∑

i,j=1

∫

Sd−1

f (rij,σ(V )) b (cos θij) dσ


 ≤ CB I(f).

Indeed with this result at hand, we can write for ε > 0:

fNt+ε = e−NCBε fNt +N CB

∫ ε

0
eNCB(s−ε)Q+,N

(
fNt+s

)
ds

and therefore from the convexity of I

I
(
fNt+ε

)
≤ e−NCBε I

(
fNt
)
+
(
1− e−NCBε

)
I

(∫ ε

0
Q+,N

(
fNt+s

) N CB e
NCB(s−ε)

(1− e−NCBε)
ds

)
.

Observe that ∫ ε

0

N CB e
NCB(s−ε)

(1− e−NCBε)
ds = 1

and then we can use the convexity of I again to get

I
(
fNt+ε

)
≤ e−NCBε I

(
fNt
)
+

∫ ε

0
I
(
Q+,N

(
fNt+s

))
N CB e

NCB(s−ε) ds.

Finally using the claimed result (7.39) we obtain

I
(
fNt+ε

)
− I

(
fNt
)

ε
≤ −

(
1− e−NCBε

)

ε
I
(
fNt
)
+

1

ε

∫ ε

0
I
(
fNt+s

)
N C2

B e
NCB(s−ε) ds.

Then taking ε→ 0 and using Lebesgue’s theorem we deduce

d

dt
I
(
fNt
)
≤ −N CB I

(
fNt
)
+N CB I

(
fNt
)
≤ 0

which concludes the proof.
Let us now focus on the proof of the claim (7.39). Taking advantage of the convexity

of I, it is enough to prove

∀ i 6= j ∈ [|1, N |], I
(
Q+,N
ij

(
fN
))

≤ CB I
(
fN
)
.

Let us compute each partial derivative of Q+,N
ij

(
fN
)
. If ℓ /∈ {i, j} then the derivative

does not act on the kernel b and we obtain:

∇vℓ

(
Q+,N
ij

(
fN
))

=

∫

Sd−1

∇vℓ

(
fNij
)
b (cos θij) dσ =

∫

Sd−1

(
∇vℓf

N
)
ij
b (cos θij) dσ

= 2

∫

Sd−1

(√
fN
)
ij

(
∇vℓ

√
fN
)
ij
b (cos θij) dσ.
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If ℓ ∈ {i, j}, then it is slightly more complicated. Without restriction we perform
calculations in the case ℓ = i. Let us first prove the formula

(7.40) ∇vi

(
Q+,N
ij

(
fN
))

=

∫

Sd−1

[(
∇vif

N
)
ij
+
(
∇vjf

N
)
ij
+ Pσk

((
∇vif

N
)
ij
−
(
∇vjf

N
)
ij

)]
b (cos θij) dσ

(the same equality obviously holds where i is replaced by j).
Simple computations (see for instance [71]) yield

∇vi

(
fNij
)

=
1

2

((
∇vif

N
)
ij
+
(
∇vjf

N
)
ij

)
+

1

2

[((
∇vif

N
)
ij
−
(
∇vjf

N
)
ij

)
· σ
]
kij ,

∇σ

(
fNij
)

=
|vi − vj |

2

((
∇vif

N
)
ij
−
(
∇vjf

N
)
ij

)
,

∇vi [b (cos θij)] =
1

|vi − vj |
b′ (σ · kij) Πk⊥σ,

where Πk⊥ is the projection on the hyperplane k⊥. Using the first and third equality
above, we get

(7.41) ∇vi

(
Q+,N
ij

(
fN
))

=
1

2

∫

Sd−1

b (cos θij)
(
(∇vif)ij +

(
∇vjf

)
ij
+
[(

(∇vif)ij −
(
∇vjf

)
ij

)
· σ
]
k
)
dσ

+

(∫

Sd−1

b′ (cos θij)
fij

|vi − vj|
Πk⊥σ dσ

)

and we use the following formula of integration by part on the sphere Sd−1 (see [71, Lemma
2])

