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Real-time Retrieval for Case-Based Reasoning in

Interactive Multiagent-Based Simulations

Pierre De Loor∗, Romain Bénard, Pierre Chevaillier

UEB - ENIB - LISyC, CERV, Brest, 29200, France

Abstract

The aim of this paper is to present the principles and results of case-based

reasoning adaptated to real-time interactive simulations, more precisely con-

cerning retrieval mechanisms. The article begins by introducing the con-

straints involved in interactive multiagent-based simulations. The second

section presents a framework stemming from case-based reasoning by au-

tonomous agents. Each agent uses a case base of local situations and, from

this base, it can choose an action in order to interact with other autonomous

agents or users’ avatars. We illustrate this framework with an example ded-

icated to the study of dynamic situations in football. We then go on to

address the difficulties of conducting such simulations in real-time and pro-

pose a model of case and of case base. Using generic agents and adequate

case base structure associated with a dedicated recall algorithm, we improve

retrieval performance under time pressure compared to classic CBR tech-
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niques. We present some results relating to the performance of this solution.

The article concludes by outlining future development of our project.

Key words: case-based reasoning, simulation, real-time, multiagent system

1. Introduction

Videogame technologies have recently begun to be used for the purposes

of scientific simulation and visualization (Ferey et al. (2008)), industrial and

military training (Gonzalez and Ahlers (1998); Buche et al. (2004)), and fi-

nally medical and health training and education (Volbracht et al. (1998);

Bideau et al. (2003)). Within these simulations, users can interact with au-

tonomous agents and/or human avatars of team members (Raybourn (2007)).

Unlike video games, these simulations tend not to focus on the quality

of graphical representations or animation which are not always necessary for

optimizing understanding of these situations (Metoyer and Hodgins (2000)).

The most important point is to ensure variability and sponteneity within the

simulation. The present paper adresses this issue in dynamic and collabora-

tive situations. Unlike procedural activities, dynamic and collaborative situ-

ations cannot easily be defined by sequences of rules as there are an infinite

number of possible situations. These situations result from local interaction

beetwen participants unaware of the overall situation. It is therefore possi-

ble to simulate such dynamics using autonomous agents interacting with one

or more users. In this case, decision-making is a rapid process largely in-

fluenced by context, and therefore partial perception, time limitations, high

stakes, uncertainty, unclear goals, and organizational constraints (Argilaga

and Jonsson (2003); Kofod-Petersen and Mikalsen (2005)). Consequently, the

2



outcomes of agents’ actions are unpredictable but can be qualified as more or

less believable than real-life experience. Moreover, the objective is to simu-

late adaptive behaviors capable of reacting to many different situations with

some variability.

Credibility depends on psychological and subjective considerations (Loy-

all et al. (2004)) and is difficult to quantify. Systematic approaches, such

as defining an explicit set of rules (Laird and Duchi (2000)), or automati-

cally learning rules (Sanza et al. (1999)), therefore conflict with believability.

Even if these lastest methods are used to define behaviors in simulating col-

laborative and dynamic situations (Ros et al. (2006)), they are based on

the optimization of “simple” criteria (for example, an agent’s score, or time

taken to complete a task). Consequently, the resulting behavior is efficient,

but unnatural and unsuitable for human learning.

Another approach is available to interactively construct dynamic and col-

laborative situations: the use of case-based reasoning (CBR) (Aamodt and

Plaza (1994)) in association with context modeling (Gonzalez and Ahlers

(1998); Brézillon (1999), Bénard et al. (2006)). Case-based reasoning stems

from analogous reasoning (Kolodner (1993); Riesbeck and Schank (1989);

Eremeev and Varshavsky (2006)), which is particularly relevant for address-

ing decision-making in dynamic and collaborative situations (Bossard et al.