∫

Sd−1

b′ (cos θij) F (σ)Πk⊥σ dσ =

∫

Sd−1

b (cos θij) Mσk (∇σF (σ)) dσ

and the second equality above to rewrite the term involving b′ in (7.41) into

1

2

∫

Sd−1

b (cos θij) Mσk

(
(∇vif)ij −

(
∇vjf

)
ij

)
dσ

Putting all together, we get formula (7.40).
We deduce that for ℓ 6= i, j we have by Cauchy-Schwarz

∣∣∣∇vℓ

(
Q+,N
ij

(
fN
))∣∣∣

2

≤ 4

(∫

Sd−1

fNij b (cos θji) dσ

) (∫

Sd−1

∣∣∣∣
(
∇vℓ

√
fN
)
ij

∣∣∣∣
2

b (cos θij) dσ

)

and therefore

∣∣∣∇vℓ

(
Q+,N
ij

(
fN
))∣∣∣

2

Q+,N
ij (fN )

≤ 4

∫

Sd−1

∣∣∣∣
(
∇vℓ

√
fN
)
ij

∣∣∣∣
2

b (cos θij) dσ.
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Now integrating in V we obtain

Iℓ

(
Q+,N
ij

(
fN
))

≤ 4

∫

RdN

∫

Sd−1

∣∣∣∣
(
∇vℓ

√
fN
)
ij

∣∣∣∣
2

b (cos θij) dσ dV

≤ 4

∫

RdN

∫

Sd−1

∣∣∣
(
∇vℓ

√
fN
)∣∣∣

2
b (cos θij) dσ dV

≤ 4CB

∫

RdN

∣∣∣
(
∇vℓ

√
fN
)∣∣∣

2
dV =: Iℓ

(
fN
)

where we have used Cauchy-Schwartz’s inequality and the change of variable Θij, and
where Iℓ is defined from the last line (Fisher information restricted to the ℓ-th derivative).

When ℓ = i, j, we use (7.40) to get

∣∣∣∇vℓ

(
Q+,N
ij

(
fN
))∣∣∣

2
≤
(∫

Sd−1

fN b (cos θji) dσ

)

×
(∫

Sd−1

∣∣∣∣∣
(
∇vi

√
fN
)
+
(
∇vj

√
fN
)

+ Pσk

((
∇vj

√
fN
)
−
(
∇vj

√
fN
)) ∣∣∣∣∣

2

b (cos θij) dσ

)

where we have used Cauchy-Schwartz’s inequality and the change of variable Θij

Since for fixed V , Pσk is odd in σ and b(cos θij) is even in σ, we have
∫

Sd−1

A · Pσk(B) dσ = 0

for any functions A, B independent of σ. Using finally that Pσk has norm less than 1 (for
the subordinated norm to the euclidean norm) we get

∣∣∣∇vℓ

(
Q+,N
ij

(
fN
))∣∣∣

2
≤ 2

(∫

Sd−1

fN b (cos θji) dσ

)

×
(∫

Sd−1

∣∣∣∇vi

√
fN
∣∣∣
2
+
∣∣∣∇vj

√
fN
∣∣∣
2
b (cos θij) dσ

)

and therefore

Iℓ

(
Q+,N
ij

(
fN
))

≤ CB
Ii
(
fN
)
+ Ij

(
fN
)

2
.

Finally we end up with

I
(
Q+,N
ij

(
fN
))

= CB

N∑

ℓ=1

Iℓ

(
Q+,N
ij

(
fN
))

≤ CB

N∑

ℓ=1

Iℓ
(
fN
)
= CB I

(
fN
)

which concludes the proof. �

Let us now conclude the proof of point (ii) in Theorem 7.10. We make use of the so-
called “HWI” interpolation inequality on the manifold SN . Observe that SN has positive
Ricci curvature since it has positive curvature. Then [73, Theorem 30.21] implies that

1

N
H
(
fN |γN

)
≤ W2

(
fN , γN

)
√
N

√
I (fN |γN )

N
.

We can then use the uniform bound on the Fisher information provided by Lemma 7.13 (vi)
and the bound on the initial data to get:

I
(
fN |γN

)

N
≤ I

(
fN0 |γN

)

N
≤ C
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for some constant C > 0 independent of N . Moreover Lemma 4.1 and the propagation of
moments on the N -particle system in Lemma 5.4 imply that

W2

(
fN , γN

)
√
N

≤ C

(
W1

(
fN , γN

)

N

)α

for some constant C > 0 and exponent α > 0 independent of N . Then using Theorem 5.3
(case (b)) we deduce that

W2

(
fN , γN

)
√
N

≤ C

(
W1

(
fN , γN

)

N

)α
≤ β(t)

with β(t) → 0 as t→ +∞, which implies that

1

N
H
(
fN |γN

)
≤ C β(t)

and concludes the proof.

8. The BBGKY approach revisited

The so-called BBGKY (Bogoliubov, Born, Green, Kirkwood and Yvon) and statistical
solutions approach is very popular in physics and mathematics for studying many-particle
systems: see for instance [3] where this approach is used for Kac’s master equation for hard
spheres, or see, among many other works, the recent impressive series of papers [4, 26, 27,
28] where this approach is used for the derivation of nonlinear Schrödinger equations in
mean-field theory in quantum physics. The basic ideas underlying the BBGKY approach
to mean-field could be summarized as:

• Write a BBGKY hierarchy on marginals of the N -particle system and prove that
the N -particle system solutions converge to the solutions of an “infinite hierarchy”
when N goes to infinity.

• Then prove that solutions to this infinite hierarchy are unique, which is the hardest
part of this program.

• Then deduce the propagation of chaos by exhibiting, for any chaotic initial data
to the infinite hierarchy, a natural solution obtained by the infinite tensorization
of the 1-particle solution to the limiting nonlinear mean-field equation.

This section revisits the so-called BBGKY hierarchy and statistical solutions approach
in the case of collision processes, by showing (1) how these notions are included in our
functional framework (cf. the abstract semigroup T∞

t defined in Section 2), and (2) how to
give a proof of uniqueness and propagation of chaos based on them by using the functional
tools we have introduced.

8.1. The BBGKY hierarchy. Let us recall the master of the N -particle system under-
going a Boltzmann collision process (the notion of BBGKY hierarchy has wider application
range, but we shall stick to this concrete case for clarity), see (5.3)-(5.4):

(8.1) ∂t
〈
fNt , ϕ

〉
=
〈
fNt , G

Nϕ
〉

with (
GNϕ

)
(V ) =

1

N

∑

1≤i<j≤N
Γ (|vi − vj|)

∫

Sd−1

b(cos θij)
[
ϕ∗
ij − ϕ

]
dσ

where ϕ∗
ij = ϕ

(
V ∗
ij

)
and ϕ = ϕ(V ) ∈ Cb

(
R
Nd
)
.

Then the BBGKY hierarchy writes as folows. Let us recall the notation

fNℓ = Πℓ[f
N ] =

∫

vℓ+1,...,vN

dfN (vℓ+1, . . . , vN )
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for the marginals. Then integrating the master equation (8.1) against some test function
ϕ = ϕ(v1, . . . , vℓ) depending only on the first ℓ variables leads to

d

dt

〈
fNℓ , ϕ

〉
=
〈
fNℓ+1, G

N
ℓ+1(ϕ)

〉

where

GNℓ+1(ϕ) :=
1

N

∑

1≤i≤ℓ, 1≤j≤N, i 6=j
Γ (|vi − vj |)

∫

Sd−1

b(cos θij)
[
ϕ∗
ij − ϕ

]
dσ

Then denoting by

ZN
ij :=

〈
fN ,Γ (|vi − vj |)

∫

Sd−1

b(cos θij)
[
ϕ∗
ij − ϕ

]
dσ

〉

we can futher decompose this sum as

d

dt

〈
fNℓ , ϕ

〉
=

1

N

∑

i,j≤ℓ
ZN
ij +

1

N

∑

i≤ℓ<j
ZN
ij =

1

N

∑

i,j≤ℓ
ZN
ij +O

(
ℓ2

N

)

by observing that ZN
ij = 0 for i, j > ℓ, and using the symmetry of fN we finally deduce

(8.2)
d

dt

〈
fNℓ , ϕ

〉
=

(N − ℓ)

N

(
ℓ∑

i=1

ZN
i(ℓ+1)

)
+O

(
ℓ2

N

)
.