(2006)). Context relies on all the elements perceived at any one time by a

given agent which might influence its decision-making. This concept arises

from ecological psychology (Gibson (1958)) and is strongly linked with nat-

uralistic decision making (Klein (2008)). This article mainly addresses the

principal difficulty faced when using CBR in this way: maintaining perfor-
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mance in real-time. The time needed to retrieve a case increases with the

size of the base multiplied by the number of autonomous agents. For real-

time purposes, it is unacceptable for the time taken to make a decision to

be linearly dependent on the size of the base (time taken to scan the base),

as it is subject to great variation. Depending on the domain in which CBR

is applied, the size of the base may increase with experience, or by means

of machine learning algorithms executed during experimental sessions etc.

Moreover, the term “dynamic situation” implies that, at any given time,

agents must be able to carry out an action even if it is not the best one.

Nevertheless, it is important to be aware that, even when these decisions

may be inappropriate, they are the result of heuristics and are not merely

random. Experts also claim that perceptions guide actions and that not all

perceptions are equal, but rather they depend on their implication in the

decision (Klein (2008)). It is therefore important to highlight the fact that

incorrect or incomplete perceptions may lead to inappropriate actions. Such

approximate perception is attributed to a lack of time available to perceive.

These principles can be implemented using the architecture presented

here in this paper. This architecture will be able to model 1) that some

perceptions are more relevant than others in making decisions (under time

pressure, agents will focus on these perceptions first), and 2) that the shorter

the time, the worse the perception, and therefore decisions made due to that

perception, will be.

This article is divided into three main parts: section 2 describes CBR and

a context model associated to each case. An application, CoPeFoot, is used

to illustrate this proposal. Section 3 addresses a real-time adaptation of case
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retrieval. Section 4 shows how this proposition improves recall results and

system precision under real-time constraints. These results are also discussed

in preparation for the conclusion in section 5.

2. CBR for Decision-Making in Virtual Agents

Case-based reasoning stems from analogous reasoning which states that

each situation encountered can be associated with another similar well-known

and appropriately-resolved situation. The difficulty is in defining how to as-

sociate situations in order to choose the most relevant, and to adapt one

situation to fit another. The principles of case-based reasoning are summa-

rized in figure 1. When the expert system encounters a problem (case target)

it searches for a similar case in its base (case source) which is associated with

a solution (solution(source)). It then adapts either (solution(source)) or the

resolution derived from case source to (solution(source)), in order to define

the solution (solution(target)). The main advantage is that it is unnecessary

to detail an exhaustive resolution mechanism which can become so complex

that it is in fact unknown. The adaptation step concerns either the resolving

procedure or the solution directly (Lieber (2007); Cordier et al. (2006)).

An application of CBR to decision-making in autonomous agents in in-

teractive simulations is illustrated in figure 2. Each autonomous agent uses

CBR to choose its subsequent decisions within the simulation.

The context box is the process of abstraction which extracts semantic in-

formation from features perceived in the simulated world. More precisely,

whereas simulations produce low-level information like changes in the posi-

tions of objects, the context box gives information such as the qualitative
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distances between agents (agent a is far from agent b), or more domain

dependent information (see examples in the following section). Each au-

tonomous agent has its own context depending on its position in the virtual

world. In CBR, this step is known as elaboration, during which all of the

relevant context elements are defined by experts. This context is compared

with elements from the case base in order to select one case (“recall step”).

Finally, using semantic information, the case is adapted to the current situ-

ation and autonomous agents can act within the virtual world (“adaptation

step”). Both the elaboration and adaptation steps are part of psychological

research linked to the field in which the CBR is implemented.

2.1. Application

The theoretical proposition was implemented in the CoPeFoot simulation

tool for studying collaborative and dynamic situations in sport (Bossard et al.

(2006)). This application will be used to illustrate each step of the theoritical

model. The pratical uses of CoPeFoot are described in (Bossard et al. (2006)).

It is designed to be used for training sports coaches and referees. Both the

starting conditions and the exercices can be configured in order to immerse

a real player in a 3D scene with autonomous players (by means of stereo

vision glasses). Users can also study the situations from different points of

view by watching the recordings of their movements. Figure 3 depicts a user

interacting with CoPeFoot in an immersive room.