We thus end with a series of N coupled equations on the marginals fNℓ , where the

ℓ-equation (ℓ ≤ N − 1) depends on the fNℓ+1 marginal.

8.2. The infinite hierarchy and statistical solutions. Assume now that

∀ ℓ ≥ 1, fNℓ ⇀ πℓ in P
(
R
dℓ
)
.

Starting from (8.2) we obtain, for ϕ = ϕ(v1, . . . , vℓ) depending only on the first ℓ
variables,

d

dt
〈πℓ, ϕ〉 =

〈
πℓ+1, G

∞
ℓ+1(ϕ)

〉

where Gℓ+1(ϕ) ∈ Cb(R
d(ℓ+1)) is defined by

G∞
ℓ+1(ϕ) := Γ (|vi − vj |)

∫

Sd−1

b(cos θij)
[
ϕ∗
ij − ϕ

]
dσ.

In a more compact form, we have the following set of linear coupled evolution equations

(8.3) ∀ ℓ ≥ 1, ∂tπℓ = A∞
ℓ+1 (πℓ+1) with A∞

ℓ+1 :=
(
G∞
ℓ+1

)∗
.

Since the family of ℓ-particle probabilities πℓ is symmetric and compatible in the sense
that

∀ ℓ ≥ 1, Πℓ [πℓ+1] = πℓ

(this follows from the construction), we can associate by Hewitt-Savage’s Theorem [38]
a unique π ∈ P (P (Rd)) and this set of evolution equation translates into an evolution
equation

∂tπ = A∞(π) on P
(
P
(
R
d
))

of statistical solutions and the corresponding dual evolution

∂tΦ = Ḡ∞Φ on Cb

(
P
(
R
d
))

.

In order to make this heuristic rigorous at an abstract level, one needs at least some
tightness on the sequence (fNℓ )N≥ℓ for any ℓ, and some convergence

GNℓ+1(ϕ) → G∞
ℓ+1(ϕ)
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on compact subset of Rd(ℓ+1). Both are satisfied for Boltzmann collision processes con-
sidered in this paper (tightness follows from the moment estimates in Lemma 5.4 for
instance).

8.3. Uniqueness of statistical solutions and chaos. We now want, under appropriate
abstract assumptions, to identify the limit evolution in P (P (Rd)) or Cb(P (R

d)) obtained
from the hierarchy, and show that it coincides with the the pushforward evolution semi-
group T∞

t introduced in Subsection 2.3. Meanwhile we shall prove that the statistical
solutions to the infinite hierarchy are unique, and hence prove the propagation of chaos,
without any rate, but also under weaker assumptions than previously.

We shall make the following assumptions

(A1’) Assumptions on the N-particle system.

GN and TNt are well defined on Cb(E
N ) and invariant under permuta-

tion, and the associated solutions fNt satisfies:

∀ ℓ ≥ 1, the sequence (fNℓ )N≥ℓ is tight in PG1(E)⊗ℓ

where G1 is a Banach space and PG1(E) is defined in Definitions 2.4-2.5),
and is associated to a weight function mG1 and a constraint function mG1

,
and endowed with the metric induced from G1.

(A2’) Assumptions for the existence of the statistical and
pushforward semigroups.

For some δ ∈ (0, 1] and some ā ∈ (0,∞) we assume that for any a ∈
(ā,∞):
(i) The equation (2.1) generates a semigroup

SNLt : BPG1,a → BPG1,a

which is δ-Höder continuous locally uniformly in time, in the sense
that for any τ ∈ (0,∞) there exists Cτ ∈ (0,∞) such that

∀ f, g ∈ BPG1,a, sup
t∈[0,τ ]

∥∥SNLt f − SNLt g
∥∥
G1

≤ Cτ ‖f − g‖δG1
.

(ii) The application Q is bounded and δ-Hölder continuous from BPG1,a

into G1.
(iii) E is a locally compact Polish space and there is F1 in duality with G1

such that F1 is dense in Cb(E) in the sense of uniform convergence on
any compact set.

(A3’) Convergence of the generators.

For any fixed ℓ ∈ N
∗ and any ϕ ∈ Cb(E

ℓ), the sequence

GNℓ+1(ϕ) ∈ Cb
(
Eℓ+1

)
satisfies GNℓ+1ϕ

N→∞−−−−→ G∞
ℓ+1ϕ

uniformly on compact sets, whereG∞
ℓ+1ϕ satisfies the following compatibility

binary derivation structure:
for any ϕ = ϕ1 ⊗ ... ⊗ ϕℓ ∈ Cb(E)⊗ℓ and any V = (v1, ..., vℓ+1) ∈ Eℓ+1

(8.4) G∞
ℓ+1(ϕ)(V ) =

ℓ∑

i=1


∏

j 6=i
ϕj(vj)


 Q∗(ϕi) (vi, vℓ+1)

where Q∗ is defined from Q through the duality relation

∀ f ∈ PG1 , ∀ψ ∈ Cb(E), 〈Q(f, f), ψ〉 = 〈f ⊗ f,Q∗(ψ)〉 .
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Remark 8.1. The identity (8.4) is called compatibility binary derivation structure for the
following reasons: compatibility since it is a natural condition in order that any solution ft
to the nonlinear Boltzmann provides a tensorized solution to the BBGKY hierarchy (8.3).
Indeed, considering such a solution

ft ∈ C (R+;PG1(E)) and ϕ = ϕ1 ⊗ . . . ⊗ ϕℓ ∈ Cb(E)⊗ℓ

we compute

d

dt

〈
f⊗ℓt , ϕ

〉
=

ℓ∑

i=1


∏

j 6=i
〈ft, ϕj〉


 d

dt
〈ft, ϕi〉 =

ℓ∑

i=1


∏

j 6=i
〈ft, ϕj〉


 〈Q (ft, ft) , ϕi〉

=

ℓ∑

i=1


∏

j 6=i
〈ft, ϕj〉


 〈ft ⊗ ft, Q

∗ (ϕi)〉 =
〈
f⊗ℓ+1
t , G∞

ℓ+1ϕ
〉
.

The word binary refers to the fact that G∞
ℓ+1 decomposes in function acting on one variable

and adding one variable, which corresponds to the binary nature of the collisions. Finally
the word derivation refers to the fact that the following distributivity property holds

G∞
ℓ+1 (ϕ⊗ ψ) = G∞

ℓ+1 (ϕ)⊗ ψ + ϕ⊗G∞
ℓ+1 (ψ) .

Let us mention that this distributivity property is at the basis of the original combinatorial
proof of Kac [42] of propagation of chaos for the simplified Boltzmann-Kac equation.

(A4’) Differential stability of the limiting semigroup.

We consider some Banach space G2 ⊃ G1 (where G1 was defined in (A2))
and the corresponding probability space PG2(E) (see Definitions 2.4-2.5)
with the weight function mG2 and the constraint function mG2

, and en-
dowed with the metric induced from G2.

We assume that the flow SNLt is UC1
Λ2
(PG1,r, PG2) for any r ∈ RG1

in the
sense that there exists C∞

T > 0 such that

sup
r∈RG1

∫ T

0

([
SNLt

]
C1,0

Λ2
(PG1,r

,PG2
)
+
[
SNLt

]
C0,1

Λ2
(PG1,r

,PG2
)

)
dt ≤ C∞

T .

Thanks to (A2’), we know from Lemma 2.13 that for any Φ ∈ UCb(PG1 ,R) we may
define the C0-semigroup T∞

t [Φ] ∈ UCb(PG1) by

T∞
t [Φ](f) = Φ

(
SNLt f

)
,

and so that Φt = T∞
t [Φ] satisfies the equation

∂tΦ = G∞[Φ]

with a generator G∞ which is a closed operator on UCb(PG1) and has domain Dom(G∞)
which contains C1(PG1), and is defined by

G∞[Φ](f) = 〈DΦ(f), Q(f, f)〉G′
1,G1

= 〈Q(f, f),DΦ(f)〉PG1
,Cb(PG1

) .