2.2. Context Model

Although context is domain dependent, it is possible to formalize its data

structure as follows: a context Ctx is a set of predicates. Each predicate
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stands for one possible perception of an agent, and is domain-specific. Ex-

amples of such perceptions for football are the fact that a player is marked

(followed by an opponent) or that a team-mate is asking for the ball (asking

for the ball is a possible action for any player).

A predicate prx is a triplet {nx,Sx, cx} where:

• nx is the name of the perception (for example distance to express the

perception of a specific distance).

• Sx is a set of variables. Each variable v ∈ Sx has a type type(v)

inherited from a generic type DomainObject or an Agent type. This

type is interesting because, in dynamic situations, some cases are only

different because the identity of some of the agents differ, whereas the

other context elements remain the same. In order to reduce the case

base size and improve adaptation, it is therefore possible to formalize

a generic case representing all the cases with the same context except

the identity of the agents (see section 2.4 for details).

• cx is the variable which expresses the intended value of the predicate.

It is used when transforming the case base into a hierachical tree (see

section 3). Two types are possible:

– Boolean: expresses the success of a Boolean test linked with the

purpose of the predicate.

– QualitativeV alue: an abstraction of a number (e.g. a distance

beetwen 8 and 20 meters is equivalent to the qualitative value

“far”) and enables the aggregation of a number of values into one

when considered by experts to be similar enough.

7



Variables are instantiated in real-time by the simulator using a prolog-like

mechanism when the CBR enquires about the validity of predicates during

recall.

2.3. Application to CoPeFoot

Table 1 shows the predicates engaged at a specific moment in the CoPe-

Foot simulator. Some predicates like distance or relativePosition or orientation

are very general and applied to a type PhysicalObject which represents all

possible objects perceived in the 3D scene. Other predicates are more specific

to football (hasBall, isMarked, markedBy, callForBall, callForSupport,

partner, isInAttack, ratio, lastAction). They use Agent variables which

represent football players. Other football-specific predicate types are Team,

Action, Ball, Goal or Field (these last three types inherit from PhysicalObject).

For example, when CBR asks the simulator about the validity of one predi-

cate {{isMarked, {X}, true}} which means is a marked football player cur-

rently perceived?, the simulator answers true with an instanciation: X=Agent.3

(in this case, Agent.3 is an instance of the Agent class of the simulation which

is perceived by the Agent decision-maker and marked by an opponent). If

no players are marked, the simulator answers false.

2.4. Generic Case Model

In the following section, we will outline the model of a generic case using

generic agents and an instanciated case which corresponds to a concrete

situation with instanciated agents. The case base, representing source cases,

is made up of a set of generic cases whereas instanciated cases are elaborated
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from an “instantaneous” moment of the situation in the simulation; they

correspond to target cases.

A generic case c ∈ CaseBase is a triplet c = {P,W}, where:

• P is a set of the agent’s perceptions pi. A perception pi is a triplet

{ni,Vi, vci} where:

– ni is the name of a predicate pri ∈ Ctx

– Vi is the set of values of the variables i ∈ pri.

– vci is the value of ci.

In generic cases, Agent variables are not instances of the simulation

(like Agent.1 or Agent.2) but are rather generic agents representing

every possible agent in the simulation. Predicates can thus be linked

together in the case. For example, in CoPeFoot, a case can specify that

the marked generic agent A is the same as the agent in possession of the

ball, but that another generic agent B is far from the first (in this case

P = {{hasBall, {A}, true}, {isMarked, {A}, true}, {distance, {A,B}, far}}).

It is worth noting that there is one exception: the agent me, the deci-

sion maker, is not instanciated by a generic agent. Indeed, to obtain

consistent decision-making, it is important to distinguish this agent

from all the others, even in a generic case.

This case base is heterogenous, i.e. the number of perceptions relative

to a case and the type of perceptions differ for each case. Indeed, it

depends on the situation/orientation/position of the player who will

not always perceive the same elements.

9



• W is a set of predicate relevance weights: {wp1ck , wp2ck , wpick ..., wpmck}.

Where:

– pi is a perception of the generic case c

– ck is a case from the case base

Hence, a weight wpick is a real value, representative of the relevance of

the perception pi for the case ck. This relevance must be defined by

experts. The classical similarity function between two cases ck and cl

is adapted for cases with non-constant numbers of parameters, and is

described by equation 1 in section 2.6.

Figures 4 and 5, respectively give a simple example from CoPeFoot writ-

ten in XML, for the context “{{hasball, {Y 1}, Y 2}, {partner, {X1}, X2},

{distance, {Z1, Z2}, Z3}}” and of one generic case relying on this context.

2.5. Instanciated Case Model

An instanciated case arises from a generic case with generic agents sub-

stituted by instances of the simulation (noted Agent.1, Agent.2 ...etc). Gen-

erally, they constitute target cases.

An example from CoPeFoot of a case which matches the example in figure

5 is {case1 = {{{hasBall, {me}, false}, {partner, {Agent.1}, true},

{distance, {ball, Agent.1}, long}}}}.

2.6. Similarity

From a source case cs = {Ps,Ws} and a target case represented by a

perception set Pt, we define idPst, the set of common perceptions of Ps and
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Pt when players of Ps are instanciated with players of Pt : idPst = Ps ∩ Pt.

The similarity value simst beetwen the source case s and the target case t is

defined by equation 1.

simst =

∑
i∈idPst

wis
∑

i∈Ps
wis

× (1− α
|Pt| − |idPst|

|Pt|
) (1)

This equation takes into account the base’s heterogeneous nature. It is

therefore possible to compare the similarity between two source cases and

the target case even if the sources and the target differ in their numbers of

perceptions. In such a case, the nearer the number of identical perceptions

|idPst| is to the case size |Pt|, the greater the similarity. α is a weighting

parameter with a value between 0 and 1. Its influence on similarity, recall

and precision is explained in section 4.

3. Anytime CBR

3.1. Search-Tree for Real-Time Selection

Theoretically, recall implies comparing an instantaneous target case with

all the generic source cases in the base using the similarity function, in order

to select the most similar source case. In an interactive simulation, the

agent needs to make a decision at a precise moment under time pressure.

This is dependent on processes like updating (refreshing) the 3D scene, the

other agents’ decision-making (for example, 22 agents within the context of

football), and interaction with users. Moreover, the base size could increase

as the application improves both in terms of function and expertise.
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Base scanning must be optimized for both quantity (reducing the number

of tests) and quality (addressing first the relevant perception to make an ad-

equate decision). Here we shall consider a brief summary of this mechanism.

It is based on the following facts:

• Some variables are shared by different predicates. In these cases it is

possible to evaluate each case in parallel.

• It is possible, with the help of experts, to define a global order of priority

between the perceptions (predicates) taken into account by a player

when identifying a case. This order improves both the retrieval speed

and the adaptability of selected cases. Less adaptable and domain-

specific perceptions are found at the top of the tree. Let us take an

example from football. One crucial piece of information for making

appropriate decisions is to know if the player in possession of the ball

is in our team or not. Furthermore, it is more difficult for another

player to change the player who is in possession of the ball than it is

to reduce the distance between himself and that player. Consequently,

the predicate representing the perception of the player in possession of

the ball is positioned higher in the tree than the predicate relative to

the distance from this player.