The evolution corresponds to the following dual evolution equation

(8.5)
d

dt
〈πt,Φ〉 = 〈πt, G∞[Φ]〉 .

Our goal is to prove (1) that the evolution equations (8.3) and (8.5) (or in other words
that Ḡ∞ = G∞, and (2) most importantly that the solution to these equation is given by
the characteristics equation

(8.6) ∀Φ ∈ UCb(PG1 ;R) 〈πt,Φ〉 = 〈π0, T∞
t Φ〉 .
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(or in other words that the heuristic generator Ḡ∞ introduced for the hierarchy is well-
defined and equal to G∞).

Let us explain why the relation (8.6) indeed defines uniquely a probability evolution
π̄t ∈ P (PG1). For any ℓ ∈ N

∗ we define

ϕ ∈ F⊗ℓ 7→
〈
πℓt , ϕ

〉
:=
〈
π0, T

∞
t Rℓϕ

〉
.

That is a positive linear form on F⊗ℓ. Thanks to (A2’)-(iii), the Stone-Weierstrass
density theorem and the Markov-Riesz representation theorem, we conclude that πℓt is
well defined as a element of PG1(E)⊗ℓ. Since now the sequence (πℓt) is symmetric and
compatible, the Hewitt-Savage representation theorem implies that there exists a unique
probability measure π̄t ∈ P (PG1) such that for any ϕ ∈ F⊗ℓ

1

(8.7) 〈π̄t, Rℓϕ〉 := 〈π0, T∞
t Rℓϕ〉.

Theorem 8.2. Under the asumptions (A1’)-(A2’)-(A3’)-(A4’), for any initial datum
π0 ∈ P (PG1), the flow π̄t defined from (8.7) is the unique solution in C([0,∞);P (PG1)) to
the infinite hierarchy evolution (8.3) starting from π0.

Moreover, if π0 is f0-chaotic (that is if π0 = δf0 with f0 ∈ P (E)), then πt is S
NL
t f0-

chaotic for any t ≥ 0. As a consequence we deduce that if fN0 is f0-chaotic, then fNt is
SNLt f0-chaotic. More generally, if fN0 converges to π0 then f

N
t converge to π̄t the associated

statistical solution.

Proof of Theorem 8.2. We shall proceed in several steps.

Step 1: Propagation of chaos. Let us recall that Hewitt-Savage’s theorem [38] implies that
for any π ∈ P (P (E)) there exists a unique sequence (πℓ) ∈ P (Eℓ) such that

∀ϕ ∈ (Cb (E))⊗ℓ ,
〈
πℓ, ϕ

〉
=
〈
π,Rℓϕ

〉
.

As a consequence, if π0 is f0-chaotic and π̄ satisfies (8.7), then

〈π̄t,ℓ, ϕ〉 =
〈
π̄t, R

ℓ
ϕ

〉
=
〈
π0, T

∞
t Rℓϕ

〉
= T∞

t

[
Rℓϕ

]
(f0)

= Rℓϕ
(
SNLt f0

)
=
〈
SNLt f0, ϕ1

〉
. . .
〈
SNLt f0, ϕℓ

〉
,

which means that π̄t,ℓ = f⊗ℓt , or equivalently π̄t = δft , and the solution π̄t defined by (8.7)
is ft-chaotic.

Step 2: Equivalence between (8.3) and (8.5).
First let us assume (8.5) and prove (8.3). Consider f ∈ PG1(E) and ϕ ∈ F⊗ℓ. Then we

have Rϕ ∈ C1,1(PG1(E)) and we deduce from (8.4) that
〈
f⊗ℓ+1, G∞

ℓ+1ϕ
〉
=
〈
Q(f, f),DRℓϕ(f)

〉
= G∞

[
Rℓϕ

]
(f)

which means

Rℓ+1
G∞

ℓ+1ϕ
= G∞

[
Rℓϕ

]
.