Hence, perceptions are grouped together in a tree which re-organizes the case

base. Figure 6 shows an example of one such tree relative to:

1. the context Ctx of figure 4,

2. three generic cases (for simplicity the set of pertinence weights Wi are

not defined here):
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• case1={{{hasBall,{me},false},{partner,{A},true},{distance,{ball,A},long}},

W1}

• case2={{{hasBall,{me},true},{partner,{B},true}}, W2}

• case3={{{hasBall,{me},false},{partner,{A},false},{distance,{ball,B},long}},

W3}

3. an order of priority : hasball > partner > distance

Each node represents a predicate pri ∈ Ctx, with each variable of Si

being instanciated according to the value corresponding to each individual

case. Each arrow is an instantiation of the ci ∈ pri which contributes to its

validation according to case base. Some nodes are shared by different cases

but each case corresponds to one branch. It must be noted that this example

is simplified in order to illustrate the principle; typically, trees such as these

contain about one hundred nodes.

Technically, algorithm 1 constructs such a tree from the case base and

the priority order beetween predicates. This tree is built only once, at the

beginning of the simulation, and is then used for real-time case retrieval.

3.2. Evaluating Similarity in Real-Time

The tree is scanned widthwise during the simulation to identify cases sim-

ilar to the current situation. This scanning is interrupted by the simulator

when it is the turn of the corresponding autonomous agent to make a deci-

sion. Consequently, the most similar case in the base must be available at

any time. In order to do so, requests are sent to the context box, starting

from the root (see figure 2). In response, the values of variables validating

the perception of each scanned node i (Si and ci) are transmitted, if they
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Algorithm 1: Building the generic cases tree: note that (∀pi ∈

Pi, ∃prj ∈ Ctx such that pi = {ni, ci, vci} and prj = {nj ,Sj, cj} and

i = j)

Data: generic cases ci = {Pi,Wi} ∈ CaseBase;

context Ctx = {pr1, pr2, ..prm}

priority order of Ctx

Result: Hierarchical tree of generic cases

begin

Create an empty node root ;

root← CurrentNode;

forall ci = {Pi,Wi} ∈ CaseBase do

forall pj = {prj ,Vj, vcj} ∈ Pi in the priority order do

if (CurrentNode is labelled with {prj,Vj}) then

if (exists an arc starting from CurrentNode, ending

with a node n and labelled with the test [cj = vcj]) then

n← CurrentNode;

end

else

Create an arc from CurrentNode to a new empty

node n labelled with the test [cj = vcj ];

n← CurrentNode

end

end

else

Labelling CurrentNode with {prj,Vj};

Create an empty node n and an arc from CurrentNode

to n labelled with the test [cj = vcj ];

n← CurrentNode;

end

end

Labelling CurrentNode ( a leaf of the tree) with the name ci;

root← CurrentNode;

end

end
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exist. If they do not exist, the variables remain un-instanciated in the tree.

The longer the delay beetwen two interruptions, the higher the number of

scanned nodes and instanciated variables. If an arc is invalidated by the

value of its corresponding tested variable (ci), the branch is pruned and the

similarities of corresponding cases are no longer evaluated.

For one source case cs = {Ps,Ws}, the set of nodes which are along the

branch from the root to the final node corresponds to Ps. In section 2.6,

we defined the similarity function beetwen such a case and a target case

represented by a perception set Pt (equation 1). It is possible to adapt

this definition for real-time similarity evaluation in the following manner:

Ps(t) ⊆ Ps can be defined as is the set of perceptions of cs which are already

scanned (starting from the root) at time t. Similarly, it is possible to define

idPst(t) = Ps(t) ∩ Pt. This definition implies that:

lim
t→0

idPst(t) = ∅ (2)

lim
t→∞

idPst(t) = idPst (3)

The real-time similarity function beetween cs = {Ps,Ws} and a target

case defined by a set Pt is given in equation 4.

simst(t) =

∑
i∈idPst(t)

wis
∑

i∈Ps
wis

× (1− α
|Pt| − |idPst(t)|

|Pt|
) (4)
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4. Results

The aim of the following experiment is to illustrate the performance of

this proposition as compared to a classical approach in terms of real-time

performance for recall and precision criteria. The first part evaluates the

improvement in terms of memory size. The second part shows the influence

of the α parameter on precision and recall. Finally, we adress variations in

recall and precision relative to time taken for the algorithm to retrieve similar

source cases. To obtain these results, we used two different types of bases

representing the same cases. The first, linear Base, was a standard base,

composed of a list of cases that were an enumeration of perceptions such as

those shown in figure 5. The second base, tree Base, was a tree obtained

with the algorithm 1 applied to the linear Base.

4.1. Case Base Size

The first results deal with the size of the case base and, more precisely,

memory space gained due to the base’s tree structure. To obtain these curves,

an increasing number of cases are introduced in the two bases (tree Base and

linear Base). Cases in CoPeFoot occur in the following manner: from an

empty case base, users control avatars, and every time they act (press a

button), the system records the corresponding case and stores it in the base.

Figure 7 shows the evolution of the number of perceptions stored in bases

during acquisition. The dotted lines represent linear Base and the continuous

line tree Base.
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4.2. Impact of α on Recall and Precision

The results introduced in this section are identical for linear Base and

tree Base. They indicate the ways in which it is possible to favor recall

relative to precision. In equation 1, similarity depends on a parameter, α.

For this measurement, experts define a set of cases which are similar to a

target case, t. This pre-defined set is called C1. The set of cases found

through case retrieval is called C2. To carry out this set, similarity function

1 is combined with an acceptance threshold. Similarity functions use relevant

weights W which are also defined by an expert. The acceptance threshold

tht corresponds to the least significant similarity beetwen each case in C2 and

the target t : tht = min{simst, s ∈ C2}.

As in (Kumar et al. (2009)), recall and precision are defined as:

recall =
Ncorrect

Ncorrect +Nfalse

(5)

precision =
Ncorrect

Ntotal

(6)

with:

• Ntotal = Ncorrect +Nmissed

• Ncorrect = |C1 ∩ C2|, number of cases correctly found by the algorithm

relative to the expert’s definitions.

• Nfalse = |C2| − |C1 ∩C2|, number of cases which should not have been

considered (expert did not consider them similar to the target)

• Nmissed = |C1| − |C1 ∩ C2|, cases not found by the algorithm.
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Figure 8 shows that depending on the α parameter, we can favor either

recall or precision. The nearer α is to 1, the worse the similarities: recall is

poor and precision is great. On the contrary, the closer α is to 0, the better

the similarities are: recall is optimized and precision is poor. The best results

are obtained with α = 0.5 which is the value used to define the acceptance

threshold tht. For the following evaluations, α is set at 0.5.

4.3. Real-Time Performance

In this section, we compare real-time performance between the linear

Base and the tree Base for both recall and precision. The evaluation of both

bases is illustred in figure 9. In the case of the linear Base, the shorter the

time, the smaller the number of evaluated cases. This impacts negatively

on both recall and precision. To prevent bias linked to case scanning order,

cases are chosen randomly and the calculation repeated one hundred times.

The curve indicates average precision and recall. With tree Base, the order

of perceptions is fixed following an analysis by the expert. Similarly to linear

base, the shorter the time, the less nodes idPst(t) are taken into account.

This negatively impacts on similarity but a value can be estimated for every

case using equation 4.

The system took between 2 and 10 ms to evaluate the most similar cases.

Simulations were performed with a dual-core processor (3,4 GHz with 2Gb

of memory). With more than 10 ms the system has enough time to scan

and evaluate the entire linear Base and all the nodes of the treeBase. In

order to enhance the credibility of the simulation, it is important not to

leave too much time between two decisions. For example, in CoPeFoot, with

10 autonomous agents, all of the decision-making calculations for the whole
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team can be acheived in between 20 and 100 ms. For interactive simulation,

a frame rate of 25 images per second is generally considered acceptable.