Then, using Hewitt-Savage’s Theorem again, (8.5) implies that

(8.8)
d

dt
〈πℓ,t, ϕ〉 =

d

dt

〈
πt, R

ℓ
ϕ

〉
=
〈
πt, G

∞
[
Rℓϕ

]〉
=
〈
πt, R

ℓ+1
G∞

ℓ+1[ϕ]

〉
=
〈
πℓ+1,t, G

∞
ℓ+1[ϕ]

〉

which means that πt satisfies (8.5).
Assume conversely that πt satisfies (8.3) and let us prove (8.5). One needs to prove that

one can recover any Φ ∈ UC1(PG1(E)) from the previous equation (8.8).
Therefore consider Φ ∈ UC1(PG1(E)) and let us define

ϕ =
(
πℓCΦ

)
(V ) = Φ

(
µℓV

)
, V = (v1, . . . , vℓ)
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and let us write (8.8) for this choice of ϕ:

d

dt

〈
πt, R

ℓ
πℓ
CΦ

〉
=
〈
πt, G

∞
[
Rℓ
πℓ
CΦ

]〉
=

〈
πt, R

ℓ+1

G∞
ℓ+1[π

ℓ
CΦ]

〉
.

Then, on the one hand, for any f ∈ PG1(E)

Rℓ
πℓ
CΦ

(f) =

∫

Eℓ

Φ
(
µℓV

)
df⊗ℓ(V )

ℓ→∞−−−→ Φ(f)

by the law of large numbers.

On the other hand, for any f ∈ PG1(E), we have

RG∞
ℓ+1[π

ℓ
CΦ](f) =

〈
f⊗ℓ+1, G∞

ℓ+1

(
πℓCΦ

)〉

=
〈
DRπℓ

CΦ(f), Q(f, f)
〉

=
ℓ∑

i=1

∫

Eℓ

Φ
(
µℓV

)
dQ(f, f)(vi)

∏

j 6=i
df(vj).

For any given i = 1, . . . , ℓ, we define

φℓ−1
Vi

= DΦ
(
µℓ−1
Vi

)
, Vi := (v1, . . . , vi−1, vi+1, . . . , vℓ)

and we write

Φ
(
µℓV

)
= Φ

(
µℓ−1
Vi

)
+
〈
φℓ−1
Vi

, µℓV − µℓ−1
Vi

〉
+O

(
Ω
(∥∥∥µℓ−1

Vi
− µℓV

∥∥∥
))

.

Observing that

µℓV − µℓ−1
Vi

=
1

N
δvi −

∑

j 6=i

1

ℓ (ℓ− 1)
δvj

and that 〈Q(f, f), 1〉 = 0 from assumption (A2’)-(ii), we find

RG∞
ℓ+1(π

ℓ
CΦ)(f) =

ℓ∑

i=1

∫

Eℓ

(
1

ℓ
φℓ−1
Vi

(vi) +O
(
Ω(ℓ−1)

))
dQ(f, f)(vi)

∏

j 6=i
df(vj)

=

ℓ−1∑

i=1

∫

Eℓ−1

1

ℓ− 1

〈
Q(f, f), φℓ−1

V

〉
df⊗(ℓ−1)(V ) +O

(
ℓΩ(ℓ−1)

)

=

∫

Eℓ−1

〈
Q(f, f),DΦ

(
µℓ−1
V

)〉
df⊗(ℓ−1)(V ) +O

(
ℓΩ(ℓ−1)

)

−→
ℓ→∞

〈DΦ(f), Q(f, f)〉

by the law of large number again. This implies (8.5). We then conclude that (8.5) holds
for any Φ ∈ C1(PG1(E)) by density of UC1(PG1(E)) in this space and the fact that the
domain of G∞ contains C1(PG1(E)).

Step 3: Uniqueness. Let us prove that any solution of (8.3)-(8.5) satisfies the characteristics
equation (8.7), or in other words that πt = π̄t. This shall imply uniqueness since we have
already seen that the π̄t satisfying (8.7) is unique.