Figure 9 shows that recall obtained with linear Base decreases to 8ms. At

this speed, not all of the cases from the base could be evaluated, so precision

also begins to decrease. The situation is better for the tree Base since preci-

sion and recall decrease to 4.2 and 3.4 ms respectively. Nevertheless, when

precision and recall values for tree Base decrease, they fall sharply until they

are poorer than those of the linear Base. This can easily be explained since,

when processing the tree, if the number of nodes to be processed is so low

(falls below a threshold value) that there are not enough significant nodes

to be able to calculate the similarities, this affects all of the cases within the

base and not only some of them, as is the case in the linear Base. Indeed,

within this time (4.2 ms), it is possible to scan 1/10 of the linear Base, but

this is not the case for Tree Base. Nevertheless, section 4.1 showed that tree

Base is smaller than linear Base. Problems stem from the fact that it takes

a long time to browse tree nodes. To illustrate this aspect, figure 10 shows

the same results as figure 9. However, this time, the abscissa do not indi-

cate real-time but rather the number of comparisons between the perceptions

given to the system. Due to this fact, treeBase performance is better than

that of linear Base.

It is worth noting that in these experiments, the case base contains only

50 cases, to ease the work of the experts defining the C1 set. The base size

is much larger when simulating a football game. The bigger the base, the

greater the difference between treeBase and linearBase will be. In this case,

the curves in figure 9 would be much more similar to those in figure 10.
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5. Conclusions

Real-time constraints are a critical problem for CBR use in interactive

simulations. However, experts claim that it is an appropriate solution for

modeling relevant decision-making in simulations of collaborative and dy-

namic situations (Bossard and Kermarrec (2007)). The main topic of this

article is real-time case retrieval. The proposed solution stems from arbores-

cent case bases, which enable the similarity between a target situation and

all the cases in the base to be calculated at any time. The precision of this

calculation depends on the time allocated for it but unlike the use of a linear

Base, there is a proposed value for each case at any given time. Moreover,

in accordance with psychological considerations, the longer the time allowed,

the better the evaluation of a situation. Some prelimilary tests confirmed

the credibility of the resulting behavior in CoPeFoot (Bossard et al. (2009)).

Case genericity, obtained by the use of a generic agent, means that a

general configuration can be adapted to a given instanciated target situation

coming from the simulator. In order to do so, all instanciated players are

unified with the corresponding generic agent. These instanciated agents are

part of generic actions, which are not detailed in this article. Indeed, for

the moment, we are testing some further definitions of generic action in

order to better formalize adaptation, but further coordination with experts

is required. We are currently developing an expert module of CoPeFoot :

ExPeCoPeFoot. This new module facilitates the interactions beetwen the

simulator and experts. They can refine the case base (weight of W, set of

relevant perceptions) during the course of the simulation.
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6. Table

n S c

(with their types) (with its type)

distance {O1 (Physical object), O2 (Physical object) } D (Qualitative value)

relativePosition {O1 (Physical object), O2 (Physical object) } O (Qualitative value)

orientation { O1 (Physical object) } O (Qualitative value)

hasBall {P1 (Agent) } V (Boolean)

isMarked {P1 (Agent) } V (Boolean)

markedBy {P1 (Agent), P2 (Agent) } V (Boolean)

callForBall {P1 (Agent) } V (Boolean)

callForSupport {P1 (Agent) } V (Boolean)

partner {P1 (Agent) } V (Boolean)

isInAttack {P1 (Agent) } V (Boolean)

ratio {DO1 (Team) } N (Qualitative value)

lastAction {DO1 (Action) } B (Boolean)

Table 1: Predicates expressing the context of an agent in CoPeFoot. For exam-

ple, the first predicate expresses a distance between two objects and is formalized by

prx = {{distance, (A,B), D}}. When type(A) = type(B) = PhysicalObject, type(D) =

QualitativeV alue (for a distance, qualitative values of this variable are {close, far, long}).
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7. Figure captions

Caption of figure 1

The Principles of CBR.

Caption of figure 2

Case-based reasoning within simulations of interactive dynamic situa-

tions.

Caption of figure 3

A user interacting with agents in the CoPeFoot simulator.

Caption of figure 4

Example of XML formalization of a small context in CoPeFoot :

{{hasball, {Y 1}, Y 2}, {partner, {X1}, X2}, {distance, {Z1, Z2}, Z3}}

Caption of figure 5

XML formalization of a generic case in CoPeFoot.

case1 = {{{hasBall, {me}, false}, {partner, {A}, true}, {distance, {ball, A}, long}},

{0, 3; 0, 7; 0, 45}}}. The main difference with the context is that the variables

are instanciated (with generic agents for agent variables and with constants

for all other variables).

Caption of figure 6

Example of a case base tree.

Caption of figure 7

Number of perceptions stored in linearBase (dotted line) relative to tree-

Base (continuous line) during acquisition of new cases.

26



Caption of figure 8

Influence of the α parameter on precision and recall (see text for details).

When alpha changes from 0 to 1 precision decreases and recall increases.

Caption of figure 9

Precision and recall under time pressure (in milliseconds) for classical and

perceptions tree similarities.
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8. Figures

Figure 1: The Principles of CBR
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Simulation of situated agents

Perceived objects 

and distances

Selecting

an action

Expertise Context
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Similar case

Retrieving

Adaptation

Elaboration

Figure 2: Case-based reasoning within simulation of interactive dynamic situations

Figure 3: A user interacting with agents in the CoPeFoot simulator
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<ctx>

<predicate>

<name=hasball>

<variable name=Y1 type=Agent />

<choiceVariable name=Y2 type=Boolean />

</predicate>

<predicate>

<name> partner </name>

<variable name=X1 type=Agent />

<choiceVariable name=X2 type=Boolean />

</predicate>

<predicate>

<name> distance </name>

<variable name=Z1 type=PhysicalObject />

<variable name=Z2 type=Agent />

<choiceVariable name=Z3 type=QualitativeValue value=far />

</predicate>

</ctx>

Figure 4: Example of XML formalization of a small context in CoPeFoot :

{{hasball, {Y 1}, Y 2}, {partner, {X1}, X2}, {distance, {Z1, Z2}, Z3}}
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<case id=case1>

<predicate>

<name> hasball </name>

<value val="me" type=GenericAgent />

<valueChoice val=false type=Boolean />

<w11 val=0,3 />

</predicate>

<pred>

<name> partner </name>

<value val=A type=GenericAgent />

<valueChoice val=true type=Boolean />

<w21 val=0,7 />

</predicate>

<predicate>

<name> distance </name>

<value val=ball type=Ball />

<value val=A type=GenericAgent />

<valueChoice val=long type=QualitativeValue values={close,far,long} />

<w31 val=0,45 />

</predicate>

</case>

Figure 5: XML formalization of a generic case in CoPeFoot. case1 =

{{{hasBall, {me}, false}, {partner, {A}, true}, {distance, {ball, A}, long}}, {0, 3; 0, 7; 0, 45}}}.

The main difference with the context is that the variables are instanciated (with generic

agents for agent variables and with constants for all other variables)

.
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hasBall(me,Y2)

partner(B,X2)

Y2=true Y2=false

partner(A,Y1)

case 2

distance(ball,A,Z3) distance(ball,B,Z3)

case 1 case 3

X2=far

Y1=true Y1=false

Z3=long Z3=long

Figure 6: Example of a case base tree
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Figure 7: Number of perceptions stored in linearBase (dotted line) relative to treeBase

(continuous line) during acquisition of new cases.
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Figure 8: Influence of the α parameter on precision and recall (see text for details).When

α changes from 0 to 1 precision decreases and recall increases.
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Figure 9: Precision and recall under time pressure (in milliseconds) for classical and per-

ceptions tree similarities
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Figure 10: Precision and recall under the number of authorized tests on perceptions for

linear Base and tree Base similarity
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