The fundamental point here is that for any Φ ∈ UC1(PG1(E)) if we define Φt := T∞
t Φ,

thanks to Lemma 2.13 we have

∀ t ≥ 0, Φt ∈ UC1(PG1(E)) ⊂ Dom(G∞).

Then since

τ ∈ [0, t] 7→ 〈πτ ,Φt−τ 〉



KAC’S PROGRAM IN KINETIC THEORY 95

is C1 from the fact that Φt−τ ∈ C1(PG1(E)) belongs to the domain of G∞ for any τ , we
compute

d

dτ
〈πτ ,Φt−τ 〉 = 〈πτ , G∞ [Φt−τ ]〉 − 〈πτ , G∞ [Φt−τ ]〉 = 0

and we deduce that
〈πt,Φ0〉 = 〈π0,Φt〉

which proves that πt = π̄t satisfies (8.7), and concludes the proof. �

8.4. A remark on stationary statistical solutions. As we have seen:

• The chaoticity of a sequence of symmetric N -particle distributions fN ∈ P (EN ),
N ≥ 1 is equivalent to the fact that the associated π ∈ P (P (E)) is a Dirac at some
f0 ∈ P (E): π = δf0 . Hence, in view of Hewitt-Savage’s theorem, non-chaoticity
can be reframed as saying that π is a superposition of several, instead of one,
chaotic states.

• We have recalled the result in [42, 12] stating that a chaotic (tensorized) sequence is
asymptotically concentrated on the energy sphere, which is an effect of the Central
Limit Theorem.

• Finally let us make the simple observation that the N -particle dynamics leaves
the energy spheres invariant and relaxes on each energy spheres to the uniform
measure. This is a consequence of the energy conservation laws: at the level of the
particle system, the dynamics is layered according to the value of this conservation
law.

One deduces from these considerations that there is room for non-chaotic stationary states
of the N -particle system, namely superposition of several stationary states on different
energy spheres. Let us make this more precise.

Lemma 8.3. There exists a non-chaotic stationary solutions to the statistical Boltzmann
equation. In other words, there exists π ∈ P (P (Rd)) such that π 6= δp for some p ∈ P (Rd)
and A∞

ℓ+1(πℓ+1) = 0 for any ℓ ∈ N.

Proof of Lemma 8.3. It is clear that any function on the form

V ∈ R
d(ℓ+1) 7→ πℓ+1(V ) = φ(|V |2)

is a stationary solution for the equation (8.3), that is Aℓ+1(πℓ+1) = 0 for any ℓ ≥ 1. Now
we define, with d = 1 for the sake of simplicity, the sequence

V ∈ R
ℓ 7→ πℓ(V ) =

cℓ
(1 + |V |2)m+ℓ/2

∀ ℓ ≥ 1,

where the sequence of positive constants cℓ is inductively constructed in the following way.

• First c1 is chosen in a unique way so that π1 is a probability measure.
• Then, once c1, . . . , cℓ are constructed, cℓ+1 is constructed so that Πℓ[πℓ+1] = πℓ,
which means

∀V ∈ R
ℓ,

∫

v∗∈R

cℓ+1

(1 + |V |2 + |v∗|2)m+ℓ/2+1/2
dv∗ =

cℓ

(1 + |V |2)m+ℓ/2
.

This is always possible since
∫

v∗∈R

cℓ+1

(1 + |V |2 + |v∗|2)m+ℓ/2+1/2
dv∗

=
cℓ+1

(1 + |V |2)m+ℓ/2+1/2

∫

v∗∈R

1
(
1 + |v∗|2

(1+|V |2)

)m+ℓ/2+1/2
dv∗

=
cℓ+1

(1 + |V |2)m+ℓ/2

∫

v∗∈R

1

(1 + |v∗|2)m+ℓ/2+1/2
dv∗
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which concludes the induction.

We then deduce that the sequence πℓ, ℓ ≥ 1, satisfies (8.3) since every terms only
depends on the energy, and also satisfies the compatibility condition Πℓ[πℓ+1] = πℓ. This
concludes the proof. �
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